Разработка краткосрочной безадъювантной модели экспериментальной IgE-зависимой бронхиальной астмы с использованием аллергена пыльцы тимофеевки тема диссертации и автореферата по ВАК РФ 14.00.36, кандидат медицинских наук Крючков, Николай Александрович

  • Крючков, Николай Александрович
  • кандидат медицинских науккандидат медицинских наук
  • 2008, Москва
  • Специальность ВАК РФ14.00.36
  • Количество страниц 125
Крючков, Николай Александрович. Разработка краткосрочной безадъювантной модели экспериментальной IgE-зависимой бронхиальной астмы с использованием аллергена пыльцы тимофеевки: дис. кандидат медицинских наук: 14.00.36 - Аллергология и иммулология. Москва. 2008. 125 с.

Оглавление диссертации кандидат медицинских наук Крючков, Николай Александрович

Введение.

Глава 1. Обзор литературы.

1.1. Бронхиальная астма человека.

1.1.1. Влияние на общественное здоровье.

1.1.2. Клетки и медиаторы воспаления.

1.1.3. Тх1/Тх2-дисбаланс.

1.1.4. Гистологические изменения и ремоделирование дыхательных путей.

1.1.5. Генетические факторы предрасположенности.

1.1.6. Аллергены и другие внешние факторы.

1.2. Моделирование бронхиальной астмы.

1.2.1. Общие принципы.

1.1.6. Использование животных для моделирования бронхиальной астмы.

1.2.3. Овальбуминовые модели на лабораторных мышах.

1.2.4. Модели на лабораторных мышах с использованием причинно-значимых аллергенов.

1.2.5. Лабораторно-инструментальные методы при моделировании бронхиальной астмы.

1.3. Преимущества и недостатки мышиных моделей бронхиальной астмы.

Глава 2. Материалы и методы.

2.1. Лабораторные животные.

2.2. Аллергены, реагенты и расходные материалы.

2.3. Схема иммунизации лабораторных мышей для определения аллергенности экстракта пыльцы тимофеевки.

2.4. Схема пилотного эксперимента для определения оптимальной сенсибилизирующей дозы аллергена пыльцы тимофеевки.

2.5. Схема эксперимента для проверки эффективности сниженной интраназаль-ной дозы экстракта пыльцы тимофеевки.

2.6. Схема эксперимента для подтверждения сенсибилизирующей активности экстракта пыльцы тимофеевки в дозе 20 мкг/мышь (краткосрочная модель экспериментальной бронхиальной астмы).

2.7. Определение антиген-специфических ^Е-антител методом пассивной кожной анафилаксии.

2.8. Оценка клеточного состава периферической крови.

2.9. Методика получения бронхоальвеолярного лаважа у лабораторных мышей и оценка его клеточного состава.

2.10. Приготовление микропрепаратов легких и их гистологическое исследование

2.11. Пневматахографическая оценка функции внешнего дыхания мышей при введении неспецифического бронхоконстриктора.

2.11.1. Пневматахографическая установка.

2.11.2. Регистрация и анализ пневматахограмм.

2.12. Методы статистического анализа.

Глава 3. Результаты собственных исследований.

3.1. Динамика образования специфических ^Е-антител при трехкратной иммунизации мышей аллергеном тимофеевки и его комбинациями с адъювантами.

3.2. Подбор оптимальной дозы аллергена пыльцы тимофеевки для моделирования экспериментальной бронхиальной астмы.

3.3. Проверка эффективности сниженной дозы экстракта пыльцы тимофеевки (250 мкг/мышь) при моделировании экспериментальной бронхиальной астмы.

3.4. Характеристика разработанной модели.

3.4.1. Динамика содержания анти-вб ^Е-антител в сыворотке крови.

3.4.2. Относительный клеточный состав периферической крови.

3.4.3. Относительный клеточный состав бронхоальвеолярного лаважа.

3.4.4. Гистологическое исследование легких.

3.4.5. Оценка функции внешнего дыхания с использованием метахолина.

Рекомендованный список диссертаций по специальности «Аллергология и иммулология», 14.00.36 шифр ВАК

Введение диссертации (часть автореферата) на тему «Разработка краткосрочной безадъювантной модели экспериментальной IgE-зависимой бронхиальной астмы с использованием аллергена пыльцы тимофеевки»

Бронхиальная астма (БА) - одно из наиболее распространенных хронических неинфекционных заболеваний. По оценкам Всемирной Организации Здравоохранения (ВОЗ), в мире живет 300 млн. человек, болеющих астмой, а ежегодная смертность от этой патологии составляет 100-250 тыс. человек [2,18,19,27,28]. Примерно 1% от всех потерь лет жизни с поправкой на нетрудоспособность (DALY) обусловлены этой патологией. По данным поперечных исследований, в нашей стране 5,6-7,3% взрослых и 6-11% детей страдает астмой {2,4,7,15,16]. Имеются данные, свидетельствующие о росте числа новых случаев болезни за последнюю четверть века. Около половины всех случаев заболевания считаются атопическими, связанными с аллергической реакцией на антигены помещений и окружающей среды [16,70].

