Coordination compounds of some metals with hydroxy and hydrazine derivatives of benzoic acid as precursors of nanosized oxide catalysts (Координационные соединения некоторых металлов с гидрокси- и гидразинпроизводными бензойной кислоты в качестве предшественников наноразмерных оксидных катализаторов) тема диссертации и автореферата по ВАК РФ 02.00.01, кандидат наук Алабада Русул Яхья Джасим

  • Алабада Русул Яхья Джасим
  • кандидат науккандидат наук
  • 2021, ФГАОУ ВО «Российский университет дружбы народов»
  • Специальность ВАК РФ02.00.01
  • Количество страниц 120
Алабада Русул Яхья Джасим. Coordination compounds of some metals with hydroxy and hydrazine derivatives of benzoic acid as precursors of nanosized oxide catalysts (Координационные соединения некоторых металлов с гидрокси- и гидразинпроизводными бензойной кислоты в качестве предшественников наноразмерных оксидных катализаторов): дис. кандидат наук: 02.00.01 - Неорганическая химия. ФГАОУ ВО «Российский университет дружбы народов». 2021. 120 с.

Оглавление диссертации кандидат наук Алабада Русул Яхья Джасим

Content

Introduction

CHAPTER 1. literature review

1.1 General characteristics of hydroxyaromatic carboxylic acids

1.2 Complex compounds of hydroxyaromatic acids

1.2.1 Complexation of hydroxyaromatic acids in solutions

1.2.2 Study of complex compounds of hydroxyaromatic acids by spectral methods

1.2.3 X-ray structural studies of complex compounds of hydroxyaromatic acids

1.2.4 Quantum-chemical modeling of the structure and properties of complex compounds of metals with hydroxyaromatic acids

1.3 Applications of hydroxyaromatic acids and their metal complexes

1.4 Conclusions from the literal surway

CHAPTER 2. EXPERIMENTAL PART

2.1 Research objects

2.2 Research methods

2.2.1 Elemental analysis

2.2.2 Infrared spectroscopy

2.2.3 Electronic spectroscopy

2.2.4 Potentiometric titration

2.2.5 X-ray phase analysis

2.2.6 Thermogravimetric Analysis

2.2.7 Quantum Chemical Simulation

2.2.8 Nuclear magnetic resonance

2.2.9 X-ray structural analysis

2.2.10 Micrographs

2.3 Synthesis techniques

2.3.1 Synthesis of complex compounds of iron(II), manganese(II), cobalt(II), nickel(II), copper(II) and titanium(IV) with 2,4,6-trihydroxybenzoic acid (H4L1)and 3,4,5 -trihydroxybenzoic acid (H4L2)

2.3.2 Synthesis of complex compounds of iron(II), cobalt(II), zinc(II)

and copper(II) with 2-hydrazine benzoic acid (HL3)

CHAPTER 3. RESULTS AND DISCUSSION

3.1 Complex compounds of period IV elements with hydroxyaromatic

acids

3.1.1 Study of complexation processes in solutions by

potentiometry

3.1.2 Spectrophotometry study of the complexation processes of H4L1 and H4L2 in aqueous solutions

3.1.3 Characterization of complex compounds of metals with of H4L1

and H4L2, isolated in the crystalline state

3.1.4 Quantum Chemical Simulation

3.1.4.1 Quantum-chemical modeling of the structure of the molecule of 2,4,6-trihydroxybenzoic acid and its metal complexes

3.1.4.2 Quantum-chemical modeling of the structure of the molecule of 3,4,5-trihydroxybenzoic acid and its metal complexes

3.2 Complex compounds of transition metals with 2-hydrazine benzoic acid

3.3 Use of complex compounds of metals with H4L1 and H4L2 to obtain nanoscale metal oxides

3.3.1 Thermal stability of metal complexes and characteristics of their thermal decomposition products

3.3.2 Preparation of mixed oxide phases based on titanium(IV) and cobalt(II, III) oxides

3.3.3 Study of the photocatalytic properties of nanosized TiO2 modified

with cobalt cations

Conclusions

References:

Рекомендованный список диссертаций по специальности «Неорганическая химия», 02.00.01 шифр ВАК

Введение диссертации (часть автореферата) на тему «Coordination compounds of some metals with hydroxy and hydrazine derivatives of benzoic acid as precursors of nanosized oxide catalysts (Координационные соединения некоторых металлов с гидрокси- и гидразинпроизводными бензойной кислоты в качестве предшественников наноразмерных оксидных катализаторов)»

INTRODUCTION

Relevance of work

Heterogeneous solid-phase catalysts based on transition metal oxides are widely used in various fields of science and technology (industrial tonnage and fine organic synthesis, air and wastewater purification from industrial pollution). Unlike homogeneous systems, they are easily separated from the reaction mixture, do not pollute it, and have a wide pH range of catalytic action. The transition to nanoscale systems significantly increases the active surface of the catalyst and, as a result, increases its catalytic activity. One of the promising methods for the preparation of oxide metal nanoparticles is the hydrothermal method, in which precursors (hydroxides, nitrates, carbonates, oxalates) are precipitated from aqueous solutions with subsequent calcination. The use of organic metal complexes is much more effective, since the release of a large amount of gaseous decomposition products does not allow the particles of the formed oxides to "stick together" and leads to a significant decrease in the size of the oxide catalyst grains and an improvement in the properties of their surface. From an economic point of view, it is important to reduce the temperature and processing time of precursors while maintaining the physicochemical characteristics of the resulting catalyst, in connection with which the search for optimal precursors based on cheap raw materials and optimization of ways to obtain nanosized catalysts are very urgent.

The degree of elaboration of the topic

A review of the literature on the research topic shows that inorganic salts or freshly precipitated metal hydroxides are usually used as precursors for the synthesis of nanosized metal oxides. Earlier, at the Department of General Chemistry of the Peoples' Friendship University of Russia, studies were carried out on the possibility of using complex compounds of derivatives of N-nitrosohydroxylamine [1] and some dihydroxyaromatic compounds [2] for these purposes. The disadvantages of these precursors include the high energy intensity of nitrosohydroxylamine derivatives, which leads to the fact that their metal complexes when heated, they

often decompose with an explosion, as well as a weak complexing ability of polyhydroxyphenols, which complicates the formation of coordination compounds.

