Взаимодействие клеток бактерий с соединениями серебра и золота: влияние на рост, образование биопленок, механизмы действия, биогенез наночастиц тема диссертации и автореферата по ВАК РФ 03.01.06, кандидат биологических наук Радциг, Марина Александровна

  • Радциг, Марина Александровна
  • кандидат биологических науккандидат биологических наук
  • 2013, Москва
  • Специальность ВАК РФ03.01.06
  • Количество страниц 120
Радциг, Марина Александровна. Взаимодействие клеток бактерий с соединениями серебра и золота: влияние на рост, образование биопленок, механизмы действия, биогенез наночастиц: дис. кандидат биологических наук: 03.01.06 - Биотехнология (в том числе бионанотехнологии). Москва. 2013. 120 с.

Оглавление диссертации кандидат биологических наук Радциг, Марина Александровна

I. ВВЕДЕНИЕ.

II. ОБЗОР ЛИТЕРАТУРНЫХ ДАННЫХ.

11.1. ВВЕДЕНИЕ.

11.2. АНТИБАКТЕРИАЛЬНЫЕ ЭФФЕКТЫ ИОНОВ СЕРЕБРА.

II. 2.1. Механизмы действия ионов серебра.

II. 2.2. Резистентность к ионам серебра.

11.3. ДЕЙСТВИЕ НАНОЧАСТИЦ СЕРЕБРА.

II. 3.1. Механизмы действия НЧС.

11.4. ИНГИБИРОВАНИЕ НАНОЧАСТИЦАМИ МИКРООРГАНИЗМОВ ПРИ

ОБЛУЧЕНИИ СВЕТОМ.

II. 4.1. Фотокаталитический механизм.

II.4.2. Фототермальный эффект.

11.5. СИНТЕЗ НАНОЧАСТИЦ.

II.5.1. Биосинтез наночастиц с использованием бактерий.

Рекомендованный список диссертаций по специальности «Биотехнология (в том числе бионанотехнологии)», 03.01.06 шифр ВАК

Заключение диссертации по теме «Биотехнология (в том числе бионанотехнологии)», Радциг, Марина Александровна

VI. выводы

1. Определены закономерности ингибирующего действия ионов серебра, золота и НЧС на планктонный рост и образование биопленок Escherichia coli, Pseudomonas aeruginosa и Serratiaproteamaculans. Эти соединения вызывали разрушение образованных биопленок Е. coli и гибель клеток в них в концентрациях значительно более высоких (в 20-30 раз), чем те, которые подавляют рост и формирование биопленок.

2. Мутации в генах, ответственных за репарацию окислительных повреждений ДНК (mutY, mutS, mutM, mutT, nth), увеличивали чувствительность клеток к НЧС и ионам серебра, что предполагает участие указанных генов в репарации повреждений ДНК, вызванных соединениями серебра.

3. Мутации в генах, участвующих в репарации окислительных повреждений ДНК, не оказывали заметного влияния на чувствительность клеток Е. coli к ионам золота. Это свидетельствует о различиях в механизмах действия на клетки ионов золота и соединений серебра. Не обнаружено антибактериального действия наночастиц золота на клетки бактерий в обычных условиях выращивания.

4. Мутации в генах, ответственных за эксцизионную и SOS - репарацию ДНК, не влияли на чувствительность Е. coli к НЧС, ионам серебра и золота; это показывает, что их антибактериальное действие не связано со значительными повреждениями ДНК, которые могут быть восстановлены при участии этих репаративных систем.

5. QS системы LuxI/LuxR типа не участвовали в контроле чувствительности / устойчивости к соединениям серебра и ионам золота у Р. chlororaphis и Serratia. Мутации в генах глобальных регуляторов Е. coli rpoS, crp, Ion не влияли на чувствительность бактерий к соединениям серебра и золота.

6. Мутантные штаммы Е. coli с инактивированными генами транспортных белков поринов OmpF и ОшрС были в 4 - 8 раз более резистентны к НЧС и ионам серебра, чем штамм дикого типа, что свидетельствует о важной роли поринов в антибактериальном действии этих соединений.

7. Показано, что наночастицы золота при действии фемтосекундного лазерного излучения способствуют оптоперфорации клеточной стенки цианобактерий и биопленок E.coli.

8. Получены стабильные наночастицы золота при культивировании на среде с солыо трехвалентного золота цианобактерий (Nostoc, Anabaena) и Azotobacter в условиях азотфиксации.

Список литературы диссертационного исследования кандидат биологических наук Радциг, Марина Александровна, 2013 год

1. Ahmad, A., P. Mukherjee, et al. (2003). "Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum." Colloids and Surfaces B: Biointerfaces 28(4): 313-318.

2. Ahmad, A., S. Senapati, et al. (2003). "Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species." Nanotechnology 14(7): 824.

3. Ahmad, A., S. Senapati, et al. (2003). "Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp." Langmuir 19(8): 3550-3553.

4. Aiboushev, A. V., A. A. Astafiev, et al. (2009). "Enhanced luminescence and two-photon absorption of silver nano-clusters." physica status solidi (c) 6(S1): S162-S166.

5. Amato, E., Y. A. Diaz-Fernandez, et al. (2011). "Synthesis, characterization and antibacterial activity against Gram positive and Gram negative bacteria of biomimetically coated silver nanoparticles." Langmuir 27(15): 9165-9173.

