Экспериментальное исследование ферментных антиоксидантных систем при адаптации к длительному воздействию холода и дефицита токоферола тема диссертации и автореферата по ВАК 03.00.16, кандидат биологических наук Скурятина, Юлия Владимировна

Диссертация и автореферат на тему «Экспериментальное исследование ферментных антиоксидантных систем при адаптации к длительному воздействию холода и дефицита токоферола». disserCat — научная электронная библиотека.
Автореферат
Диссертация
Артикул: 106453
Год: 
2001
Автор научной работы: 
Скурятина, Юлия Владимировна
Ученая cтепень: 
кандидат биологических наук
Место защиты диссертации: 
Барнаул
Код cпециальности ВАК: 
03.00.16
Специальность: 
Экология
Количество cтраниц: 
101

Оглавление диссертации кандидат биологических наук Скурятина, Юлия Владимировна

ВВЕДЕНИЕ.

ГЛАВА 1. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О МЕХАНИЗМЕ АДАПТАЦИИ ОРГАНИЗМА К ХОЛОДУ И ДЕФИЦИТУ ТОКОФЕРОЛА.

1.1 Новые представления о биологических функциях активных форм кислорода при адаптивных преобразованиях метаболизма.

1.2 Механизмы адаптации организма к холоду и роль оксидативного стресса в этом процессе.

1.3 Механизмы адаптации организма к дефициту токоферола и роль оксидативного стресса в этом процессе.

ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1 Организация исследования.

2.1.1 Организация экспериментов по влиянию холода.

2.1.2 Организация экспериментов по влиянию дефицита токоферола.

2.2 Методы исследования

2.2.1 Гематологические показатели

2.2.2 Исследование энергетического метаболизма.

2.2.3 Исследование оксидативного метаболизма.

2.3 Статистическая обработка результатов.

ГЛАВА 3. ИССЛЕДОВАНИЕ ОКСИДАТИВНОГО ГОМЕОСТАЗА, ОСНОВНЫХ МОРФОФУНКЦИОНАЛЬНЫХ ПАРАМЕТРОВ ОРГАНИЗМА КРЫС И ЭРИТРОЦИТОВ ПРИ ДЛИТЕЛЬНОМ ВОЗДЕЙСТВИИ ХОЛОДА.

ГЛАВА 4. ИССЛЕДОВАНИЕ ОКСИДАТИВНОГО ГОМЕОСТАЗА, ОСНОВНЫХ МОРФОФУНКЦИОНАЛЬНЫХ ПАРАМЕТРОВ ОРГАНИЗМА КРЫС И ЭРИТРОЦИТОВ ПРИ ДЛИТЕЛЬНОМ ДЕФИЦИТЕ ТОКОФЕРОЛА.

Введение диссертации (часть автореферата) На тему "Экспериментальное исследование ферментных антиоксидантных систем при адаптации к длительному воздействию холода и дефицита токоферола"

Актуальность темы. Исследованиями последних лет показано, что в механизмах приспособления организма к факторам внешней среды важную роль играют так называемые активные формы кислорода - супероксидный и гидро-ксильный радикалы, перекись водорода и другие (Finkel, 1998; Kausalya, Nath, 1998). Установлено, что эти свободно-радикальные метаболиты кислорода, которые до недавнего времени рассматривались лишь как повреждающие агенты, являются сигнальными молекулами и регулируют адаптивные преобразования нервной системы, артериальной гемодинамики и морфогенез. (Luscher, Noll, Vanhoute, 1996; ; Groves, 1999; Wilder, 1998; Drexler, Homig, 1999). Главным источником активных форм кислорода является ряд ферментных систем эпителия и эндотелия (НАДФ-оксидаза, циклооксигеназа, липооксигеназа, ксанти-ноксидаза), которые активируются при раздражении хемо-и механорецепторов, расположенных на люминальной мембране клеток этих тканей.

В то же время известно, что при усилении продукции и накоплении в организме активных форм кислорода, то есть при так называемом оксидативном стрессе, их физиологическая функция может трансформироваться в патологическую с развитием перекисного окисления биополимеров и повреждением вследствие этого клеток и тканей. (Kausalua, Nath, 1998; Smith, Guilbelrt, Yui et al. 1999). Очевидно, что возможность такой трансформации определяется прежде всего скоростью инактивации АФК антиоксидантными системами. В связи с этим, особый интерес представляет исследование изменений инактиваторов активных форм кислорода - ферментных антиоксидантных систем организма, при длительном воздействии на организм таких экстремальных факторов, как холод и дефицит витаминного антиоксиданта - токоферола, которые рассматриваются в настоящее время как эндо- и экзогенные индукторы оксидативного стресса.

Цель и задачи исследования. Целью работы явилось исследование изменений основных ферментных антиоксидантных систем при адаптации крыс к длительному воздействию холода и дефицита токоферола.

Задачи исследования:

1. Сопоставить изменения показателей оксидативного гомеостаза с изменениями основных морфофункциональных параметров организма крыс и эритроцитов при длительном воздействии холода.

2. Сопоставить изменения показателей оксидативного гомеостаза с изменениями основных морфофункциональных параметров организма крыс и эритроцитов при дефиците токоферола.

3. Провести сравнительный анализ изменений оксидативного метаболизма и характера адаптивной реакции организма крыс при длительном воздействии холода и дефицита токоферола.

Научная новизна. Впервые установлено, что длительное интермитти-рующее воздействие холода (+5°С по 8 часов в сутки на протяжении 6 месяцев) вызывает в организме крыс ряд морфофункциональных изменений адаптивной направленности: ускорение прироста массы тела, увеличение содержания спек-трина и актина в мембранах эритроцитов, повышение активности ключевых энзимов гликолиза, концентрации АТФ и АДФ, а также активности АТФ-аз.

Впервые показано, что в механизме развития адаптации к холоду важную роль играет оксидативный стресс, особенностью которого является возрастание активности компонентов системы антиоксидантной системы - энзимов НАДФН-генерирующего пентозофосфатного пути распада глюкозы, суперок-сиддисмутазы, каталазы и глутатионпироксидазы.

Впервые показано, что развитие патологических морфо-функциональных изменений при дефиците токоферола связано с выраженным оксидативным стрессом, протекающим на фоне сниженной активности основных антиокси-дантных ферментов и ферментов пентозофосфатного пути распада глюкозы.

Впервые установлено, что результат преобразований обмена веществ при воздействии на организм факторов внешней среды зависит от адаптивного возрастания активности антиоксидантных ферментов и связанной с этим выраженности оксидативного стресса.

Научно-практическая значимость работы. Полученные в работе новые факты расширяют представления о механизмах приспособления организма к факторам внешней среды. Выявлена зависимость результата адаптивных преобразований метаболизма от степени активации основных ферментных антиок-сидантов, что указывает на необходимость направленного развития адаптивного потенциала этой неспецифической системы стресс-резистентности организма при изменении экологических условий.

Основные положения, выносимые на защиту:

1. Длительное воздействие холода вызывает в организме крыс комплекс изменений адаптивной направленности: возрастание устойчивости к действию холода, которое выражалось в ослаблении гипотермии; ускорение прироста массы тела; повышение содержания спектрина и актина в мембранах эритроцитов; увеличение скорости гликолиза, повышение концентрации АТФ и АДФ; возрастание активности АТФ-аз. Механизм этих изменений связан с развитием оксидативного стресса в сочетании с адаптивным увеличением активности компонентов системы антиоксидантной защиты - ферментов пентозо-фосфатного шунта, а также основных внутриклеточных антиоксидантных ферментов, прежде всего супероксиддисмутазы.

2. Длительный дефицит в организме крыс токоферола вызывает стойкий гипотрофический эффект, повреждение мембран эритроцитов, угнетение гликолиза, снижение концентрации АТФ и АДФ, активности клеточных АТФ-аз. В механизме развития этих изменений существенное значение имеет недостаточная активация антиоксидантных систем - НАДФН-генерирующего пентозо-фосфатного пути и антиоксидантных ферментов, создающая условия для повреждающего действия активных форм кислорода.