The use of polyhydroxy aromatic carboxylic acids as ligands for the synthesis of metal complexes-precursors of nanosized metal oxides is an urgent line of research in this field. The carboxyl group, due to its acidic properties, can interact with most metal cations. The presence of hydroxyl groups in the ortho-position to the carboxyl group leads to the possibility of the formation of metal chelate rings, which increase the stability of the complex compounds. Low decomposition temperatures of organic ligands, accompanied by the release of a large amount of gaseous products (carbon dioxide and water), do not pollute the environment and do not introduce additional impurities during the thermal decomposition of their metal complexes. As a result, the precursor processing temperatures are significantly reduced to obtain nanosized oxide materials.

Statement of the task and the aims of the study

Analysis of the literature data showed that a new approach to the isolation of nanosized oxide catalysts is the use of complex compounds of metals with organic ligands as precursors. Modification of the base oxide with metal cations in other oxidation states and non-metallic atoms leads to an improvement in the physicochemical characteristics of its surface and, as a result, to a change in catalytic activity. In this regard, the aim of this work was to synthesize new coordination compounds of metals with 2,4,6-trihydroxybenzoic, 3,4,5-trihydroxybenzoic and 2-hydrazine benzoic acids, to study their physicochemical properties and thermal stability regions, as well as to use these complex compounds and their mixtures for the preparation of nano-sized oxide materials.

To achieve this goal within the framework of this problem, the following tasks were solved: a) to isolate individual complex compounds and study them using modern physicochemical methods of analysis; b) using the methods of quantum chemical modeling to determine the electronic and geometric characteristics of neutral ligands, their anions and complexes; c) establish the conditions for the

formation of nanosized metal oxides of various morphologies; d) study the catalytic activity of some isolated compounds. In the work, chemical and physicochemical research methods were used: elemental, potentiometric, thermogravimetric, X-ray structural analysis methods; IR and electronic spectroscopy; electron microscopy; DFT calculations.

Scientific novelty

Using modified methods, 15 new complex compounds Mn(II), Fe(II), Co(II), Ni(II), Zn(II), Cu(II) and Ti(IV) with 2,4,6 -trihydroxybenzoic, 3,4,5-trihydroxybenzoic, 2-hydrazinebenzoic and 2-chlorobenzoic acids, their composition and structure have been established. The molecular and crystal structures of the two compounds have been determined. Tautomeric and ionic forms of the existence of organic molecules under complexation conditions have been determined. The processes of complexation in solutions have been studied. The composition and formation constants of complex compounds in ethanol solutions have been determined. Quantum-chemical modeling of organic ligands and their metal complexes was carried out, based on the correspondence between the calculated and experimental data, the structure of complex compounds is proposed. The conditions for the formation of nanoparticles of metal oxides of various morphologies were determined, and their catalytic activity in photodegradation reactions of phenol-containing compounds was shown. It was found that during the complexation of 2-hydrazine benzoic acid with copper(II) chloride, the hydrazine substituent in the organic molecule is replaced by a chlorine atom.

Scientific and practical value

Theoretical and experimental results and conclusions contribute to the coordination chemistry of transition metals and metal complexes with hydroxyaromatic carboxylic acids. They can be used in the study of related organic molecules. The results of the work (structural, spectroscopic, and electronic characteristics) will be included in the corresponding reference books, reviews, and monographs. The results obtained on the thermal decomposition of metal complexes

can be used to develop methods for the low-temperature method for the synthesis of nanosized metal oxide catalysts.

Research methodology and methods

The methodology of the work is associated with solving problems and achieving the objectives of the study. It consists in the experimental substantiation of the choice of methods for the synthesis of coordination compounds and methods for their analysis. The oxide phases obtained because of heat treatment of precursors were studied by a combination of research methods to determine their phase composition, homogeneity, and potential photocatalytic properties.

Provisions for Defense

1. Synthesis of complex compounds of 3d-metals with hydroxy and hydrazine derivatives of benzoic acid.

2. Complexation in solutions, crystal and molecular structure of some ligands and metal complexes.

3. Quantum-chemical modeling of stable forms of ligands and metal complexes.

4. Testing of the obtained compounds as precursors for the synthesis of nano-sized metal-oxide phases and their catalytic activity.

Reliability of results

The degree of reliability of the results is determined by the use of a set of independent research methods and certified measuring instruments, the use of mathematical statistics methods for processing the results obtained, the reproducibility of the experiment and the consistency of conclusions to existing scientific concepts.

Approbation of work

The main results of the work were reported and discussed at the XXX Symposium «Contemporary Chemical Physics» (Tuapse, September 2018), the Ninth International Scientific Conference «Chemical Thermodynamics and Kinetics»

(Tver, May 2019), XXI Mendeleev Congress on general and applied chemistry (St. Petersburg, September 2019); SCON 2nd International Conference on Materials Science and Nanotechnology (Amsterdam, November 2019); 10th International Advances in Applied Physics & Materials Science Congress & Exhibition (APMAS 2020) (Turkey, October 2020).

There are 8 published works on the topic of the dissertation, of which 3 are in scientific journals indexed in international databases and in publications from the List recommended by the Academic Council of the RUDN University.

The structure and scope of the thesis.

The dissertation consists of an introduction, a literature review, an experimental part, a discussion of the results, conclusions and a bibliography containing 147 titles. It is presented on 119 pages and includes 48 figures and 14 tables.

