Универсальная система интенсификации работы опухолеспецифических промоторов тема диссертации и автореферата по ВАК РФ 03.00.03, кандидат биологических наук Мингалеева, Римма Ниязовна

  • Мингалеева, Римма Ниязовна
  • кандидат биологических науккандидат биологических наук
  • 2010, Москва
  • Специальность ВАК РФ03.00.03
  • Количество страниц 95
Мингалеева, Римма Ниязовна. Универсальная система интенсификации работы опухолеспецифических промоторов: дис. кандидат биологических наук: 03.00.03 - Молекулярная биология. Москва. 2010. 95 с.

Оглавление диссертации кандидат биологических наук Мингалеева, Римма Ниязовна

1. ВВЕДЕНИЕ.

2. ОБЗОР ЛИТЕРАТУРЫ.

2.1. ГЕНЫ-«УБИЙЦЫ».

2.1.1. Тимидинкиназа вируса простого герпеса.

2.1.2. Протеиназа вируса иммунодефицита человека.

2.2. ОПУХОЛЕСПЕЦИФИЧЕСКИЕ ПРОМОТОРЫ С ШИРОКИМ ДИАПАЗОНОМ СПЕЦИФИЧНОСТИ.

2.2.1. Промотор гена сурвивина человека.

2.2.1.1. Сурвивин.

2.2.1.2. Структура промотора гена сурвивина человека.

2.2.1.3. Регуляция активности промотора гена сурвивина человека.

2.2.2. Промотор гена обратной транскриптазы теломеразы человека.

2.2.2.1. Теломеры и теломераза.

2.2.2.2. Структура промотора гена обратной транскриптазы теломеразы человека.

2.2.2.3. Регуляция активности промотора гена обратной транскриптазы теломеразы человека.

2.3. СПОСОБЫ УСИЛЕНИЯ АКТИВНОСТИ ОПУХОЛЕСПЕЦИФИЧЕСКИХ ПРОМОТОРОВ.

2.3.1. Модификация собственных регуляторных элементов промотора.

2.3.2. Индуцибельные системы сверэкспрессии трансгена.

2.4. TAT-TAR-CHCTEMA ВИЧ-1.

2.4.1. Строение LTR ВИЧ-1.

2.4.2. Строение TAR-элемента.

2.4.3. Механизм трансактивации промотора генов ВИЧ-1.

2.4.4. Белок tat.

2.4.4.1 .Структура белка tat.

2.4.4.2.Внеклеточные функции tat.

2.5. СОЧЕТАНИЕ ТАТ-ТАЯ-СИСТЕМЫ ВИЧ-1 И ГЕНА HSV-tk.

3. МАТЕРИАЛЫ И МЕТОДЫ.

3.1. МАТЕРИАЛЫ.

3.2. методы.:.

4. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ.

4.1. Сравнение активностей различных промоторных систем, регулирующих экспрессию гена HSV-i&.

4.1.1. Проверка Tat-TAR-системы ВИЧ-1 на способность усиливать экспрессию гена HSV-/&.

4.1.2. Оценка эффективности усиления экспрессии Tat-TAR-системы ВИЧ-1 в опухолевых клетках линии Calu-1 при стабильной трансфекции.

4.1.3. Степень трансактивации промотора LTR ВИЧ-1 зависит от промотора, контролирующего активность гена tat.

4.1.4. Сравнительный анализ уровня экспрессии гена Н8У-/&, направляемой различными промоторными системами.

4.1.5. Определение активности НЗУЧк.

4.1.6. Функциональный тест на способность НЭУ^к подавлять рост опухолевых клеток.

4.1.7. Способы снижения базального уровня экспрессии гена Н8У-/А: в Та^ТАЯ системе.

4.2. Исследование возможности применения протеиназы ВИЧ-1 в генной терапии раковых заболеваний.

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Универсальная система интенсификации работы опухолеспецифических промоторов»

Спустя несколько десятилетий интенсивных исследований и попыток разработать эффективные методы терапии рака, смертность от рака продолжает расти. В связи с этим усилия многих исследовательских групп по всему миру направлены на поиск новых способов лечения рака. Использование генной терапии в противоопухолевой медицине является одним из наиболее активно развивающихся, и кажущееся перспективным для создания противоопухолевых препаратов, направлений, в основе которого лежит доставка генов терапевтического вмешательства в клетки опухолей. При данном подходе создается возможность специфического воздействия противоопухолевого агента только на раковые клетки, за счет чего можно значительно снизить токсичность и побочные эффекты по сравнению с химио- и радиотерапией. Метод позволяет воздействовать и на дефектные гены, изменение экспрессии которых приводит к развитию заболевания.

Одним из главных требований, предъявляемых к генно-терапевтическому препарату, является высокий уровень экспрессии гена терапевтического вмешательства в клетках-мишенях, который определяется его регуляторными элементами - промоторами. Наиболее сильными среди изученных промоторов являются конститутивные вирусные промоторные системы, например, промотор ранних генов цитомегаловируса. Прямое использование таких промоторов для регуляции экспрессии трансгена в опухоли эффективно, но имеет серьезный недостаток - неспецифичность экспрессии, что приводит к токсичности терапевтического препарата для нормальных клеток и тканей [1].

Специфически «включить» экспрессию гена терапевтического вмешательства в клетках опухоли можно с помощью опухолеспецифических промоторов или промоторов, отвечающих на изменения условий, характерных для клеток опухоли (например, состояние гипоксии ипри .^твердых -опухолях человека) [2, 3]. Активность опухолеспецифического промотора ограничена раковыми клетками, то есть, экспрессия гена, направляемого таким промотором, наблюдается только в клетках опухоли.

Спектр опухолеспецифических промоторов, известных на сегодняшний день, достаточно широк и частично отображает разнообразие видов рака [1, 4]. Большинство таких промоторов имеет специфичность только к определенным типам опухолей, что ограничивает их использование и сильно сужает рамки их применения. Например, промотор раковоэмбрионального антигена (CEA) можно использовать для специфической активации трансгена в клетках эпителиальных карцином, таких как рак легких, желудка, поджелудочной железы, тогда как промотор простатоспецифического антигена (PSA) активируется при карциноме простаты человека [5]. Промотор гена тирозиназы человека специфичен для клеток меланомы, а промотор гена альфа-фетопротеина {AFP) активен при гепатоцеллюлярной карциноме человека.

Перспективы использования в генной терапии большинства опухолеспецифических промоторов ограниченны, поскольку их активность детектируется не во всех типах рака. Обнаружено и исследовано несколько более универсальных промоторов, которые активны в большинстве опухолевых клеток. К ним относятся промоторы гена сурвивина человека (BIRC5) и гена обратной транскриптазы теломеразы человека (hTERT). Однако, многие из этих промоторов ингибируются активным белком р53, который сохраняет активность во многих типах опухолей.

