Адаптация трансгенных растений рапса (Brassica napus L.) со встроенным геном транс-фактора Osmyb4 риса к тяжелым металлам тема диссертации и автореферата по ВАК РФ 03.01.05, кандидат биологических наук Мухаммед Мукбель Тахер Мареай

  • Мухаммед Мукбель Тахер Мареай
  • кандидат биологических науккандидат биологических наук
  • 2012, Москва
  • Специальность ВАК РФ03.01.05
  • Количество страниц 137
Мухаммед Мукбель Тахер Мареай. Адаптация трансгенных растений рапса (Brassica napus L.) со встроенным геном транс-фактора Osmyb4 риса к тяжелым металлам: дис. кандидат биологических наук: 03.01.05 - Физиология и биохимия растений. Москва. 2012. 137 с.

Оглавление диссертации кандидат биологических наук Мухаммед Мукбель Тахер Мареай

ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ

СПИСОК СОКРАЩЕНИЙ

ВВЕДЕНИЕ

ГЛАВА I. ОБЗОР ЛИТЕРАТУРЫ

1.1. Накопление тяжелых металлов растениями

1.2. Пути поступления тяжелых металлов в растения

1.3. Влияние высоких концентраций тяжелых металлов на растения

1.4. Биологическая роль меди и цинка в растениях

1.5. Общие представления об адаптации растений к неблагоприятным факторам окружающей среды

1.6. Клеточные механизмы детоксикации тяжелых металлов

1.6.1. Детоксикация тяжелых металлов (ТМ) путем

внутриклеточной компартментации

1.6.2. Клеточная стенка и экссудаты корня

1.6.3. Роль плазматической мембраны в детоксикации ТМ

1.6.4. Белки теплового шока (БТШ)

1.6.5. Хелатирование 26 1.6.5.1 Фитохелатины 26 1.6.5.2. Металлотионеины 27 1.6.7. Органические кислоты и аминокислоты

1.7. Совместимые осмолиты

1.8. Стрессорные белки

1.9. Транскрипционные факторы 32 1.9.1. МУВ-факторы в растениях

1.10. Окислительный стресс и антиоксидантная система

1.10.1. Ферменты антиоксидантного комплекса 3

1.10.2. Неферментативные антиоксиданты

1.11. Повышение устойчивости растений к тяжелым металлам с помощью генной

инженерии 39 1.11.1. Создание растений с гетерологическими генами

металлотранспортеров

1.11.2.1. Встраивание в растения генов металлотионеинов

1.11.2.2. Встраивание в растения гетерологических генов

фитохелатинсинтазы

1.11.3. Перенос генов другие механизмы устойчивости к ТМ

1.11.4. Трансгенные растения с повышенным содержанием пролина

1.11.5. Встраивание генов, ответственных за преобразование тяжелых металлов в менее токсичные формы 45 ГЛАВА II. ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1. Характеристика Brassica napus L. в качестве модельного объекта исследования

2.2. Условия выращивания растений и проведения опытов

2.2.1. Выращивание растений рапса в водной культуре

2.2.2. Среды для культивирования растений

2.2.3. Выращивание растений рапса в условиях in vitro

2.2.4. Выращивание растений из семян

2.2.5. Условия проведения опытов

2.3. Физиологические методы исследований

2.3.1. Измерение оводненности листьев рапса

2.3.2. Измерение биомассы растений

2.3.3. Определение содержания пигментов

2.3.4. Определение содержания тяжелых металлов в тканях растений

2.3.5. Определение интенсивности перекисного окисления липидов

2.3.6. Определение активности СОД

2.3.7. Определение активности пероксидазы

2.3.8. Определение эндогенного содержания пролина

2.3.9. Определение содержания растворимых фенольных соединений

2.3.10. Определение содержания флавоноидов

2.3.11. Определение содержания антоцианов 5

2.3.12. Определение содержания белка

2.4. Методы молекулярно-биологического анализа

2.4.1. Описание конструкции, использованной для трансформации растений рапса

2.4.2. Выращивание трансгенных растений

2.4.3. Выделение тотальной растительной ДНК

2.4.4. Подбор праймеров к генам исследования

2.4.5. Определение количества и качества нуклеиновых кислот

2.4.6. Полимеразная цепная реакция (ПЦР)

2.4.7. Электрофорез ДНК

2.4.8. Выделение тотальной РНК

2.4.9. Электрофорез РНК

2.4.10. Обратная транскрипция

2.5. Математическая обработка данных 66 ГЛАВА III. РЕЗУЛЬТАТЫ

3.1. Влияние тяжелых металлов на растений рапса двух сортов

3.1.1. Рост и накопление биомассы

3.1.2. Измерение оводненности растений

3.1.3. Измерение содержания свободного пролина

3.1.4. Аккумуляция ТМ в листьях растений рапса

3.2. Влияние Си804 и 7п804 на трансгенные растения рапса с геном ОятуЬА

риса

3.2.1. Наследование трансгена ОзтуЬ4 и его экспрессия в условиях

действия ТМ

3.2.2. Накопление сырой биомассы и оводнённость растений

3.2.3. Влияние меди и цинка на содержание пигментов

3.2.4. Аккумуляция ТМ в листьях растений рапса

3.2.5. Влияние ТМ на перекисное окисление липидов

3.2.6. Изменение супероксиддисмутазы и активностей гваякольной пероксидазы при ТМ стрессе

3.2.6.1. Изменение активностей супероксиддисмутазы

3.2.6.2. Изменение активностей активностей гваякольной пероксидазы

3.2.7. Аккумуляция пролина в листьях растений рапса

3.2.8. Аккумуляция фенолов, флавоноидов и антоцианов под действием

меди и цинка

3.2.8.1. Аккумуляция фенолов

3.2.8.2. Аккумуляция флавоноидов

3.2.8.3. Аккумуляция антоцианов 92 3.3. Влияние ТМ на экспрессию генов системы их детоксикации в трансгенных растений 95 ГЛАВА IV. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 97 ЗАКЛЮЧЕНИЕ 107 ВЫВОДЫ 108 СПИСОК ЛИТЕРАТУРЫ

СПИСОК СОКРАЩЕНИЙ

тм тяжелые металлы

кДНК комплементарная ДНК

мРНК матричная РНК

МДА малоновый диальдегид

НУК нафтилуксусная кислота

пдг пролиндегидрогеназа

Про пролин

пол реакция перекисного окисления липидов

ЭДТА этилендиаминтетрауксусная кислота

N08 нопалинсинтаза

ЭПР эндоплазматический ретикулум

БТШ белки теплового шока

ФХ фитохелатины

мт металлотионеины

АФК активные формы кислорода

ТФ транскрипционные факторы

ЭТЦ электрон-транспортная цепь

СОД супероксиддисмутаза

Рекомендованный список диссертаций по специальности «Физиология и биохимия растений», 03.01.05 шифр ВАК

Введение диссертации (часть автореферата) на тему «Адаптация трансгенных растений рапса (Brassica napus L.) со встроенным геном транс-фактора Osmyb4 риса к тяжелым металлам»

ВВЕДЕНИЕ

Актуальность проблемы. Одним из негативных результатов бурного развития промышленности является загрязнение среды обитания тяжелыми металлами (ТМ), к которым относятся химические элементы, имеющие плотность

•з

больше 5 г/см и атомную массу более 40 Да (Кузнецов, Дмитриева, 2011). Многие ТМ, такие, например, как медь и цинк, являются эссенциальными элементами, т.е. элементами, которые в низких концентрациях жизненно необходимы для нормального роста и развития организма (Kholodova et al., 2011). Тем не менее, в высоких концентрациях они негативно влияют как на жизнь растений, так и на здоровье человека, накапливаясь в организме и вызывая различные нарушения. Так, высокие концентрации ТМ вызывают ингибирование роста растений и снижение урожая, торможение фотосинтеза и дыхания, нарушение синтеза белка и донорно-акцепторных отношений, инактивацию ключевых ферментов метаболизма, изменение водного и гормонального статуса и даже гибель организма (Титов и др., 2007; Kholodova et al., 2011).

Растения могут адаптироваться к токсическому действию высоких концентраций ТМ. В основе этой адаптации лежит формирование и функционирование как специализированных (хелатирование, секвестрация и компартментация ТМ), так и общих механизмов устойчивости (низкомолекулярные органические стресс-протекторные соединения, защитные макромолекулы и антиоксидантные системы) (Hall, 2002; Clemens, 2006; Кузнецов, 2009). Клетки растений воспринимают действие стрессорных факторов и передают внешний сигнал на особые регуляторные белки, называемые транскрипционными факторами (ТФ) или транс-факторами (Vannini et al., 2006), которые вызывают изменение экспрессии генов и формирование стресс-протекторных систем.

Знание механизмов устойчивости растений к ТМ позволяет получить методами генной инженерии трансгенные растения, обладающие большей

устойчивостью к токсическому действию ТМ. Для этой цели можно переносить в сельскозяйственные культуры (1) гены, участвующие в хелатировании ионов (Lefebvre et al., 198; Gasic et al., 2005), (2) гены, продукт которых превращает высокотоксичные формы в менее токсичные (Bizilli, 1999), (3) гены общих механизмов устойчивости или, наконец, (4) гены, кодирующие транс-факторы (Mattana et al., 2005; Latchman, 2007; Гомаа и др., 2012).