Заключение диссертации по теме «Неорганическая химия», Алабада Русул Яхья Джасим

CONCLUSIONS

1. The structures of 15 previously undescribed complex compounds of Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Ti(IV) with 2,4,6-trihydroxy benzoic, 3,4,5-trihydroxy benzoic, 2-hydrazine benzoic and 2-chlorobenzoic acids were determined by a combination of experimental research methods (IR, UV, 1H NMR, XRD, potentiometry) and quantum chemical modeling (DFT).

2. The crystal and molecular structure of 2-hydrazine benzoic acid hydrochloride was determined, it was shown that the carboxyl and hydrazine groups in the molecule are turned in such a way that there is no intramolecular hydrogen bond between them, and the chloride anion participates in the formation of hydrogen bonds that form stacks.

3. It was found by X-ray diffraction analysis that at complexation of 2-hydrazine benzoic acid with copper(II) chloride, the hydrazine substituent in the organic molecule is replaced by a chlorine atom.

4. The composition and formation constants of complex compounds have been determined; it was shown that complexation of period IV metals with 2,4,6-trihydroxybenzoic, 3,4,5-trihydroxybenzoic and 2-hydrazine benzoic acids becomes possible at pH> 6.5.

5. It was found that complex compounds of metals with 2,4,6-trihydroxy benzoic and 3,4,5-trihydroxy benzoic acids can be used as precursors for the isolation of nanosized metal oxides.

6. It has been shown that a mixture of nanosized oxides of titanium(IV) (80%) and cobalt(II, III) (20%) can be considered as a potential photocatalyst for removing phenol-containing organic pollutants from aqueous solutions.

Список литературы диссертационного исследования кандидат наук Алабада Русул Яхья Джасим, 2021 год

References

[1] Бостанабад, Али Шейх. Синтез, строение и свойства комплексов металлов с №алкил(бензил)-К-нитрозо гидроксиламинами: диссертация кандидат химических наук: 02.00.01. - М., 2014. - 115 с.

[2] Абсалан, Я. Комплексные соединения металлов IV B группы снекоторыми гидроксилсодержащими лигандами и их использование для синтеза наноразмерных катализаторов фотодеградации полифенолов: диссертация кандидат химических наук: 02.00.01. - М., 2018. - 180 с.

[3] Оксикислоты: учебное пособие для студентов специальности "Химия и экология" III и IV семестры/ В. А. Резников, В. Д. Штейнгарц. - М.: Новосибирский государственный университет, 1999. - C.16.

[4] Карпова, Н.Б. Оксибензойные кислоты [Электронный ресурс] / Н.Б. Карпова // chemport. -1977. - Режим доступа: http://www.chemport.ru/data/chemipedia/article 6174.html.

[5] Hardy, Z. Castada. Thermal degradation of p-hydroxybenzoic acid in macadamia nut oil, olive oil, and corn oil / Hardy Z. Castada, Zhaoyu Sun, Sheryl A. Barringer and Xuesong Huang // J. Am. Oil Chem. Soc. - 2020. - V 97, Issue 3. - P. 229-327.

[6] Jeffrey, A. Manion. Decarboxylation and coupling reactions of aromatic acids under coal-liquefaction conditions / A. Manion Jeffrey, Donald F. McMillen and Ripudaman Malhotra // Energy & Fuels. - 1996. - V 10, Issue 3. - P. 776-778.

[7] Warren, W. Kaeding. Oxidation of aromatic acids. IV. Decarboxylation of salicylic acids // J. Org. Chem. - 1964. - V 29, Issue 9. P. 2556-2559.

[8] James, M. Gibson. Benzene-free synthesis of phenol /James M. Gibson, Phillip S. Thomas, Joshua D. Thomas, Jessica L. Barker, Sunil S. Chandran, Mason K Harrup, K. M. Draths and J. W. Frost // Angew. Chem. Int. Ed.- 2001. - V 40, Issue 10. - P. 1945-1948.

[9] Unit-II: Aromatic Acids -Acidity, effect of substituentson acidity and important reactions of benzoic acid: Lecture Notes - Pharmaceutical Organic Chemistry/ Sumanta Mondal. - M.: GITAM University, 2018. -P. 25.

[10] Li-Li, Lu. Solubilities of gallic acid and its esters in water / Lu Li-Li and Xiu-Yang Lu // J. Chem. Eng. 2007. - V 52, Issue 1. - P. 37-39.

[11] Daneshfar, Ali. Solubility of gallic acid in methanol, ethanol, water, and ethyl acetate / Ali Daneshfar, Hassan S. Ghaziaskar and Nasrolah Homayoun // J. Chem. Eng. - 2008. - V 53, Issue 3. - P. 776-778.

[12] Jian-Dong Zhang. Prediction of aqueous pKa values of hydroxybenzoic acid using hydrogen-bonded complexes with ammonia / Jian-Dong Zhang, Qing-Zhen Zhu, Shu-Jin Li and Fu-Ming Tao // Chem. Phys. Lett. - 2009.

- V 475, Issue 1-3.- P. 15-18.

[13] Swislocka, R. Experimental and theoretical study on benzoic acid derivatives / R. Swislocka, E. Regulska, M. Samsonowicz and W. Lewandowski. // J. Mol. Struct. - 2013. - V 1044. - P. 181-187.

[14] Suresh, S. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid / S. Suresh, S. Gunasekaran and S. Srinivasan // Spectrochim. Acta A. - 2014.

- V 132. - P. 130-141.

[15] Robert, W. 2-Aminopyridinium salieylate / W. Robert, I-Nan Hsu // Acta Crystallogr. C. - 1988. - P. 311-313.

[16] Aarset Kirsten. Molecular structures of benzoic acid and 2-hydroxybenzoic acid, obtained by gas-phase electron diffraction and theoretical calculations / Kirsten Aarset, Elizabeth M. Page and David A. Rice // J. Phys. Chem. A. - 2006. - V 110, Issue 28. - P. 9014 - 9019.

[17] Zhao Jianping. Gallic acid / Jianping Zhao, Ikhlas A. Khana and Frank R. Fronczek // Acta Crystallogr. E. - 2011. - V 67, ISSN 1600-5368. - P. 316-317.