Существенным недостатком всех опухолеспецифических промоторов является их низкая активность [6, 7], повысить которую можно несколькими способами: изменить состав регуляторных элементов внутри такого промотора или использовать индуцибельные двухстадийные (бинарные) системы, позволяющие специфически экспрессировать ген терапевтического вмешательства на высоком уровне в опухолевых клетках. Примером бинарной системы регуляции экспрессии является Tat-TAR-система вируса иммунодефицита человека. В ее основе лежит способность белка tat трансактивировать промотор LTR ВИЧ-1 после взаимодействия с TAR-элементом вируса.

В данной работе разработана векторная система, позволяющая использовать Tat-TAR-систему повышения активности промотора LTR ВИЧ-1 для усиления опухолеспецифической экспрессии генов терапевтического вмешательства в раковых клетках. Показано, что эффективность полученной системы не зависит от статуса белка р53 в клетках. . • -.

Цель данной работы заключалась в создании универсальной системы, позволяющей специфически усиливать активность опухолеспецифических промоторов.

В ходе работы были поставлены следующие задачи:

1. Создать бинарную систему,'позволяющую оценить способность Tat-TAR-системы ВИЧ-1 усиливать экспрессию генов в клетках человека.

2. Получить систему, в которой ген tat находится под контролем опухолеспецифического промотора, а ген терапевтического вмешательства - под контролем TAR-элемента ВИЧ-1. На опухолевых клеточных линиях человека проверить

I .i эффективность полученной системы.

3. Провести сравнительный анализ активности разработанной системы и сильного неспецифического вирусного промотора.

4. Определить, влияет ли на эффективность полученной системы р53-статус трансфицируемых клеток.

5. Проверить функциональность разработанной системы в генной терапии рака, основанной на использовании ген-опосредованного внутриопухолевого превращения протоксина в токсин (GENE-DIRECTED ENZYME PRODRUG THERAPY, GDEPT).

2. ОБЗОР ЛИТЕРАТУРЫ

2.1 ГЕНЫ-«УБИЙЦЫ»

Гены-«убийцы», то есть гены, экспрессия которых приводит к подавлению роста клеток, нашли широкое применение в исследованиях, направленных на лечение рака. С помощью продуктов таких генов можно удалить любую опухоль, независимо от ее происхождения и стадии развития.

Похожие диссертационные работы по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Мингалеева, Римма Ниязовна

5. ВЫВОДЫ

1. Разработана и получена бинарная система, позволяющая оценить способность Tat-TAR-системы ВИЧ-1 усиливать экспрессию генов в клетках человека. Показана эффективность и индуцибельное действие полученной системы.

2. Показано, что под действием опухолеспецифического промотора, регулирующего активность гена tat, происходит эффективная трансактивация промотора LTR ВИЧ-1 и усиление экспрессии подконтрольного гена.

3. Продемонстрирована способность разработанной бинарной системы усиливать активность опухолеспецифических промоторов более чем на два порядка. Показано, что эффективность системы близка к эффективности сильного, но неспецифического промотора ранних генов цитомегаловируса, усиленного энхансером.

4. Полученная система эффективно работает как в р53(+), так и р53(-) клетках при использовании промоторов широкого профиля опухолевой специфичности (промотора гена сурвивина человека или промотора гена обратной транскриптазы теломеразы человека).

5. На примере тимидинкиназы вируса простого герпеса показано, что Tat-TAR-система в сочетании с опухолеспецифическим промотором может эффективно использоваться для специфического подавления роста опухолевых клеток.

Работа выполнена при финансовой поддержке ведущих научных школ РФ (грант НШ-2395.2008.4) и поддержке Федеральной целевой программы "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы" (2007-02-2.2-05-01-006).

4.9 ЗАКЛЮЧЕНИЕ

На основе Tat-TAR-взаимодействия, используемого ВИЧ для усиления транскрипции собственных генов, нами разработана бимодальная система, позволяющая получить высокий уровень экспрессии трансгена. Показано, что два исследованных опухолеспецифических промотора, обеспечивающие только слабую экспрессию гена tat, позволяют на два порядка увеличить экспрессию гена HSV-tk под контролем фрагмента LTR ВИЧ-1, содержащего TAR-элемент. Эффективность разработанной системы близка к эффективности сильного неспецифического промотора ранних генов цитомегаловируса, усиленного энхансером.

Подтверждена высокая активность белка HSV-tk, синтезируемого в бинарной системе Tat-TAR. Существенно, что эффект усиления экспрессии HSV-/& мало зависит от р53-статуса трансфицируемых клеток, будучи практически одинаковым как в р53(+), так и в р53(-) клетках. Это позволяет рассчитывать на то, что разработанная система может быть востребована при терапии различных раковых опухолей, многие из которых дефектны по белку р53, тогда как другие, будучи р53-позитивными, ингибируют действие опухолеспецифических промоторов.

Показано, что фоновая активность промотора LTR ВИЧ-1 может быть снижена при удалении энхансерных регуляторных элементов из состава LTR. Стоит отметить, что уровень базальной экспрессии трансгена в случае возникновения необходимости можно дополнительно снижать, удаляя из состава LTR дополнительные регуляторные элементы. I

1 I ' | I I I 1 an | I Vit,

Список литературы диссертационного исследования кандидат биологических наук Мингалеева, Римма Ниязовна, 2010 год

1. Papadakis ED, Nicklin SA, Baker AH, White S J. Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 2004; 4: 89-113.

2. Binley K, Iqball S, Kingsman A et al. An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Gene Ther 1999; 6: 1721-1727.

3. Scott SD, Greco O. Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev 2004; 23: 269-276.

4. Sadeghi H, Hitt MM. Transcriptionally targeted adenovirus vectors. Curr Gene Ther 2005; 5: 411-427.

5. Oesterling JE. Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol 1991; 145: 907-923.

6. Qiao J, Doubrovin M, Sauter BV et al. Tumor-specific transcriptional targeting of suicide gene therapy. Gene Ther 2002; 9: 168-175.

7. Rubinchik S, Wang D, Yu H et al. A complex adenovirus vector that delivers FASL-GFP with combined prostate-specific and tetracycline-regulated expression. Mol Ther 2001; 4: 416426.

8. Aoki Y, Feldman GM, Tosato G. Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 2003; 101: 1535-1542.

9. Freeman SM, Abboud CN, Whartenby KA et al. The "bystander effect": tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274-5283.

10. Hamel W, Magnelli L, Chiarugi VP, Israel MA. Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells. Cancer Res 1996; 56: 26972702.

11. Moolten FL. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 1986; 46: 5276-5281.

12. Culver KW, Ram Z, Wallbridge S et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550-1552.

13. Keller PM, Fyfe JA, Beauchamp L et al. Enzymatic phosphorylation of acyclic nucleoside analogs and correlations with antiherpetic activities. Biochem Pharmacol 1981; 30: 3071-3077.