Одним из наиболее перспективных биотехнологических путей получения растений, обладающих повышенной устойчивостью к ТМ, является использование генов транс-факторных белков. Транс-факторные белки взаимодействуют с ДНК (либо с другими белками, а затем с ДНК), в результате чего образуется комплекс белок-ДНК, регулирующий экспрессию большого числа генов, в том числе и генов стрессорного ответа (Latchman, 2007). В растениях весьма распространены транскрипционные факторы MYB семейства (Vannini et al., 2006). К этому семейству относится и используемый в данной работе ген Osmyb4, который был изолирован из генома растений риса (Pandolfi et al., 1997).

Ранее было установлено, что сверхэкспрессия гена Osmyb4 риса в трансгенных растениях A. thaliana приводила к повышению засухо- и холодоустойчивости (Vannini et al., 2004, Mattana et al., 2005), а также сопровождалась повышением устойчивости растений ярового рапса (Brassica napus L.) к низким положительным и отрицательным температурам (Гомаа и др., 2012). При этом было показано, что повышение устойчивости этих трансгенных растений сопровождается интенсивной аккумуляцией совместимых осмолитов, обладающих стресс-протекторным эффектом (пролин, сахара и т.п.), а также низкомолекулярных органических соединений с антиоксидантной активностью (Mattana et al., 2005; Гомаа и др., 2012). На этом основании нами было высказано предположение, что трансгенные растения рапса с суперэкспрессией гена OsmybA риса могут быть устойчивы не только к засухе и низкотемпературному стрессу, но также и к повреждающему воздействию высоких концентраций ТМ, в частности, солей меди и цинка. Несмотря на то, что получение трансгенных растений рапса с

повышенной устойчивостью к ТМ весьма актуально, прежде всего, с теоретической точки зрения, до сих пор такие растения никем не были получены.

Цель и задачи исследования. Цель данной работы заключалась в том, чтобы выяснить, сопровождается ли суперэкспрессия гена ОятуЬ4 риса в растениях рапса повышением устойчивости к тяжелым металлам и, если сопровождается, то каковы физиологические механизмы этого явления.

В соответствии с этой целью были поставлены следующие задачи:

(1) Сравнить устойчивость двух сортов рапса к высоким концентрациям

ТМ.

(2) Изучить наследование трансгена ОзтуЬ4 риса в растениях рапса и его экспрессию.

(3) Исследовать влияние высоких концентраций ТМ на некоторые физиологические процессы у трансгенных растений.

(4) Исследовать влияние ТМ на функционирование отдельных компонентов антиоксидантных систем у трансгенных растений рапса.

(5) Исследовать экспрессию некоторых генов устойчивости растений к

ТМ.

Научная новизна работы. Показано, что в процессе генеративного размножения трансгенных растений рапса ген трансфакторного белка ОятуЬ4 наследуется и активно экспрессируется в процессе адаптации к тяжелым металлам. Установлено, что экспрессия трансгена ОзтуЬ4 в растениях рапса сопровождается повышением устойчивости к тяжелым металлам, в основе которой лежит снижение интенсивности окислительного стресса в результате аккумуляции низкомолекулярных органических антиоксидантов и увеличение активности антиоксидантных ферментов, с одной стороны, и накопление совместимых осмолитов, с другой. Впервые установлено, что интенсивная экспрессия гена ОятуЬ4 транс-фактора риса в растениях рапса в ответ на воздействие ТМ сопровождается активацией «работы» генов различных метаболических путей, обеспечивающих формирование защитных механизмов и повышение устойчивости к повреждающему действию тяжелых металлов.

Похожие диссертационные работы по специальности «Физиология и биохимия растений», 03.01.05 шифр ВАК

Заключение диссертации по теме «Физиология и биохимия растений», Мухаммед Мукбель Тахер Мареай

ВЫВОДЫ

1. Показано, что в процессе генеративного размножения растений рапса с геном Osmyb4 транс-фактора риса трансген наследуется и экспрессируется. Из 50 анализируемых растений второго поколения 25 растений содержали гены Osmyb4 и nptll, из которых 7 линий экспрессировали ген Osmyb4 на фоне высоких концентраций CuS04 или ZnS04.

2. Сделано заключение, что трансгенные растения рапса обладают повышенной устойчивостью к CuS04 или ZnS04 по сравнению с растениями дикого типа. В пользу этого заключения свидетельствует способность трансгенных растений: (а) выживать в течение 15 суток при 150 мкМ CuS04 или 5000 мкМ ZnS04; (б) более активно накапливать биомассу при высоких концентрациях ТМ; (в) в большей мере стабилизировать водный статус в экстремальных условиях. При этом трансгенные растения рапса накапливали до 180 мкг меди и до 6500 мкг цинка на 1 грамм сухой массы, что приближает их к группе растений-гипераккумуляторов цинка.

3. Показано, что большая устойчивость трансгенных растений рапса к солям ТМ может быть обусловлена меньшей интенсивностью окислительного стресса, который они испытывали в условиях повреждающего действия CuS04 или ZnS04, о чем свидетельствует меньший уровень МДА у трансгенных растений при высоких концентрациях ТМ по сравнению с нетрансформированными формами.

4. Продемонстрировано, что в ответ на действие высоких концентраций ТМ трансгенные растения рапса интенсивно аккумулировали низкомолекулярные органические антиоксиданты (антоцианы, флавоноиды, сумма фенольных соединений и, в меньшей степени, пролин) и обнаруживали повышенную активность пероксидазы и СОД. Активация этих ферментов была характерна, прежде всего, для ответа растений на высокие концентрации ионов меди, обладающих большей токсичностью по сравнению с ионами цинка. Совокупность указанных изменений метаболизма приводила к снижению повреждающего действия АФК и выживанию растений в условиях токсичного действия ТМ.

5. Установлено, что суперэкспрессия гена ОзтуЬ4 риса в растениях рапса не сопровождалась активацией экспрессии генов метаболизма пролина, генов фитохелатинсинтазы и транспортеров цинка (21Р4) и меди (21Р1) при действии высоких концентраций ТМ по сравнению с ^трансформированными растениями, а приводила к стимуляцией фенольного метаболизма и биосинтезу низкомолекулярных антиоксидантов.

6. Высказано предположение, что полученные нами растения рапса с геном ОшуЪ4, имеющие повышенную устойчивость к высоким концентрациям ТМ, могут быть резистентны и к другим повреждающим факторам, поскольку они активно аккумулируют универсальные стресс-протекторные метаболиты с антиоксидантными свойствами.

ЗАКЛЮЧЕНИЕ

Совокупность представленных выше результатов позволяет заключить, что экспрессия Osmyb4 гена риса в растениях рапса сопровождается повышением их устойчивости к ТМ. В основе повышенной устойчивости трансгенных растений рапса лежит стресс-индуцируемая аккумуляция низкомолекулярных органических соединений фенольной природы (общие фенолы, флавоноиды и антоцины), увеличение содержания пролина, обладающего осморегуляторным и защитным эффектом, а также увеличение активности некоторых антиоксидантных ферментов. Совокупность указанных изменений метаболизма сопровождается снижением интенсивности окислительного стресса, о чем свидетельствует более низкий уровень МДА в трансгенных растениях, а также повышенное содержание фотосинтетических пигментов, и меньшей степенью повреждения растений высокими концентрациями солей меди и цинка. Это подтверждает идею, согласно которой продукт О я ту Ь 4 гена играет особую интегрирующую роль в ответе растений на повреждающее воздействие, координируя экспрессию генов различных метаболических путей, обеспечивающих формирование стресс-защитных механизмов.

Список литературы диссертационного исследования кандидат биологических наук Мухаммед Мукбель Тахер Мареай, 2012 год

СПИСОК ЛИТЕРАТУРЫ

1. Андрющенко В.К., Саянова В.В., Жученко A.A., Дьяченко Н.И., Чиликина Л.А., Дроздов В.В., Корочкина С.К., Череп Г.И., Медведев В.В., Нютин Ю.И. (1981) Модификация метода определения пролина для выявления засухоустойчивых форм рода Lycopersicon Tourn. Сер. Биол. и хим. наук., Изд. АН Молд ССР, С. 55-60.

2. Бараненко.В. В. (2006) Супероксиддисмутаза в клетках растений. Цитология, 48, 465-474.

3. Вавилов П.П., Гриценко В.В., Кузнецов B.C., Третьяков H.H. (1986) Растениеводство М: Агропромиздат, С. 512.

4. Голубкина H.A. (1995) Флуорометрический метод определения селена. Журнал аналитической химии., 50: 492-497.

5. Гомаа А.М., Ралдугина Г.Н., Бурмистрова H.A., Раднонов Н.В., Кузнецов Вл.В (2012). Стрессорный ответ трансгенных растений рапса с геном Osmyb4 трансфакторного белка риса на действие низкой положительной температуры. Физиология растений, 59, 118-128.

6. Доспехов Б А. (1985) Методика полевого опыта. М. Агропромизздат, С. 351.

7. Жолик Г.А. (2006) Особенности формирования урожая семян ярового и озимого рапса в зависимости от элементов технологии и факторов среды. Горки: БГСХА, 188 с.

8. Жолкевич В. Н., Зубкова Н. К., Маевская С. Н., Волков В. С., Ракитин В. Ю., Кузнецов Вл. В. (1997) Взаимодействие теплового шока и водного стресса у растений. 2. Осморегуляция в листьях растений хлопчатника при последовательном действии кратковременной гипертермии и почвенной засухи. Физиология растений, 44, 613-623.