[18] Okabe, N. Gallic acid monohydrate / N. Okabe, H. Kyoyama and M. Suzuki // Acta Crystallogr. E. - 2001. - V 57. - P. 764-766

[19] Jiang, R.-W. Gallic acid monohydrate / R. W. Jiang, D. S Ming, , P. P. H. But and T. C. W Mak // Acta Crystallogr. C. - 2000. - V 56. - P. 541543.

[20] Billes, F. Vibrational spectroscopic study on the quantum chemical model and the X-ray structure of gallic acid, solvent effect on the structure and spectra/ F. Billes, I. Mohammed-Ziegler and P. Bombicz // Vib. Spectrosc. - 2007. - V 43, Issue 1. - P. 193 - 202.

[21] Ramanpreet Kaur. Polymorphic anhydrous cocrystals of gallic acid and acetamide from methanol: pointers toward a stable cocrystal form / Kaur Ramanpreet and N. Tayur // Cryst. Growth Des. - 2012. - V 12, Issue 6. -P. 2744-2747.

[22] Etter, M. C. Encoding and decoding hydrogen-bond patterns of organic compounds // J. Chem. Res. - 1990. - V 23, Issue 4. - P. 120 -126.

[23] Jankowski, W. Co-crystals of 2,4,6-trihydroxybenzoic acid with aromatic diazaheterocycles - crystallographic studies / W. Jankowski, A . Kadzewski and M. Gdaniec // Pol. J. Chem. - 2007. -V 81, Issue 5-6. - P. 1095 - 1108.

[24] Rzokee Abdulsatar Abduljabbar. Synthesis, spectroscopic studies and thermal analysis of charge-transfer complex of 2,2'-bipyridine with 4-hydroxybenzoic acid in different polar solvents / Abdulsatar Abduljabbar Rzokee and Afaq Ahmad // J. Mol. Struct. - 2014. - V 1076. - P. 453-460.

[25] Brandán, S. A. Theoretical and experimental vibrational spectrum study of 4-hydroxybenzoic acid as monomer and dimer / S. A. Brandán, F. Márquez López, M. Montejo, J. J. López González, A. Ben Altabef // Spectrochim. Acta A. - 2010. - V 75, Issue 5. - P. 1422-1434.

[26] Roland Sole. Radical sites in humic acids: A theoretical study on protocatechuic and gallic acids / Roland Sole, Martin H. Gerzabek, Hans Lischka and Daniel Tunega // Comput. Theor. Chem. - 2014. - V 1032. -

P. 42-49.

[27] Fujita Miho. Optically active coordination compounds. XLVIII. Synthesis, resolution and interconversions of isomers of tris-salicylatocobaltate(III) / Miho Fujita and R. D. Gillard // Polyhedron. -1988. - V 7, Issue 24. - P. 2731-2742.

[28] Hussain Sayyed. Studies of binary complexes of transition metal ions with gallic acid by potentiometry / Sayyed Hussain, Mazahar Farooqui and Shaikh Abdul Rahim // IJETCAS - 2013. - V 4, Issue 3. - P. 276-279.

[29] Irving, H. The stability of transition-metal complexes / H. Irving and R.J.P. Williams // J. Chem. Soc. - 1953. - P.3192.

[30] Mahmoud Hassan Moustafa. Studies on the binary and ternary complexes of mercury (II) with gallic acid and adrenaline // J. Ass. Univ. Bull. Environ. Res. - 2010. - V 13, No 2. - P. 276-279.

[31 ] Sandmann Beverly. Stability constants of calcium, magnesuim and zinc gallate using a divalent ion-selective electrode / Beverly Sandmann, May H. Chien and Robert A. Sandmann // Anal. Lett. - 1985. - V 18, Issue 2. -P. 149-159.

[32] Fatima Nasreen. Study of formation constants of vanadium (III)-catecholate complexes / Nasreen Fatima and Zahida T.Maqsood // J. Saudi. Chem. Soc. - 2005. - V 99, Issue 3. - P. 519-525.

[33] Abu Bakr, M.S. Studies of mixed ligand complexes of copper(II) with gallic acid and their benzologues / M.S. Abu Bakr, H.M.Rageh, E.Y.Hashem and N.H Moustafa // Monatsh. Chem. - 1994. - V 125. -P. 1197-1205.

[34] Fazary Ahmed Eid. Iron complexation studies of gallic acid / Ahmed Eid Fazary, Mohamed Taha and Yi-Hsu Ju // J. Chem. Eng. Data. - 2009. - V 54, Issue 1. - P. 35-42.

[35] Lauri, H. J. Lajunen. Thermodynamics of complexation of lanthanides by 3- and 4-hydroxybenzoic acids / Lauri H. J. Lajunen, Marja Lajunen, Gregory R. Choppin and Kemin Yao // Inorg. Chim. Acta. - 1988. - V 147,

Issue 1. - P. 127-130.

[36] Pauline Moreau. Complexation of europium(III) by hydroxybenzoic acids: a time-resolved luminescence spectroscopy study / Pauline Moreau, Sonia Colette-Maatouk, Pierre Vitorge, Pierre Gareil and Pascal E. Reiller // Inorg. Chim. Acta. - 2015. - V 4321, Issue 1. - P. 81-88.

[37] Bettina Marmodee. Spectroscopic investigations of complexes between Eu (III) and aromatic carboxylic ligands / Bettina Marmodee, Joost de Klerk, Michael U. Kumke, Freek Ariese and Cees Gooijer // J. Alloys Compd. - 2008. - V 451, Issue 1-228. - P. 361-364.

[38] Garima Sharma. Effect of doping of calcium fluoride nanoparticles on the photoluminescence properties of europium complexes with benzoic acid derivatives as secondary ligands and 2-aminopyridine as primary ligand / Sharma Garima and Narula Anudeep Kumar// Opt. Mater. - 2015. - v 46. - P. 438-443.