Апробация работы. Результаты исследований доложены на совместном заседании кафедры биохимии и кафедры нормальной физиологии Алтайского государственного медицинского института (Барнаул, 1998, 2000), на научной конференции, посвященной 40-летию кафедры фармакологии Алтайского государственного медицинского университета (Барнаул, 1997),на научно-практической конференции"Современные проблемы курортологии и терапии", посвященной 55-летию санатория "Барнаульский" ( Барнаул,2000), на II международной конференции молодых ученых России (Москва,2001).

Публикации. По материалам диссертации опубликовано 6 работ.

Заключение диссертации по теме "Экология", Скурятина, Юлия Владимировна

выводы

1. Длительное интермиттирующее воздействие холода (+5°С по 8 часов в сутки на протяжении 6 месяцев) вызывает в организме крыс комплекс адаптивных изменений: диссипацию гипотермической реакции на холод, ускорение прироста массы тела, повышение содержания спектрина и актина в мембранах эритроцитов, усиление гликолиза, возрастание суммарной концентрации АТФ и АДФ и активности АТФ-аз.

2. Состоянию адаптированности крыс к длительному интермиттирующе-му воздействию холода соответствует оксидативный стресс, для которого характерны повышенная активность компонентов ферментных антиоксидантных систем - глюкозо-6-фосфатдегидрогеназы, супероксиддисмутазы, каталазы и глутатионпероксидазы.

3. Длительный (6 месяцев) алиментарный дефицит токоферола вызывает в организме крыс стойкий гипотрофический эффект, анемию, повреждение мембран эритроцитов, угнетение в эритроцитах гликолиза, снижение суммарной концентрации АТФ и АДФ, а также активности Na+,K+- АТФ-азы.

4. Дизадаптивные изменения в организме крыс при дефиците токоферола связаны с развитием выраженного оксидативного стресса, для которого характерны снижение активности каталазы и глутатионпероксидазы в сочетании с умеренным возрастанием активности глюкозо-6-фосфатдегидрогеназы и супероксиддисмутазы.

5. Результат адаптационных преобразований метаболизма в ответ на длительное воздействие холода и алиментарного дефицита токоферола зависит от выраженности оксидативного стресса, которая во многом определяется возрастанием активности антиоксидантных ферментов.

ЗАКЛЮЧЕНИЕ

К настоящему времени сложилось достаточно четкое представление о том, что адаптация организма человека и животных определяется взаимодействием генотипа с внешними факторами (Меерсон, Малышев, 1981; Панин, 1983; Голдстейн, Браун, 1993; Адо, Бочков, 1994). При этом следует учитывать, что генетически детерминированная неадекватность включения адаптивных механизмов при воздействии экстремальных факторов может приводить к трансформации состояния напряжения в острый или хронический патологический процесс (Казначеев, 1980).

В основе процесса приспособления организма к новым условиям внутренней и внешней среды лежат механизмы срочной и долговременной адаптации (Меерсон, Малышев, 1981). При этом процесс срочной адаптации, рассматриваемый как временная мера, к которой организм прибегает в критических ситуациях, исследован достаточно подробно (Davis, 1960, 1963; Исаакян, 1972; Ткаченко, 1975; Rohlfs, Daniel, Premont et al., 1995; Beattie, Black, Wood et. al., 1996; Marmonier, Duchamp, Cohen-Adad et al., 1997). В этот период повышенная продукция различных сигнальных факторов, включая гормональные, индуцирует существенную локальную и системную перестройку метаболизма в различных органах и тканях, чем в итоге определяется истинная, долговременная адаптация (Хочачка, Сомеро, 1988). Активация процессов биосинтеза на уровне репликации и транскрипции обусловливает развивающиеся при этом структурные изменения, которые проявляются гипертрофией и гиперплазией клеток и органов (Меерсон, 1986). Поэтому изучение биохимических основ адаптации к длительному воздействию возмущающих факторов имеет не только научный, но и большой практический интерес, особенно с точки зрения распространенности дизадаптивных болезней (Lopez-Torres et al., 1993; Pipkin, 1995; Wallace, Bell, 1995; Sun et al., 1996).

Несомненно, что развитие долговременной адаптации организма является весьма сложным процессом, реализующимся с участием всего комплекса иерархически организованной системы регуляции метаболизма, причем многие стороны механизма этой регуляции остаются неизвестными. Согласно последним литературным данным, адаптация организма к длительно действующим возмущающим факторам начинается с локальной и системной активации филогенетически наиболее древнего процесса свободно-радикального окисления, ведущего к образованию физиологически важных сигнальных молекул в виде активных форм кислорода и азота - оксид азота, супероксидный и гидроксиль-ный радикал, пероксид водорода и др. Этим метаболитам принадлежит ведущая медиаторная роль в адаптивной локальной и системной регуляции метаболизма аутокринным и паракринным механизмами (Sundaresan, Yu, Ferrans et. al., 1995; Finkel, 1998; Givertz, Colucci, 1998).

В связи с этим, при исследовании физиологических и патофизиологических аспектов адаптивных и дизадаптивных реакций занимают вопросы регуляции свободно-радикальными метаболитами, причем особую актуальность составляют вопросы биохимических механизмов адаптации при длительном воздействии на организм индукторов оксидативного стресса (Cowan, Langille, 1996; Kemeny, Peakman, 1998; Farrace, Cenni, Tuozzi et al., 1999).

Несомненно, что наибольшую информацию в этом отношении можно получить в экспериментальных исследованиях на соответствующих "моделях" распространенных видов оксидативного стресса. В качестве таковых наиболее известны модели экзогенного оксидативного стресса, вызываемого холодовой экспозицией, и эндогенного оксидативного стресса, возникающего при дефиците витамина Е - одного из важнейших мембранных антиоксидантов. Эти модели и были использованы в работе для выяснения биохимических основ адаптации организма к длительному оксидативному стрессу.

В соответствии с многочисленными литературными данными (Спиричев, Матусис, Бронштейн, 1979; Aloia, Raison, 1989; Glofcheski, Borrelli, Stafford, Kruuv, 1993; Beattie, Black, Wood, Trayhurn, 1996), нами установлено, что ежедневная 8-часовая холодовая экспозициям на протяжении 24-недель приводила к выраженному повышению концентрации малонилдиальдегида в эритроцитах. Это свидетельствует о развитии под влиянием холода хронического оксидативного стресса. Аналогичные изменения имели место в организме крыс, содержавшихся в течение такого же периода на диете, лишенной витамина Е. Этот факт также соответствует наблюдениям других исследователей (Masugi,