9. Жуковский П.М. (1971) Культурные растения и их сородичи. Л. Колос, С. 8 -62.

10. Загоскина Н.В., Дубравина Г. А., Алявина А. К., Гончарук Е. А. (2003) Влияние ультрафиолетовой (УФ-Б) радиации на образование и локализацию фенольных соединений в каллусных культурах чайного растения. Физиология растений, 50, 302-308.

И. Иванова Е.М., Холодова В.П., Кузнецов Вл.В. (2010) Биологические эффекты высоких концентраций солей меди и цинка и характер их взаимодействия в растениях рапса. Физиология растений, 57, 864-873

12. Кабата-Пендиас А., Пендиас X. (1989) Микроэлементы в почвах и растениях. М: Мир, 312-404с.

13. Кабата-Пендиас А. (2005) Проблемы современной биогеохимии микроэлементов. Рос.хим.ж.. t.XLIX.,7, 15-19.

14. Ковда В.А., Золотарева Б.И., Скрипниченко И.И. (1979).биологической реакции растений на тяжелые металлы в среде. Докл. АН СССР. Вып., 247, 766-768.

15. Колодяжная Я.С., Титов С.Е., Кочетов A.B. (2006) Перспективы получения генетически модифицированных растений, устойчивых к тяжелым металлам. Сб.науч.трудов «Факторы экспериментальной эволюции организмов». Киев «Логос», С. 586-589.

16. Колодяжная Я.С., Титов С.Е., Кочетов A.B., Трифонова Е.А., Романова A.B., Комарова М.Л., Коваль B.C., Шумный В.К. (2007) Трансформанты табака, экспрессирующие антисмысловую последовательность гена пролиндегидрогеназы, проявляют устойчивость к тяжелым металлам. Генетика, 43, 994-998.

17. Кузнецов Вл.В. (1992) Индуцибельные системы и их роль при адаптации

растений к стрессорным факторам. Дисс. Докт. биол. наук. Кишинев: ИФР АНРМ, 74 с.

18. Кузнецов Вл.В., Дмитриева Г.А. (2011) Физиология растений. М: Высш. гик., 744-748 с.

19. Кузнецов Вл.В., Шевякова Н.И. (1999) Пролин при стрессе: биологическая роль, метаболизм, регуляция. Физиология растений, 46, 321-336.

20. Малышенко С.И., Тюлькина Л.Г., Зверева С.Д., Ралдугина Г.Н. (2003) Получение трансгенных растений Brassica campestris, экспрессирующих ген gfp. Физиология растений, 50, 309-315.

21. Мейчик Н.Р., Любимова Е.Г., Ермаков И.П. (2010) Ионообменные свойства клеточной стенки кустистого лишайника Cladonia rangiferina. Физиология растений, 2, 273-279.

22. Мерзляк М.Н. (1989) Активированный кислород и окислительные процессы мембранах растительной клетки. Итоги науки и техники. Сер. Физиология растений, 6,167.

23. Мохамед А.М., Ралдугина Г.Н., Холодова В.П., Кузнецов Вл.В. (2006) Аккумуляция осмолитов растениями различных генотипов рапса при хлоридном засолении. Физиология растений, 53, 732-738.

24. Муравьева Д.А., Бубенчикова В.Н., Беликов В.В.. (1987) Спектрофотометрическое определение суммы антоцианов в цветках василька синего. Фармация, №5, 28-29.

25. Пыльнее В.В., Коновалов Ю.Б., Хупацария Т.Н. (2005) Частная селекция полевых культур. М: Колос, С. 552.

26. Радионов Н.В., Вагун И.В., Паскарел Н.К., Кислова У.Л., Ралдугина Г.Н., Маттана М., Ваннини К., Кузнецов Вл.В. (2007) Трансформация рапса (.Brassica napus) и табака (Nicotiana tabacum) геном трансфактора (Osmyb4) с целью получения трансгенных растений, устойчивых к неблагоприятным факторам. Современная физиология растений: от молекул до экосистем, Матер, докл. Межд. конф. Ч. 2. Сыктывкар: Коми НЦ УрО РАН, С. 337.

27. Титов А.Ф., Таланова В.В., Казнина Н.М., Лайдинен Г.Ф. (2007) Устойчивость растений к тяжелым металлам. Петрозаводск: Карельский научный центр РАН, с. 172.

28. Шевякова Н.И. (1983) Метаболизм и физиологическая роль пролина в растениях при водном и солевом стрессе. Физиология растений, 30, 743-751.

29. Шлык А.А. (1971) Определение хлорофиллов и каротиноидов в экстрактах зеленых листьев. Биохимические методы в физиологии растений. М: Наука. С. 154170.

30. Abe Н., Urao Т., Ito Т., Seki М., Shinozaki К., Yamaguchi-Shinozaki К. (2003) Arabidopsis AtMYC2 (bHLH) and. AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15, 63-78.

31. Alia P., Sardhi P., and Mohanty P. (1993) Proline in relation to free radical production in seedlings of Brassica juncea raised under sodium chloride stress. Plant Soil, 155, 497-500.

32. Anoop V.M., Basu U., McCammon M.T., McAlister-Henm L., Taylor G.J.

(2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola over expressing a mitochondrial citrate synthase. Plant physiology, 132,2205-2217.

33. Araki S., Ito M., Soyano T., Nishihama R., Machida Y. (2004) Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M phase-specific genes in tobacco. Biol Chem.J., 279, 32979-88.

34. Arazi T., Sunkar R., Kaplan B., Fromm H. A. (1999) tobacco plasma membrane calmodulin- binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J., 2, 171-182.

35. Arisi A. C. M., Noctor G., Foyer C. H., Jouanin L. (1997) Modification of thiol contents in poplars (.Populus tremula, P. alba) overexpressing enzymes involved in glutathione synthesis. Planta, 203, 362-373.

36. Arru L., Regnoni S., Baroncini M., Bonatti P.M., Perata P. (2002) Copper localization in Cannabis sativa L. grown in copper-rich solution. Euphytica, 140, 33-38.

37. Ashraf M. (1994) Breeding for salinity tolerance in plants. Crit. Rev. plant Set, 13, 17-42.

38. Baker A.J.M. (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr., 3, 643-654.

39. Baker A.J.M., McGrath S.P., Sidoli C.M.D., Reeves R.D. (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl., 11, 41-49.

40. Baker A.J.M., McGrath S.P., Reeves R.D., Smith J.A.C. (2000) Metal

hyperaccumulator plants: a review of the ecology and physiology of a biochemical

resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G,

Vangronsveld J (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, USA, 85-107.

41. Baker A.J.M., Walker P.L. (1990) Ecophysiology of metal uptake by tolerant plants, heavy metal tolerance in plants. In: Shaw AJ (ed) Evolutionary aspects. CRC, Boca Raton, 155-177.

42. Banuelos G., Terry N., LeDuc D. L., Pilon-Smits E. A., Mackey B. (2005) Field trial of transgenic indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ. Sci. TechnoL, 39, 1771-1177.

43. Baryla A., Carrier P., Franck F., Coulomb C., Sahut C., Havaux M. (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta, 212, 696-709.

44. Bates L.S. Waldren R.P., Teare I.D. (1973) Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207.

45. Baudry A., Heim M.A., Dubreucq B., Caboche M., Weisshaar B., Lepiniec L.

(2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J., 39, 366-80.

46. Beauchamp Ch., Fridovich I. (1971) Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44,276-287.

47. Bennett L. S., Burkhead J. L., Hale K. L., Terry N., Pilon M., Pilon-Smits E. A. H. (2003) Analysis of transgenic indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual, 32, 432-440.

48. Bernal M., Sanches-Testillano P., Risueno M.D., Yruela I. (2006) Excess copper induces structural changes in cultured photosynthetic soybean cells. Funct. Plant Biol., 33, 1001-1012.

49. Bittsanszky A., Komives T., Gullner G., Gyulai G., Kiss J., Heszky L., Radimszky L., Rennenberg (2005). H. Ability of transgenic poplars with elevated glutathione content to tolerate zn2+ stress. Environ. Int., 31, 251-254.

50. Bizily S.P., Rugh C.L., Summers A.O., Meagher R.B. (1999) Phytoremediation of melhylmercury pollution, mer D expression in Arabidopsis thaliana confers resistance to organomercurials .Proc Natl Acad Sci USA., 96, 6808-6813.

51. Blokhina O., Virolainen E., Fagerstedt K.V. (2003) Antioxidants, oxidative damage and oxygen deprivative stress: a review. Annals of Botany, 91, 179-194.

52. Borevitz J.O., Xia Y., Blount J., Dixon R.A., Lamb C. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 12,2383-2394.

53. Boyd, R.S. (2004) Ecology of metal hyperaccumulation. New Phytologist, 162, 563-567.

54. Bowler C., Vam Montagu M., Inze D. (1992) Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol., 43, 83-116.

55. Brooks R.R. (1977) Copper and cobalt uptake by Haumaniastrum species. Plant Soil, 48, 541-544.

56. Callahan D.L., Baker A.J.M., Kolev S.D., Wedd A.G. (2006) Metal ion ligands in hyperaccumulating plants. J. Biol. Inorg. Chem., 11, 2-12.

57. Carr H.S., Winge D.R. (2003) Assembly of cytochrome c oxidase within the mitochondrion. Acc. Chem. Res., 36, 309-316.