6. Asahi, R., T. Morikawa, et al. (2001). "Visible-light photocatalysis in nitrogen-doped titanium oxides." Science (New York. N.Y.") 293(5528): 269-271.

7. Babu, M. M., J. Sridhar, et al. (2011). "Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress." J Nanobiotechnology 9: 49.

8. Bacsa, R., J. Kiwi, et al. (2005). "Preparation, testing and characterization of doped Ti02 active in the peroxidation of biomolecules under visible light." The journal of physical chemistry. B 109(12): 5994-6003.

9. Baker, C., A. Pradhan, et al. (2005). "Synthesis and antibacterial properties of silver nanoparticles." J Nanosci Nanotechnol 5(2): 244-249.

10. Balagurunathan, R., M. Radhakrishnan, et al. (2011). "Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10." Indian J Biochem Biophys 48(5): 331-335.

11. Balogh, L., D. R. Swanson, et al. (2001). "DendrimerSilver Complexes and Nanocomposites as Antimicrobial Agents." Nano Lett. Nano Letters 1(1): 18-21.

12. Baram-Pinto, D., S. Shukla, et al. (2010). "Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles." Small 6(9): 1044-1050.

13. Baram-Pinto, D., S. Shukla, et al. (2009). "Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate." Bioconjug Chem 20(8): 1497-1502.1 >A *

14. Bazylinski, D. A. and R. B. Frankel (2004). "Magnetosome formation in prokaryotes." Nat Rev Microbiol 2(3): 217-230.

15. Belly, R. and G. Kydd (1982). "Silver resistance in microorganisms." Dev. Ind Microbiol 23: 567—577.

16. Bharde, A., A. Wani, et al. (2005). "Bacterial aerobic synthesis of nanocrystalline magnetite." J Am Chem Soc 127(26): 9326-9327.

17. Bjarnsholt, T., K. Kirketerp-Moller, et al. (2007). "Silver against Pseudomonas aeruginosa biofilms." APMIS 115(8): 921-928.

18. Bjarnsholt, T., K. Kirketerp-M0Ller, et al. (2007). "Silver against Pseudomonas aeruginosa biofilms." APMIS 115(8): 921-928.

19. Blake, D., P.-C. Maness, et al. (1999). "Application of the Photocatalytic Chemistry of Titanium Dioxide to Disinfection and the Killing of Cancer Cells." Separation & Purification Reviews 28(1): 1-50.

20. Böhm, J. (1928). Z. Kristallogr 68: 567.

21. Bragg, P. D. and D. J. Rainnie (1974). "The effect of silver ions on the respiratory chain of Escherichia coli." Can J Microbiol 20(6): 883-889.

22. Brayner, R., H. Barberousse, et al. (2007). "Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route." J Nanosci Nanotechnol 7(8): 2696-2708.

23. Brayner, R., C. Yepremian, et al. (2009). "Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods." Langmuir 2507): 10062-10067.

24. Bresee, J., K. E. Maier, et al. (2011). "Growth inhibition of Staphylococcus aureus by mixed monolayer gold nanoparticles." Small 7(14): 2027-2031.

25. Brust, M., M. Walker, et al. (1994). "Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid?Liquid system." J. Chem. Soc., Chem. Commun.(7).

26. Burda, C., X. Chen, et al. (2005). "Chemistry and properties of nanocrystals of different shapes." ChemRev 105(4): 1025-1102.

27. Calamai, P., S. Carotti, et al. (1997). "Biological properties of two gold(III) complexes: AuC13(Hpm) and AuC12(pm).n J Inorg Biochem 66(2): 103-109.

28. Canizal, G., J. A. Ascencio, et al. (2001). "Multiple Twinned Gold Nanorods Grown by Bio-reduction Techniques." Journal of Nanoparticle Research 3(5): 475-481.

29. Carlson, C., S. M. Hussain, et al. (2008). "Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species." J. Phys. Chem. B 112(43): 13608-13619.

30. Chang, Q., L. Yan, et al. (2007). "Bactericidal mechanism of Ag/A1203 against Escherichia coli." Langmuir 23(22): 11197-11199.

31. Changela, A., K. Chen, et al. (2003). "Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR." Science 301(5638): 1383-1387.

32. Checa, S. K. and F. C. Soncini (2011). "Bacterial gold sensing and resistance." Biometals 24(3): 419-427.

33. Chen, P. and C. He (2004). "A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions." J Am Chem Soc 126(3): 728-729.

34. Chen, W. J. and Y. C. Chen (2010). "Fe304/Ti02 core/shell magnetic nanoparticle-based photokilling of pathogenic bacteria." Nanomedicine (Lond) 5(10): 1585-1593.

35. Choi, J. Y., C. J. Chung, et al. (2009). "Photocatalytic antibacterial effect of tio2 film of tiag on streptococcus mutans." Angle Orthod 79(3): 528-532.

36. Choi, O., C. P. Yu, et al. (2010). "Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures." WaterRes 44(20): 6095-6103.

37. Chopra, I. (2007). "The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern?" J Antimicrob Chemother 59(4): 587-590.

38. Chun, M. J., E. Shim, et al. (2007). "Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties." Angle Orthod 77(3): 483-488.

39. Coleman, H. M., C. P. Marquis, et al. (2005). "Bactericidal effects of titanium dioxide-based photocatalysts." Chemical Engineering Journal Chemical Engineering Journal 113(1): 55-63.