14. Moolten FL, Wells JM. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 1990; 82: 297-300.

15. Oliver S, Bubley G, Crumpacker C.-Inhibition of HSV-transformed murine cells by nucleoside analogs, 2-NDG and 2'-nor-cGMP: mechanisms of inhibition and reversal by exogenous nucleosides. Virology 1985; 145: 84-93.

16. Shewach DS, Zerbe LK, Hughes TL et al. Enhanced cytotoxicity of antiviral drugs mediated by adenovirus directed transfer of the herpes simplex virus thymidine kinase gene in rat glioma cells. Cancer Gene Ther 1994; 1: 107-112.

17. Azatian A, Yu H, Dai W et al. Effectiveness of HSV-tk suicide gene therapy driven by the Grp78 stress-inducible promoter in esophagogastric junction and gastric adenocarcinomas. J Gastrointest Surg 2009; 13: 1044-1051.

18. Barba D, Hardin J, Sadelain M, Gage FH. Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc Natl Acad Sci U S A 1994; 91: 4348-4352.

19. Garin MI, Garrett E, Tiberghien P et al. Molecular mechanism for ganciclovir resistance in human T lymphocytes transduced with retroviral vectors carrying the herpes simplex virus thymidine kinase gene. Blood 2001; 97: 122-129.

20. Hoganson DK, Batra RK, Olsen JC, Boucher RC. Comparison of the effects of three different toxin genes and their levels of expression on cell growth and bystander effect in lung adenocarcinoma. Cancer Res 1996; 56: 1315-1323. v,

21. Mesnil M, Yamasaki H. Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 2000; 60: 3989-3999.

22. Mesnil M, Piccoli C, Tiraby G et al. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA 1996; 93: 1831-1835.

23. Lumniczky K, Safrany G. Cancer gene therapy: combination with radiation therapy and the role of bystander cell killing in the anti-tumor effect. Pathol Oncol Res 2006; 12: 118-124.

24. Kim YG, Bi W, Feliciano ES et al. Ganciclovir-mediated cell killing and bystander effect is enhanced in cells with two copies of the herpes simplex virus thymidine kinase gene. Cancer Gene Ther 2000; 7: 240-246.

25. Falnes PO, Welker R, Krausslich HG, Olsnes S. Toxins that are activated by HIV type-1 protease through removal of a signal for degradation by the N-end-rule pathway. Biochem J 1999; 343 Pt 1: 199-207.

26. Ventoso I, Navarro J, Munoz MA, Carrasco L. Involvement of HIV-1 protease in virus-induced cell killing. Antiviral Res 2005; 66: 47-55.

27. Kohl NE, Emini EA, Schleif WA et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sei U S A 1988; 85: 4686-4690.

28. Krausslich HG. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc Natl Acad Sei USA 1991; 88: 3213-3217.

29. Baum EZ, Bebernitz GA, Gluzman Y. Isolation of mutants of human immunodeficiencysvirus protease based on the toxicity of the enzyme in Escherichia coli. Proc Natl Acad Sei U S A 1990; 87: 5573-5577.

30. Blanco R, Carrasco L, Ventoso I. Cell killing by HIV-1 protease. J Biol Chem 2003; 278: 1086-1093.

31. Strack PR, Frey MW, Rizzo CJ et al. Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc Natl Acad Sei U S A 1996; 93: 9571-9576.

32. Adams LD, Tomasselli AG, Robbins P et al. HIV-1 protease cleaves actin during acute infection of human T-lymphocytes. AIDS Res Hum Retroviruses 1992; 8: 291-295.

33. Honer B, Shoeman RL, Traub P. Degradation of cytoskeletal proteins by the human immunodeficiency virus type 1 protease. Cell Biol Int Rep 1992; 16: 603-612.

34. Shoeman RL, Honer B, Stoller TJ et al. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc Natl Acad Sei U S A 1990; 87: 6336-6340. .

35. Tomasselli AG, Hui JO, Adams L et al. Actin, troponin C, Alzheimer amyloid precursor protein and pro-interleukin 1 beta as substrates of the protease from human immunodeficiency virus. J Biol Chem 1991; 266: 14548-14553.

36. Ventoso I, Blanco R, Perales C, Carrasco L. HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent translation. Proc Natl Acad Sei U S A 2001; 98: 1296612971.

37. Korant BD, Strack P, Frey MW, Rizzo CJ. A cellular anti-apoptosis protein is cleaved by the HIV-1 protease. Adv Exp Med Biol 1998; 436: 27-29.

38. Nie Z, Phenix BN, Lum JJ et al. HIV-1 protease processes procaspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death Differ 2002; 9: 1172-1184.

39. Plymale DR, Tang DS, Comardelle AM et al. Both necrosis and apoptosis contribute to HIV-l-induced killing of CD4 cells. Aids 1999; 13: 1827-1839.

40. Kaplan AH, Swanstrom R. Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proc Natl Acad Sci U S A 1991; 88: 4528-4532.

41. Vella S, Floridia M. Saquinavir. Clinical pharmacology and efficacy. Clin Pharmacokinet 1998; 34: 189-201.

42. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002;3:401-410.

43. Duffy MJ, O'Donovan N, Brennan DJ et al. Survivin: a promising tumor biomarker. Cancer Lett 2007; 249: 49-60.

44. Li F, Ambrosini G, Chu EY et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998; 396: 580-584. . -48. Shi Y. Survivin structure: crystal unclear. Nat Struct Biol 2000; 7: 620-623.

45. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997; 3: 917-921.

46. Chantalat L, Skoufias DA, Kleman JP et al. Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual alpha-helical extensions. Mol Cell 2000; 6: 183-189.

47. Verdecia MA, Huang H, Dutil E et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol 2000; 7: 602-608.

48. Zaffaroni N, Pennati M, Daidone MG. Survivin as a target for new anticancer interventions. J Cell Mol Med 2005; 9: 360-372.

49. Caldas H, Jiang Y, Holloway MP et al. Survivin splice variants regulate the balance between proliferation and cell death. Oncogene 2005; 24: 1994-2007.

50. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003; 22: 8581-8589.

51. Li Y, Xie M, Yang J et al. The expression of antiapoptotic protein survivin is transcriptionally upregulated by DEC1 primarily through multiple spl binding sites in the proximal promoter. Oncogene 2006; 25: 3296-3306.

52. Altieri DC. The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr Opin Cell Biol 2006; 18: 609-615.

53. Giodini A, Kallio MJ, Wall NR et al. Regulation of microtubule stability and mitotic progression by survivin. Cancer Res 2002; 62: 2462-2467.1. M. ;Ju;:>K. :J.j . .78

54. Adams RR, Carmena M, Earnshaw WC. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 2001 ;Tl7 49^54.

55. Hinds MG, Norton RS, Vaux DL, Day CL. Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nat Struct Biol 1999; 6: 648-651.