58. Chalker-Scott L. (1999) Environmental significance of anthocyanins in plant stress responsQS.Photochem Photobiol, 70, 1-9.

59. Chaney R.L., Angle J.S., Mcintosh M.S., Reeves R.D., Li Y.M., Brewer E.P.

(2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z. Naturforsch. Sect. C. Biosci, 60, 190-198.

60. Changela A., Chen K., Xue Y., Holschen J., Outten C.E., O'Halloran T.V., Mondragorn A. (2003) Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR. Science. 301, 1383-1387.

61. Cheng S. (2003) Effects of Heavy Metals on Plants and Resistance Mechanisms. Eviron Sci andPollut. Res., 10, 256-264.

62. Choudhary NL, Sairam RKf Tyagi A. (2005) Expression of deltal-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). J. Biochem. Biophys., 42, 366-370.

63. Clemens S. (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212,475-486.

64. Clemens, S. (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707-1719.

65. Clijsters H., VanAssche F. (1985) Inhibition of photosynthesis by heavy metals. Photosynth. Res., 7, 31-40.

66. Cobbett C.S. (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol., 123, 825-832.

67. Cobbet C., Goldsbrough P. (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol., 53, 159-182.

68. Cocciolone S.M., Chopra S., Flint-Garcia S.A., McMullen M.D., Peterson T.

(2001) Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated. Plant J., 27, 467-478.

69. Cohu C.M., Pilon M. (2010) Cell Biology of Copper. In: Cell Biology of Metals and Nutrients, Hell R, Mendel RR (eds.) The: Berlin, Heidelberg, pp. 55-74.

70. Colman P.M., Freeman H.C., Guss J.M., Murata M., Norris V.A., Ramshaw J.A.M., Venkatappa M.P. (1978) X-ray crystal structure analysis of plastocyanin at 2.7 A resolution. Nature, 272, 319-324.

71. Cordoba F., Gonzalez-Reyes J.A. (1994) Ascorbate and plant-cell growth. J. Bioenerg.Biomemb, 26,399-405.

72. Coyle P., Philcox J.C., Carey L.C., Rofe A.M. (2002) Metallothionein: the multipurpose protein. Cell. Mol. Life Sci., 59, 627-647.

73. Crist R.H., Martin J.R., Crist D.L.R. (2004) Ion-exchange aspecs of toxic metal uptake by Indian mustard. Int. J. ofPhytoremediation, 6, 85-94.

74. Cushman J, Bohnert HJ. (2000) Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol., 3, 117-124.

75. Dalton D.A. (1995) Antioxidant defences of plants and fungi. In: Oxidant-induced stress and antioxidant Defences in biology. Ahman S. (Ed.) Chapman & Hall: New York, pp. 298-355.

76. Davis J.B., Barnes, R.L. (1973). Effects of soil-applied fluoride and lead on growth of loblolly pine and red maple. Environmental Pollution, 5, 35-44.

77. De DN. (2000) Plant cell vacuoles. Collingwood, Australia: CSIRO Publishing.57.de Miranda JR, Thomas MA, Thurman DA, Tomsett AB., 1989 Metalliothionein genes from the flowering plant Mimulus guttatus. FEBS Letters, 260, 277-280.

78. Delaunay A J, Verma DPS., (1993) Proline accumulation and osmoregulation in plants. Plant J., 4,215-223.

79. Denekamp M., Smeekens S.C. (2003) Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol., 132, 1415-1423.

80. Dhankher O. P., Li Y., Rosen B. P., Shi J., Salt D., Senecoff J. F., Sashti N. A., Meagher R. B. (2002) Engineering tolerance and hyperaccumulation of arsenic in plants

by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol., 20, 1140-1145.

81. Dhankher O. P., Shasti N. A., Rosen B. P., Fuhrmann M., Meagher R. B.

(2003) Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase. New Phytol., 159, 431-441.

82. Di Cristina M.D., Sessa G., Dolan L., Linstead P., Baima> S., Ruberti I., Morelli G. (1996) The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J., 10, 393-402.

83. Dietz K-J., Baier M., Kramer U. (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. Berlin: Springer-Verlag, 73-97.

84. Dixon N., Paiva L. (1995) Stress-induced phenylpropanoid metabolism. The Plant Cell, 7, 1085- 1097.

85. Domenech J., Mir G., Huguet G., Capdevila M., Molinas M., Atrian S. (2006) Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochim., 88, 583-593.

86. Dominguez-Soils J.R., Gutierrez-Alcala G., Romero L.C., Gotor C. (2001) The cytosolic o-Acetylserine (thiol) lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol. Chem., 276, 9297-9302.

87. Dominguez-Solis J. R., Lopez-Martin M. C., Ager F. J., Ynsa M. D., Romero L. C., Gotor C. (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol. J., 2, 469-476.

88. Du H., Zhang L., Tang X.-F., Yang W.-J., Wu Y.-M., Huang Y.-B., Tang Y.-

X. (2009) Biochemical and Molecular Characterization of Plant MYB Transcription Factor Family. Biochemistry (Moscow), 74, 1-11.

89. Dunagan S.C., Gilmore M.S., Varecamp J.C. (2007) Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapaPl)' Environ Pollut, 148,301-3 lk

90. Dushenkov V., Kumar P.B.A.N., Motto H., Raskin I. (1995) The use of plants to remove heavy metals from aqueous streams. Env. Sci. Technol, 29, 1239-1245.

91. Ebbs S.D., Kochian L.V. (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J. Environ. Qual., 26, 776-781.

92. Ebbs S., Uchil S. (2008). Cadmium and zinc induced chlorosis in Indian mustard

(Brassica júncea (L.) Czern) involves preferential loss of chlorophyll b. Photosynthetica, 46, 49-55.

93. Ecker D.J., Butt T.R., Crooke S.T. (1989) Yeast metallothionein: gene function and regulation by metal ions. Met. Ions Biol. Syst., 25, 147-169.

94. Ellerstrom S. (1977) Interspecific hybrydisation in breeding work. Artkorsuingar i foradlingsorbeter. Sveriges Utsadesforenings Tibskrif, 87, 363-367.

95. Ellis D.R., Lypez-Millon A.F., Grusak M.A. (2003) Metal Physiology and Accumulation in a Medicago truncatula Mutant Exhibiting an Elevated Requirement for Zinc. New Phytologist. 158,207-218.

96. Ellis D. R., Sors T. G., Brunk D. G., Albrecht C., Orser C., Lahner B., Wood K. V., Harris H. H., Pickering I. J., Salt D. E. (2004) Production of Se methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol., 4,1.

97. Ernst WHO., Verkleij JAC, Schat H. (1992) Metal tolerance in plants. Acta Botanica Neerlandica, 41, 229-248.

98. Ernst W.H.O. (1998) Effects of heavy metals in plants at the cellular and organismic level. Ecotoxicol. Ed. Gerrit Schuurmann and Bernd Markert. John Wiley&Sons, Inc. and Spectrum Academischer Verlag., 587-619.

99. Escobar-Muñera M.L. (1988). Aluminium toxicity in Eucalyptus grandis and its possible correction. Informa Servicio Nacional de Protección Forestal, 2, 49-62.

100. Esen A.A. (1978) Simple Method for Quantitative, Semiquantitative, and Qualitative Assay of Protein. Anal. Biochem., 89, 264-273.

101. Evans K.M., Gatehouse J.A., Lindsay W.P., Shi J., Tommey A.M., Robinson

N.J. (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace-metal ion accumulation—implications for PsMTA function. Plant Mol. Biol., 20, 1019-1028.

102. Fabro G., Kovacs I., Pavet V., Szabados L., Alvarez M.E. (2004) Proline accumulation and AtP5CS2 gene activation are induced plant-pathogen incompatible interactions in Arabidospis. Mol Plant Microbe Interact, 17, 343-350.

103. Farinati S., DalCorso G., Varotto S., Furini A. (2010) The Brassica júncea BjCdR15, an ortolog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport

and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol, 185. 964-78.

104. Feng C., Andreasson E. (2004) Arabidopsis MYB68 in development and responses to environmental cues. Plant Science, 167, 1099-1107.

105. Frankel E.N. (1985) Chemistry of free radical and singlet oxidation of lipids.

Progress in lipid research, 23, 197-221.

106. Frausto da Silva J.J.R., Williams R.J.P. (2001) The Biological Chemistry of the Elements, 2nd edn. Clarenton Press, Oxford, UK, 371-384.

107. Freisinger E. (2009) Metallothioneins in plants. Metal Ions Life Sci., 5, 107-153.

108. Freeman J. L., Persans M. W., Nieman K., Albrecht C., Peer W., Pickering I.J., Salt D. E. (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thalaspi nickel hyperaccumulators. Plant Cell, 16,2176-2191.

109. Frerot H., Petit C., Lefebvre C., Gruber W., Collin C., Escarre L. (2002) Zinc and Cadmium Accumulation in Controlled Crosses Between Metallicolous and Nonmetallicolous ofThlaspi caerulescens. New Phytologist, 157, 643-648.

110. Fridovich J. (1986) Biological effect of the superoxide radical. Arch. Biochem. Biophys., 2470, 1-11.

111. Fulton T.M., Chunwongse J., Tanksley S.D. (1995) Micropreparative Protocol for Extraction of DNA from Tomato and Other Herbaceous Plants. Plant Mol. Biol. Rep., 13,207-209.