Nakamura, 1976; Tamai., Miki, Mino, 1986; Архипенко, Коновалова, Джапаридзе и др., 1988; Matsuo, Gomi, Dooley, 1992; Cai, Chen, Zhu et al., 1994). Однако причины оксидативного стресса при длительном интермиттирующем воздействии холода и оксидативного стресса при длительном дефиците токоферола различны. Если в первом случае причиной стрессового состояния является воздействие внешнего фактора - холода, вызывающего повышение продукции ок-сирадикалов вследствие индукции синтеза разобщающего протеина в митохондриях (Nohl, 1994; Bhaumik, Srivastava, Selvamurthy et al., 1995; Rohlfs, Daniel, Premont et al., 1995; Beattie, Black, Wood et. al., 1996; Femandez-Checa, Kaplowitz, Garcia-Ruiz et al., 1997; Marmonier, Duchamp, Cohen-Adad et al., 1997; Rauen, de Groot, 1998), то при дефиците мембранного антиоксиданта токоферола причиной оксидативного стресса было снижение скорости нейтрализации оксирадикальных медиаторов (Lawler, Cline, Ни, Coast, 1997; Richter, 1997; Polyak, Xia, Zweier et. al., 1997; Sen, Atalay, Agren et al., 1997; Higashi, Sasaki, Sasaki et al., 1999). Учитывая тот факт, что длительное холодовое воздействие и авитаминоз Е вызывают накопление активных форм кислорода, можно было ожидать трансформацию физиологической регуляторной роли последних в патологическую, с повреждением клеток вследствие перекисного окисления биополимеров. В связи с общепринятым до недавнего времени представлением о повреждающем действии активных форм кислорода, холод и дефицит токоферола рассматриваются как факторы, провоцирующие развитие многих хронических заболеваний (Cadenas, Rojas, Perez-Campo et al., 1995; de Gritz, 1995; Jain, Wise, 1995; Luoma, Nayha, Sikkila, Hassi., 1995; Barja, Cadenas, Rojas et al., 1996; Dutta-Roy, 1996; Jacob, Burri, 1996; Snircova, Kucharska, Herichova et al., 1996; Va-Squezvivar, Santos, Junqueira, 1996; Cooke, Dzau, 1997; Lauren, Chaudhuri, 1997; Davidge, Ojimba, Mc Laughlin, 1998; Kemeny, Peakman, 1998; Peng, Kimura, Fregly, Phillips, 1998; Nath, Grande, Croatt et al., 1998; Newaz, Nawal, 1998; Taylor, 1998). Очевидно, что в свете концепции о медиа-торной роли активных форм кислорода, реализация возможности трансформации физиологического оксидативного стресса в патологический в значительной степени зависит от адаптивного возрастания активности антиоксидантных ферментов. В соответствии с представлением о ферментном антиоксидантном комплексе как функционально динамичной системе находится недавно выявленный феномен субстратной индукции экспрессии генов всех трех основных антиоксидантных энзимов - супероксиддисмутазы, каталазы и глутатионперок-сидазы (Пескин, 1997; Tate, Miceli, Newsome, 1995; Pinkus, Weiner, Daniel, 1996; Watson, Palmer., Jauniaux et al., 1997; Sugino, Hirosawa-Takamori, Zhong, 1998). Важно отметить, что эффект такой индукции имеет достаточно длительный лаг-период, измеряемый десятками часов и даже днями (Beattie, Black, Wood, Trayhurn, 1996; Battersby, Moyes, 1998; Lin, Coughlin, Pilch, 1998). Поэтому данный феномен способен привести к ускорению инактивации активных форм кислорода лишь при длительных воздействиях стресс-факторов.

Проведенные в работе исследования показали, что длительное интермит-тирующее воздействие холодом вызывало гармоничную активацию всех исследованных антиоксидантных энзимов. Это согласуется с мнением Bhaumik G. et al (1995) о протективной роли этих ферментов в ограничении осложнений при длительном холодовом стрессе.

В то же время в эритроцитах крыс с дефицитом витамина Е в конце 24-х недельного периода наблюдений регистрировалась активация лишь суперок-сиддисмутазы. Следует отметить, что в проводимых ранее подобных исследованиях такого эффекта не наблюдалось (Xu, Diplock, 1983; Chow, 1992; Matsuo, Gomi, Dooley, 1992; Walsh, Kennedy, Goodall, Kennedy, 1993; Cai, Chen, Zhu et al., 1994; Tiidus, Houston, 1994; Ashour, Salem, El Gadban et al., 1999). Следует, однако,отметить что возрастание активности супероксиддисмутазы, не сопровождалось адекватным повышением активности каталазы ж глутатионперокси-дазы и не предотвращало развитие повреждающего действия активных форм кислорода. О последнем свидетельствовало значительное накопление в эритроцитах продукта перекисного окисления липидов - малонидиальдегида. Необходимо отметить, что перекисное окисление биополимеров рассматривается в настоящее время как главная причина патологических изменений при авитаминозе Е (Chow, Ibrahim, Wei и Chan, 1999).

Об эффективности антиоксидантной защиты в экспериментах по исследованию холодового воздействия свидетельствовало отсутствие выраженных изменений в гематологических показателях и сохранение устойчивости эритроцитов к действию различных гемолитиков. О сходных результатах ранее сообщалось и другими исследователями (Марачев, 1979; Рапопорт, 1979; Sun, Cade, Katovich, Fregly, 1999). Напротив, у животных с Е-авитаминозом наблюдался комплекс изменений, указывающих на повреждающее действие активных форм кислорода: анемия с явлениями внутрисосудистого гемолиза, появление эритроцитов со сниженной резистентностью к гемолитикам. Последнее считается весьма характерным проявлением оксидативного стресса при Е-авитами нозе (Brin, Horn, Barker, 1974; Gross, Landaw, Oski, 1977; Machlin, Filipski, Nelson et al., 1977; Siddons, Mills, 1981; Wang, Huang, Chow, 1996). Выше изложенное убеждает в значительных возможностях организма по нейтрализации последствий оксидативного стресса внешнего генеза, в частности вызываемого холодом, и неполноценности адаптации к эндогенному оксида-тивному стрессу в случае Е-авитаминоза.

К группе антиоксидантных факторов в эритроцитах относится и система генерации НАДФН, который является кофактором гемоксигеназы, глутатион-редуктазы и тиоредоксинредуктазы, восстанавливающих железо, глутатион и другие тиосоединения. В наших экспериментах наблюдалось весьма значительное увеличение активности глюкозо-6-фосфатдегидрогеназы в эритроцитах крыс как при действии холода, так и при дефиците токоферола, что ранее наблюдали и другие исследователи (Казначеев, 1977; Уласевич, Грозина, 1978;

Gonpern, 1979; Куликов, Ляхович, 1980; Ландышев, 1980; Fudge, Stevens, Ballantyne, 1997). Это указывает на активацию у экспериментальных животных пентозофосфатного шунта, в котором синтезируется НАДФН.

Механизм развития наблюдаемого эффекта во многом становится понятнее при анализе изменений показателей углеводного метаболизма. Наблюдалось усиление поглощения глюкозы эритроцитами животных как на фоне оксидативного стресса, вызванного холодом, так и при оксидативном стрессе, индуцированном дефицитом токоферола. Это сопровождалось существенной активацией мембранной гексокиназы - первого энзима внутриклеточной утилизации углеводов, что хорошо согласуется с данными других исследователей (Лях, 1974, 1975; Панин, 1978; Уласевич, Грозина, 1978; Nakamura, Moriya, Murakoshi. et al., 1997; Rodnick, Sidell, 1997). Однако, дальнейшие превращения интенсивно образующегося в указанных случаях глюкозо-6-фосфата существенно различались. При адаптации к холоду метаболизм этого интермедиата усиливался как в гликолизе (о чем свидетельствовало возрастание активности гексофосфатизомеразы и альдолазы), так и в пентозофосфатном пути. Последнее подтверждалось увеличением активности глюкозо-6-фосфатдегидрогеназы. В то же время у Е-авитаминозных животных перестройка углеводного метаболизма была связана с увеличением активности лишь глюкозо-6-фосфатдегидрогеназы, тогда как активность ключевых ферментов гликолиза не изменялась или даже снижалась. Следовательно, в любом случае оксидативный стресс вызывает повышение скорости метаболизма глюкозы в пентозофосфат-ном шунте, обеспечивающем синтез НАДФН. Это представляется весьма целесообразным в условиях повышения потребности клеток в редокс-эквивалентах, в частности НАДФН. Можно предположить, что у Е-авитаминозных животных данный феномен развивается в ущерб гликолитическим энергопродуцирую-щим процессам.

Отмеченное различие влияний экзогенного и эндогенного оксидативного стресса на гликолитическую энергопродукцию сказывалось и на энергетическом статусе клеток, а также на системах энергопотребления. При холодовом воздействии наблюдалось значимое увеличение концентрации АТФ+АДФ со снижением концентрации неорганического фосфата, увеличение активности общей АТФ-азы, Mg^-АТФ-азы и Ыа+,К+-АТФ-азы. И напротив, в эритроцитах крыс с Е-авитаминозом наблюдалось снижение содержания макроэргов и активности АТФаз. При этом вычисленный индекс АТФ+АДФ/Фн подтвердил имеющиеся сведения о том, что для холодового, но не для Е-авитаминозного оксидативного стресса характерно превалирование энергопродукции над энергопотреблением (Марачев, Сороковой, Корчев с сотр., 1983; Rodnick, Sidell, 1997; Hardewig, Van Dijk, Portner, 1998).