40. Cunningham, D. P. and L. L. Lundie, Jr. (1993). "Precipitation of cadmium by Clostridium thermoaceticum." Appl Environ Microbiol 59(1): 7-14.

41. David, S. S., V. L. O'Shea, et al. (2007). "Base-excision repair of oxidative DNA damage." Nature 447(7147): 941-950.

42. Deliyanni, E. A., D. N. Bakoyannakis, et al. (2003). "Sorption of As(V) ions by akaganeite-type nanocrystals." Chemosphere 50fl): 155-163.

43. Deplanche, K., G. Attard, et al. (2007). "Biorecovery of Gold from Jewellery Wastes by Escherichia Coli and Biomanufacture of Active Au-Nanomaterial " Advanced Materials Research 20 21: 647-650.

44. Deplanche, K., I. Caldelari, et al. (2010). "Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains." Microbiology 156(Pt 9): 2630-2640.

45. Dhanjal, S. and S. S. Cameotra (2010). "Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil." Microb Cell Fact 9: 52.

46. Dibrov, P., J. Dzioba, et al. (2002). "Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae." Antimicrob Agents Chemother 46(8): 2668-2670.

47. Dong, Y. H., L. H. Wang, et al. (2001). "Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase." Nature 411(6839): 813-817.

48. Du, L., H. Jiang, et al. (2007). "Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5a and its application on direct electrochemistry of hemoglobin." Electrochemistry Communications 9(5): 1165-1170.

49. Dubas, S. T., P. Kumlangdudsana, et al. (2006). "Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers." COLLOIDS AND SURFACES A PHYSICOCHEMICAL AND ENGINEERING ASPECTS 289(1-3): 105-109.

50. Eberl, L., M. K. Winson, et al. (1996). "Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens." Mol Microbiol 20(1): 127-136.

51. Elahifard, M. R., S. Rahimnejad, et al. (2007). "Apatite-Coated Ag/AgBr/Ti02~ Visible-Light Photocatalyst for Destruction of Bacteria." JOURNAL- AMERICAN CHEMICAL SOCIETY 129(31): 9552-9553.

52. Elechiguerra, J. L., J. L. Burt, et al. (2005). "Interaction of silver nanoparticles with HIV-1." J Nanobiotechnology 3: 6.

53. Erkan, A., U. Bakir, et al. (2006). "Photocatalytic microbial inactivation over Pd doped Sn02 and Ti02 thin films." JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A 184(3): 313-321.

54. Es-Souni, M. and II. Fischer-Brandies (2008). "Versatile nanocomposite coatings with tunable cell adhesion and bactericidity." Adv. Funct. Mater. 18(20): 3179-3188.

55. Faraday (1857). "Experimental Relations of Gold (and Other Metals) to Light." Philosophical Transactions of the Royal Society 147: 145.

56. Farr, S. B. and T. Kogoma (1991). "Oxidative stress responses in Escherichia coli and Salmonella typhimurium." Microbiol Rev 55(4): 561-585.

57. Feng, Q. L., J. Wu, et al. (2000). "A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus." J Biomed Mater Res 52(4): 662-668.

58. Ferrando, R., J. Jellinck, et al. (2008). "Nanoalloys: from theory to applications of alloy clusters and nanoparticles." Chem Rev 108(3): 845-910.

59. Finney, L. A. and T. V. O'Halloran (2003). "Transition metal speciation in the cell: insights from the chemistry of metal ion receptors." Science 300(5621): 931-936.

60. Flink, S., F. C. J. M. v. Veggel, et al. (2000). "Review Sensor Functionalities in Self-Assembled Monolayers." Advanced materials. 12(18): 1315.

61. Franke, S., G. Grass, et al. (2001). "The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions." Microbiology 147(Pt 4): 965972.

62. Fu, M., Q. Li, et al. (2006). "Rapid Preparation Process of Silver Nanoparticles by Bioreduction and Their Characterizations." Chinese Journal of Chemical Engineering 14(1): 114-117.

63. Furno, F., K. S. Morley, et al. (2004). "Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?" JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY 54(6): 1019-1024.

64. Galdiero, S., A. Falanga, et al. (2011). "Silver nanoparticles as potential antiviral agents." Molecules 16(10): 8894-8918.

65. Gao, X., J. Zhang, et al. (2002). "Hollow Sphere Selenium Nanoparticles: Their In-Vitro Anti Hydroxyl Radical Effect." Advanced Materials 14(4): 290-293.

66. Ghandour, W., J. A. Hubbard, et al. (1988). "The uptake of silver ions by <i>Escherichia coli</i> K12: toxic effects and interaction with copper ions." Applied Microbiology and Biotechnology 28(6): 559-565.

67. Ghosh, S., S. Patil, et al. (2012). "Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents." Int J Nanomedicine 7: 483-496.

68. Gogoi, S. K., P. Gopinath, et al. (2006). "Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles." Langmuir 22(22): 9322-9328.

69. Gong, P., H. Li, et al. (2007). "Preparation and antibacterial activity of Fe~30~4 @ Ag nanoparticles." Nanotechnology. 18(28): 285604.

70. Gottesman, S. (1999). "Regulation by proteolysis: developmental switches." Curr Opin Microbiol 2(2): 142-147.

71. Gupta, A., K. Matsui, et al. (1999). "Molecular basis for resistance to silver cations in Salmonella." Nat Med 5i2~): 183-188.