56. Shin S, Sung BJ, Cho YS et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 2001;40:1117-1123.

57. Zangemeister-Wittke U, Simon HU. An IAP in action: the multiple roles of survivin in differentiation, immunity and malignancy. Cell Cycle 2004; 3: 1121-1123.

58. Tamm I, Wang Y, Sausville E et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 1998; 58: 5315-5320.

59. Li F, Altieri DC. Transcriptional analysis of human survivin gene expression. Biochem J 1999; 344 Pt 2: 305-311.

60. Bao R, Connolly DC, Murphy M et al. Activation of cancer-specific gene expression by the survivin promoter. J Natl Cancer Inst 2002; 94: 522-528.

61. Esteve PO, Chin HG, Pradhan S. Molecular mechanisms of transactivation and doxorubicin-mediated repression of survivin gene in cancer cells. J Biol Chem 2007; 282: 26152625.

62. Zhu N, Gu L, Findley HW et al. KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J Biol Chem 2006; 281: 14711-14718.

63. Kim PJ, Plescia J, Clevers H et al. Survivin and molecular pathogenesis of colorectal cancer. Lancet 2003; 362: 205-209.

64. Moon RT, Bowerman B, Boutros M, PerrimonN. The promise and perils of Wnt signaling through beta-catenin. Science 2002; 296: 1644-1646.

65. Gritsko T, Williams A, Turkson J et al. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 2006; 12: 11-19.

66. Cohen C, Lohmann CM, Cotsonis G et al. Survivin expression in ovarian carcinoma: correlation with apoptotic markers and prognosis. Mod Pathol 2003; 16: 574-583.

67. Hoffman WH, Biade S, Zilfou JT et al. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 2002; 277: 3247-3257.

68. Mirza A, McGuirk M, Hockenberry TN et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 2002; 21: 26132622.

69. Tsuji N, Furuse K, Asanuma K et al. Mutations of the p53 gene and loss of heterozygosity at chromosome 17p 13.1 are associated with increased survivin expression in breast cancer. Breast Cancer Res Treat 2004; 87: 23-31.

70. Korinek V, Barker N, Morin PJ et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997; 275: 1784-1787.

71. Carter BZ, Milella M, Altieri DC, Andreeff M. Cytokine-regulated expression of survivin in myeloid leukemia. Blood 2001; 97: 2784-2790.

72. Mahboubi K, Li F, Plescia J et al. Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway. Lab Invest 2001; 81: 327-334.

73. Badie C, Itzhaki JE, Sullivan MJ et al. Repression of CDK1 and other genes with CDE and CHR promoter elements during DNA damage-induced G(2)/M arrest in human cells. Mol Cell Biol 2000; 20: 2358-2366.

74. Blackburn EH. Structure and function of telomeres. Nature 1991; 350: 569-573.

75. Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 1973; 41: 181-190.

76. Watson JD. Origin of concatemeric T7 DNA. Nat New Biol 1972; 239: 197-201.

77. Counter CM, Avilion AA, LeFeuvre CE et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. Embo J 1992;11: 1921-1929.

78. Counter CM, Gupta J, Harley CB et al. Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 1995; 85: 2315-2320.

79. Harle-Bachor C, Boukamp P. Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and in immortal and carcinoma-derived skin keratinocytes. Proc Natl Acad Sci U S A 1996; 93: 6476-6481.

80. Playashi K, Hayashi T, Sun HD, Takeda Y. Potentiation of ganciclovir toxicity in the herpes simplex virus thymidine kinase/ganciclovir administration system by ponicidin. Cancer Gene Ther 2000; 7: 45-52.

81. Kyo S, Takakura M, Kohama T, Inoue M. Telomerase activity in human endometrium. Cancer Res 1997;57:610-614. • •

82. Tatsumoto N, Hiyama E, Murakami Y et al. High telomerase activity is an independent prognostic indicator of poor outcome in colorectal cancer. Clin Cancer Res 2000; 6: 2696-2701.

83. Yasumoto S, Kunimura C, Kikuchi K et al. Telomerase activity in normal human epithelial cells. Oncogene 1996; 13: 433-439.i 1 1 1 I80

84. Kim NW, Piatyszek MA, Prowse KR et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011-2015.

85. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787-791.

86. Nittis T, Guittat L, Stewart SA. Alternative lengthening of telomeres (ALT) and chromatin: is there a connection? Biochimie 2008; 90: 5-12.

87. Stewart SA. Telomere maintenance and tumorigenesis: an "ALT"ernative road. Curr Mol Med 2005; 5:253-257.

88. Hande MP, Balajee AS, Natarajan AT. Induction of telomerase activity by UV-irradiation in Chinese hamster cells. Oncogene 1997; 15: 1747-1752.

89. Hiyama E, Hiyama K, Yokoyama T et al. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1995; 1: 249-255.

90. Kyo S, Takakura M, Kanaya T et al. Estrogen activates telomerase. Cancer Res 1999; 59: 5917-5921.

91. Meyerson M, Counter CM, Eaton EN et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997; 90: 785-795.

92. Misiti S, Nanni S, Fontemaggi G et al. Induction of hTERT expression and telomerase activity by estrogens in human ovary epithelium cells. Mol Cell Biol 2000; 20: 3764-3771.

93. Wright WE, Piatyszek MA, Rainey WE et al. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 1996; 18: 173-179.

94. Xu D, Gruber A, Bjorkholm M et al. Suppression of telomerase reverse transcriptase (hTERT) expression in differentiated HL-60 cells: regulatory mechanisms. Br J Cancer 1999; 80: 1156-1161.

95. Zhang W, Piatyszek MA, Kobayashi T et al. Telomerase activity in human acute myelogenous leukemia: inhibition of telomerase activity by differentiation-inducing agents. Clin Cancer Res 1996; 2: 799-803.

96. Feng J, Funk WD, Wang S S et al. The RNA component of human telomerase. Science 1995; 269: 1236-1241.

97. Harrington L, Zhou W, McPhail T et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 1997; 11: 3109-3115.

98. Kilian A, Bowtell DD, Abud HE et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum Mol Genet 1997;6:2011-2019.1 'M.:-.: ! !! •>>) . ¿¡! . :l< L:.81

99. Lingner J, Hughes TR, Shevchenko A et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 1997; 276: 561-567.

100. Weinrich SL, Pruzan R, Ma L et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 1997; 17: 498502.

101. Bachand F, Triki I, Autexier C. Human telomerase RNA-protein interactions. Nucleic Acids Res 2001; 29: 3385-3393.

102. Avilion AA, Piatyszek MA, Gupta J et al. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res 1996; 56: 645-650.

103. Yi X, Tesmer VM, Savre-Train I et al. Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. Mol Cell Biol 1999; 19: 39893997.

104. Kanaya T, Kyo S, Takakura M et al. hTERT is a critical determinant of telomerase activity in renal-cell carcinoma. Int J Cancer 1998; 78: 539-543.