Таким образом, при длительном интермиттирующем воздействии холода перестройка процессов энергопродукции и энергопотребления в организме животных имела явный анаболический характер. В этом убеждает наблюдавшееся ускорение прироста массы тела животных. Исчезновение у крыс гипотермиче-ской реакции на холод к 8-ой неделе эксперимента свидетельствует об устойчивой адаптированности их организма к холоду и, следовательно, об адекватности адаптивных преобразований метаболизма. В то же время судя по основным морфофункциональным, гематологическим и биохимическим показателям, изменения энергетического метаболизма у Е-авитаминозных крыс не приводили к адаптивно-целесообразному результату. Представляется, что основной причиной такого ответа организма на дефицит токоферола является отток глюкозы от энергопродуцирующих процессов в процессы образования эндогенного антиоксиданта НАДФН. Вероятно, выраженность адаптивного оксидативного стресса является своеобразным регулятором метаболизма глюкозы в организме: данный фактор способен включать и усиливать продукцию антиок-сидантов в ходе метаболизма глюкозы, что является более значимым для выживания организма в условиях мощного повреждающего эффекта активных форм кислорода, чем продукция макроэргов.

Следует отметить, что согласно современным данным, кислородные радикалы являются индукторами синтеза отдельных факторов репликации и транскрипции, стимулирующих адаптивную пролиферацию и дифференциров-ку клеток различных органов и тканей (Agani, Semenza, 1998). При этом одной из важнейших мишеней для свободно-радикальных медиаторов являются факторы транскрипции типа NFkB, индуцирующих экспрессию генов антиоксидантных энзимов и других адаптивных белков (Sundaresan, Yu, Ferrans et. al, 1995; Finkel, 1998; Givertz, Colucci, 1998). Таким образом, можно думать, что именно этот механизм срабатывает при холод-индуцированном оксидативном стрессе и обеспечивает возрастание активности не только специфических энзимов антиоксидантной защиты (супероксиддисмутазы, каталазы и глутатион-пероксидазы), но и повышение активности ферментов пентозофосфатного пути. При более выраженном оксидативном стрессе, вызванном дефицитом мембранного антиоксиданта - токоферола, адаптивная субстратная индуцибель-ность указанных компонентов антиоксидантной защиты реализуется лишь частично и, скорее всего, недостаточно эффективна. Следует отметить, что низкая эффективность этой системы в конечном итоге приводила к трансформации физиологического оксидативного стресса в патологический.

Полученные в работе данные позволяют сделать вывод о том, что результат адаптивных преобразований метаболизма в ответ на возмущающие факторы внешней среды, в развитии которых задействованы активные формы кислорода, во многом определяется адекватностью сопряженного возрастания активности основных антиоксидантных ферментов, а также ферментов НАДФН-генерирующего пентозофосфатного пути распада глюкозы. В связи с этим, при изменении условий существования макроорганизма,особенно при так называемых экологических катастрофах, выраженность оксидативного стресса и активность ферментных антиоксидантов должны стать не только объектом наблюдения, но и одним из критериев эффективности адаптации организма.

Список литературы диссертационного исследования кандидат биологических наук Скурятина, Юлия Владимировна, 2001 год

1. Абраров А.А. Влияние жира и жирорастворимых витаминов А, Д, Е на биологические свойства эритроцитов: Дисс. докт. мед. наук. М.,1971.- С. 379.

2. Адо А. Д., Адо Н. А., Бочков Г. В. Патологическая физиология.- Томск: Изд-во ТГУ, 1994.- С. 19.

3. Асатиани В. С. Ферментные методы анализа. М.: Наука, 1969. - 740 с.

4. Бенисович В. И., Идельсон Л. И. Образование перекисей и состав жирных кислот в липидах эритроцитов больных при болезни Маркиафава Микели // Пробл. гематол. и перелив, крови. - 1973. - №11. - С. 3-11.

5. Бобырев В. Н., Воскресенский О. Н. Изменения в активности антиоксидант-ных ферментов при синдроме пероксидации липидов у кроликов // Вопр. мед. химии. 1982. - т. 28(2). - С. 75-78.

6. Виру А. А. Гормональные механизмы адаптации и тренировки. М.: Наука, 1981.-С. 155.

7. Голдстейн Д. Л., Браун М. С. Генетические аспекты болезней // Внутренние болезни / Под. ред. Е. Браунвальда, К. Д. Иссельбахера, Р. Г. Петерсдорфа и др.- М.: Медицина, 1993.- Т. 2.- С.135.

8. Даценко 3. М., Донченко Г. В., Шахман О. В., Губченко К. М., Хмель Т. О. Роль фосфолипидов в функционировании различных клеточных мембран в условиях нарушения антиоксидантной системы // Укр. биохим. ж.- 1996.- т. 68(1).- С. 49-54.

9. Ю.Дегтярев В. М., Григорьев Г. П. Автоматическая запись кислотных эритро-грамм на денситометре ЭФА-1 //Лаб. дело.- 1965.- №9.- С. 530-533.

10. П.Дервиз Г. В., Бялко Н. К. Уточнение метода определения гемоглобина, растворенного в плазме крови // Лаб. дело.- 1966.- №8.- С. 461-464.

11. Деряпа Н. Р., Рябинин И. Ф. Адаптация человека в полярных районах Земли.- Л.: Медицина, 1977.- С. 296.

12. Джуманиязова К. Р. Влияние витаминов A, D, Е на эритроциты периферической крови: Дисс. канд. мед. наук.- Ташкент, 1970.- С. 134.

13. Донченко Г. В., Метальникова Н. П., Паливода О. М. и др. Регуляция а-токоферолом и актиномицином D биосинтеза убихинона и белка в печени крыс при Е-гиповитаминозе // Укр. биохим. ж.- 1981.- Т. 53(5).- С. 69-72.

14. Дубинина Е. Е., Сальникова Л. А., Ефимова Л. Ф. Активность и изофер-ментный спектр супероксиддисмутазы эритроцитов и плазмы крови // Лаб. дело.- 1983.-№10.-С. 30-33.

15. Исаакян JI. А. Метаболическая структура температурных адаптаций Д.: Наука, 1972.-С. 136.

16. Казначеев В. П. Биосистема и адаптация // Доклад на II сессии Научного совета АН СССР по проблеме прикладной физиологии человека.- Новосибирск, 1973.-С. 74.

17. Казначеев В. П. Проблемы адаптации человека (итоги и перспективы) // 2 Всесоюз. конф. по адаптации человека к различ. географич., климатич., и производст. условиям: Тез. докл.- Новосибирск, 1977.- т. 1.-С. 3-11.

18. Казначеев В. П. Современные аспекты адаптации.- Новосибирск: Наука, 1980.-С. 191.

19. Калашников Ю. К., Гейслер Б. В. К методике определения гемоглобина крови с помощью ацетонциангидрина// Лаб. дело.- 1975.- №6.- СГ373-374.

20. Кандрор И. С. Очерки по физиологии и гигиене человека на Крайнем Севере.- М.: Медицина, 1968.- С. 288.

21. Кашевник Л. Д. Обмен веществ при авитаминозе С.- Томск., 1955.- С. 76.

22. Коровкин Б. Ф. Ферменты в диагностике инфаркта миокарда.- Л: Наука, 1965.- С. 33.

23. Куликов В. Ю., Ляхович В. В. Реакции свободнорадикального окисления липидов и некоторые показатели кислородного обмена // Механизмы адаптации человека в условиях высоких широт / Под ред. В. П. Казначеева.- Л.: Медицина, 1980.- С. 60-86.

24. Ландышев С. С. Адаптация метаболизма эритроцитов к действию низких температур и дыхательной недостаточности // Адаптация человека и животных в различных климатических зонах / Под ред. М. 3. Жиц.- Чита, 1980.- С. 51-53.