К настоящему времени, течение БА контролируется стандартной терапией, замедляя развитие заболевания и радикально улучшая качество жизни пациентов. Однако у 10-20% больных заболевание протекает в тяжелой форме, плохо поддающейся терапевтической коррекции противовоспалительными и антибронхоконстрикторными препаратами [7].

Разработка новых подходов к лечению, диагностике и профилактике астмы остается актуальной задачей и невозможна без выяснения патогенетических механизмов развития болезни. Многочисленные исследования с участием людей, связанные, главным образом, с применением бронхоскопии и гистологического исследования материалов, полученных при биопсии и аутопсии, внесли значительный вклад в понимание проблемы. Но непреодолимые ограничения этического и технического характера не дают возможности ответить на множество вопросов, касающихся этиологии и патогенеза БА. Поэтому все более широкое применение находят биологические модели, позволяющие воспроизводить характерные признаки патологии у животных.

Уже разработаны методы индукции экспериментальной бронхиальной астмы (ЭБА) у крыс, морских свинок, овец, кроликов, собак, кошек, свиней и приматов. Использование каждого из перечисленных животных имеет свои , преимущества и недостатки [29,74,142,143]. Однако, после успешного вос-' произведения признаков гиперпродукции ^Е, аллерген-индуцированного воспаления дыхательных путей и гиперреактивности бронхов у лабораторных мышей, стало ясно, что именно эти млекопитающие оптимальны для моделирования БА [78,84,132,142]. И тому есть несколько причин. Во-первых, удается обеспечить высокую степень соответствия ключевых гистологических, иммунных и функциональных феноменов экспериментальной патологии и астмы человека. Во-вторых, имеются эффективные лабораторно-инструментальные методы оценки функции внешнего дыхания, иммунологических показателей и морфологических изменений у грызунов. В-третьих, хорошо отработана технология получения чистых линий, трансгенных и но-каутных мышей. В-четвертых, мыши являются удобным экспериментальным объектом по причине невысоких материально-трудовых затрат на их содержание и питание и короткого репродуктивного цикла.

Наиболее используемым аллергеном для моделирования БА является овальбумин. Этот препарат имеет хорошо изученную структуру, свойства, налажен его коммерческий выпуск, что в сочетании с невысокой стоимостью делает его доступным для рутинного применения в исследовательской практике. С целью сенсибилизации ОА вводят интраперитонеально, при этом часто комбинируя с адъювантом, например, гидроксидом алюминия (алю-мом) или неполным адъювантом Фрейнда [10,120,142]. Наиболее используемые схемы предусматривают 7-8-кратное введение через день по 10-20 мкг аллергена или 2-3-кратное через 2-4 дня по 10 мкг в комбинации с алюмом. Адъювант способствует быстрой перестройке иммунного ответа в ТЬ2напралении и развитию ярких проявлений ^Е-ответа в ущерб точности и 8 физиологичности» воспроизведения маркеров БА. Поэтому все большее место отводится безадьювантным моделям, точнее имитирующим патогенез заболевания человека [11,51].

Кроме того, резко возрос интерес к использованию в процессе индукции ЭБА так называемых причинно-значимых аллергенов, вызывающих развитие и обострение заболевания у человека. Уже получены мышиные модели с сенсибилизацией к аллергенам домашней пыли [17, 71,73,76,77,93,94], маслины [39], пыльцы амброзии [134,147,79] и березы [46]. Такой подход, помимо прочего, позволяет изучать эффективность и безопасность антиген-специфической иммунотерапии (АСИТ) на доклинических этапах. К настоящему времени отсутствуют модели ЭБА с использованием большей части клинически-значимых аллергенов. Среди последних особое значение для нашей страны имеет пыльца дикорастущих и сельскохозяйственных трав: тимофеевки, полыни, овса и др.

В России к началу 2008 была воспроизведена лишь одна модель БА -краткосрочная с использованием овальбумина, подробно описанная в нескольких русскоязычных работах [8-11]. В то же самое время, было найдено 837 зарубежных исследований, посвященных той же проблеме. Это свидетельствует о необходимости заметно активизировать отечественную исследовательскую работу в этом направлении.

Цель работы: разработать и охарактеризовать краткосрочную безадъ-ювантную модель ^Е-зависимой бронхиальной астмы у мышей с использованием экстракта пыльцы тимофеевки полевой. Задачи:

1. Изучить 1§Е-ответ мышей линии ВАЬВ/с на введение экстракта пыльцы тимофеевки.