[39] Koutstaal, C. A. FT-IR study on the adsorption of benzoic acid and its derivatives on transition-metal oxides / C. A. Koutstaal and V. Ponec // Appl. Surf. Science. - 1993. - V 70-71, Part 12. - P. 206-210.

[40] Sarma Jyotirmoy. Comparative adsorption involving ortho- and para-hydroxybenzoic acids in mixed-adsorbate mode onto a-alumina surface: effect of molecular structure / Jyotirmoy Sarma and Sekh Mahiuddin // J. Environ. Chem. Eng. - 2014. - V 2, Issue 1. - P. 90-99.

[41 ] Sarma Jyotirmoy. Adsorption of substituted benzoic acids onto a-Al2O3 surface in mixed-adsorbate mode: 2,4-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 1,2,4-benzenetricarboxylic acid (trimellitic acid) / Jyotirmoy Sarma and Sekh Mahiuddin // J. Environ. Chem. Eng. -2017. - V 5, Issue 3. - P. 2976-2985.

[42] Donald Perry. Surface-enhanced spectroscopic investigation of the adsorption properties of hydroxybenzoic acid isomers onto metallic surfaces / Donald Perry, Jacob Boucher, Krystal Posey, Scott Cordova and

Alexandru S. Biris // Spectrochim. Acta A. - 2009. - V 54, Issue 115. -P. 104-112.

[43] Castro, J. L. Surface-enhanced Raman scattering of hydroxybenzoic acids adsorbed on silver nanoparticles / J. L. Castro, J. F. Arenas, M. R. Lopez-Ramirez, D. Pelaez and J. C. Otero // J. Colloid Interface Sci. -2009. - V 332, Issue 11. - P. 130 -135.

[44] Chaozhi, Wan. Surface-enhanced Raman scattering from heated para-substituted benzoic acid-silver sol solutions / Chaozhi Wan, Kai Sun, Guangzhi Xu and Youqi Tang // Chem. Phys. Lett. - 1988. - V 152, Issue 14. - p. 100 -104.

[45] Fifen, J. J. Single or double hydrogen atom transfer in the reaction of metal - associated phenolic acids with •OH radical: DFT study/ J. J. Fifen, M. Nsangou, Z. Dhaouadi, O. Motapon and S. Lahmar // J. Mol. Struct. -2009. - V 901, Issue 1-315. - P. 49-55.

[46] Aijaz, A. Bhutto. Quantitative structure-activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles / Aijaz A. Bhutto, §aban Kalay, S. T. H. Sherazi and Mustafa Culha // Talanta. - 2018. - V 1891. - P. 174-181.

[47] Paula, Z. Araujo. Interaction of catechol and gallic acid with titanium dioxide in aqueous suspensions. 1. Equilibrium studies / Paula Z. Araujo, Pedro J. Morando and Miguel A. Blesa // Langmuir. - 2005. - V 21, Issue 8. - P. 3470-3474.

[48] Jesus Beltran De Heredia. Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2/UV radiation: comparison and modelling of reaction kinetic / Jesus Beltran De Heredia, Joaquin Torregrosa, Joaquin R Dominguez and Jose A Peres // Talanta. - 2001. - V 83, Issue 330. - P. 255264.

[49] Wu, K. Electrophoretic deposition of TiO2 and composite TiO2-MnO2 films using benzoic acid and phenolic molecules as charging additives / K.

Wu, Y. Wang and I. Zhitomirsky // J. Colloid and Interface Sci. - 2010. -V 352, Issue 215. - P. 371-378.

[50] Горинчой, В.В. Гомо- и гетероядерные комплексы железа {Fe2M}c салициловой кислоты. Синтез, строение и физико-химические свойства / В.В. Горинчой, В.Е. Зубарева, С.Г. Шова, В.Н. Шофрански, Я. Липковский, Н. Стэникэ, Ю.А. Симонов и К.И. Туртэ // Коорд. химия - 2009. - Т. 53, № 10. - С. 743 -751.

[51] Allen, F.N. The Cambridge structural database: a quarter of a million crystal structures and rising // Acta Crystallogr. B. - 2002. - V 58. - P. 380.

[52] Тельженская П.Н., Шварц Е.М. // Коорд. химия - 1977. - Т.3, № 9. - С. 1279

[53] Ming-Kai Yin, Chang Chun Ai, Liang-Jie Yuan et al // J. Mol. Struct. -2004. - V 33. - P. 691.

[54] Shake, A.R. High-Spin Molecules: Iron(III) incorporation into [Mn12O12(O2CMe)16(H2O)4] to yield [Mn8Fe4O12(O2CMe)4H2O>] and its influence on the S = 10 ground state of the former / A.R. Shake, H.L Tsai and R.J Webb // Inorg. Chem. - 1994. - V 33, Issue 26. - P. 6020 - 6028.

[55] Ram, A. L. Synthesis, Characterization and crystal structure of manganese (IV) complex derived from salicylic acid / A.R Ram, B. Shimita, L. Aka, K. S. Mehesh, B. Debjam, C. Smajeshi, D. Arjun and K. Arvind // Inorg. Chim. Acta. - 2006. - V 8, Issue 1. - P. 359.

[56] Salami1, H. A. Solvent-free synthesis, characterization, and antimicrobial activity of complexes of 2-hydroxybenzoic acid hydrazide with some M(II) chlorides (M= Co and Ni) / H. A. Salami1, A. U. Haruna, F. T. Ezeala and O. W. Salawu // Der Pharma Chemica. - 2015. - V 7, Issue 4. - P. 261-265.

[57] Li, A.S. DNA-breaking versus DNA-protecting activity of four phenolic compounds in vitro/ A.S. Li, A.S. Li, B. Bandy, S.S. Tsang and A.J. Davison // J. Free Rad. Res. - 2000. - V 33, Issue 5. - P. 551-566.

[58] R.B. Sorkaz, I. Mazol // J. Biosci. - 2000. - V 49. - P. 881-894.