72. Gupta, A., L. T. Phung, et al. (2001). "Diversity of silver resistance genes in IncH incompatibility group plasmids." Microbiology 147(Pt 12): 3393-3402.

73. Gupta, A. and S. Silver (1998). "Silver as a biocide: will resistance become a problem?" Nat Biotechnol 16(10): 888.

74. Hayden, S. C., N. K. Allam, et al. (2010). "Ti02 nanotube/CdS hybrid electrodes: extraordinary enhancement in the inactivation of Escherichia coli." J Am Chem Soc 132(41): 1440614408.

75. Hoffman, L. R., D. A. D'Argenio, et al. (2005). "Aminoglycoside antibiotics induce bacterial biofilm formation." Nature 436(7054): 1171-1175.

76. Howard-Flanders, P. and L. Theriot (1966). "Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination." Genetics 53(6): 1137-1150.

77. Hu, C., Y. Lan, et al. (2006). "Ag/AgBr/Ti02 visible light photocatalyst for destruction of azodyes and bacteria." The journal of physical chemistry. B 110(9): 4066-4072.

78. Husseiny, M. I., M. A. El-Aziz, et al. (2007). "Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa." Spectrochim Acta A Mol Biomol Spectrosc 67(3-4): 10031006.

79. Jackson, D. W., J. W. Simecka, et al. (2002). "Catabolite repression of Escherichia coli biofilm formation." J Bacteriol 184(12): 3406-3410.

80. Jagani, S., R. Chelikani, et al. (2009). "Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa." Biofouling 25(4): 321-324.

81. Jain, P. K., X. Huang, et al. (2007). "Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosvstems." PLASMONICS 2(3): 107-118.

82. Jayaseelan, C., A. A. Rahuman, et al. (2012). "Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi." Spectrochim Acta A Mol Biomol Spectrosc 90: 78-84.

83. Jiang, S., C. T. Ho, et al. (2012). "Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200." Chemosphere 87(6): 621-624.

84. Johnson, N. C., S. Manchester, et al. (2008). "Mercury vapor release from broken compact fluorescent lamps and in situ capture by new nanomaterial sorbents." Environ Sci Technol 42(15): 5772-5778.

85. Jung, W. K., H. C. Koo, et al. (2008). "Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli." Appl Environ Microbiol 74(7): 2171-2178.

86. Kalimuthu, K., R. Suresh Babu, et al. (2008). "Biosynthesis of silver nanocrystals by Bacillus licheniformis." Colloids Surf B Biointerfaces 65(1): 150-153.

87. Kashefi, K., J. M. Tor, et al. (2001). "Reductive precipitation of gold-by dissimilatory Fe(III)-reducing bacteria and archaea." Appl Environ Microbiol 67(7): 3275-3279.

88. Keren, I., N. Kaldalu, et al. (2004). "Persister cells and tolerance to antimicrobials." FEMS Microbiol Lett 230(1): 13-18.

89. Khmel, I. A., M. I. Ovadis, et al. (2005). "Activity of Serratia plymuthica IC1270 gene chiA promoter region in Escherichia coli mutants deficient in global regulators of transcription." J Basic Microbiol 45(6): 426-437.

90. Kikuchi, Y., K. Sunada, et al. (1997). "Photocatalytic bactericidal effect of Ti02~ thin films: dynamic view of the active oxygen species responsible for the effect." JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A 106(1/3): 51-56.

91. Kim, J. S., E. Kuk, et al. (2007). "Antimicrobial effects of silver nanoparticles." Nanomedicine 3(1): 95-101.

92. Kiwi, J. and V. Nadtochenko (2004). "New Evidence for Ti02 Photocatalysis during Bilayer Lipid Peroxidation." The Journal of Physical Chemistry B 108(45): 17675-17684.

93. Kiwi, J. and V. Nadtochenko (2005). "Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the Ti02 interface by ATR-FTIR and laser kinetic spectroscopy." Lanmnuir 21(10): 4631-4641.fr).

94. Klasen, H. J. (2000). "Historical review of the use of silver in the treatment of burns. I. Early uses." Burns 26(2): 117-130.

95. Klaus, T., R. Joerger, et al. (1999). "Silver-based crystalline nanoparticles, microbially fabricated." Proc Natl Acad Sei U S A 96(24): 13611-13614.

96. Konishi, Y., K. Ohno, et al. (2004). "Microbial synthesis of gold nanoparticles by metal reducing bacterium " Trans Mater Res Soc Jpn 29 2341-2343.

97. Krishnan, S. and N. V. Prasadarao (2012). "Outer membrane protein A and OprF: versatile roles in Gram-negative bacterial infections." FEBS J 279(6): 919-931.

98. Magasanik, B. (1994). "A charmed life." Annu Rev Microbiol 48: 1-24.

99. Maneerung, T., S. Tokura, et al. (2008). "Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing." Carbohydrate polymers. 72(1): 43-51.

100. Marino, T., N. Russo, et al. (2012). "Theoretical investigation on DNA/RNA base pairs mediated by copper, silver, and gold cations." Dalton Trans 41(6): 1816-1823.

101. Marshall, M. J., A. S. Beliaev, et al. (2006). "c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis." PLoS Biol 4(9): e268.