105. Kyo S, Kanaya T, Takakura M et al. Human telomerase reverse transcriptase as a critical determinant of telomerase activity in normal and malignant endometrial tissues. Int J Cancer 1999; 80: 60-63.

106. Nakayama J, Tahara H, Tahara E et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet 1998; 18: 65-68.

107. Hahn WC, Counter CM, Lundberg AS et al. Creation of human tumour cells with defined genetic elements. Nature 1999; 400: 464-468.

108. Bryce LA, Morrison N, Hoare SF et al. Mapping of the gene for the human telomerase reverse transcriptase, hTERT, to chromosome 5pl5.33 by fluorescence in situ hybridization. Neoplasia 2000; 2: 197-201.

109. Cong YS, Wen J, Bacchetti S. The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet 1999; 8: 137-142.

110. Horikawa I, Cable PL, Afshari C, Barrett JC. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res 1999; 59: 826-830.

111. Wick M, Zubov D, Hagen G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 1999; 232: 97-106.

112. Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005; 6: 635-645.

113. Greenberg RA, O'Hagan RC, Deng H et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 1999; 18: 1219-1226.

114. Wu KJ, Grandori C, Amacker M et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999; 21: 220-224.

115. Kirkpatrick KL, Ogunkolade W, Elkak AE et al. hTERT expression in human breast cancer and non-cancerous breast tissue: correlation with tumour stage and c-Myc expression. Breast Cancer Res Treat 2003; 77: 277-284.

116. Kyo S, Takakura M, Taira T et al. Spl cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 2000; 28: 669677.

117. Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 2003; 24: 1167-1176.

118. Kyo S, Takakura M, Fujiwara T, Inoue M. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci 2008; 99: 15281538.

119. Nishi H, Nakada T, Kyo S et al. Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol Cell Biol 2004; 24: 6076-6083.

120. Yatabe N, Kyo S, Maida Y et al. HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene 2004; 23: 3708-3715.

121. Koshiji M, Kageyama Y, Pete EA et al. HIF-lalpha induces cell cycle arrest by functionally counteracting Myc. Embo J 2004; 23: 1949-1956.

122. Lou F, Chen X, Jalink M et al. The opposing effect of hypoxia-inducible factor-2alpha on expression of telomerase reverse transcriptase. Mol Cancer Res 2007; 5: 793-800.

123. Oh S, Song Y, Yim J, Kim TK. The Wilms' tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene. J Biol Chem 1999; 274: 3747337478.

124. Oh S, Song YH, Yim J, Kim TK. Identification of Mad as a repressor of the human telomerase (hTERT) gene. Oncogene 2000; 19: 1485-1490.

125. Lee EJ, Jameson JL. Cell-specific Cre-mediated activation of the diphtheria toxin gene in pituitary tumor cells: potential for cytotoxic gene therapy. Hum Gene Ther 2002; 13: 533-542.

126. Crowe DL, Nguyen DC, Tsang KJ, Kyo S. E2F-1 represses transcription of the human telomerase reverse transcriptase gene. Nucleic Acids Res 2001; 29: 2789-2794.

127. Xu D, Wang Q, Gruber A et al. Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene 2000; 19: 5123-5133.' <- * M ' 1 83

128. Kanaya T, Kyo S, Hamada K et al. Adenoviral expression of p53 represses telomerase activity through down-regulation of human telomerase reverse transcriptase transcription. Clin Cancer Res 2000; 6: 1239-1247.

129. Wirth T, Kuhnel F, Kubicka S. Telomerase-dependent gene therapy. Curr Mol Med 2005; 5:243-251.

130. Wang Z, Kyo S, Takakura M et al. Progesterone regulates human telomerase reverse transcriptase gene expression via activation of mitogen-activated protein kinase signaling pathway. Cancer Res 2000; 60: 5376-5381.

131. Maida Y, Kyo S, Kanaya T et al. Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene 2002; 21: 4071-4079.

132. Alfonso-De Matte MY, Yang H, Evans MS et al. Telomerase is regulated by c-Jun NH2-terminal kinase in ovarian surface epithelial cells. Cancer Res 2002; 62: 4575-4578.

133. Dimri GP, Martinez JL, Jacobs JJ et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 2002; 62: 4736-4745.

134. Goueli BS, Janknecht R. Upregulation of the Catalytic Telomerase Subunit by the Transcription Factor ER81 and Oncogenic HER2/Neu, Ras, or Raf. Mol Cell Biol 2004; 24: 2535.

135. Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 1996; 380: 79-82.

136. Horikawa I, Barrett JC. cis-Activation of the human telomerase gene (hTERT) by the hepatitis B virus genome. J Natl Cancer Inst 2001; 93: 1171-1173.

137. Zinn RL, Pruitt K, Eguchi S et al. hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res 2007; 67: 194-201.

138. Atkinson SP, Hoare SF, Glasspool RM, Keith WN. Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res 2005; 65: 7585-7590.

139. Cong YS, Bacchetti S. Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. J Biol Chem 2000; 275: 35665-35668.

140. Takakura M, Kyo S, Sowa Y et al. Telomerase activation by histone deacetylase inhibitor in normal cells. Nucleic Acids Res 2001; 29: 3006-3011.

141. Wu L, Matherly J, Smallwood A et al. Chimeric PSA enhancers exhibit augmented activity in prostate cancer gene therapy vectors. Gene Ther 2001; 8: 1416-1426.

142. Siders WM, Halloran PJ, Fenton RG. Transcriptional targeting of recombinant adenoviruses to human and murine melanoma cells. Cancer Res 1996; 56: 5638-5646.

143. Richards CA, Austin EA, Huber BE. Transcriptional regulatory sequences of carcinoembryonic antigen: identification and use with cytosine deaminase for tumor-specific gene therapy. Hum Gene Ther 1995; 6: 881-893.

144. Davis JJ, Wang L, Dong F et al. Oncolysis and suppression of tumor growth by a GFP-expressing oncolytic adenovirus controlled by an hTERT and CMV hybrid promoter. Cancer Gene Ther 2006; 13: 720-723.

145. Jaisser F. Inducible gene expression and gene modification in transgenic mice. J Am Soc Nephrol 2000; 11 Suppl 16: S95-S100.

146. Kohan DE. Progress in gene targeting: using mutant mice to study renal function and disease. Kidney Int 2008; 74: 427-437.

147. Ryding AD, Sharp MG, Mullins JJ. Conditional transgenic technologies. J Endocrinol 2001; 171: 1-14.

148. Liu B, Wang S, Brenner M et al. Enhancement of cell-specific transgene expression from a Tet-Off regulatory system using a transcriptional amplification strategy in the rat brain. J Gene Med 2008; 10: 583-592.

149. Zhang L, Adams JY, Billick E et al. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol Ther 2002; 5: 223232.

150. Koch PE, Guo ZS, Kagawa S et al. Augmenting transgene expression from carcinoembryonic antigen (CEA) promoter via a GAL4 gene regulatory system. Mol Ther 2001; 3:278-283.