2. Разработать оптимальную схему моделирования экспериментальной бронхиальной астмы у мышей путем введения экстракта пыльцы тимофеевки в отсутствие адъюванта.

3. Изучить динамику накопления аллерген-специфических гомоцито-тропных ^Е-антител в крови мышей в ходе моделирования бронхиальной астмы.

4. Провести оценку гистологических изменений легких мышей при моделировании БА

5. Разработать и провести первичную проверку применимости полуколичественной системы анализа гистологических изменений легких мышей с экспериментальной бронхиальной астмой.

6. Оценить изменения относительного клеточного состава бронхо-альвеолярного лаважа у мышей с экспериментальной бронхиальной астмой.

7. Оценить изменения лейкоцитарной формулы периферической крови у мышей с экспериментальной бронхиальной астмой.

8. Провести пневмотахографическую оценку функции внешнего дыхания у мышей с экспериментальной бронхиальной астмой.

Научная новизна работы:

Впервые в мире разработана и охарактеризована краткосрочная модель ^Е-зависимой бронхиальной астмы с использованием аллергенного экстракта пыльцы тимофеевки полевой у мышей без использования адъюванта

Впервые предложен метод полуколичественного анализа гистологических изменений легких мышей при моделировании бронхиальной астмы. Практическая значимость:

Разработанная модель бронхиальной астмы на лабораторных мышах может использоваться для оценки эффективности и безопасности потенци

10 альных лекарственных средств или их форм в процессе лечения и профилактики заболевания на доклиническом этапе. Особое значение имеет возможность применения данной модели для нахождения новых подходов к антиген-специфической терапии модифицированными аллергенами пыльцы тимофеевки.

Предложенная модель может использоваться и при изучении патогенетических механизмов развития бронхиальной астмы.

Похожие диссертационные работы по специальности «Аллергология и иммулология», 14.00.36 шифр ВАК

Список литературы диссертационного исследования кандидат медицинских наук Крючков, Николай Александрович, 2008 год

1. Воробьев П.А. Клинико-экономический анализ. Изд. 3-е. М.: Ньюдиамед, 2008, 778 с. С. 175-178.

2. Глобальная стратегия лечения и профилактики бронхиальной астмы (GI-NA). Пересмотр 2006 г. Перевод с англ. под ред. Чучалина А.Г. М.: Издательский дом «Атмосфера», 2007, 104 е., ил.

3. Гущин И.С. Аллергическое воспаление и его фармакологический контроль. М.: Фармарус Принт, 1998.

4. Дрожжев М.Е., Лев Н.С., Костюченко М.В. и соавт. Современные показатели распространенности бронхиальной астмы среди детей. Пульмонология, 2002; (1): 42-46.

5. Кисели Д. Практическая микротехника и гистохимия. Будапешт: Изд-во АН Венгрии, 1962, с. 399.

6. Крючков Н.А., Бабахин А.А., Хаитов М.Р. Моделирование бронхиальной астмы у лабораторных мышей: общие принципы и значение. Физиология и патология иммунной системы, 2008; (2):3-7.

7. Княжеская Н.П. Тяжелая бронхиальная астма. Consilium medicum, 2002; 4(4): 189-197.

8. Литвин Л.С., Бабахин А.А., Стеценко О.Н. и др. Оценка различных способов иммунизации при моделировании экспериментального аллергического ответа. Российский аллергологический журнал. 2005; (1): 35-42.

9. Литвин Л.С., Бабахин А.А., Хаитов М.Р. и др. Модели экспериментальной атопической бронхиальной астмы. Патофизиология и экспериментальная терапия, 2006; (3): 26-27.

10. Литвин Л.С., Хаитов М.Р., Бабахин А.А. и др. Характеристика экспериментальной модели бронхиальной астмы, полученной без использования адъюванта. Аллергология и иммунология, 2007, т.8, №1, с.40.

11. Никитин В.М. Атлас клеток крови сельскохозяйственных и лабораторных животных. М.: Гос. изд-во сельскохозяйственной литературы, 1949.

12. Паттерсон Р., Грэммер Л.К., Гринбергер П.А. Аллергические болезни: диагностика и лечение. Пер. с англ. Под. ред. А.Г.Чучалина, И.С. Гущина, Э.Г. Улумбекова, Р.С. Фассахова. М.: ГЭОТАР МЕДИЦИНА, 2000, 768 с.

13. Пыцкий В.И. Обоснование классификации форм бронхиальной астмы и анализ их патогенеза. Астма, 2000; 1(1): 14-26.

14. Чучалин А.Г. Бронхиальная астма. М.: ИД «Русский врач», 2001.

15. Чучалин А.Г. Черняк Б.А., Тяренкова С.Н., Буйнова С.В. Распространенность и клинико-аллергологическая характеристика бронхиальной астмы в Восточной Сибири. Пульмонология, 1999; 1: 42-49.