112. Gage T.B., Wendei S. H. (1950) Quantitive determination of certain flavonol 3-glycosides. Anal. Chem., 22, 708-711.

113. Ghnaya A.B., Charles G., Hourmant A., Hamida J B., Branchard M. (2009) Physiological Behaviour of Four Rapeseed Cultivar (Brassica napus L.) Submitted to Metal Stress. C. R. Biol., 332, 363-370.

114. Gamborg OL, Eveleigh DE. (1968) Culture methods and detection of glucanases in suspension cultures of wheat and barley. Can J. Biochem., 46,417-421.

115. Gasic K., Korban S.S. (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enchances tolerance for Cd and Zn. Planta, 225, 1277-1285.

116. Gisbert С., Ros R., Наго A. D., Walker D. J., Bernal M. P., Serrano R., Avino

J. N. A (2003) plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun., 303, 440-445.

117. Gocal G.F., Sheldon C.C., Gubler F., Moritz Т., Bagnall D.J., MacMillan

C.P., Li S.F., Parish R.W., Dennis E.S., Weigel D., King R.W. (2001) GAMYB-like

genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol., 1270, 16821693.

118. Goldsbrough P. (2000) Metal tolerance in plants: the role of phytochelatins and metallothioneins. CRC Press LLC, 221-233.

119. Grotz N., Fox Т., Connolly E., Park W., Guerinot M.L., Eide D. (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency ■ Proceedings of the National Academy of Sciences, USA., 95,7220-7224.

120. Grill E., Loffler S., Winnacker E.-L., Zenk M.H. (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific glutamilcysteine dipeptidyl transpeptidase (phytochelation synthase). Proc. Natl. Acad. Sci. USA, 86, 6838-6842.

121. Grispen V.M., Nelissen H.J., Verkleij J.A. (2006) Phytoextraction with (Brassica napus L.) a tool for sustainable management of heavy metal contaminated soils. Environ Pollut, 144, 77-83.

122. Guerinot M.L., Salt D.E. (2001) Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiol., 125, 164-167.

123. Gullner, G., Komives, Т., Rennenberg, H. (2001) Enhanced tolerance of transgenic poplar plants overexpressing g-glutamylcysteine synthetase towards chloroacetanilide herbicides. J. Exp. Bot., 52, 971-979.

124. Guo X.X., Zhao H., Shi D.J., Xu J., Xu X. (1998) Expression of mouse MT-1

cDNA in filamenentous cyanobacterium to enhance it's metal -resistance. Acta Bot. Sin., 40, 320-324.

125. Ha S.-B., Smith A.P., Howden R., Dietrich W.M., Bugg S., O'Connell M.J., Goldsbrough P.B., Cobbett C. (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizocaccharomycespombe. Plant Cell, 11, 1-12.

126. Haag-Kerwer A, Schafer HJ, Heiss S, Walter C, Rausch T. (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J. Experimental Botany, 50, 1827-1835.

127. Hale K.L., McGrath S.P., Lombi E., Stack S.M., Terry N., Pickering I.J., George G.N., Pilon-Smits E.A.H. (2001). Molybdenum sequestration in Brassica species. A role for anthocyanins. Plant Physiology, 126, 1391-1402.

128. Hall J.L. (2002) Cellular Mechanisms for Heavy Metal Detoxification and Tolerance. J. Exp. Bot., 53, 1-11.

129. Hall J., Williams E. (2003) Transition metal transporters in plants. J. Exp. Bot., 54, 2601-2613.

130. Haudecoeur E., Planamente S., Cirou A., Tannieres M., Shelp B. J., Morera S., Faure D. (2009) Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. U. S. A., 106, 14587-14592.

131. Heath R.L., Packer L. (1968) Photoperoxidation in Isolated Cloroplasts. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys., 125, 189-198.

132. Herrero E.M., Lopez-Gonzalves A., Ruiz M.A., Lucas-Garia J.A., Barbas C., (2003) Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus and Helianthus annus grown in contaminated soils. Int. J. Phytoremediation, 5, 153-167.

133. Hesegawa I., Terada E., Sunairi M., Wakita H., Shinmachi F., Noguchi A., Nakajima M., Yazaki J. (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil, 196, 277-281.

134. Higginson T., Li S.F., Parish R.W. (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J., 35, 177-192.

135. Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR. (1996) CAXI, an

H7Ca2+ antiporter from Arabidopsis. Proceedings of the National Academy of Sciences, USA. 93, 8782-8786.

136. Hirschi KD. (1999) Expression of Arabidopsis CAXI in tobacco: Altered calcium homeostasis and increased stress sensitivity. Plant Cell, 11, 2113-2122.

137. Hirschi K. D., Korenkov V. D., Wilganowski N. L., Wagner G. J. (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol., 124, 125-133.

x

138. Hong Z., Lakkineni K., Zhang Zh., Verma D. Pal S. (2000) Removal of feedback inhibition of delta(l)-pyrroline-5-carboxylate synthetase results in increased prolineaccumulation and protection of plants from osmotic stress. Plant Physiol., 122, 1129-1136.

139. Hooda V. (2007) Phytoremediation of toxic metals from soil and waste water. J. of Environmental Biology, 28, 367-376.

140. Howden R., Goldsbrough P.B., Andersen C.R., Cobbett C. (1995) Cadmium sensitiven cad 1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol., 107, 1059-1066.

141. Inglesia-Turino S., Febrero A., Jauregui O., Caldelas C., Araus J.L., Bort J.,

(2006) Detection and quantification of unbound phytochelatin 2 in plant extracts of Brassica napus grown with different levels of mercury. Plant Physiol., 142, 742-749.

142. Inomata N. (1983) Hybrid progenies of the cross, Brassica campestris B.oleracea II. Crossing ability of F1 hybrids and their progenies. Jap. J. of Genet., 58, 433-449.

143. Ito M., Araki S., Matsunaga S., Itoh T., Nishihama R., Machida Y., Doonan J.H., Watanabe A. (2001) G2/M phase-specific transcription during the plant cell cycle is mediated by c-Myb-Like transcription factors. Plant Cell, 13, 1891-1905.

144. Jaffre T, Brooks R.R., Lee J., Reeves R.D. (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science, 193, 579-580.

145. Jones M.M., Osmond C.B., Turner N.C. (1980) Accumulation of solutes in leaves of sorghum and sunflower in response to water deficits. Aust. J. Plant Physiol., 7, 193-205.

146. Jin H., Martin C. (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol, 41, 577-585.

147. Jin H., Cominelli E., Bailey P., Parr A., Mehrtens F., Jones J., Tonelli C., Weisshaar B., Martin C. (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBOJ., 19, 6150-6161.

148. Kawashima C. G., Noji M., Nakamura M., Ogra Y., Suzuki K. T., Saito K.

(2004) Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol. Lett., 26, 153-157.

149. Kholodova V.P., Ivanova E.M., Kuznetsov VI.V. (2011) Initial step of copper detoxification: outside and inside of the plant cell. Soil Biology, 30, 143-167.

150. Klaasen C.D., Lin J., Choudhuri S. (1999) Metallothionein: An intracellular

protein to protect against cadmium toxicity. Annu. Rev. Pharmacol. Toxicol., 39, 267294.

151. Klempnauer K-H., Gonda T.J., Bishop J.M. (1982) Nucleotide sequence of the retroviral leukemia gene v-Myb and its cellular progenitor c-Myb: the architecture of a transduced oncogene. Cell, 31, 453-463.

152. Kidd P.C., Poschenrieder C., Barcelö J. (2001) Does root exudation of

phenolics play a role in aluminium resistance in maize (Zea mays L.). Plant nutrition, 2, 504-505

153. Kieselbach T., Hagman Ä., Andersson B., Schröder W.P. (1998) The thylakoid lumen of the chloroplasts: isolation and characterization. J. Biol. Chem., 273, 6710-6716.

154. Kiyosue T., Yoshiba Y., Yamaguchi-Shinozaki K., Shinozaki K. (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved proline metabolism, is upregulated by proline but downregulated by dehydration Arabidopsis. Plant Cell, 8, 1323-1335.

155. Kohl D., Schubert K.R., Carter M.B., Hagedorn C.H., Shearer G. (1988) Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis. Proc. Natl. Acad. Sei. U. S. A., 85, 2036-2040.

156. Konno H., Nakato T., Nakashima S., Katoh K. (2005) Lygodium japonicum fern accumulates copper in the cell wall pectin. J. Exp, Bot., 56, 1923-1931.

157. Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC.

(1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature., 379: 635-638.

158. Krämer U., Smith R.D., Wenzel W.W., Raskin I., Salt D.E. (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol., 115, 1641-1650.

159. Krämer U., Clemens S. (2005) Functions and homeostasis of zinc, copper, and nickel in plants. In: Molecular Biology of Metal Homeostasis and Detoxification, Tamäs MJ, Martinoia E (eds.). The: Berlin, Heidelberg, pp. 215-254

m in

160. Kramer U., Talkea I.N., Hanikenneb M. (2007) Transition metal transport. FEBSLett., 581, 2263-2272.

161. Krebs DL, Uren RT, Metcalf D, Rakar S, Zhang JG, Starr R, De Souza DP,

Hanzinikolas K, Eyles J, Connolly LM, Simpson RJ, Nicola NA, Nicholson SE, Baca'

M, Hilton DJ, Alexander WS. (2002) SOCS-6 binds to insulin receptor substrate 4, and

mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol. Cell Biol., 13, 45674578.