151. Sun Y, Chen X, Xiao D. Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling. Acta Biochim Biophys Sin (Shanghai) 2007; 39: 235-246.

152. Ueda K, Iwahashi M, Nakamori M et al. Carcinoembryonic antigen-specific suicidc gene therapy of cytosine deaminase/5-fluorocytosine enhanced by the cre/loxP system in the orthotopic gastric carcinoma model. Cancer Res 2001; 61: 6158-6162.

153. Nagayama Y, Nishihara E, Iitaka M et al. Enhanced efficacy of transcriptionally targeted suicide gene/prodrug therapy for thyroid carcinoma with the Cre-loxP system. Cancer Res 1999; 59: 3049-3052.

154. Wu Y. HIV-1 gene expression: lessons from provirus and non-integrated DNA. Retrovirology 2004; 1: 13.

155. Bannwarth S, Gatignol A. HIV-1 TAR RNA: the target of molecular interactions between the virus and its host. Curr HIV Res 2005; 3: 61-71.

156. Harrich D, Mavankal G, Mette-Snider A, Gaynor RB. Human immunodeficiency virus type 1 TAR element revertant viruses define RNA structures required for efficient viral gene expression and replication. J Virol 1995; 69: 4906-4913.

157. Harrich D, Ulich C, Gaynor RB. A critical role for the TAR element in promoting efficient human immunodeficiency virus type 1 reverse transcription. J Virol 1996; 70: 40174027.

158. Klaver B, Berkhout B. Comparison of 51 and 3' long terminal repeat promoter function in human immunodeficiency virus. J Virol 1994; 68: 3830-3840.

159. Sodroski J, Patarca R, Rosen C et al. Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science 1985; 229: 74-77.

160. Arya SK, Guo C, Josephs SF, Wong-Staal F. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 1985; 229: 69-73.

161. Demarchi F, d'Adda di Fagagna F, Falaschi A, Giacca M. Activation of transcription factor NF-kappaB by the Tat protein of human immunodeficiency virus type 1. J Virol 1996; 70: 4427-4437.

162. Sheldon M, Ratnasabapathy R, Hernandez N.'Characterization of the inducer of short transcripts, a human immunodeficiency virus type 1 transcriptional element that activates the synthesis of short RNAs. Mol Cell Biol 1993; 13: 1251-1263.

163. Kao SY, Caiman AF, Luciw PA, Peterlin BM. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 1987; 330: 489-493.

164. Kingsman SM, Kingsman AJ. The regulation of human immunodeficiency virus type-1 gene expression. Eur JBiochem 1996; 240: 491-507.

165. Pereira LA, Bentley K, Peeters A et al. A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res 2000; 28: 663-668.

166. Cullen BR. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 1986; 46: 973-982. . • .

167. Berkhout B, Jeang KT. Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J Virol 1992; 66: 139-149.

168. Berkhout B, Silverman RH, Jeang KT. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 1989; 59: 273-282.

169. Harrich D, Garcia J, Wu F et al. Role of SP 1-binding domains in in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat. J Virol 1989; 63: 2585-2591.

170. Sune C, Garcia-Blanco MA. Spl transcription factor is required for in vitro basal and Tat-activated transcription from the human immunodeficiency virus type 1 long terminal repeat. J Virol 1995; 69: 6572-6576.

171. Rohr O, Marban C, Aunis D, Schaeffer E. Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 2003; 74: 736-749.

172. Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 1987; 326: 711-713.

173. Bassuk AG, Anandappa RT, Leiden JM. Physical interactions between Ets and NF-kappaB/NFAT proteins play an important role in their cooperative activation of the human immunodeficiency virus enhancer in T cells. J Virol 1997; 71: 3563-3573.

174. Pazin MJ, Sheridan PL, Cannon K et al. NF-kappa B-mediated chromatin reconfiguration and transcriptional activation of the HIV-1* enhancer in vitro. Genes Dev 1996; 10: 37-49.

175. Cron RQ, Bartz SR, Clauseil A et al. NF ATI enhances HIV-1 gene expression in primary human CD4 T cells. Clin Immunol 2000; 94: 179-191.

176. Macian F, Rao A. Reciprocal modulatory interaction between human immunodeficiency virus type 1 Tat and transcription factor NFATI. Mol Cell Biol 1999; 19: 3645-3653.

177. Roulston A, Lin R, Beauparlant P et al. Regulation of human immunodeficiency virus type 1 and cytokine gene expression in myeloid cells by NF-kappa B/Rel transcription factors. Microbiol Rev 1995; 59: 481-505.

178. Coiras M, Lopez-Huertas MR, Rullas J et al. Basal shuttle of NF-kappaB/I kappaB alpha in resting T lymphocytes regulates HIV-1 LTR dependent expression. Retrovirology 2007; 4: 56.

179. Colin L, Van Lint C. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 2009; 6: 111.

180. Jeeninga RE, Hoogenkamp M, Armand-Ugon M et al. Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes A through G. J Virol 2000; 74: 3740-3751.

181. Montano MA, Novitsky VA, Blackard JT et al. Divergent transcriptional regulation among expanding human immunodeficiency virus type 1 subtypes. J Virol 1997; 71: 8657-8665.

182. Bargonetti J, Ghicas A, White D, Prives C. p53 represses Spl DNA binding and HIV-LTR directed transcription. Cell Mol Biol (Noisy-le-grand) 1997; 43: 935-949.

183. Subler MA, Martin DW, Deb S. Activation of the human immunodeficiency virus type 1 long terminal repeat by transforming mutants of human p53. J Virol 1994; 68: 103-110..:. v.!: I:.,.!. K ; ,.i H.s ,!'■„.87

184. Duan L, Ozaki I, Oakes JW et al.The tumor suppressor protein p53 strongly alters human immunodeficiency virus type 1 replication. J Virol 1994; 68: 4302-4313.

185. Li CJ, Wang C, Friedman DJ, Pardee AB. Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 1995; 92: 5461-5464.

186. Truant R, Xiao H, Ingles CJ, Greenblatt J. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J Biol Chem 1993; 268: 2284-2287.

187. Garcia JA, Harrich D, Soultanakis E et al. Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation. Embo J 1989; 8: 765778.

188. Selby MJ, Bain ES, Luciw PA, Peterlin BM. Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev 1989; 3: 547-558.

189. Verhoef K, Tijms M, Berkhout B. Optimal Tat-mediated activation of the HIV-1 LTR promoter requires a full-length TAR RNA hairpin. Nucleic Acids Res 1997; 25: 496-502.

190. Roy S, Deliing U, Chen CH et al. A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes Dev 1990; 4: 1365-1373.

191. Berkhout B, Jeang KT. Detailed mutational analysis of TAR RNA: critical spacing between the bulge and loop recognition domains. Nucleic Acids Res 1991; 19: 6169-6176.