16. Ahn J.H., Kim С.Н., Kim Y.H. et al. Inflammatory and remodeling.events in asthma with chronic exposure to house dust mites: a murine model. J. Korean Med. Sci., 2007; 22: 1026-33.

17. Ait-Khaled N., Enarson D.A. Management of asthma. A Guide to the essentials of good clinical practice. Second ed. International union against tuberculosis and lung disease, 2005.

18. Ait-Khaled N., Enarson D.A., Bousquet J. Chronic respiratory diseases in developing countries :the burden and strategies for prevention and management. Bull. World Health Organ., 2001; 79: 971-979.

19. Almqvist C., Wickman M., Perfetti L. et al. Worsening of asthma in children allergic to cats, after indirect exposure to cat at school. Am. J. Respir. Crit. Care Med., 2001; 163(3 pt 1): 694-8.

20. Araujo M.I., Hoppe B.S., Medeiros M. Jr, Carvalhol E.M. Schistosoma man-soni infection modulates the immune response against allergic and autoimmune diseases. Mem. Inst. Oswaldo Cruz, Rio de Janeiro, 2004; 99(suppl. I): 27-32.

21. Ashcroft T., Simpson J.M., Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol., 1988; 41: 467-470.

22. Azzawi M., Bradley B., Jeffery P.K. et al. Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am. Rev. Respir. Dis., 1990; 142: 1407-1413.

23. Bartra J., Mullol J., del Cuvillo A. et al. Air pollution and allergens. J. Investig. Allergol. Clin. Immunol., 2007; 17(Suppl. 2): 3-8.

24. Bates J., Irvin C., Brusasco V. et al. The use and misuse of Penh in animal models of lung disease. Am. J. Respir. Cell Mol. Biol., 2004; 31: 373-374.

25. Baumans V. Use of animals in experimental research: an ethical dilemma? Gene Therapy, 2004; 11: S64-S66.

26. Beasley R. The Global Burden of Asthma Report, Global Initiative for Asthma (GINA), 2004. Available from: www.ginasthma.org.

27. Bischof R.J., Snibson K., Shaw R., Meeusen E.N.T. Induction of allergic inflammation in the lungs of sensitized sheep after local challenge with house dust mite. Clin. Exp. Allergy, 2003; 33:367-75.

28. Bleecker E., Postma D., Meyers D. Evidence for multiple genetic susceptibility loci for asthma. Am. J. Respir. Crit. Care Med., 1997; 156(Suppl. 4): 113-116.

29. Bockamp E., Maringer M., Spangenberg C. et al. Of mice and models: improved animal models for biomedical research. Physiol. Genomics, 2002, 11: 115-132.

30. Bollinger M.E., Eggleston P.A., Flanagan E., Wood R.A. Cat antigen in homes with and without cats may induce allergic symptoms. J. Allergy Clin. Immunol., 1996; 97: 907-14.

31. Bousquet J., Chanez P., Lacoste J.Y. et al. Eosinophilic inflammation in asthma. N. Engl. J. Med., 1990; 323: 1033-1039.

32. Braun M.C., He J., Wu C.Y., Kelsall B.L. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor betal and beta2 chain expression. J. Exp. Med., 1999; 189: 541-552.

33. Carpenter D.O., Arcaro K., Spink D.C. Understanding the human health effects of chemical mixtures. Environ. Health. Perspect., 2002; 110(suppl 1): 25-42.

34. Cho Y., Miller M., Baek K., et al. Inhibition of airway remodeling in IL-5-deficient mice. J. Clin. Invest., 2004; 113: 551-560.

35. Chung S.K., Lee A.Y.W., Chung S.S.M. Mouse models for human diseases. Hong Kong Med. J., 1997; 3: 201-209.

36. Conejero L., Higaki Y., Baeza M.L. Pollen-induced airway inflammation, hyper-responsiveness and apoptosis in a murine model of allergy. Clin. Exp. Allergy, 2007; 37(3): 331-8.

37. Corry D.B., Folkesson H.G., Warnock M.L. et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med., 1996; 183: 109-117.

38. Craig W. Relevance of animal models for clinical treatment. Eur. J. Clin. Microbiol. Infect. Dis., 1993; 12 (suppl. 1): S55-S57.

39. Creticos P.S., Reed C.E., Norman P.S. et al. Ragweed immunotherapy in adult asthma. N. Engl. J. Med., 1996; 334: 501-506.

40. Custovic A., Green R., Taggard S.C. et al. Domestic allergens in public places. II. Clin. Exp. Allergy, 1996; 26(11): 1246-1252.

41. Custovic A., Wijk R.D. The effectiveness of measures to change the indoor environment in the treatment of allergic rhinitis and asthma: ARIA update (in collaboration with GA(2)LEN). Allergy, 2005; 60(9): 1112-1115.