[59] Mamdouh, S. Masoud. Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes / Mamdouh S. Masoud, Sawsan S. Hagagg, Alaa E. Ali and Nessma M. Nasr // J. Mol. Struct. - 2012. - V 1014. - P. 17-25.

[60] M.D. Agarwal, C.S. Bhandari, M.K. Dixit and N.C. Sogani // J. Inst. Chem. - 1977. - V 49. - P. 124-126.

[61] Brzyska, W. Thermal decomposition of rare earth element complexes with 3,4-dihydroxybenzoic acid in air / W. Brzyska and A. Kula // Thermochim. Acta. - 1994. - V 2391. - P. 127-136.

[62] Dasiewicz, B. Effect of sodium(I), calcium(II), lanthanum(III) and thorium(IV) on the aromatic system of p-hydroxybenzoates / B Dasiewicz, L Fuks and W Lewandowski // J. Mol. Struct. - 2001. - V 565 -566, Issue 1- 3. - P. 1-6.

[63] Dasiewicz, B. Molybdenum catecholates as models for Mo in biological systems. 1. Synthesis and spectroscopic study on Mo complexes with 3,4-dihydroxybenzoic and 3,4-dihydroxyphenylacetic acid complexes / A Karaliota, Fuks L, W Lewandowski // J. Mol. Struct. - 1998. - V 69, Issue 1- 21. - P. 79-90

[64] Praveen, K. Coordination chemistry of salicylic acid / K. Praveen, DSS Madhavi, K. Anil Kumar and Y. Kranthi Kumar // IJESI. - 2016. - V 5, Issue 9. - P. 08 - 10.

[65] Rao, C. N. R. Metal carboxylates with open architectures / C. N. R. Rao, S. Natarajan, and R. Vaidhyanathan // Angew. Chem. - 2004. - V 43, Issue 12. - P. 1466 - 1499.

[66] Prabusankar, G. Hexameric organotincarboxylates with cyclic and drum structures / G. Prabusankar and R. Murugavel // Organometallics. -2004. - V 23, Issue 12. - P. 5644 - 5647.

[67] Murugavel, R. First alkaline earth metal 3-aminobenzoate (3-aba) complex: 1-D polymeric [Ca(3-aba)2(H2O)2]n assembly / R. Murugavel

and S. Banerjee // Inorg. Chem. Commun. - 2003. - V 6, Issue 7. - P. 810 - 814.

[68] Murugavel, R. Anionic metal-organic and cationic organic layer alternation in the coordination polymers [{M(BTEC)(OH2)4}-{C4H12N2}-4H2O]n (M = Co, Ni, and Zn; BTEC = 1,2,4,5-benzenetetracarboxylate) / R. Murugavel, D.Krishnamurthy and M. Sathiyendiran // J. Chem. Soc. - 2002. - V 34, Issue 1. - P. 34 - 39.

[69] Murugavel R. Reactions of 2-mercaptobenzoic acid with divalent alkaline earth metal ions: synthesis, spectral studies, and single-crystal X-ray structures of calcium, strontium, and barium complexes of 2,2'-dithiobis (benzoic acid) / R. Murugavel, K. Baheti and G. Anantharaman // Inorg. Chem. - 2001. - V 40, Issue 27. - P. 6870 - 6878.

[70] Murugavel, R. Synthesis, spectral characterization, and structural studies of 2-aminobenzoate complexes of divalent alkaline earth metal ions: X-ray crystal structures of [Ca(2-aba)2(OH2)3]œ, [{Sr(2-aba)2(OH2)2}-H2O]œ, and [Ba(2-aba)2(OH2)]œ (2-abaH = 2-NH2C6H4COOH) / R. Murugavel, V. V. Karambelkar, G. Anantharaman and M. G. Walawalkar // Inorg. Chem. - 2000. - V 39, Issue 7. - P. 13811390.

[71] Shake, A.R. High-spin molecules: iron(III) incorporation into [Mn12O12(O2CMe)16(H2O)4] to Yield [Mn8Fe4O12(O2CMe)4H2O>] and its influence on the S = 10 ground state of the former / A.R. Shake, H.L.Tsai and R.J. Webb et al // Inorg. Chem. - 1994. - V 33, Issue 26. -P. 6020 - 6028.

[72] Vollano, J.F. Pentacoordinated molecules. 66. Chain structures of trimethyltin esters of salicylic acid and o-anisic acid. Tin-119m moessbauer study of a series of trimethyltin and triphenyltin carboxylates / J.F. Vollano, R.O. Day, D.N. Rau, V. Chandrasekhar and R.R. Holmes // Inorg. Chem. - 1986. - V 25, Issue 15. - P. 2495- 2499.

[73] Khawar Rauf M. Synthesis, characterization and biological activities of some new organotin(IV) derivatives: crystal structure of [(Sn Ph3) (OOCC6H4OH)] and [(SnMe3)2(OOC)2C6Cl4 (DMSO)2] / M. Khawar Rauf, M. Adeel Saeed, Imtiaz-ud-Din, M. Bolte, A. Badshah and B. Mirza // J. Organomet. Chem. -2008. - V 693. - P. 3043- 3048.

[74] Горинчой, В.В. Гетероядерные {Fe-Ba, Fe-Sr} салицилатные комплексы. Синтез, строение и физико-химические свойства / В.В. Горинчой, К.И. Туртэ, Ю.А. Симонов, С.Г. Шова, Я. Липковский и В.Н. Шофрански // Коорд. химия - 2009 . - Т. 35, № 4, C. 283-290.

[75] Горинчой, В.В. Кристаллические и молекулярные структуры двуядерных комплексов {Cu—М} (М = Cu, Sr, Ва) на основе салициловой кислоты / В.В. Горинчой, Ю.А. Симонов, С.Г. Шова, В.Н. Шофрански и К.И. Туртэ // Журн. структ. химии - 2009. - T. 50, № 6, C. 1196 - 1202.