25. Ланкин В. 3., Гуревич С. М., Кошелевцева Н. П. Роль перекисей липидов в патогенезе атеросклероза. Детоксикация липоперекисей глютатионперокси-дазной системой в аорте // Вопр. мед. химии.- 1976.- №3,- С. 392-395.

26. Лях Л. А. О стадиях формирования адаптации к холоду // Теоретические и практические проблемы действия низких температур на организм: Тез. IV Всесоюз. конф.- 1975.- С. 117-118.

27. Марачев А. Г., Сороковой В. И., Корчев А. В. и др. Биоэнергетика эритроцитов у жителей Севера // Физиология человека.- 1983.- №3.- С. 407-415.

28. Марачев А.Г. Структура и функция эритрона человека в условиях Севера // Биологические проблемы Севера. VII симпозиум. Адаптация человека к условиям Севера/Под ред. В.Ф. Бурханова, Н.Р. Деряпы.- Кировск,1979.- С. 7173.

29. Матусис И. И. Функциональные взаимоотношения витаминов Е и К в метаболизме организма животных // Витамины.- Киев: Наукова думка, 1975.- т. 8.-С. 71-79.

30. Меерсон Ф. 3., Малышев Ю. И. Феномен адаптации и стабилизации структур и защиты сердца.- М: Медицина, 1981.- С. 158.

31. Меерсон Ф. 3. Основные закономерности индивидуальной адаптации // Физиология адаптационных процессов. М.: Наука, 1986.- С. 10-76.

32. Панин JI. Е. Некоторые биохимические проблемы адаптации // Медико -биологические аспекты процессов адаптации / Под ред. JI. П. Непомнящих.-Новосибирск.: Наука.-1975а.-С. 34-45.

33. Панин Л. Е. Роль гормонов гипофизо адреналовой системы и поджелудочной железы в нарушении холестеринового обмена при некоторых экстремальных состояниях: Дисс. докт. мед. наук.- М., 19756.- С. 368.

34. Панин Л. Е. Энергетические аспекты адаптации.- Л.: Медицина, 1978.- 192 с.43 .Панин Л. Е. Особенности энергетического обмена // Механизмы адаптациичеловека к условиям высоких широт / Под ред. В. П. Казначеева.- Л.: Медицина, 1980.- С. 98-108.

35. Пескин А. В. Взаимодействие активного кислорода с ДНК (Обзор) // Биохимия.- 1997.- Т. 62.- №12.- С. 1571-1578.

36. Поберезкина Н. Б., Хмелевский Ю. В. Нарушение структуры и функции мембран эритроцитов Е авитаминозных крыс и его коррекция антиоксидан-тами // Укр. биохим. ж.- 1990.- т. 62(6).- С. 105-108.

37. Покровский А. А., Орлова Т. А., Поздняков A. JL Влияние токоферольной недостаточности на активность некоторых ферментов и их изоферментов в семенниках крыс // Витамины и реактивность организма: Труды МОИП.- М., 1978.-Т. 54.- С. 102-111.

38. Рапопорт Ж. Ж. Адаптация ребенка на Севере.- Л.: Медицина, 1979.- С. 191.

39. Россомахин Ю. И. Особенности терморегуляции и устойчивости организма к контрастным воздействиям тепла и холода при различных режимах температурных адаптаций: Автореф. дисс. канд. биол. наук.- Донецк, 1974.- С. 28.

40. Сейц И. Ф. О количественном определении аденозинтри- и аденозиндифос-фатов // Бюлл. эксп. биол. и мед.- 1957.- №2.- С. 119-122.

41. Сень И. П. Развитие Е-витаминной недостаточности у белых крыс при питании качественно различными жирами: Дисс. канд. мед. наук.- М.,1966.- С. 244.

42. Слоним А. Д. О физиологических механизмах природных адаптаций животных и человека // Докл. на ежегод. засед. ученого совета посвящ. памяти акад. К. М. Быкова.- JL, 1964.

43. Слоним А. Д. Физиологические адаптации и периферическая структура рефлекторных ответов организма // Физиологические адаптации к теплу и холоду / Под ред. А. Д. Слоним.- JL: Наука, 1969.- С. 5-19.

44. Спиричев В. Б., Матусис И. И., Бронштейн JL М. Витамин Е. // В кн.: Экспериментальная витаминология / Под ред. Ю. М. Островского.- Минск: Наука и техника, 1979.- С. 18-57.

45. Стабровский Е. М. Энергетический обмен углеводов и его эндокринная регуляция в условиях действия низкой температуры среды на организм: Авто-реф. дисс. докт. биол. наук.- JL, 1975.- С. 44.

46. Теплый Д. JL, Ибрагимов Ф. X. Изменение проницаемости оболочек эритроцитов у грызунов под действием рыбьего жира, витамина Е и жирных кислот // Ж. эволюцион. биохимии и физиологии.- 1975.- т. 11(1).- С. 58-64.

47. Терсков И. А., Гительзон И. И. Эритрограммы как метод клинического исследования крови.- Красноярск, 1959.- С. 247.

48. Терсков И. А., Гительзон И. И. Значение дисперсионных методов анализа эритроцитов в норме и патологии // Вопросы биофизики, биохимии и патологии эритроцитов.- М.: Наука, 1967.- С. 41-48.

49. Ткаченко Е. Я. О соотношении сократительного и несократительного термо-генеза в организме при адаптации к холоду // Физиологические адаптации к холоду, условиям гор и субарктики / Под ред. К. П. Иванова, А. Д. Слоним.-Новосибирск: Наука, 1975.- С. 6-9.

50. Узбеков Г. А., Узбеков М. Г. Высокочувствительный микрометод фотометрического определения фосфора // Лаб. дело.- 1964.- №6.- С. 349-352.

51. Хочачка П., Сомеро Дж. Биохимическая адаптация: пер. с англ. М.: Мир, 1988.-576 с.

52. Щеглова А. И. Адаптивные изменения газообмена у грызунов с разной экологической специализацией // Физиологические адаптации к теплу и холоду / Под ред. А. Д. Слоним.- Л.: Наука, 1969.- С. 57-69.

53. Якушева И. Я., Орлова Л. И. Метод определения аденозинтрифосфатаз в ге-молизатах эритроцитов крови // Лаб. дело.- 1970.- № 8.- С. 497-501.

54. Agani F., Semenza G. L. Mersalyl is a novel inducer of vascular endothelial growth factor gene expression and hypoxia-inducible factor 1 activity // Mol. Pharmacol.- 1998.- Vol. 54(5).- P. 749-754.

55. Ahuja В. S., Nath R. A kinetik study of superoxide dismutase in normal human erytrocytes and its possible role in anemia and radiation damage // Simpos. on control mechanisms in cell, processes.- Bombey, 1973.- P. 531-544.

56. Aloia R. C., Raison J. K. Membrane function in mammalian hibernation // Bio-chim. Biophys. Acta.- 1989.- Vol. 988.- P. 123-146.

57. Asfour R. Y., Firzli S. Hematologic stadies in undernowrished children with low serum vitamin E levels // Amer. J. Clin. Nutr.- 1965.- Vol. 17(3).- P. 158-163.

58. Ashour M. N., Salem S. I., El Gadban H. M., Elwan N. M., Basu Т. K. Antioxidant status in children with protein-energy malnutrition (РЕМ) living in Cairo, Egypt //Eur. J. Clin. Nutr.- 1999.- Vol. 53(8).- P. 669-673.

59. Bang H. O., Dierberg J., Nielsen A. B. Plasma lipid and lipoprotein pattern in Greenlandic west coast Eskimos // Lancet.- 1971.- Vol. 7710(1).- P. 1143-1145.

60. Barja G., Cadenas S., Rojas C., et al. Effect of dietary vitamin E levels on fatty acid profiles and nonenzymatic lipid peroxidation in the guinea pig liver // Lipids.-1996.- Vol. 31(9).- P. 963-970.

61. Barker M. О., Brin М. Mechanisms of lipid peroxidation in erithrocytes of vitamin E deficients rats and in phospholipid model sistems // Arch. Biochem. and Biophys.- 1975.- Vol. 166(1).- P. 32-40.