42. D'Amato G., Liccardi G., D'Amato M., Cazzola M. Outdoor air pollution, climatic changes and allergic bronchial asthma. Eur. Respir. J., 2002; 20: 763776.

43. Daniel C., Repa A., Wild C. et al. Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy, 2006; 61(7): 812-819.

44. Dixon A.K., Fisch H.U. Animal models and ethological strategies for early drug-testing in humans. Neurosci. Biobehav. Rev., 1998; 23(2): 345-358.

45. Eisenbarth S.C., Piggott D.A., Huleatt J.W. et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med., 2002; 196: 1645-1651.

46. Elias J.A., Lee C.G., Zheng T. et al. New insights into the pathogenesis of asthma. J. Clin. Invest., 2003; 111:291-297.

47. Ennis D.P., Cassidy J.P., Mahon B.P. Acellular pertussis vaccine protects against exacerbation of allergic asthma due to Bordetella pertussis in a murine model. Clin. Diagnostic. Lab. Immun., 2005; (3): 409-417.

48. Epstein M.M. Are mouse models of allergic asthma useful for testing novel therapeutics? Exp. Toxicol. Pathology, 2006; 57(S2): 41-44.

49. Erwin E.A., Wickens K., Custis N.J. et al. Cat and dust mite sensitivity and tolerance in relation to wheezing among children raised with high exposure to both allergens. J. Allergy Clin. Immunol., 2005; 115: 74-9.

50. Faul J.L., Tormey V.J., Leonard C. et al. Lung immunopathology in cases of sudden asthma death. Eur. Respir. J., 1997; 10: 301-307.

51. Feinberg A.P. Epigenetics at the epicenter of modern medicine. JAMA, 2008; 299(11): 1345-1350.

52. Finegold I. Allergen immunotherapy: present and future. Allergy Asthma Proc., 2007; 28(1): 44-49.

53. Finkelstein S.E., Heimann D.M., Klebanoff C.A. et al. Bedside to bench and back again: how animal models are guiding the development of new immunotherapies for cancer. J. Leukoc. Biol., 2004; 76: 333-337.

54. Foster P.S., Hogan S.P., Ramsay AJ. et al. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med., 1996; 183: 195-201.

55. Fox D.A., Choilazzi N., Katz D.H. Hapten-specific IgE antibody responses in mice. V. Differential resistance of IgE and IgG B-lymphocytes to X-radiation. J. Immunol., 1976; 117: 1622-1628.

56. Georas S.N., Guo J., De Fanis U., Casolaro V. T-helper cell type-2 regulation in allergic disease. Eur. Respir. J., 2005; 26: 1119-1137.

57. Gern J.E., Busse W.W. Relationship of viral infections to wheezing illnesses and asthma. Nat. Rev. Immunol., 2002; 2(2): 132-138.

58. Glaab T., Taube C., Braun A., Mitzner W. Invasive and noninvasive methods for studying pulmonary function in mice. Respiratory Research, 2007; 8: 63.

59. Gounni A.S. The high-affinity IgE receptor (FceRI): a critical regulator of airway smooth muscle cells? Am. J. Physiol. Lung Cell Mol. Physiol., 2006; 291: L312-321.

60. Grogan J.L., Mohrs M, Harmon B, et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity, 2001; 14: 205-215.

61. Halonen M., Stern D.A., Wright A.L. et al. Alternaria as a major allergen for asthma in children raised in a desert environment. Am. J. Respir. Crit. Care Med., 1997; 155: 1356-1361.

62. Hamid Q., Song Y., Kotsimbos T.C. et al. Inflammation in small airways in asthma. J. Allergy Clin. Immunol., 1997; 100: 44-51.

63. Havaux X., Zeine A., Dits A., Denis O. A new mouse model of lung allergy induced by the spores of Alternaria alternate and Cladosporium herbarum molds. Clin. Exp. Immun, 2004; 139: 179-188.

64. Herz U., Braun A., Ruckert R., Renz H. Various immunological phenotypes are associated with increased airway responsiveness. Clin. Exp. Allergy, 1998; 28: 625-634.

65. Holgate, S.T., Davies D.E., Lackie P.M. et al. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J. Allergy Clin. Immunol., 2000; 105: 193-204.

66. Hoymann H.-G. New developments in lung function measurements in rodents. Exp. Toxicol. Pathol., 2006; 57(S2): 5-11.

67. Humbert M., Menz G., Ying S. et al. The immunopathology of extrinsic (atopic) and intrinsic (non-atopic) asthma: more similarities than differences. Immunol. Today, 1999; 20: 528-533.

68. Joachim R.A., Quarcoo D., Arck P.S. et al. Stress enhances airway reactivity and airway inflammation in an animal model of allergic bronchial asthma. Psychosomatic Medicine, 2003; 65: 811-815.

69. Johnson J.R., Wiley R.E., Fattouh R. et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am. J. Respir. Crit. Care Med., 2004; 169: 378-385.