102. Matsunaga, T., R. Tomoda, et al. (1985). "Photoelectrochemical sterilization of microbial cells by semiconductor powders." FEMS Microbiology Letters 29(1-2): 211-214.

103. Mazeina, L., S. Deore, et al. (2006). "Energetics of Bulk and Nano-Akaganeite, p-FeOOH: Enthalpy of Formation, Surface Enthalpy, and Enthalpy of Water Adsorption." Chemistry of Materials 18(7): 1830-1838.

104. McClean, K. H., M. K. Winson, et al. (1997). "Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones." Microbiology 143 ( Pt 12): 3703-3711.

105. McDonnell, G. and A. D. Russell (1999). "Antiseptics and disinfectants: activity, action, and resistance." Clin Microbiol Rev 12(1~): 147-179.

106. Menendez, P., L. Wang, et al. (2005). "Genetic manipulation of human embryonic stem cells: a system to study early human development and potential therapeutic applications." Curr GeneTher5(4): 375-385.

107. Meruvu, H., M. Vangalapati, et al. (2011). "Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli." J. Rasavan Chem. 4: 217-222.

108. Mikheenko, I. P., M. Rousset, et al. (2008). "Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains." Appl Environ Microbiol 74(19): 6144-6146.

109. Minaeian, S., A. Shahverdi, et al. (2008). "Extracellular biosynthesis of silver nanoparticles by some bacteria." J. Sci. I. A . U (JSIAID 17.

110. Morones, J. R., J. L. Elechiguerra, et al. (2005). "The bactericidal effect of silver nanoparticles." Nanotechnology 16(10): 2346-2353.

111. Moyer, C. A., L. Brentano, et al. (1965). "Treatment of Large Human Burns with 0.5 Per Cent Silver Nitrate Solution." Arch Surg 90: 812-867.

112. Mullen, M. D., D. C. Wolf, et al. (1989). "Bacterial sorption of heavy metals." Appl Environ Microbiol 55(12): 3143-3149.

113. Nadtochenko, V., N. Denisov, et al. (2009). "Correlations for photocatalytic activity and spectral features of the absorption band edge of Ti02 modified by thiourea." Applied Catalysis B: Environmental 91(1-2): 460-469.

114. Nadtochenko, V., N. Denisov, et al. (2006). "Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO"2." Journal of Photochemistry & Photobiology. A: Chemistry 181(2-3): 401-407.

115. Nadtochenko, V. A., A. G. Rincon, et al. (2005). "Dynamics of E. coli membrane cell peroxidation during Ti02 photocatalysis studied by ATR-FTIR spectroscopy and AFM microscopy." Journal of photochemistry and photobiology. A. Chemistry. 169(2): 131.

116. Nair, B. and T. Pradeep (2002). "Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains." Crystal Growth & Design 2(4): 293-298.

117. Nangia, Y., N. Wangoo, et al. (2009). "A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles." Microb Cell Fact 8: 39.

118. NCCLS (2000). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne, PA: National Committee for Clinical Laboratory Standards.

119. Nics, D. H. (2003). "Efflux-mediated heavy metal resistance in prokaryotes." FEMS Microbiol Rev 27(2-3): 313-339.

120. Nikaido, H. (1994). "Porins and specific diffusion channels in bacterial outer membranes." J Biol Chem 269(6): 3905-3908.

121. Norman, R. S., J. W. Stone, et al. (2008). "Targeted Photothermal Lysis of the Pathogenic Bacteria, Pseudomonas aeruginosa, with Gold Nanorods." NANO LETTERS 8(1): 302306.

122. Ogino, C., M. Farshbaf Dadjour, et al. (2006). "Enhancement of sonocatalytic cell lysis of Escherichia coli in the presence of TiO"2." Biochemical Engineering Journal 32(2): 100105.

123. Pal, S., Y. K. Tak, et al. (2007). "Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli." Appl Environ Microbiol 73(6): 1712-1720.

124. Parikh, R. Y., S. Singh, et al. (2008). "Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism." Chembiochem 9(9): 1415-1422.

125. Park, H. J., J. Y. Kim, et al. (2009). "Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity." Water Res 43(4): 1027-1032.

126. Peng, D., J. Zhang, et al. (2007). "Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity." J Inorg Biochem 101(10): 1457-1463.

127. Pissuwan, D., S. M. Valenzuela, et al. (2007). "A Golden Bullet? Selective Targeting of Toxoplasma gondii Tachyzoites Using Antibody-Functionalized Gold Nanorods." Nano letters. 7(12): 3808.

128. Pitsillides, C. M., E. K. Joe, et al. (2003). "Selective cell targeting with light-absorbing microparticles and nanoparticles." Biophys J 84(6): 4023-4032.

129. Plyuta, V., J. Zaitseva, et al. (2013). "Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa." APMIS in print.

130. Prasad, G. K., G. S. Agarwal, et al. (2009). "Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials." Journal of Hazardous Materials 165(1-3): 506-510.

131. Price, W. R. and M. Wood (1966). "Silver nitrate burn dressing. Treatment of seventy burned persons." Am J Surg 112(5): 674-680.

132. Pugsley, A. P. and C. A. Schnaitman (1978). "Outer membrane proteins of Escherichia coli. VII. Evidence that bacteriophage-directed protein 2 functions as a pore." J Bacteriol 133(3): 1181-1189.