62. Battersby B. J., Moyes C. D. Influence of acclimation temperature on mitochondrial dna, rna and enzymes in skeletal muscle // APStracts.- 1998.- Vol. 5.- P. 195.

63. Beattie J. H., Black D. J., Wood A. M., Trayhurn P. Cold-induced expression of the metallothionein-1 gene in brown adipose tissue of rats // Am. J. Physiol.-1996.- Vol. 270(5).- Pt 2.- P. 971-977.

64. Bhaumik G., Srivastava К. K., Selvamurthy W., Purkayastha S. S. The role of free radicals in cold injuries // Int. J. Biometeorol.- 1995.- Vol. 38(4).- P. 171-175.

65. Brin M., Horn L. R., Barker M. O. Relationship between fatty acid composition oferithrocytes and susceptibility to vitamin E deficiency // Amer. J. Clin. Nutr.-%1974.- Vol. 27(9).- P. 945-950.

66. Caasi P. I., Hauswirt J. W., Nair P. P. Biosynthesis of heme in vitamin E deficiency // Ann. N. Y. Acad. Sci.- 1972.- Vol. 203.- P. 93-100.

67. Cadenas S., Rojas C., Perez-Campo R., Lopez-Torres M., Barja G. Vitamin E protects guinea pig liver from lipid peroxidation without depressing levels of antioxidants//Int. J. Biochem. Cell. Biol.- 1995.-Vol. 27(11).-P. 1175-1181.

68. Cai Q. Y., Chen X. S., Zhu L. Z., et al. Biochemical and morphological changes in the lenses of selenium and/or vitamin E deficient rats // Biomed. Environ. Sci.-1994.-Vol. 7(2).-P. 109-115.

69. Cannon R. O. Role of nitric oxide in cardiovascular disease: focus on the endothelium // Clin. Chem.- 1998.- Vol. 44.- P. 1809-1819.

70. Chaudiere J., Clement M., Gerard D., Bourre J. M. Brain alterations induced by vitamin E deficiency and intoxication with methyl ethyl ketone peroxide // Neuro-toxicology.- 1988.- Vol. 9 (2).- P. 173-179.

71. Chow С. K. Distribution of tocopherols in human plasma and red blood cells // Amer. J. Clin. Nutr.- 1975.- Vol. 28(7).- P. 756-760.

72. Chow С. K. Oxidative damage in the red cells of vitamin E-deficient rats // Free. Radic. Res. Commun.- 1992 vol. 16(4).- P. 247-258.

73. Chow С. K., Ibrahim W., Wei Z., Chan A. C. Vitamin E regulates mitochondrial hydrogen peroxide generation // Free Radic. Biol. Med.- 1999.- Vol. 27 (5-6).- P. 580-587.

74. Combs G. F. Influences of dietary vitamin E and selenium on the oxidant defense system of the chick//Poult. Sci.- 1981.- Vol. 60(9).- P. 2098-2105.

75. Cooke J. P., Dzau V. J. Nitric oxide synthase: Role in the Genesis of Vascular Disease // Ann. Rev. Med.- 1997.- Vol. 48.- P. 489-509.

76. Cowan D. В., Langille B. L. Cellular and molecular biology of vascular remodeling // Current Opinion in Lipidology.- 1996.- Vol. 7.- P. 94-100.

77. Das К. С., Lewis-Molock Y., White С. W. Elevation of manganese superoxide dismutase gene expression by thioredoxin // Am. J. Respir. Cell Mol. Biol.- 1997.-Vol. 17 (6).-P. 12713-12726.

78. Davidge S. Т., Ojimba J., McLaughlin M. K. Vascular Function in the Vitamin E Deprived Rat. An Interaction Between Nitric Oxide and Superoxide Anions // Hypertension.- 1998.- Vol. 31.- P. 830-835.

79. Davis T. R. A. Shivering and nonshivering heat production in animals and man // Cold Injury: Ed. S. H. Horvath.- N. Y., I960.- P. 223-269.

80. Davis T. R. A. Nonshivering thermogenesis // Feder. Proc.- 1963.- Vol. 22(3).- P. 777-782.

81. Depocas F. Calorigenesis from various organ systems in the whole animal // Feder. Proc.- I960.-Vol. 19(2).-P. 19-24.

82. Desaultes M., Zaror-Behrens G., Hims-Hagen J. Increased purine nucleotide binding, altered polipeptide composition and thermogenesis in brown adipose tissue mitochondria of cold-acclimated rats // Can. J. Biochem.- 1978.- Vol. 78(6).- P. 378-383.

83. Drexler H., Hornig B. Endothelial dysfunction in human disease // J. Mol. Cell. Cardiol.- 1999.- Vol. 31(1).- P. 51-60.

84. Dutta-Roy A. K. Therapy and clinical trials // Current Opinion in Lipidology.-1996.-Vol. 7.-P. 34-37.

85. Elmadfa I., Both-Bedenbender N., Sierakowski В., Steinhagen-Thiessen E. Significance of vitamin E in aging // Z. Gerontol.- 1986.- Vol. 19(3).- P. 206-214.

86. Farrace S., Cenni P., Tuozzi G., et al. Endocrine and psychophysiological aspects of human adaptation to the extreme //Physiol.Behav.- 1999.- Vol.66(4).- P.613-620.

87. Fernandez-Checa, J. C., Kaplowitz N., Garcia-Ruiz C., et al. Importance and characteristics of glutahione transport in mitochondria: defense against TNF-induced oxidative stress and defect induced by alcohol // APStracts.- 1997.-Vol.4.- P. 0073G.

88. Finkel T. Oxygen radicals and signaling // Current Opinion in Cell Biology.-1998.- Vol. 10.-P. 248-253.

89. Photobiol.- 1993.- Vol. 58(2).-P. 304-312.

90. Fudge D. S., Stevens E. D., Ballantyne J. S. Enzyme adaptation along a hetero-thermic tissue the visceral retia mirabilia of the bluefin tuna // APStracts.- 1997.-Vol. 4,- P. 0059R.

91. Givertz M. M., Colucci W. S. New targets for heart-failure therapy: endothelin, inflammatory cytokines, and oxidative stress // Lancet.- 1998.- Vol.352- Suppl 1.-P. 34-38.

92. Glofcheski D. J., Borrelli M. J., Stafford D. M., Kruuv J. Induction of tolerance to hypothermia and hyperthermia by a common mechanism in mammalian cells // J. Cell. Physiol.- 1993.- Vol. 156.- P. 104-111.

93. Chemical Biology.- 1999.- Vol. 3.- P. 226-235.1 ll.Guarnieri C., Flamigni F., Caldarera R. C:, Ferrari R. Myocardial mitochondrial functions in alpha-tocopherol-deficient and -refed rabbits // Adv. Myocardiol.-1982.- Vol.3.- P. 621-627.

94. Hardewig I., Van Dijk P. L. M., Portner H. O. High energy turnover at low temperatures: recovery from exhaustive exercise in antarctic and temperate eelpouts (zoarcidae) // APStracts.- 1998.- Vol. 5.- P. 0083R.

95. Hassan H., Hashins A., van Italie Т. В., Sebrell W. H. Syndrom in premature infants anemia associated with low plasma vitamin E level and high poliunsaturated fatty acid diet // Amer. J. Clin. Nutr.-1966.- Vol. 19(3).- P. 147-153.

96. Hauswirth G. W., Nair P. P. Some aspects of vitamine E in expression of biological information // Ann. N. Y. Acad. Sci.- 1972.- Vol. 203.- P. 111-122.

97. Henle E. S., Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide // J. Biol, chem.- 1997.- Vol. 272(31).- P. 19095-19098.

98. Higashi Y., Sasaki S., Sasaki N., et al. Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension // Hypertension.- 1999.- Vol. 33(1).-Pt 2.-P. 591-597.