[76] Yaowen Zhang. Coordination preference of 1,2-bis((1H-imidazole-1-yl)methyl)benzene and different carboxylate ligands with transition metal ions directed by weak interactions / Yaowen Zhang, Hongdong Li, Zuochao Wang, Kang Liu and Lei Wang // J. Solid State Chem. -2019. -V 275. - P. 124- 130.

[77] Tushar, S. Basu Baul, Anthony Linden. Di-n-octyltin(IV) complexes with 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoic acid: Syntheses and assessment of solid state structures by 119Sn Mossbauer and X-ray diffraction and further insight into the solution structures using electrospray ionization MS, 119Sn NMR and variable temperature NMR spectroscopy / Tushar S. Basu Baul, Wandondor Rynjah, Eleonora Rivarola, Claudio Pettinari and Anthony Linden // J. Organomet. Chem. -2007. - V 692, Issue 171. - P. 3625-3635.

[78] Левцова, А.А. Синтез, кристаллическая структура и спектральные свойства комплекса U(VI) с м-гидроксибензойной кислотой / А.А.

Левцова, Г.Б. Андреев, Н.А. Буданцева, И.Г. Тананаев и Б.Ф. Мясоедов // Радиохимия. - 2010. - T. 52, № 4, C. 300-303.

[79] Klausmeyer Kevin K. Synthesis and characterization of binuclear rhenium(I) complexes containing bifunctional ligands / Kevin K. Klausmeyer and Franklin R. Beckles // Inorg. Chim. Acta. -2007. - V 360, Issue 102. - P. 3241-3249.

[80] Raj Pal Sharma. Controlling the ligating behaviour of biologically important p-hydroxybenzoate towards copper(II) by the use of nitrogen bases: synthesis, characterization and single crystal X-ray structure determination of [trans-Cu^n^^O^KL^^^O and [cis-C^L^L2^] where en=ethylenediamine, L1=p-hydroxybenzoate, L2=3-picoline / Raj Pal Sharma, Ajnesh Singh, Anju Saini, Paloth Venugopalan and Valeria Ferretti // J. Mol. Struct. -2009. - V 923, Issue 1 - 317. - P. 78-84.

[81] Susana, M. O. Quintal. Coordination modes of 3-aminosalicylic and 3-hydroxyanthranilic acids in palladium(II), platinum(II) and rhenium(V) complexes. The crystal structure of cis-[Pt(HsalNH)(PPh3)2]-0.25C2HsOH / Susana M. O. Quintal, Vitor Félix, Michael G. B. Drew and Helena I. S. Nogueira // Polyhedron. -2006. - V 25. - P. 753-758.

[82] Soares-Santos, P.C.R. Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles / P.C.R. Soares-Santos, H.I.S. Nogueira, V. Fe'lix, M.G.B. Drew, R.A. Sa' Ferreira, L.D. Carlos and T. Trindade // J. Mater. Chem. -2003. - V 15. -P. 100-108.

[83] Soares-Santos, P.C.R. Lanthanide complexes of 2-hydroxynicotinic acid: synthesis, luminescence properties and the crystal structures of [Ln (HnicO) 2 (^-HnicO)(H2O)]- nH2O (Ln= Tb, Eu) / P.C.R. Soares-Santos, H.I.S. Nogueira, J. Rocha, V. Fe'lix, M.G.B. Drew, R.A. Sa' Ferreira, L.D. Carlos and T. Trindade // Polyhedron - 2003. - V 22, Issue 27. - P. 35293539.

[84] Soares-Santos, P.C.R. Lanthanide complexes of 2,6-dihydroxybenzoic acid: synthesis, crystal structures and luminescent properties of [nBu4N]2[Ln(2,6-dhb)s(H2O)2] (Ln = Sm and Tb) / P.C.R. Soares-Santos, H.I.S. Nogueira, F.A. Almeida Paz, R.A. Sa' Ferreira, L.D. Carlos, J. Klinowski and T. Trindade // Inorg. Chem -2003. - V 2003, Issue 19. -P. 3609-3617.

[85] Micera, G. Interaction of metal ions with humic-like models. Part 5. The crystal and molecular structure of diaquabis(2,6-dihydroxybenzoato)-dioxouranium (VI) octahydrate / G. Micera, L. Strinna Erre, F. Cariati, D.

A. Clemente and M. Biagini Cingi // Inorg. Chim. Acta -1985. - V 109. -P. 135-139.

[86] Cariati, F. Interaction of metal ions with humic-like models. Part. I. Synthesis, spectroscopic and structural properties of diaquabis(2,6-dihydroxybenzoato) copper (II) and hexaaquaM(II) bis(2,6-dihydroxybenzoate) dihydrate (M = Mn, Fe, Co, Ni, Cu and Zn) / F. Cariati, L. Erre, G. Micera, A. Panzanelli and A. Sironi // Inorg. Chim. Acta -1983 . - V 80. - P. 57-65.

[87] Марцинко, О. Е. Рiзнолiганднi комплекси германш(^) з мигдальною, галовою, кислотами та гетероцикичними амшами / О. Е. Марцинко, О. А. Чебаненко, I. Й. Сейфуллша, В. В. Дьяконенко, С.

B. Шишкша, Ю. Р. Юм и М. I. Громова // Вюник ОНУ. Хiмiя. - 2018. - T. 23, № 3, C. 86-95.

[88] Монахова, Ю.Б. Взаимодействие лантана с некоторыми органическими кислотами. Квантово-химическое изучение / Ю.Б. Монахова, С.П Муштакова, Т.В Захарова и М.В Пожаров, // Изв. Саратовского ун-та. Сер. Хим. Биол. Эколог. - 2009. - Т. 9, № 2,

C. 17-20.

[89] Григорян, К.Р. AB initio исследования комплексообразования галловой кислоты в водных растворах / К.Р. Григорян и А.Л. Затикян // Журн. структ. химии. - 2018. - Т. 59, № 6, C. 1544-1551.

[90] Mohamed Taha. Complexation and molecular modeling studies of europium (III) - gallic acid - amino acid complexes / Mohamed Taha, Imran Khan and Joao A.P // J. Inorg. Biochem. -2016. - V 157. - P. 25-33.