70. Karol M.H. Animal models of occupational asthma. Eur. Respir. J, 1994; 7: 555-568.

71. Kay A.B. Allergy and allergic diseases. First of two parts. N. Engl. J. Med., 2001; 344: 30-37.

72. Kim J., Merry A.C., Nemzek J.A. et al. Eotaxin represents the principal eosinophil chemoattractant in an novel murine asthma model induced by house dust containing cockroach allergens. The Journal of Immunology, 2001; 167: 2808-2815.

73. Kips J.P., Anderson G.P., Fredberg J.J. et al. Murine models of asthma. Eur. Respir. J., 2003; 22: 374-382.

74. Kruzel M.L., Bacsi A., Choudhury B. et al. Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology, 2006; 119: 159-166.

75. Kryuchkov N.A., Babakhin A.A., Khaitov M.R., Martinov A.I. Adjuvant-free mouse model of bronchial asthma on causally relevant G6 allergen. II International congress IMD, Moscow, 2007.

76. Kryuchkov N.A., Bashkatova Yu.N., Khaitov M.R., Litvin L.S. IgE Immune response in vivo to timothy grass allergen. XXVII Congress of the European Academy of Allergology and Clinical Immunology, Barcelona, 2008.

77. Kuipers H., Lambrecht B.N. The interplay of dendritic cells, Th2 cells and regulatory T cells in asthma. Curr. Opin. Immunol., 2004; 16: 702-708.

78. Kumar R.K., Foster P.S. Modeling allergic asthma in mice: pitfalls and opportunities. Am. J. Respir. Cell Mol. Biol., 2002; 27: 267-272.

79. Kung T.T., Jones H., Adamas G.K. et al. Characterization of a murine model of allergic pulmonary inflammation. Int. Arch. Allergy Immun., 1994; 105(1): 8390.

80. Lärche M., Robinson D.S., Kay A.B. The role of T-lymphocytes in the pathogenesis of asthma. J. Allergy Clin. Immunol., 2003; 111: 450^463.

81. Leigh R., Ellis R., Wattie J.N. et al. Type 2 cytokines in the pathogenesis of sustained airway disfunction and airway remodeling in mice. Am. J. Respir. Crit. Care Med., 2004; 169: 860-867.

82. Leonardi-Bee J., Pritchard D., Britton J. and the Parasites in Asthma Collaboration. Asthma and current intestinal parasite infection. Systematic review and meta-analysis. Am. J. Respir. Crit. Care Med., 2006; 174(6): 514-523.

83. Lieberman D., Lieberman D., Printz S. et al. Atypical pathogen infection in adults with acute exacerbation of bronchial asthma. Am. J. Respir. Crit. Care Med., 2003; 167(11): 406-410.

84. London S.J. Gene-air pollution interactions in asthma. Proc. Am. Thorac. Soc., 2007; 4:217-220.

85. Mackay I.R., Rosen F.S. Asthma. N. Eng. J. Med., 2001; 344 (5): 350-362.

86. Mayr S.I., Zubery R.I., Liu F.-T. Role of immunoglobulin E and mast cells in murine models of asthma. Brazilian J. of Medical and Biological Research, 2003; 36: 821-827.

87. Mayuzumi H., Ohki Y., Tokuyama K. et al. Age-related difference in the persistency of allergic airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Int. Arch. Allergy Immunol., 2007; 143(4): 255262.

88. McKinley L., Kim J., Bolgos G.L. et al. Reproducibility of a novel model of murine asthma-like pulmonary inflammation. Clin. Exp. Immunol., 2004; 136: 224-231.

89. McKinley L., Kim J., Bolgos G.L. et al. Allergens induce enhanced broncho-constriction and leukotriene production in C5 deficient mice. Respir. Res., 2006; 7(1): 129.

90. Mizue Y., Ghani S., Leng L. et al. Role for macrophage migration inhibitory factor in asthma. PNAS, 2005; 102(40): 14410-14415.

91. Morgan W.J., Crain E.F., Gruchalla R.S. et al. Results of a home-based environmental intervention among urban children with asthma. N. Eng. J. Med., 2004; 351(11): 1068-1080.

92. Mutius E. Asthma and allergies in rural areas of Europe. Proc. Am. Thorac. Soc., 2007; 4:212-216.

93. Nacak M., Aynacioglu A.S., Filiz A. Association between the N-acetylation genetic polymorphism and bronchial asthma. Br. J. Clin. Pharmacol., 2002; 54: 671-674.

94. Nathanielsz P.W. Animal models that elucidate basic principles of the developmental origins of adult diseases. Neurosci. Biobehav. Rev., 1998; 23(2):345-358.

95. National Research Council. Biomedical Models and Resources: Current Needs and'Future Opportunities. Washington, D.C.: National Academy Press, 1998.