162. Krotz R.M., Evancelou B.P., Wagner G.J. (1989). Relationships between

cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells. Plant Physiol., 91,780-787.

163. Kuk Y. I., Shin J. S., Burgos N., Hwang T., Han O., Cho B. H, Jung S., Guh

J. O. (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. CropSci., 43,2109-2117.

164. Kiiper J., Llamas A., Hecht H.J., Mendel R.R., Schwarz G. (2004) Structure of the molybdopterin-bound CnxlG domain links molybdenum and copper metabolism. Nature, 430, 803-806.

165. Kuznetsov VI.V., Rakitin V., Borisova N.N., Rotschupkin B.V. (1993) Why does Heat Shock Increase Salt Resistance Cotton? Plant Physiol. Biochem., 31, 181-188.

166. Kuznetsov V1.V., Shevyakova N.I. (1997) Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiol. Plant, 100, 1035-1040.

167. Larsson R.A. (1988) The antioxidants of higher plants. Phytochem., 27, 969-978.

168. Lasat M.M., (2002) Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual., 31, 109-120.

169. Latchman D.S. (2007) Eukaryotic Transcription Factors. Academic Press. New York. pp. 488.

170. Lee M.M., Schiefelbein J. (1999) WEREWOLF, a MYBrelated protein in

Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell, 99, 473483.

171. Lee M.W., Qi M., Yang Y. (2001) A novel jasmonic acid-inducible rice myb

gene associates with fungal infection and host cell death. Mol Plant Microbe Interact, 14, 527-535.

172. Lee S., Moon J.S., Ko Tae-Seok, Petros D., Goldsbrough P.B., Korban S.S.

(2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol.,131, 656-633.

173. Lefebvre DD, MM BL, Laliberte JF. (1987) Mammalian metallothioneins functions in plants. BioTechnology, 5, 1053.

174. Lewis S, Handy RD, Cordi B, Billinghurst Z, Depledge M.H. (1999) Stress

proteins (HSPs): methods of detection and their use as an environmental biomarker. Ecotoxicology, 8, 351-368.

175. Lewis S, Donkin ME, Depledge MH. (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquatic Toxicology, 51, 277-291.

176. Leyva A., Jarrillo J.A., Salinas J., Maraez-Zapater M. (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNA of Arabidopsis thaliana in light-dependent manner. Plant Physiol., 10, 839-846.

177. Li Y., Dhankher O. P., Carreira L., Lee D., Chen A., Schroeder,J. I., Balish R. S., Meagher R. B. (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic toleranceand cadmium hypersensitivity. Plant Cell Physiol., 45, 1787-1797.

178. Lin Y., Schiefelbein J. (2001) Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis. Development., 128, 3697-3705.

179. Lipsick J.S. (1996) One billion years of Myb. Oncogene, 13, 223-235.

180. Llugany M., Lombini A., Poschenrieder C., Dinelli E., Barcelo J. (2003) Different mechanisms account for enhanced copper resistance in Silene armeria ecotypes from mine spoil and serpentine sites. Plant Soil, 251, 55-63.

181. Liu X., Gao Y., Duan S. K. G., Chen A. L., Zhao L., LIU L. Z., Wu X. (2008)

Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their

potential accumulation capacity in Heqing, Yunnan. Environmental Sciences, 20, 14691474.

182. Liu J, Zhu J-K. (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol., 114, 591-596

183. Luo C., Shen Z., Li X., Baker A. J. (2006) The role of root damage in the chelate-enhanced accumulation of lead by Indian mustard plants. J Phytoremediation., 8, 323-37.

184. Ma M., Tsang W.K., Kwan K.M.F., Lau P.S., Wong Y.S. (1997). Preliminary studies of the identification and expression of metallothionein-like gene in Festuca rubra. ActaBot. Sin., 39, 1078-1081.

185. Macek T., Mackova M., Pavlikova D., Szakova J., Truksa M., Singh Cundy

A. (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol, 22, 101106.

186. Marschner H. (1995) Mineral nutrition of higher plants. Academic Press, London, 344-346.

187. Mattana M., Bizzi E., Consonni R., Locatelli F., Vannini C., Provera S., orragio I. (2005) Overexpression of OsMyb4 enhances compatible soute accumulation and increases stress tolerance of Arbidopsis thaliana. PhysiologiaPantarum, 125, 212 223.

188. Mattioli R., Márchese D., D'Angeli S., Altamura M.M., Costantino P., Trovato M. (2008) Modulation of intracellular proline levelsaffects flowering time and inflorescence architecture in Arabidopsis. Plant Mol. Biol., 66, 277-288.

189. McGrath S.P., Zhao F.J. (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol., 14,277-282.

190. Mediouni C., Ben Ammar W. Guy H., Chaboute M.E., (2009) Cadmium and copper induction of oxidative stress and Antioxidative response in tomato (Solanum licopersicum L.) leaves. Plant Growth Regulation, 57, 89-99.

191. Mengoni A., Gonelli C., Hakvoort H.W.J., Galardi F., Bazzicahipo M., Gabbrielli R., Schat H. (2003) Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant Soil, 257, 451-457.

192. Meychik N.R., Yermakov I.P. (2001) Ion exchange of plant root cell walls. Plant Soil, 234, 181-193.

193. Mishra S.N., Singh D.B. (2000) Accumulation of leaf and cadmium in upper parts of mustard (Brassica júncea) seedlings in response to putrescine. Indian J. Exp. Biol., 38 (8), 814-818.

194. Misra S., Gedamu L. (1989) Heavy metal tolerant transgenic Brassica napus L. mdNicotiana tabacum L. plants. Theor. Appl. Genet., 78, 161-168.

195. Mittova V., Tal M., Volokita M., Guy M. (2003) Up-regulationof the leaf motochondrial and peroxisomal antioxidative systems inresponse to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant, Cell Environ, 26, 845-856.

196. Morina F., Jovanovic L., Kukavica B., Veljovic-Jovanovic S. (2008) Peroxidase, Phenolics, and antioxidative Capacity of Common Mullein (verbascum thapsus 1.) grown in a Zinc Excess.Arch. Biol. Sci., Belgrade, 60, 687-695.

197. Moyano E., Martinez-Garcia J.F., Martin C. (1996) Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers. Plant Cell, 8, 1519-1532.

198. Mullen R.T., Trelease R.N. (2000) The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J. Biol. Chem., 275, 16337-16344

199. Mullineaux P.M., Creissen G.P. (1997) Glutathione reductase: regulation and role in oxidative stress. In: Oxidative stress and the molecular biology of antioxidant defences, Scandalios J.G. (Ed.) Cold Spring Harbor Laboratory Press, 667-714.

200. Munns R. (2005) Genes and salt tolerance: bringing them together. New Phytol., 167, 645-663.

201. Murashige T., Skoog F.A. (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15,473-482.

202. Murphy A., Taiz L. (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance. Plant Physiol., 109, 945-954.

203. Muthukumar B., Yakubov B., Salt D.E. (2007) Transcriptional activation and localization of expression of Brassica juncea putative metal transport protein BjMTPl. BMC Plant Biology., 7, 32-44.

204. Nagaoka S., Takano T. (2003) Salt tolerance-related protein STObinds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J. Exp. Bot, 54, 2231-2237.

205. Nesi N., Jond C., Debeaujon L, Caboche M., Lepiniec L. (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell, 13, 20992114.

206. Neumann D., zur Nieden U., Lichtenberger O., Leopold I. (1995) How does Armeria maritima tolerate high heavy metal concentrations? J. Plant Physiol, 146, 704717.

207. Newman L. J., Perazza D.E., Juda L., Campbell M.M. (2004) Involvement of the R2R3- MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype. Plant J., 37, 239-50.

208. Nouairi I., Ammar W.B., Youssef N.B., Daoud D.M., Ghorbal M., Zarrouk

M. (2006) Comparative study of cadmium effects on membrane lipidcomposition of Brassica juncea and Brassica napus leaves. Plant Scienc, 170, 511-519.

209. Oppenheimer D.G., Herman P.L., Sivakumaran S., Esch J., Marks M.D. (1991) A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell, 67, 483-493.

210. Palmer C.M., Guerinot M.L. (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature chem.. boil., 5, 333-340.

211. Palmiter R.D., Findley S.D. (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc .EMBO Jour., 14, 639-649.

212. Pan A., Yang M., Tie F., Li L., Chen Z., Ru B. (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mo I. Biol., 24, 341-351.

213. Pandolfi D., Solinas G., Valle G., Coraggio I. (1997) Cloning of a cDNA Encoding a Novel myb Gene (accession no. y 11414) Highly Expressed in Cold Stressed Rice Coleoptiles (PGR PGR97-079). Plant Physiol., 114, 747.

214. Panou-Filotheou H., Bosabalidis A.M. (2004) Root structural aspects associated with copper toxicity in oregano (Oreganum vulgare sudsp. hirtum). Plant Sci., 166, 14971504.

215. Pasquali G., Biricolti S., Locatelli F., Baldoni E., Mattana M. (2008) Osmyb4 Expression Improves Adaptive Responses to Drought and Cold Stress in Transgenic Apples, Plant Cell Rep., 27, 1677-1686.

216. Paz-Ares J., Ghosal D., Wienand U., Peterson P., Saedler H. (1987) The regulatory cl locus of Zea mays encodes a protein with homology to Myb oncogene products and with structural similarities to transcriptional activators. EMBO J., 6, 35533558.