133. Quisenberry, L. R., L. H. Loetscher, et al. (2009). "Catalytic inactivation of bacteria using Pd-modified titania." Catalysis Communications 10(10): 1417-1422.

134. Rai, M., A. Yadav, et al. (2009). "Silver nanoparticles as a new generation of antimicrobials." Biotechnol Adv 27m: 76-83.

135. Rao, C. N. R., A. Muller, et al. (2007). Nanomaterials chemistry : recent developments and new directions. Weinheim; Chichester, Wiley-VCH ; John Wiley, distributor.

136. Raulio, M., V. Pore, et al. (2006). "Destruction of Deinococcus geothermalis biofilm by photocatalytic ALD and sol-gel Ti02 surfaces." J Ind Microbiol Biotechnol 33(4): 261268.

137. Reddy, P., A. Venugopal, et al. (2007). "Ilydroxyapatite-supported AgTi02 as Escherichia coli disinfection photocatalyst." Water Research Water Research 41(2): 379-386.

138. Reimmann, C., N. Ginet, et al. (2002). "Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAOl." Microbiology 148(Pt 4): 923-932.

139. Reith, F., M. F. Lengke, et al. (2007). "The geomicrobiology of gold." ISMEJ 1(7): 567-584.

140. Rengifo-Herrera, J. A., N. C. Castillo, et al. (2008). "Escherichia coli inactivation by N, S co-doped commercial TiO<sub>2</sub> powders under UV and visible light." Appl. Catal. B Environ. 84(3-4): 448-456.

141. Rensing, C., B. Fan, et al. (2000). "CopA: An Escherichia coli Cu(I)-translocating P-type ATPase." Proc Natl Acad Sei U S A 97(2): 652-656.

142. Richards, R. M., H. A. Odelola, et al. (1984). "Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa." Microbios 39(157-158): 151-157.

143. Rincon, A. G. and C. Pulgarin (2003). "Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) Ti02 concentration." APPLIED CATALYSIS B 44(3): 263-284.

144. Rincón, A. G. and C. Pulgarin (2007). "Absence of E. coli regrowth after Fe3+ and Ti02 solar photoassisted disinfection of water in CPC solar photoreactor." CATALYSIS TODAY 124(3-4): 204-214.

145. Roberts, M. E. and P. S. Stewart (2004). "Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation." Antimicrob Agents Chemother 48(1): 48-52.

146. Rodríguez-Arguelles, M. C., C. Sieiro, et al. (2011). "Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties." J Colloid Interface Sei 364(1): 80-84.

147. Roe, D., B. Karandikar, et al. (2008). "Antimicrobial surface functionalization of plastic catheters by silver nanoparticles." Journal of Antimicrobial Chemotherapy 61(4): 869876.

148. Rogers, J. V., C. V. Parkinson, et al. (2008). "A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation." Nanoscale Research Letters 3(4): 129133.

149. Roucoux, A., J. Schulz, et al. (2002). "Reduced transition metal colloids: a novel family of reusable catalysts?" Chem Rev 102(10): 3757-3778.

150. Russell, A. D. and W. B. Hugo (1994). "Antimicrobial activity and action of silver." Prog Med Chem 31: 351-370.

151. Russell, A. D., W. B. Hugo, et al. (1982). Principles and practice of disinfection, preservation, and sterilisation. Oxford ; Boston, Blackwell Scientific Publications ; St. Louis, Mo. : Blackwell Mosby Book Distributors.

152. Sahoo, A. K., M. P. Sk, et al. (2011). "Plasmid DNA linearization in the antibacterial action of a new fluorescent Ag nanoparticle-paracetamol dimer composite." Nanoscale 3(10): 42264233.

153. Saifuddin, N., C. W. Wong, et al. (2009). "Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation." E-Journal of Chemistry 6(1): 61-70.

154. Schaeublin, N. M., L. K. Braydich-Stolle, et al. (2011). "Surface charge of gold nanoparticles mediates mechanism of toxicity." Nanoscale 3(2): 410-420.

155. Schreurs, W. J. and H. Rosenberg (1982). "Effect of silver ions on transport and retention of phosphate by Escherichia coli." J Bacteriol 152(1): 7-13.

156. Shahverdi, A. R., A. Fakhimi, et al. (2007). "Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli." Nanomedicine 3(2): 168-171.

157. Shankar, S. S., A. Ahmad, et al. (2003). "Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes." Journal of Materials Chemistry 13m: 1822-1826.

158. Sharma, V. K., R. A. Yngard, et al. (2009). "Silver nanoparticles: green synthesis and their antimicrobial activities." Adv Colloid Interface Sci 145(1-2): 83-96.

159. Shchukin, D. G., E. A. Ustinovich, et al. (2004). "Heterogeneous photocatalysis in titania-containing liquid foam." Photochemical & Photobiological Sciences 3(2): 157-159.

160. Silver, S. (2003). "Bacterial silver resistance: molecular biology and uses and misuses of silver compounds." FEMS Microbiol Rev 27(2-3): 341-353.

161. Silver, S., T. Phung le, et al. (2006). "Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds." J Ind Microbiol Biotechnol 33(7): 627-634.

162. Singh, M., S. Singh, et al. ( 2008). "Nanotechnology in medicine and antibacterial effect of silver nanoparticles." Digest J. Nanomater. Biostruct 3: 115-122.

163. Sintubin, L., W. De Windt, et al. (2009). "Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles." Appl Microbiol Biotechnol 84(4): 741-749.