96. National Surveillance for Asthma — United States, 1980—2004. CDC MMWR, 2007: 56(SS08): 1-14; 18-54. Available from: http://www.cdc.gov/mmwr/preview/mmwrhtml/ss5608al.htm.

97. Olman M.A. Epithelial cell modulation of airway fibrosis in asthma. Am. J. Respir. Cell Mol. Biol., 2003; 28: 125-128.

98. Ordonez C.L., Khashayar R., Wong H.H. et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities of mucin gene expression. Am. J. Respir. Crit. Care Med., 2001; 163: 517-523.

99. Ovary Z., Watanabe N. Antigen and antibody detection by in-vivo methods. A revaluation of passive cutaneus anaphylactic reactions. J. Immun. Methods, 1977; 14: 381-390.

100. Paraskakis E., Sourvinos G., Passam F. Microsatellite DNA instability and loss of heterozygosity in bronchial asthma. Eur. Respir. J., 2003; 22: 951-955.

101. Pastorino A.C., Kuschnir F.C., Arruda L.K. et al. Sensitisation to aeroaller-gens in Brazilian adolescents living at the periphery of large subtropical urban centres. Allergol. Immunopathol. (Madr.), 2008; 36(1): 9-16.

102. Pearson T.A., Teri A., Manolio T.A. How to interpret a genome-wide association study. JAMA, 2008; 299(11): 1335-1344.

103. Perzanowski M.S., Ronmark E., Platts-Mills T.A., Lundback B. Effect of cat and dog ownership on sensitization and development of asthma among pre-teenage children. Am. J. Respir. Crit. Care Med., 2002; 166: 696-702.

104. Platts-Mills T., Leung D.Y.M., Schatz M. The role of allergens in asthma. Am. Fam. Physician., 2007; 76: 675-80.

105. Platts-Mills T.A., Vervloet D., Thomas W.R. et al. Indoor allergens and asthma: report of the Third International Workshop. J. Allergy Clin. Immunol., 1997; 100(6 ptl): S2-24.

106. Porrello A., Cardelli P., Spugnini E.P. Pet models in cancer research: general principles. J. Exp. Clin. Cancer. Res., 2004, 23(2): 181-193.

107. Reid L.M. Needs for animal models of human diseases of the respiratory system. Am. J. Pathol., 1980; 101(suppl. 3): S89-101.

108. Reinhardt A.K., Bottoms S.E. Quantitative assessment of subepithelial collagen deposition in the airways of mice following ovalbumin sensitization and intratracheal challenge. Chest, 2003; 123: 428S.

109. Revised Global Burden of Disease (GBD) 2002 Estimates. WHO, 2004. Available from:http://www.who.int/healthinfo/bodgbd2002revised/en/print.html.

110. Richter A., Puddicombe S.M., Lordan J.L et al. The contribution of inter-leukin (IL)-4 and IL-13 to the epithelial-mesenchymal trophic unit in asthma. Am. J. Respir. Crit. Care Med., 2001. 25: 385-391.

111. Roche W.R. Inflammatory and structural changes in the small airways in bronchial asthma. Am. J. Respir. Crit. Care Med., 1998; 157: S191-S194.

112. Rosenstreich D.L., Eggleston P., Kattan M. et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among innercity children with asthma. N. Engl. J. Med., 1997; 336: 1356-1363.

113. Sakai K., Yokoyama A., Kohno N., Hiwada K. Effect of different sensitizing doses of antigen in a murine model of atopic asthma. Clin. Exp. Allergy, 1999; 118: 9-15.

114. Salvato G. Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and non-asthmatic subjects. Thorax, 2001; 56: 902-906.

115. Sandford A., Pare P. The genetics of asthma. Am. J. Respir. Crit. Care Med., 2000; 161(Suppl. 3): 202-206.

116. Schuppli C.A., Fraser D., McDonald M. Expanding the three Rs to-meet new challenges in humane animal experimentation. Altern. Lab. Anim., 2004; 32(5): 525-532.

117. Selgrade M.K., Lemanske R.F., Gilmour M. et al. Induction of asthma and the environment: what we know and need to know. Environ. Health Perspect., 2006; 114: 615-619.

118. Seminario M.-C., Guo J., Bochner B. et al. Human eosinophils constitutively express NFATp andNFATc. J. All. Clin. Immunol., 2001; 107: 143-152.

119. Shapiro S.D. Animal Models of Asthma. Pro: Allergic Avoidance of Animal (Models.) Is Not an Option. Am. J. Respir. Crit. Care Med., 2006; 174: 1171— 1178.

120. Shinagawa K., Kojima M. Mouse Model of Airway Remodeling. Strain Differences. Am. J. Respir. Crit. Care Med., 2003; 168: 959-967.

121. Sigurs N., Bjarnason R., Sigurbergsson F., Kjellman B. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care Med., 2000; 161(5): 1501-1507.