217. Pence N. S., Larsen P.B., Ebbs S.D., Letham D.L.D., Lasat M.M., Garvin D:F., Eide D., Kochian L.V. (2000) The Molecular Physiology of Heavy Metal Transport in the Zn/Cd Hyperaccumulator Thlaspi caerulescens. Proc. Natl Adad. Sci. USA., 97, 4956-4960.

218. Penfield S., Meissner R.C., Shoue D.A., Carpita N.C., Bevan M.W. (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell, 13, 2777-2791.

219. Persans MW, Yan, X, Patnoe J-MML, Kramer U, Salt DE. (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in -Thlaspi goesingense. Plant Physiology, 121, 1117-1126.

220. Pilon-Smits E. A., Hwang S., Mel Lytle C., Zhu Y., Tai J. C., Bravo R. C., Chen Y., Leustek T., Terry N. (1999) Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol., 119, 123-132.

221. Pilon-Smits E. A. H., Zhu Y. L., Sears T., Terry N. (2000) Overexpression of glutathione reductase in Brassica juncea: effects oncadmium accumulation and tolerance. Physiol. Plant., 110, 455- 460.

222. Pilon-Smits, E.; Pilon, M. (2002) Phytoremediation of metals using transgenic plants. Crit. Rev. Plant Sci., 21, 439-456.

223. Pilson-Smits E. (2005) Phytoremediation. Annu. Rev. Plant Biol., 56, 15-39.

224. Prasad MNV. (1999) Metallothioneins and metal binding complexes in plants. In: Prasad MNV, Hagemeyer J, eds. Heavy metal stress in plants: from molecules to ecosystems. Berlin: Springer-Verlag: 51-72.

225. Raffaele S., Rivas S. (2006) An essential role for salicylic acid in AtMYB30-mediated controls of the hypersensitive cell death program in Arabidopsis. FEBSLetters, 580,3498-3504.

226. Rains D.W. (1989) Plant tissue and protoplast culture: application to stress physiology and biochemistry .In: Plants under Stresses. Biochemistry. Physiology and Ecology. Their Application to Plant Improvement, pp. 181-196.

227. Raskin, I. (1996) Plant genetic engineering mayhelp with environmental cleanup. Proc. Natl. Acad. Sci. U.S.A., 93 (8), 3164-3166.

228. Rauser W.E. (1995) Phytochelatins and related peptides. Structure, biosynthesis and function. Plant Physiol., 109, 1141-1149.

229. Rauser W.E. (1999) Structure and function of metal chelators produced by plants - the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem. Biophys., 31, 19-48.

230. Rea PA, Li Z-S, Lu Y-P, Drozdowicz, YM. (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 727-760.

231. Reeves RD, Brooks RR, Dudley TR. (1983) Uptake of nickel by species of Alyssum, Bornmuellera and other genera of Old World Tribus Alysseae. Taxon, 32, 184192.

232. Reeves R.D., Baker A.J.M. (2000) Metal-accumulating plants. In: Raskin I., Ens ley, B.D. Phytoremediation of Toxic Metals. John Wiley and Sons Inc. New York, P.231-246.

233. Rennenberg H., Will B. (2000) Phytochelatin production and cadmium accumulation in transgenic poplar (Populus tremula - P. alba). In Sulfur Nutrition and Sulfur Assimilation in Higher Plants, Brunold, C., Rennenberg, H., de Kok, L. J., Stulen, I., Davidian, J.-C., Eds., Paul Haupt: Bern., pp 393-398

234. Rice-Evans CA, Miller NJ, Paganga G. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci., 2, 151.

235. Ridge I., Osborne D.J. (1971) Role of peroxidase when hydroxyproline-rich protein in plant cell wall is increased by ethylene. Nature, New biol., 229 205-208

236. Rivero R.M., Ruiz J., Bretones G., Baghour M., Ragala A., Belakbir A., Romero L. (1998) Relationship between boron and phenolic metabolism in tobacco leaves. Phytochemistry, 48,269-272.

237. Rodrigues F.I., Esch J.J., Hall A.E., Binder B.M., Schaller G.E., Bleecker

A.B. (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science, 283, 996-998.

238. Robinson NJ, Tommey AM, Kuske C, Jackson PJ. (1993) Plant metallothioneins. Biochemical Journal, 295, 1-10.

239. Roosens N.H., Bernard C., Leplae R., Verbruggen N. (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Letters, 577, 9-16.

240. Ros R.O.C., Cooke D.T., Burden R.S., James C.S. (1990) Effects of the herbicide MCPA and the heavy metals, cadmium and nickel on the lipids composition, of Exp. Botany, 41, 457-462.

241. Rout G.R., Das P. (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie, 23, 3-11.

242. Rugh C. L., Wilde H. D., Stack N. M., Thompson D. M., Summers A. O., Meagher R. B. (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sei. U.S.A. 93, 3182-3187.

243. Rugh C. L., Senecoff J. F., Meagher R. B., Merkle S. A.n (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol, 16, 925-928.

244. Rugh C. L., Bizily S. P., Meagher R. B. (2000) Phytoreduction of environmental mercury pollution. In Phytoremediation of Toxic Metals- Using Plants to Clean up the Environment; Raskin, I., Ensley, B. D., Eds.; Wiley: New York, pp 151-171.

245. Saradhi P.P., Arora A.S., Prasad K.V. (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem. Biophys. Res. Commun, 209, 1-5.

246. Salt D.E., Krämer U. (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley B (eds) Phytoremediation of Toxic Metals. John Wiley and Sons Inc., New York, 231-246.

247. Salt DE, Rauser WE. (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology, 107, 1293-1301.

248. Salt DE, Wagner GJ. (1993) Cadmium transport across tonoplast. of vesicles from oat roots. Evidence for a Cd2+/H? antiport activity. J. Biological Chemistry., 268, 1297-1230.

249. Sandmann G., Boger P. (1980) Copper deficiency and toxicity in Scenedesmus. Z., Pflanzenphysiol. 98, 53-59.

250. Scandalios J.G. (1990) Response of plant antioxidant defense genes to environmental stress. Adv. Genet., 28, 1-41.

251. Schafer H.J., Greiner S., Rausch T., Haag-Kerwer A. (1997) In seedlings of the heavy metal accumulator Brassica juncea Cu differentially affects transcript amounts for gamma-glutamylcysteine synthetase and metallothionein. FEBS Lett., 404, 216-220.

252. Schat, H., Sharma, S.S., and Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol. Plant, 101, 477-482.

253. Schmitz G., Tillmann E., Carriero F., Fiore C., Theres K. (2002) The tomato, Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA., 99, 1064-1069.

254. Schuetzenduebel A., Polle A. (2003) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhyzation. J. Experimental Botany, 53, 1351-1365.

255. Schubert M., Petersson U.A., Haas B.J., Funk C., Schroder W.P., Kieselbach

T. (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J. Biol. Chem., 227, 8354-8365.

256. Seki M., Shinozaki K., Yamaguchl-Shinozaki K. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal, 33, 751-763.

257. Sen A.G., Heinen J.L., Holaday A.S., Burke J.J., Allen R.D. (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Sci. USA., 90, 1692-1633.

258. Seo H.S., Yang J.Y., Ishikawa M., Bolle C., Ballesteros M.L., Chua N.H.

(2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature, 424, 995-999.

259. Shaul O., Hilgemann D. W., de Almeida-Engler J., van Montagu M., Inze D., Galili G., (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J. 18,3973-3980.

260. Shier W.T. (1994) Metals as toxins in plants, J. Toxicol.-7bx/« Rev., 13, 205-216.

261. Shin B., Choi G., Yi H., Yang S., Cho I., Kim J., Lee S., Paek N.C., Kim J.H., Song P.S., Choi G. (2002) AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1. Plant J., 30, 23-32.

262. Smith-Becker J, E. Marois, E.J. Huguet, S.L. Midlands, J.J. Sims, N.T. Keen.

(1998) Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance in preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stem. Plant Physiol, 116, 231- 238

263. Siedlecka A. (1995).Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc. Bot. Pol., 64, 262-272.

264. Silver S. (1996) Bacterial resistance to toxic metal ions - a review. Gene, 179, 919.

265. Singh P.K., Tewary R.K. (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J. Environ. Biol., 24, 107-112.

266. Singh O. V., Labana S., Pandey G., Budhiraja R., Jain R. K. (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl. Microbiol. Biotechnol, 61, 405-412.

267. Siripornadulsil S., Train S., Verma D.P.S., Sayre R.T. (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell, 14, 2837-2847.

268. Solecka D, Kacperska A. (1995) Phenylalanine ammonia-lyase activity in leaves of winter oilseed rape plants as affected by acclimation of plants to low temperature. Plant Physiol Biochem., 33, 585-91...

269. Song L.Y., Shi D.J., Nni Y., Luo N., Shao N., Yu M.M. et al. (2001) The integration and expression of beta-beta mutant gene of human liver metallothionein in Synechocystis sp. PCC 6803 by homology recombination. Acta Bot. Sin.,43, 399-404.

270. Song W. Y., Sohn E. J., Martinoia E., Lee Y. J., Yang Y. Y., Jasinski M., Forestier C.,HwangI., Lee Y. (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol. 21, 914-919.