99. Howarth P. H Pathogenic mechanisms: a rational basis for treatment // В. M. J.-1998.-Vol. 316.-P. 758-761.

100. Hubbell R. В., Mendel L. В., Wakeman A. J. A new salt mixture for use in experimental diets // J. Nutr.- 1937.- Vol. 14.- P. 273-285.

101. Jacob R. A., Burri B. J. Oxidative damage and defense // Am. J. Clin. Nutr.-1996.- Vol. 63.- P. 985S-990S.

102. Jain S. K., Wise R. Relationship between elevated lipid peroxides, vitamin E deficiency and hypertension in preeclampsia // Mol. Cell. Biochem.- 1995.- Vol. 151(1).-P. 33-38.

103. Karel P., Palkovits M., Yadid G., et al. Heterogeneous neurochemical responses to different stressors: a test of selye's doctrine of nonspecificity // APStracts.-1998.-Vol. 5.-P. 0221R.

104. Kausalya S., Nath J. Interactive role of nitric oxide and superoxide anion in neu-trophil-mediated endothelial cell in injury // J. Leukoc. Biol.- 1998.- Vol. 64(2).-P. 185-191.

105. Kemeny M., Peakman M. Immunology // В. M. J.- 1998.- Vol. 316.- P. 600-603.

106. Kozyreva Т. V., Tkachenko E. Y., Kozaruk V. P., Latysheva Т. V., Gilinsky M. A. The effects of slow and rapid cooling on catecholamine concentration in arterial plasma and the skin // APStracts.- 1999.- Vol. 6.- P. 0081R.

107. Lauren N., Chaudhuri G. Estrogens and atherosclerosis // Ann. Rev. Pharmacol. Toxicol.- 1997.- Vol. 37.- P. 477-515.

108. Lawler J. M., Cline С. C., Hu Z., Coast J. R. Effect of oxidative stress and acidosis on diaphragm contractile function // Am. J. Physiol.- 1997.- Vol. 273(2).- Pt 2.-P. 630-636.

109. Lin В., Coughlin S., Pilch P. F. Bi-directional regulation of uncoupling protein-3 and glut4 mrna in skeletal muscle by cold // APStracts.- 1998.- Vol. 5.- P. 0115E.

110. Lindquist J. M., Rehnmark S. Ambient temperature regulation of apoptosis in brown adipose tissue // J. Biol. Chem.- 1998.- Vol. 273(46).-P. 30147-30156.

111. Lowry О. H., Rosenbrough N. G., Farr A. L., Randell R. I. Protein measurement with the Folin phenol reagent // J. Biol. Chem.-195L- Vol. 193.- P. 265-275.

112. Luoma P. V., Nayha S., Sikkila K., Hassi J. High serum alpha-tocopherol, albumin, selenium and cholesterol, and low mortality from coronary heart disease in northern Finland//J.Intern. Med.- 1995.-Vol. 237(1).-P. 49-54.

113. Luscher T. F., Noll G., Vanhoutte P. M. Endothelial dysfunction in hypertension //J.Hypertens.- 1996.- Vol. 14(5).- P. 383-393.

114. Machlin L. J., Filipski R., Nelson J., Horn L. R., Brin M. Effect of prolonged vitamin E deficiency in the rat // J. Nutr.- 1977.- Vol. 107(7).- P. 1200-1208.

115. Marmonier F., Duchamp C., Cohen-Adad F., Eldershaw T. P. D., Barra H. Hormonal control of thermogenesis in perfused muscle of muscovy ducklings // AP-Stracts.-1997.- Vol. 4.- P. 0286R.

116. Marvin H. N. Erithrocyte survival of rat deficient in vitamin E or vitamin B6 // J. Nutr.- 1963.-Vol. 80(2).-P. 185-190.

117. Masugi F., Nakamura T. Effect of vitamin E deficiency on the level of superoxide dismutase, glutathione peroxidase, catalase and lipid peroxide in rat liver // Int. J. Vitam. Nutr. Res.- 1976.- Vol. 46 (2).- P. 187-191.

118. Matsuo M., Gomi F., Dooley M. M. Age-related alterations in antioxidant capacity and lipid peroxidation in brain, liver, and lung homogenates of normal and vitamin E-deficient rats // Mech. Ageing Dev.- 1992.- Vol. 64(3).- P. 273-292.

119. Mazor D., Brill G., Shorer Z., Moses S., Meyerstein N. Oxidative damage in red blood cells of vitamin E deficient patients // Clin. Chim. Acta.- 1997.- Vol. 265 (l).-P. 131-137.

120. Mircevova L. The role of Mg++-ATPase (actomyosine-like protein) in maintaining the biconcave shape of erythrocytes // Blut.- 1977.- vol 35(4).- P. 323-327.

121. Mircevova L., Victora L., Kodicek M., Rehackova H., Simonova A. The role of spectrin dependent ATPase in erytrocyte shape maintenance // Biomed. Biochim. Acta.- 1983.- Vol. 42(11/12).- P. 67-71.

122. Nair P. P. Vitamine E and metabolic regulation // Ann. N. Y. Acad. Sci.- 1972a.-Vol. 203.- P. 53-61.

123. Nair P. P. Vitamine E regulation of the biosintesis of porphirins and heme // J. Agr. and Food Chem.- 1972b.- Vol. 20(3).- P. 476-480.

124. Nakamura Т., Moriya M., Murakoshi N., Shimizu Y., Nishimura M. Effects of phenylalanine and tyrosine on cold acclimation in mice // Nippon Yakurigaku Zasshi.- 1997.-Vol. 110(1).-P. 177-182.

125. Nath K. A., Grande J., Croatt A., et al. Redox regulation of renal DNA synthesis, transforming growth factor-betal and collagen gene expression // Kidney Int.-1998.- Vol. 53(2).- P. 367-381.

126. Nathan C. Perspectives Series: Nitric Oxide and Nitric Oxide Synthases Inducible Nitric Oxide Synthase: What Difference Does It Make? // J. Clin. Invest.1997.- Vol. 100(10).- P. 2417-2423.

127. Newaz M. A., Nawal N. N. Effect of alpha-tocopherol on lipid peroxidation and total antioxidant status in spontaneously hypertensive rats // Am J Hypertens.1998.-Vol. 11(12).-P. 1480-1485.

128. Nishiyama H., Itoh K., Kaneko Y., et al. Glycine-rich RNA-binding Protein Mediating Cold-inducible Suppression of Mammalian Cell Growth // J. Cell. Biol.- 1997.- Vol. 137(4).- P. 899-908.

129. Nohl H. Generation of superoxide radicals as byproduct of cellular respiration // Ann. Biol. Clin. (Paris).- 1994.- Vol. 52(3).- P. 199-204.

130. Pendergast D. R., Krasney J. A., De Roberts D. Effects of immersio in cool water on lung-exhaled nitric oxide at rest and during exercise // Respir. Physiol.-1999.-Vol. 115(1).-P. 73-81.

131. Peng J. F., Kimura В., Fregly M., Phillips M. I. Reduction of cold-induced hypertension by antisense oligodeoxynucleotides to angiotensinogen mRNA and ATi receptor mRNA in brain and blood // Hypertension.- 1998.- Vol. 31.- P. 13171323.

132. Pinkus R., Weiner L. M., Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappa В and glutathione S~transferase gene expression // J. Biol. Client.- 1996.- Vol. 271(23).- P. 13422-13429.

133. Pipkin F. B. Fortnightly Review: The hypertensive disorders of pregnancy // BMJ.- 1995.-Vol. 311.-P. 609-613.

134. Reis S. E., Blumenthal R. S., Gloth S. Т., Gerstenblith R. G., Brinken J. A. Estrogen acutely abolishes cold-induced coronary vasoconstriction in postmenopausal women // Circulation.- 1994.- Vol. 90.- P. 457.

135. Salminen A., Kainulainen H., Arstila A. U., Vihko V. Vitamin E deficiency and the susceptibility to lipid peroxidation of mouse cardiac and skeletal muscles // Acta Physiol. Scand.- 1984.- Vol. 122(4).- P. 565-570.