192. Brady J, Kashanchi F. Tat gets the "green" light on transcription initiation. Retrovirology 2005; 2: 69.

193. Isel C, Karn J. Direct evidence thatHIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation. J Mol Biol 1999; 290: 929-941.

194. Laspia MF, Rice AP, Mathews MB. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 1989; 59: 283-292.

195. Marcello A, Zoppe M, Giacca M. Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator. IUBMB Life 2001; 51: 175-181.

196. Karn J. Tackling Tat. J Mol Biol 1999; 293: 235-254.

197. Parada CA, Roeder RG. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 1996; 384: 375-378.

198. Price DH. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 2000; 20: 2629-2634.

199. Jones KA. Taking a new TAK on tat transactivation. Genes Dev 1997; 11: 2593-2599.

200. Majello B, Napolitano G, Giordano A, Lania L. Transcriptional regulation by targeted recruitment of cyclin-dependent CDK9 kinase in vivo. Oncogene 1999; 18: 4598-4605.

201. Benkirane M, Chun RF, Xiao H et al. Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for H1V-1 Tat. J Biol Chem 1998; 273: 24898-24905.

202. Marzio G, Tyagi M, Gutierrez MI, Giacca M. HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci U S A 1998; 95:13519-13524.

203. Richter S, Cao H, Rana TM. Specific HIV-1 TAR RNA loop sequence and functional groups are required for human cyclin Tl-Tat-TAR ternary complex formation. Biochemistry 2002; 41: 6391-6397.

204. Garber ME, Mayall TP, Suess EM et al. CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA. Mol Cell Biol 2000; 20: 6958-6969. .

205. Fujinaga K, Irwin D, Huang Y et al. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 2004; 24: 787-795.

206. Bres V, Gomes N, Pickle L, Jones KA. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev 2005; 19: 1211-1226.

207. Zhou M, Halanski MA, Radonovich MF et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol 2000; 20: 5077-5086.

208. Zhou M, Nekhai S, Bharucha DC et al. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. J Biol Chem 2001; 276: 44633-44640.

209. Sawaya BE, Thatikunta P, Denisova L et al. Regulation of TNFalpha and TGFbeta-1 gene transcription by HIV-1 Tat in CNS cells. J Neuroimmunol 1998; 87: 33-42.

210. Nath A, Conant K, Chen P et al. Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 1999; 274: 17098-17102.

211. Barry PA, Pratt-Lowe E, Unger RE, Luciw PA. Cellular factors regulate transactivation of human immunodeficiency virus type 1. J Virol 1991; 65: 1392-1399.i 1i I \ i h i ii

212. Brady HJ, Miles CG, Pennington DJ, Dzierzak EA. Specific ablation of human immunodeficiency virus Tat-expressing cells by conditionally toxic retroviruses. Proc Natl Acad Sei US A 1994;91:365-369.

213. Miyake K, Iijima O, Suzuki N et al. Selective killing of human immunodeficiency virus-infected cells by targeted gene transfer and inducible gene expression using a recombinant human immunodeficiency virus vector. Hum Gene Ther 2001; 12: 227-233.

214. Venkatesh LK, Arens MQ, Subramanian T, Chinnadurai G. Selective induction of toxicity to human cells expressing human immunodeficiency virus type 1 Tat by a conditionally cytotoxic adenovirus vector. Proc Natl Acad Sei U S A 1990; 87: 8746-8750.

215. Bohan CA, Kashanchi F, Ensoli B et al. Analysis of Tat transactivation of human immunodeficiency virus transcription in vitro. Gene Expr 1992; 2: 391-407.

216. Raha T, Cheng SW, Green MR. HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol 2005; 3: e44.

217. Kashanchi F, Agbottah ET, Pise-Masison CA et al. Cell cycle-regulated transcription by the human immunodeficiency virus type 1 Tat transactivator. J Virol 2000; 74: 652-660.

218. Taylor JP, Pomerantz R, Bagasra O et al. TAR-independent transactivation by Tat in cells derived from the CNS: a novel mechanism of HIV-1 gene regulation. Embo J 1992; 11: 33953403.

219. Yang L, Morris GF, Lockyer JM et al. Distinct transcriptional pathways of TAR-dependent and TAR-independent human immunodeficiency virus type-1 transactivation by Tat. Virology 1997;235:48-64.

220. Rohr O, Schwartz C, Hery C et al. The nuclear receptor chicken ovalbumin upstream promoter transcription factor interacts with HIV-1 Tat and stimulates viral replication in human microglial cells. J Biol Chem 2000; 275: 2654-2660.'

221. Yedavalli VS, Benkirane M, Jeang KT. Tat and trans-activation-responsive (TAR) RNA-independent induction of HIV-1 long terminal repeat by human and murine cyclin T1 requires Spl. J Biol Chem 2003; 278: 6404-6410.

222. Bieniasz PD, Grdina TA, Bogerd HP, Cullen BR. Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. Embo J 1998; 17: 7056-7065.

223. Garber ME, Wei P, KewalRamani VN et al. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycTl protein. Genes Dev 1998; 12: 3512-3527. .

224. Richter S, Ping YH, Rana TM. TAR RNA loop: a scaffold for the assembly of a regulatory switch in HIV replication. Proc Natl Acad Sci U S A 2002; 99: 7928-7933.

225. Fujinaga K, Taube R, Wimmer J et al. Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T. Proc Natl Acad Sci U S A 1999; 96: 1285-1290.

226. Hauber J, Perkins A, Heimer EP, Cullen BR. Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. Proc Natl Acad Sci U S A 1987; 84: 6364-6368.

227. Wright CM, Felber BK, Paskalis H, Pavlakis GN. Expression and characterization of the trans-activator of HTLV-III/LAV virus. Science 1986; 234: 988-992.

228. Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G. Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res 1989; 17: 3551-3561.

229. Campbell GR, Loret EP. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology 2009; 6: 50.

230. Smith SM, Pentlicky S, Klase Z et al. An in vivo replication-important function in the second coding exon of Tat is constrained against mutation despite cytotoxic T lymphocyte selection. J Biol Chem 2003; 278: 44816-44825.

231. Campbell GR, Pasquier E, Watkins J et al. The glutamine-rich region of the HIV-1 Tat protein is involved in T-cell apoptosis. J Biol Chem 2004; 279: 48197-48204.

232. Reddy MV, Desai M, Jeyapaul J et al. Functional analysis of the N-terminal domain of Tat protein of the human immunodeficiency virus type 1. Oncogene 1992; 7: 1743-1748.

233. Frankel AD, Bredt DS, Pabo CO. Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 1988; 240: 70-73.

234. Misumi S, Takamune N, Ohtsubo Y et al. Zn2+ binding to cysteine-rich domain of extracellular human immunodeficiency virus type 1 Tat protein is associated with Tat protein-induced apoptosis. AIDS Res Hum Retroviruses 2004; 20: 297-304.