164. Skorb, E. V., L. I. Antonouskaya, et al. (2008). "Antibacterial activity of thin-film photocatalysts based on metal-modified TiO"2 and Ti0"2:In"20"3 nanocomposite." Applied Catalysis B, Environmental 84(1-2): 94-99.

165. Slawson, R. M., J. T. Trevors, et al. (1992). "Silver accumulation and resistance in Pseudomonas stutzeri." Archives of Microbiology 158(6): 398-404.

166. Slawson, R. M., M. I. Van Dyke, et al. (1992). "Germanium and silver resistance, accumulation, and toxicity in microorganisms." Plasmid 27(1): 72-79.

167. Smith, S. G., V. Mahon, et al. (2007). "A molecular Swiss army knife: OmpA structure, function and expression." FEMS Microbiol Lett 273(1): 1-11.

168. Sokmen, M., F. Candan, et al. (2001). "Disinfection of E. coli by the Ag-Ti02/UV system: lipidperoxidation." JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A 143(2-3): 241-244.

169. Solioz, M. and A. Odermatt (1995). "Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae." J Biol Chem 270(16): 9217-9221.

170. Solioz, M. and C. Vulpe (1996). "CPx-type ATPases: a class of P-type ATPases that pump heavy metals." Trends Biochem Sci 21(7): 237-241.

171. Sondi, I. and B. Salopek-Sondi (2004). "Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria." J Colloid Interface Sci 275(1): 177182.flVrJ

172. Spoering, A. L. and K. Lewis (2001). "Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials." J Bacteriol 183(23): 6746-6751.

173. Srinivasan, C. and N. Somasundaram (2003). "REVIEW ARTICLES Bactericidal and detoxification effects of irradiated semiconductor catalyst, Ti02." Current science. 85(10): 1431.

174. Stevenson, D., B. Agate, et al. (2006). "Femtosecond optical transfection of cells: viability and efficiency." Optics express 14(16): 7125-7133.

175. Stoyanov, J. V., D. Magnani, et al. (2003). "Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli." FEBS Lett 546(2-3): 391-394.

176. Subba Rao, K. V., B. Zhuo, et al. (2006). "Photoinduced Bactericidal Properties of Nanocrystalline Ti02 Thin Films." Journal of Biomedical Nanotechnology 2(1); 71-73.

177. Summers, A. O. (2009). "Damage control: regulating defenses against toxic metals and metalloids." Curr Opin Microbiol 12(2): 138-144.

178. Sun, L., A. K. Singh, et al. (2008). "Silver Nanoparticles Inhibit Replication of Respiratory Syncytial Virus." Journal of Biomedical Nanotechnology 4(2): 149-158.

179. Sun, R. W. Y., R. Chen, et al. (2005). "Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells." CHEMICAL COMMUNICATIONS- ROYAL SOCIETY OF CHEMISTRY(40): 5059-5061.

180. Sun, S., B. Sun, et al. (2008). "Preparation and antibacterial activity of Ag-TiO&lt;sub&gt;2&lt;/sub&gt; composite film by liquid phase deposition (LPD) method." Bulletin of Materials Science 31(1): 61-66.

181. Sunada, K., T. Watanabe, et al. (2003). "Bactericidal activity of copper-deposited Ti02 thin film under weak UV light illumination." Environmental science & technology 37(20): 47854789.

182. Sunada, K., T. Watanabe, et al. (2003). "Studies on photokilling of bacteria on Ti02 thin film." Journal of Photochemistry and Photobiology A: Chemistry 156(1-3): 227-233.

183. Sweeney, R. Y., C. Mao, et al. (2004). "Bacterial biosynthesis of cadmium sulfide nanocrystals." Chem Biol 11(11): 1553-1559.

184. Teitzel, G. M. and M. R. Parsek (2003). "Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa." Appl Environ Microbiol 69(4): 2313-2320.

185. Thakkar, K. N., S. S. Mhatre, et al. (2010). "Biological synthesis of metallic nanoparticles." Nanomedicine 6(2): 257-262.

186. Tirlapur, U. K. and K. Keonig (2002). "Targeted transfection by femtosecond laser." Nature 418(6895): 290-291.lfi

187. Turkevich, J., P. C. Stevenson, et al. (1951). "A study of the nucleation and growth processes in the synthesis of colloidal gold." Discussions of the Faraday Society 11: 55-75.

188. Vacaroiu, C., M. Enache, et al. (2009). "The effect of thermal treatment on antibacterial properties of nanostructured TiO<sub>2</sub>(N) films illuminated with visible light." World J. Microbiol. Biotechnol. 25m: 27-31.

189. Van Aken, B. and L. S. Lin (2011). "Effect of the disinfection agents chlorine, UV irradiation, silver ions, and Ti02 nanoparticles/near-UV on DNA molecules." Water Sci Technol 64(6): 1226-1232.

190. Vogel, A., J. Noack, et al. (2005). "Mechanisms of femtosecond laser nanosurgery of cells and tissues." Applied Physics B: Lasers and Optics 81(8): 1015-1047.

191. Waite, R. D., A. Papakonstantinopoulou, et al. (2005). "Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms." J Bacteriol 187(18): 6571-6576.

192. Wang, Z. L., Y. Liu, et al. (2003). Handbook of nanophase and nanostructured materials. New York, Kluwer Academic/Plenum.