136. Sampson G. M. A., Muller D. P. Studies on the neurobiology of vitamin E (al-pha-tocopherol) and some other antioxidant systems in the rat // Neuropathol. Appl. Neurobiol.- 1987.- Vol. 13(4).- P. 289-296.

137. Sen С. К., Atalay М., Agren J., Laaksonen D. E., Roy S., Hanninen O. Fish oil and vitamin E supplementation in oxidative stress at rest and after physical exercise // APStracts.- 1997.- Vol. 4.- P. 0101 A.

138. Shapiro S. S., Mott D. D., Machlin L. J. Altered binding of glyceraldehyde 3 -phosphate dehidrogenase to its binding site in vitamine E - deficient red blood cells //Nutr. Rept. Int.- 1982.- Vol. 25(3).- P. 507-517.

139. Sharmanov А. Т., Aidarkhanov В. В., Kurmangalinov S. M. Effect of vitamin E deficiency on oxidative metabolism and antioxidant enzyme activity of macrophages // Ann. Nutr. Metab.- 1990.- Vol. 34(3).- P. 143-146.

140. Siddons R. C., Mills C. F. Glutatione peroxidase activity and erythrocyte stability in calves differing in selenium and vitamin E status // Brit. J. Nutr.-1981.- Vol. 46(2).-P. 345-355.

141. Simonoff M., Sergeant C., Gamier N., et al. Antioxidant status (selenium, vitamins A and E) and aging // EXS.- 1992.- Vol. 62.- P. 368-397.

142. Sklan D., Rabinowitch H. D., Donaghue S. Superoxide dismutase: effect of vitamins A and E // Nutr. Rept. Int.- 1981.- Vol. 24(3).- P. 551-555.

143. Smith S. C., Guilbert L. J., Yui J., Baker P. N., Davidge S. T. The role of reactive nitrogen/oxygen intermediates in cytokine-induced trophoblast apoptosis // Placenta.- 1999.- Vol. 20(4).- P. 309-315.

144. Snircova M., Kucharska J., Herichova I., Bada V., Gvozdjakova A. The effect of an alpha-tocopherol analog, MDL 73404, on myocardial bioenergetics // Bratisl Lek Listy.- 1996.- Vol. 97. P. 355-359.

145. Soliman M. K. Uber die Blutveranderungen bei Ratten nach verfuttem einer Tocopherol und Ubichinon Mangeldiat. 1. Zytologische und biochemische Ve-randerungen im Blut von vitamin E Mangelratten // Zbl. Veterinarmed.- 1973.-Vol. 20(8).- P. 624-630.

146. Stampfer M. J., Hennekens С. H., Manson J. E., et al. Vitamin E consumption and the risk of coronary disease in women // N. Engl. J. Med.- 1993.- Vol. 328.- P. 1444-1449.

147. Sun J. Z., Tang X. L., Park S. W., et al. Evidence for an Essential Role of Reactive Oxygen Species in the Genesis of Late Preconditioning Against Myocardial Stunning in Conscious Pigs // J. Clin. Invest. 1996,- Vol. 97 (2).- P. 562-576.

148. Sun Z., Cade J. R., Fregly M. J. Cold-induced hypertension. A model of miner-alocorticoid-induced hypertension// Ann.N.Y.Acad.Sci.- 1997.- Vol.813.- P.682-688.

149. Sun Z., Cade R, Katovich M. J., Fregly M. J. Body fluid distribution in rats with cold-induced hypertension // Physiol. Behav.- 1999.- Vol. 65(4-5).- P. 879-884.

150. Sundaresan M., Yu Z.-X., Ferrans V. J., Irani K., Finkel T. Requirement for generation of H202 for platelet-derived growth factor signal transduction // Science (Wash. DC).- 1995.- Vol. 270.- P. 296-299.

151. Suzuki J., Gao M., Ohinata H., Kuroshima A., Koyama T. Chronic cold exposure stimulates microvascular remodeling preferentially in oxidative muscles in rats // Jpn. J. Physiol.- 1997.- Vol. 47(6).- P. 513-520.

152. Tamai H., Miki M., Mino M. Hemolysis and membrane lipid changes induced by xanthine oxidase in vitamin E deficient red cells // J. Free Radic. Biol. Med.-1986.-Vol. 2(1).- P. 49-56.

153. Tanaka M., Sotomatsu A., Hirai S. Aging of the brain and vitamin E // J. Nutr. Sci. Vitaminol. (Tokyo).- 1992.- Spec. No.- P. 240-243.

154. Tappel A. L. Free radical lipid peroxidation damage and its inhibition by vita-mine E and selenium // Fed. Proc.- 1965.- Vol. 24(1).- P. 73-78.

155. Tappel A. L. Lipid peroxidation damage to cell components // Fed. Proc.- 1973.-Vol. 32(8).-P. 1870-1874.

156. Taylor A.J. N. Asthma and allergy // В. M. J.- 1998.- Vol. 316.- P. 997-999.

157. Tate D. J., Miceli M. V., Newsome D. A. Phagocytosis and H2C>2 induce catalase and metaliothionein irene expression in human retinal pigment epithelial cells // Invest. Onithalmol. Vis. Sci.- 1995.- Vol. 36.- P. 1271-1279.

158. Tensuo N. Effect of daily infusion of noradrenaline on metabolism and skin temperature in rabbits // J. Appl. Physiol.- 1972.- Vol. 32(2).- P. 199-202.

159. Tiidus P. M., Houston M. E. Antioxidant and oxidative enzyme adaptations to vitamin E deprivation and training // Med. Sci. Sports. Exerc.- 1994.- Vol. 26(3).-P. 354-359.

160. Tsen С. C., Collier H. B. The protective action of tocopherol against hemolisis of rat eritrocites by dialuric acid // Canad. J. Biochem. Physiol.- I960.- Vol. 38(9).- P. 957-964.

161. Tudhope G. R., Hopkins J. Lipid peroxidation in human erythrocytes in tocopherol deficiency // Acta Haematol.- 1975.- Vol. 53(2).- P. 98-104.

162. Valentine J. S., Wertz D. L., Lyons T. J., Liou L.-L., Goto J. J., Gralla E. B. The dark side of dioxygen biochemistry // Current Opinion in Chemical Biology.-1998.-Vol. 2.-P. 253-262.

163. Vransky V. K. Red blood cell membrane resistanse // Biophys. Membrane Transport.- Wroclaw.- 1976.- Part 2.- P. 185-213.

164. Vuillanine R. Role biologiqe et mode d" action des vitamines E // Rec. med vet.-1974.-Vol. 150(7).-P. 587-592.

165. Wang J., Huang C. J., Chow С. K. Red cell vitamin E and oxidative damage: a dual role of reducing agents // Free Radic. Res.- 1996 Vol. 24(4).- P. 291-298.

166. Wagner B. A., Buettner G. R., Burns C. P. Vitamin E slows the rate of free radical-mediated lipid peroxidation in cells // Arch. Biochem. Biophys.- 1996.- Vol. 334.-P. 261-267.

167. Wallace J. L., Bell C. J. Gastroduodenal mucosal defense // Current Opinion in Gastroenterology 1994 .-Vol. 10.-P. 589-594.

168. Walsh D. M., Kennedy D. G., Goodall E. A., Kennedy S. Antioxidant enzyme activity in the muscles of calves depleted of vitamin E or selenium or both // Br. J. Nutr.- 1993.- Vol. 70(2).- P. 621-630.

169. Watson A. L., Palmer M. E., Jauniaux E., Burton G. J. Variations in expression of copper/zinc superoxide dismutase in villous trophoblast of the human placenta with gestational age // Placenta.- 1997.- Vol. 18(4).- P. 295-299.

170. Young J. В., Shimano Y. Effects of rearing temperature on body weight and abdominal fat in male and female rats // APStracts.-1991.- Vol. 4.- P. 041 OR.

171. Zeiher A. M., Drexler H., Wollschlager H., Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis // Circulation.- 1991.- Vol. 84.- P. 19841992.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Автореферат
200 руб.
Диссертация
500 руб.
Артикул: 106453