271. Steiner-Lange S., Unte U.S., Eckstein L., Yang C., Wilson Z.A., Schmelzer E., Dekker K., Saedler H. (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J., 34:519-528.

272. Stracke R., Werber M., Weisshaar B. (2001) The R2R3 gene family in Arabidopsis thaliana. Curr Opin Plant Biol., 4, 447-456.

273. Sunkar R., Kaplan B., Bouche N., Arazi T., Dolev D., Talke I. N., Frans J. M. Maathuis F. J. M., Sanders D., Bouchez D., Fromm H. (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J., 24, 533-542

274. Suvarnalatha G., Rajendran L., and Ravishankar G.A. (1994). Elicitation of anthocyanin production in cell cultures of carrot (Daucus carota L) by using elicitors and abiotic stress. Biotechnology Letters, 16, 1275-1280.

275. Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszär J, Ayaydin F, Strizhov N, Jäsik J, Schmelzer E, Koncz C, Szabados L. (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J., 53, 11-28.

276. Tang C.F., Liu Y.G., Zeng G.M., Li X., Xu W.H., Li C.F. (2005) Effects of exogenous spermidine on antioxidant system responses of Typha letifolia L. under Cd stress J. Int. Plant Biol., 47, 428-434.

277. Taylor C.B. (1996) Proline and water deficit: ups, down, ins, and outs. Plant Cell, 8, 1221-1224.

278. Thomas J.C., Davlas E.C., Malick F.K., Endreszl C., Williams C.R., Abbas M., Petrella S., Swisher K., Perron M., Edwards R., Osenkowski P., Urbanczyk N., Wiesend WN., Murray KS. (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog., 19,273-280.

279. Tseng TS, Tzeng S.S., Yeh C.H., Chang F.C., Chen Y.M., Lin C.Y. (1993) The heat-shock response in rice seedlings - isolation and expression of cDNAs that encode class-I low molecular weight heat-shock proteins. Plant and Cell Physiology, 34, 165168.

280. Van Assche F., Clijsters H. (1986) Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose 1,5-bisphosphate carboxylase/oxygenase. J. Plant Physiol., 125, 355-360.

281. Van Camp W., Capiau K., van Montagu M., Inze D., Slooten L. (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol., 1, 1703-1714.

282. Van der Zaal B. J., Neuteboom L. W., Pinas J. E., Chardonnens A. N., Schat H. Verkleij J. A. C., Hooykaas P. J. J. (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animal can lead to enhanced zinc resistance and accumulation. Plant Physiol., 119, 1047-1055.

283. Van Hoof N.A., Hassinen V.H., Hakvoort H.W., Ballintijn K.F., Schat H., Verkleij J.A., Ernst W.H. (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol., 126, 1519-1526.

284. Van Huysen T., Abdel-Ghany S., Hale K. L., LeDuc D., Terry N., Pilon-Smits E. A. (2003) Overexpression of cystathionine-gammasynthase enhances selenium volatilization in Brassica juncea. Planta, 218, 71-78.

285. Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. (2004) Overexpression of the Rice Osmyb4 Gene increases Chilling and freezing Tolerance of Arabidopsis thaliana Plants. Plant J., 37, 115-127.

286. Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Coraggio I, Genga A. (2006) The ectopic Expression of the Rice Osmyb4 Gene in Arabidopsis increases Tolerance to abiotic, environmental and biotic Stresses. Physiol Mol Plant Pathol., 69, 26-42.

287. Vatamaniuk OK, Mari S, Lu Y-P, Rea PA. (1999) AtPCSl, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proceedings of the National Academy of Sciences, USA., 96, 7110-7115.

288. Vatamaniuk O.K., Mari S., Lu, Y. -P., Rea P.A. (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J. Biol. Chem., 275, 31451-31459.

289. Vierling V. (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mo 1 Biol., 42 579-620

290. Wada T., Tachibana T., Shimura Y., Okada K. (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science, 211, 11131116.

291. Wainwright S.J., Woolhouse H.W. (1977) Some physiological aspects of copper and zinc tolerance in Agrostis tenuis. J. Exp. Botany, 28, 1029-1036.

292. Wang C., Zhang S.H., Wang P.F., Hou J., Zhang W. J., Li W., Lin Z.P. (2009) The effect of excess Zn on Mineral Nutrition and antioxidative Response in Rapeseed seedlings. Chemosphere. 75, 1468-1476.

293. Wangeline A. L., Burkhead J. L., Hale K. L., Lindblom S. D., Terry N., Pilon M., Pilon-Smits E. A. (2004) Overexpression of ATP sulfurylase in indian mustard: effects on tolerance and accumulation of twelve metals. J. Environ. Qual., 33, 54 60

294. Wei L., Luo C., Li X., Shen Z. (2008) Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanense L. Arch. Environ. Contamin. Toxicol, 55, 230-246.

295. Westhoff P., Nelson N., Bunemann H., Herrman B.G. (1981) Localization of genes for coupling factor subunits on the spinach plastid chromosome. Curr. Genet., 4, 109-120.

296. Wingsle G, Hallgren J.-E. (1993) Influence of S02 and N02 exposure on glutathione, Superoxide dismutase and glutathione reductase activities in Scots pine needles. J. Exp. Bot., 44, 463-470.

297. Wise, R.R. (1995) Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species during chilling in the light. Photosynthesis Research, 45, 79-97.

298. Wollgiehn R, Neumann D. (1999) Metal stress response and tolerance of cultured cells from Silene vulgaris and Lycopersicon peruvianum: role of heat stress proteins. J. Plant Physiology, 154, 547-553.

299. Wong H.L., Sakamoto T., Kawasaki T., Umemura K., Shimamoto K. (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRacl inricq. Plant Physiol., 135, 1447-1456.

300. Wu F., Zhang G., Dominy P. (2003) Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ. Exp. Bot., 50, 67-78

301. Wyn Jones R.G., Storey R., Leigh R.A., Ahmad N., Pollard A. (1977) A hypothesis on cytoplasmic osmoregulation. In: Regulation of Cell Membrane Activities in Plants, Marré E., Cifferi O. (eds.) Amsterdam: Elsevier, pp. 121-136.

302. Xin, Z. and Browse, J. (1998) Eskimo 1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. U. S. A., 95, 7799-7804.

303. Xiong Z.T., Li Y.H., Xu B. (2002) Nutrition influence on copper accumulation by Brassica pekinensis Rupr. Exotoxicol Environ. Saf, 53, 200-205.

304. Xiong Z.T., Wang H. (2005) Copper toxicity and bioaccumulation in Chinese cabbage (Brassicapekinensis Rupr.). Environ. Toxicol., 20, 188-194.

305. Yang X.E., Baligar V.C., Martens D.C., Clark R.B. (1995) Influx, transport and accumulation of cadmium in plant species grown at different Cd2+ activities. J. Environ. Sci. Health. 30, 569-583.

306. Yoshiba Y., Nanjo T., Miura S., Yamaguchi-Shinozaki K., Shinozaki K.

(1995) Correlation between the induction of a gene for delta l-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J., 7, 751-760.

307. Yruela I. (2009) Copper in plants: acquisition, transport and interactions. Funct. Plant Biol., 36, 409-430

308. Youssef N., Nouairi I., Temime S., Taamalli W., Zarrouk M., Ghorbal M.H., Daoud D. (2005) Cadmium effects on lipid metabolism of rape (Brassica napus L.). C.R. Biol, 328, 745-757. 196..

309. Zhang X.-H., Lin A.-J., Gao Y.-L., Reid R.J., Wong M.-H., Zhu Y.-G. (2009). Arbuscular mycorrhizal colonization increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol. Biochem., 41, 930-937.

310. Zhang X.Y., Zhou W., Ru B.G. (2000a) Transgenic tobacco with alfalfa mutant gene has higher tolerance to heavy metals. Acta Botanica Sin.,42,416-420.

311. Zhang X.Y., Zuo X.F., Xiao Ch.Y., Shan L., Ru B.G. (2000b) Expression of the mouse metallothionein mutant alfalfa cDNA improving cadmium resistance in transgenic tobacco. Chin J Biochem Mol. Biol., 16, 631-636.

312. Zhou J., Goldsbrough P.B. (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell, 6, 875- 884.

313. Zhu Y.L., Pilon-Smits E.A.H., Tern A.S., Weber S.U., Jouanin L., Terry N. (1999a) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol.,121, 1169-1177.

314. Zhu Y.L., Pilon-Smits E.A.H., Jouanin L., Terry N. (1999b) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol., 119, 73-79.

315. Zhulidov D. A., Robards R. D., Zhulidov A. V., Zhulidova О. V., Markelov D. A., Rusanov V. A., Headley J. V. (2002) Zinc Accumulation by Slime Mold Fuligo septica (L.). J. Environ. Qual., 31, 1038-1042.

Автор выражает глубокую признательность своему научному руководителю к.б.н. Галине Николаевне Ралдугиной, а также д.б.н. профессору Владимиру Васильевичу Кузнецову за поддержку и внимание и бесценную помощь не только в научной работе, но и в различных жизненных ситуациях.

Моя глубокая благодарность к.б.н. Холодовой Валентине Павловне за помощь в работе и обсуждение результатов; а также всем сотрудникам и аспирантам лаборатории молекулярных и физиологических механизмов адаптации Института физиологии растений им. К.А. Тимирязева РАН за поддержку и дружеское отношение. Я благодарю также свою маму, папу и жену за любовь, доброту, понимание и терпение.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.