235. Egele C, Barbier P, Didier P et al. Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat. Retrovirology 2008; 5: 62.

236. Orsini MJ, Debouck CM, Webb CL, Lysko PG. Extracellular human immunodeficiency virus type 1 Tat protein promotes aggregation and adhesion of cerebellar neurons. J Neurosci 1996; 16:2546-2552. ' .

237. Weeks KM, Ampe C, Schultz SC et al. Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science 1990; 249: 1281-1285.

238. Hauber J, Malim MH, Cullen BR. Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J Virol 1989; 63: 1181-1187.

239. Brake DA, Debouck C, Biesecker G. Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat. J Cell Biol 1990; 111:1275-1281.

240. Kiernan RE, Vanhulle C, Schiltz L et al. HIV-1 tat transcriptional activity is regulated by acetylation. Embo J 1999; 18: 6106-6118.

241. Hottiger MO, Nabel GJ. Interaction of human immunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein. J Virol 1998; 72: 8252-8256.

242. Lusic M, Marcello A, Cereseto A, Giacca M. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. Embo J 2003; 22: 6550-6561.

243. Bres V, Kiernan R, Emiliani S, Benkirane M. Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication. J Biol Chem 2002; 277: 22215-22221.

244. Col E, Caron C, Seigneurin-Berny D et al. The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol Chem 2001; 276: 28179-28184.

245. Pagans S, Pedal A, North BJ et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 2005; 3: e41.

246. Bres V, Kiernan RE, Linares LK et al. A non-proteolytic role for ubiquitin in Tatmediated transactivation of the HIV-1 promoter. Nat Cell Biol 2003; 5: 754-761.

247. Van Duyne R, Easley R, Wu W et al. Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 2008; 5: 40.

248. Ensoli B, Barillari G, Salahuddin SZ et al. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 1990; 345: 84-86.

249. Ensoli B, Buonaguro L, Barillari G et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 1993;67:277-287.

250. Trehin R, Merkle HP. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur J Pharm Biopharm 2004; 58: 209-223. 1. >

251. Li CJ, Friedman DJ, Wang C et al. Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 1995; 268: 429-431.

252. Chen D, Wang M, Zhou S, Zhou Q. HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. Embo J 2002; 21: 6801-6810.

253. Macho A, Calzado MA, Jimenez-Reina L et al. Susceptibility of HIV-1-TAT transfected cells to undergo apoptosis. Biochemical mechanisms. Oncogene 1999; 18: 7543-7551.

254. Sastry KJ, Marin MC, Nehete PN et al. Expression of human immunodeficiency virus type I tat results in down-regulation of bcl-2 and induction of apoptosis in hematopoietic cells. Oncogene 1996; 13: 487-493.

255. Zhang M, Li X, Pang X et al. Identification of a potential HIV-induced source of bystander-mediated apoptosis in T cells: upregulation of trail in primary human macrophages by HIV-1 tat. J Biomed Sci 2001; 8: 290-296.

256. Nunnari G, Smith JA, Daniel R. HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier? J Exp Clin Cancer Res 2008; 27: 3.

257. Albini A, Barillari G, Benelli R et al. Angiogenic properties of human immunodeficiency virus type 1 Tat protein. Proc Natl Acad Sci U S A 1995; 92: 4838-4842.

258. Bonwetsch R, Croul S, Richardson MW et al. Role of HIV-1 Tat and CC chemokine MIP-1 alpha in the pathogenesis of HIV associated central nervous system disorders. J Neurovirol 1999; 5: 685-694.

259. Jones M, Olafson K, Del Bigio MR et al. Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol 1998; 57: 563-570.

260. Rappaport J, Joseph J, Croul S et al. Molecular pathway involved in HIV-1-induced CNS pathology: role of viral regulatory protein, Tat. J Leukoc Biol 1999; 65: 458-465.

261. Caruso M, Klatzmann D. Selective killing of CD4+ cells harboring a human immunodeficiency virus-inducible suicide gene prevents viral spread in an infected cell population. Proc Natl Acad Sci U S A 1992; 89: 182-186.

262. Marcello A, Giaretta I. Inducible expression of herpes simplex virus thymidine kinase from a bicistronic HIV1 vector. Res Virol 1998; 149: 419-431.

263. Sambrook J FE, Maniatis T. Molecular Cloning. A laboratory Manual. 2nd Edition. Cold Spring Harbour: CSHL Press 1989. . .

264. Tybulewicz VL, Crawford CE, Jackson PK et al. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 1991; 65: 1153-1163.

265. Митяев M.B. КЕП, Буздин A.A., Виноградова T.B., Свердлов Е.Д. Функциональная значимость потенциального сайта связывания транскрипционного фактора Spl в промоторе гена сурвивина. Биохимия 2008; 73: 1476-1485.

266. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.

267. Hinds TA, Compadre C, Hurlburt BK, Drake RR. Conservative mutations of glutamine-125 in herpes simplex virus type 1 thymidine kinase result in a ganciclovir kinase with minimal deoxypyrimidine kinase activities. Biochemistry 2000; 39: 4105-4111.

268. Caruso M, Bank A. Efficient retroviral gene transfer of a Tat-regulated herpes simplex virus thymidine kinase gene for HIV gene therapy. Virus Res 1997; 52: 133-143.

269. Felber BK, Pavlakis GN. A quantitative bioassay for HIV-1 based on trans-activation. Science 1988; 239: 184-187.

270. Roof P, Ricci M, Genin P et al. Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator. Virology 2002; 296: 77-83.

271. Emerman M, Guyader M, Montagnier L et al. The specificity of the human immunodeficiency virus type 2 transactivator is different from that of human immunodeficiency virus type 1. Embo J 1987; 6: 3755-3760.

272. Chen JS, Liu JC, Shen L et al. Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther 2004; 11: 740-747.

273. Caamano J, Ruggeri B, Momiki S et al. Detection of p53 in primary lung tumors and nonsmall cell lung carcinoma cell lines. Am J Pathol 1991; 139: 839-845.

274. Stewart SA, Poon B, Jowett JB et al. Lentiviral delivery of HIV-1 Vpr protein induces apoptosis in transformed cells. Proc Natl Acad Sci U S A 1999; 96: 12039-12043.

275. Boshart M, Weber F, Jahn G et al. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 1985; 41: 521-530.

276. Schmidt EV, Christoph G, Zeller R, Leder P. The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol Cell Biol 1990; 10: 4406-4411.

277. Beck C, Cayeux S, Lupton SD et al. The thymidine kinase/ganciclovir-mediated "suicide" effect is variable in different tumor cells. Hum Gene Ther 1995; 6: 1525-1530.

278. Haberkorn U, Khazaie K, Morr I et al. Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase. Nucl Med Biol 1998; 25: 367-373.1. БЛАГОДАРНОСТИ

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.