122. Slauson D.O., Hahn F.F. Criteria for development of animal models of diseases of the respiratory system. Am. J. Pathol., 1980; 101(suppl. 3): S103-122.

123. Stankiewicz W., Dabrowski M.P., Chcialowski A., Plusa T. Cellular and cytokine immunoregulation in patients with chronic obstructive pulmonary disease and bronchial asthma. Mediators of Inflammation, 2002; (11): 307-312.

124. Sporik R., Holgate S.T., Platts-Mills T.A., Cogswell J.J. Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood. A prospective study. N. Engl. J. Med., 1990; 323: 501-507.

125. Sugita M., Kuribayashi K., Nakagomi T. et al. Allergic bronchial asthma: airway inflammation and hyperresponsiveness. Internal medicine, 2003; 42(8): 636-643.

126. Sur S., Lam J., Bouchard P. et al. Immunomodulatory effects of IL-12 on allergic lung inflammation depend on timing of doses. J. Immun., 1996; 157: 4173-4180.

127. Sur S., Wild J.S., Choundhary B.A. et al. Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. J. Immun., 1999, 162: 6284-6293.

128. Swanson K.S., Mazur M.J., Washisht K. et al. Genomics and clinical medicine: rationale for creating and effectively evaluating animal models. Exp. Biol. Med., 2004, 229: 866-875.

129. Swirski F.K., Sajic D., Robbins C.S. et al. Chronic exposure to innocuous antigen in sensitized mice leads to suppressed airway eosinophilia that is reversed by GMC-SF. J. Immunol., 2002; 169: 3499-3506.

130. Synek M., Beasley R., Frew A.J. et al. Cellular infiltration of the airways in asthma of varying severity. Am. J. Respir. Crit. Care Med., 1996; 154: 224230.

131. Taube C., Dakhama A., Takeda K. et al. Allergen-specific early neutrophil infiltration after allergen challenge in a murine model. Chest, 2003; 123: 410S-411S.

132. Taube C., Wei X., Swasey C.H. Mast cells, FcRI, and IL-13 are required for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. J. of Immunology, 2004; 172: 6398-6406.

133. Taylor P.E., Jacobson K.W., House J.M., Glovsky M.M. Links between pollen, atopy and the asthma epidemic. Int. Arch. Allergy Immunol., 2007; 144(2): 162-70.

134. Torres R., Pocado C., Mora F. Use of the mouse to unravel allergic asthma: a review of the pathogenesis of allergic asthma in mouse models and its similarity to the condition in humans. Arch. Bronconeumol., 2005; 41(3): 141-152.

135. Van Scott M.R., Hooker J.L., Ehrmann D. et al. Dust mite-induced asthma in cynomolgus monkeys. J. Appl. Physiol., 2004; 96: 1433-1444.

136. Vierboom M.P.M., Jonker M., Bontrop R.E., Hart B. Modeling human arthritic diseases in nonhuman primates. Arthritis Res. Ther., 2005, 7: 145-154.

137. Wahl W., Chen W. Transforming growth factor-p-induced regulatory T cells referee inflammatory and autoimmune diseases. Arthritis Res. Ther., 2005; 7: 62-68.

138. Walker C., Kaegi M.K., Braun P., Blaser K. Activated T cells and eosino-philia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J. Allergy Clin. Immunol., 1991; 88: 935-942.

139. Wild J.S., Sigounas A., Sur N. et al. IFN-g-inducing factor (IL-18) increases allergic sensitization serum IgE, Th2 cytokines, and airway eosinophilia in a mouse model of allergic asthma. J. Immunol., 2000,164: 2701-2710.

140. Yamamoto K., Takanashi S., Hasegawa Y. et al. Eotaxin level in induced sputum is increased in patients with bronchial asthma and in smokers. Respiration, 2003; 70: 600-605.

141. Ying S., O'Connor B., Ratoff J., et al. Thymic stromal lymphopoietin (TSLP) expression is increased in asthmatic airways correlates with expression of Th2-attracting chemokines and disease severity. J. Immunol., 2005; 174: 8183-8190.

142. Ying S., Zhang G., Gu S., Zhao J. How much do we now about atopic asthma: where are we now? Cell. Molec. Immunology, 2006; 3(5): 321-332.

143. Zhang Y., Lamm W.J., Albert R.K. et al. Influence of the route of allergen administration and genetic background on the murine allergic pulmonary response. Am. J. Respir. Crit. Care Med., 1997; 155: 661-669.

144. Zhu Z., Enborning G., Zheng T. et al. Interleukin-13 induces surfactant function abnormality in the murine lung. Chest, 2003; 123; 375-376.

145. Zosky G.R., Sly P.D. Animal models of asthma. Clin. Exp. Allergy, 2007; 37(7): 973-988.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.