193. Watts, R. J., S. Kong, et al. (1995). "Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent." Water research. 29(1): 95.

194. Wei, X., M. Luo, et al. (2012). "Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgN03." Bioresour Technol 103(1): 273-278.

195. Williams, P. (2007). "Quorum sensing, communication and cross-kingdom signalling in the bacterial world." Microbiology 153(Pt 12): 3923-3938.

196. Wosten, M. M., L. F. Kox, et al. (2000). "A signal transduction system that responds to extracellular iron." Cell 103(1): 113-125.

197. Xu, X. H., W. J. Brownlow, et al. (2004). "Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging." Biochemistry 43(32): 10400-10413.

198. Yakabe, Y., T. Sano, et al. (1980). "Kinetic studies of the interaction between silver ion and deoxyribonucleic acid." Chem. Lett. Chemistry Letters(4): 373-376.

199. Yamamoto, O. (2001). "Influence of particle size on the antibacterial activity of zinc oxide." International Journal of Inorganic Materials 3(7): 643-646.

200. Yamanaka, M., K. Hara, et al. (2005). "Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis." Appl Environ Microbiol 71(11): 7589-7593.

201. Yang, C., G. L. Liang, et al. (2009). "Bactericidal functionalization of wrinkle-free fabrics via covalently bonding Ti02@Ag nanoconjugates." J Mater Sci 44(7): 1894-1901.

202. Yao, Y., Y. Ohko, et al. (2008). "Self-sterilization using silicone catheters coated with Ag and Ti02 nanocomposite thin film." Journal of biomedical materials research. Part B, Applied biomaterials. 85(2): 453-460.

203. Yu, J. C., W. Ho, et al. (2005). "Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania." Environmental science & technology 39(4): 1175-1179.

204. Yuranova, T., A. G. Rincon, et al. (2006). "Performance and characterization of Agcotton and Ag/Ti02 loaded textiles during the abatement of E. coli." Journal of Photochemistry and Photobiology A 181(2-3): 363-369.

205. Zaitseva, J., V. Granik, et al. (2009). "Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAOl and Burkholderia cenocepacia 370." Res Microbiol 160(5): 353-357.

206. Zaporojtchenko, V., R. Podschun, et al. (2006). "Physico-chemical and antimicrobial properties of co-sputtered Ag-Au/PTFE nanocomposite coatings." Nanotechnology. 17(19): 49044908.

207. Zhang, H. and G. Chen (2009). "Potent Antibacterial Activities of Ag/Ti02 Nanocomposite Powders Synthesized by a One-Pot Sol-Gel Method." Environmental science & technology. 43(8): 2905.

208. Zhang, H., Q. Li, et al. (2007). "Accumulation of silver(I) ion and diamine silver complex by Aeromonas SH10 biomass." Appl Biochem Biotechnol 143(1): 54-62.

209. Zhang, H. J. and D. Z. Wen (2007). "Antibacterial properties of SbTi02 thin films by RF magnetron co-sputtering." Surface and Coatings Technology 201(9-11): 5720-5723.

210. Zhang, L., J. C. Yu, et al. (2003). "Ambient Light Reduction Strategy to Synthesize Silver Nanoparticles and Silver-Coated Ti02~ with Enhanced Photocatalytic and Bactericidal Activities." Langmuir 19: 10372-10380.

211. Zhang, S.-Y., J. Zhang, et al. (2004). "Synthesis of selenium nanoparticles in the presence of polysaccharides." Materials Letters 58(21): 2590-2594.

212. Zharov, V. P. and D. O. Lapotko (2005). "Photothermal imaging of nanoparticles and cells." IEEE J. Select. Topics Quantum Electron. 11(4): 733-751.

213. Zharov, V. P., K. E. Mercer, et al. (2006). "Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles." Biophysical journal 90(2): 619-627.

214. Zhou, Y., Y. Kong, et al. (2012). "Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guerin." J Nanobiotechnology 10: 19.

215. Zolotavin, P., E. Permenova, et al. (2008). "Two-photon luminescence enhancement of silver nanoclusters photodeposited onto mesoporous Ti02 film." Chemical Physics Letters 457(4—6): 342-346.

216. Егорова, E. M., А. А. Ревина, et al. (2001). "Бактерицидные и каталитические свойства стабильных металлических наночастиц в обратных мицеллах." Вестник МГУ. Сер. 2. Химия. 42: 332-338.

217. Ильина, Т. С., Ю. М. Романова, et al. (2004). "Биопленки как способ существования бактерий в окружающей среде и организме хозяина: феномен, генетический контроль и системы регуляции их развития." Генетика. 11: 1-12.

218. Липасова, В. А., Э. Э. Атамова, et al. (2009). "Экспрессия гена N-ацил-гомосеринлактоназы AiiA влияет на свойства ризосферного штамма Pseudomonas chlororaphis 449." Генетика 45: 38-42.

219. Хмель, И. A. and А.З.Метлицкая (2006). "Quorum sensing регуляция экспрессии генов -перспективная мишень для создания лекарств против патогенности бактерий." Молекулярная биология 40: 195-210.

220. Хмель, И. A. and А. 3. Метлицкая (2006 ). "Регуляция экспрессии генов перспективная мишень для создания лекарств против патогенности бактерий. ." Мол.биология. 40(2): 195-210.1. VIII. БЛАГОДАРНОСТИ

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.