[91] Теория неоднородного электронного газа / Н. Марч, В. Кон, П. Вашишта, С. Лундквист, А. Уильяме, У. Барт и Н. Лэнг // М.: Мир, Москва. - 1987. - 200 с.

[92] Зенков, Н.К. Растительные фенольные и аутофагия . Обзор / Н.К. Зенков, А.В. Чечушков, П.М. Кожин, Н.В. Кандалинцева, Г.Г. Мартинович и Е.Б Меньшикова // Биохимия. - 2016. - Т. 81, № 4, C. 429-447.

[93] Teimouri, A. The green synthesis of new azo dyes derived from salicylic acid derivatives catalyzed via baker's yeast and solid acid catalysis / A. Teimouri, A. Chermahini and M. Ghorbani // Chemija. -2013. - V 24, № 1. - P. 59-66.

[94] Abdu-Allah, H. 5-Aminosalicylic acid: a unique anti-inflammatory salicylate / Abdu-Allah H., Shorbagi A., Abdel-Moty S., Awady R and Abdel-Alim M.// J. Med. Chem. -2016. - V 6, № 5. - P. 306-315.

[95] Erzalina Hernowo, E-thesis, National Taiwan University of Science and Technology, Taiwan, 2011.

[96] Меньшикова, Е.Б. Фенольные антиоксиданты в биологии и медицине / Е.Б. Меньшикова, В.З. Ланкин, Н.В. Кандалинцева // Lap Lambert Acad. Publishing. - Saarbrucken. - 2012. - 495c.

[97] Машковский, М.Д. Лекарственные средства средства, ч.1, Новая волна // Москва. - 1993. - 736c.

[98] Briand, G.G. Bismuth compounds and preparations with biological or medicinal relevance / G.G. Briand and N. Burford // J. Chem. Rev. -1999. - V 99, Issue 9. - P. 2601-2658.

[99] Смолянинов, И. В. Синтез и антирадикальная активность новых катехолатов трифенилсурьмы^) на основе эфиров галловой кислоты / И. В. Смолянинов, А. И. Поддельский, Е.О. Корчагина, С.А.

Смолянинова и Н.Т. Берберова // Докл. АН. - 2015. - Т. 460, № 5, C. 561-565.

[100] Ali, M.I. Anti-leishmanial activity of heteroleptic organometallic Sb(V) compounds / M.I Ali, M.K Rauf, A Badshah, I Kumar, C.M Forsyth, P.C Junk, L Kedzierskid and P.C Andrews // Dalton Trans. - 2013. - Issue 48. - P. 16733-16741.

[101] Islam, A. Novel triphenylantimony(V) and triphenylbismuth(V) complexes with benzoic acid derivatives: structural characterization, in vitro antileishmanial and antibacterial activities and cytotoxicity against macrophages / A Islam, J.G Da Silva, F.M Berbet, S.M Silva, B.L Rodrigues, H Beraldo, M.N Melo, F Frézard, С Demicheli // Molecules. -2014. - V 19, Issue 5. - P. 6009-6030.

[102] Khalipova, O.S. Composition and properties of CeO2-SiÜ2 composite films prepared from film-forming solution / O.S. Khalipova, S.A. Kuznetsova and V.V. Kozik // Russ. J. Inorg. Chem. -2014. - V 59, Issue 9. - P. 913-917.

[103] Khalipova, O.S. Synthesis and properties of CeO2-SnO2 films / O.S. Khalipova and S.A. Kuznetsova // Russ. J. Inorg. Chem. -2013. - V 58, Issue 8. - P. 892-897.

[104] Kozik, V.V. Production of CeO 2-SiO 2 thin composite films / V.V. Kozik, O.S. Khalipova, S.A. Kuznetsova, V.K. Ivanov and Yu.D. Tret'yakov // Dokl. Chem. -2012. - V 444, Issue 1. - P. 120-123.

[105] Xudong Chena. Growth of organic-inorganic hybrid nanowires based on p-hydroxybenzoic acid / Xudong Chena, Mingqiu Zhanga, Yujie Chen, Dingshan Yu, Baojun Li, Zhiqiu Hec and Guangji Li // Mater. Chem. and Phys. -2009. - V 118, Issue 1. - P. 203-207.

[106] Коротеев, П.С. Гетерометаллические карбоксилатные комплексы-прекурсоры смешанных оксидов. Част III. Карбоксилаты 3d-4f металов / П. С. Коротеев, Ж. В. Доброхотова, В. М. Новоторцев // Росс. хим. журн. - 2016. - №1. - C. 34-46

[107] Lateskey Stanley. Synthesis , structure , spectroscopic properties , and electrochemical behavior of group 4t metal derivatives containing bulky aryloxide ligands / Stanley Lateskey, Judy Keddington, Anne K. McMullen, Ian P. Rothwell and John C. Huffman// Inorg. Chem. -1985. -V 24. - P. 995-1001.

[108] Зайцев, Б.Е. Спектрохимия координационных соединений / Б.Е. Зайцев //- М.: РУДН. - 1991. - 275с.

[109] Бек, М. Надьпал И. Исследование комплексообразования новейшими методами / М. Бек, И. Надьпал //- М.: Мир. -1989. - 413c.

[110] Альберт, А. Константы ионизации кислот и оснований / А Альберт, Е. Сержет // М.-Л.: Химия. -1964. - 179 с.

[111] Комплекс программ PDWin для рентгенодифракционных исследований, НПП. - Буревестник. - 2010.

[112] Bai, Y. Shape control mechanism of cuprous oxide nanoparticles in aqueous colloidal solutions / Y. Bai, T. Yang, Q. Gu and G. Cheng // Powder Technol. -2012. - V 227. - P. 35-42.

[113] Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. -1993. - V 98. - P. 5648-5652.

[114] Lee, C. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density / C. Lee, W. Yang, and R.G. Parr // Phys. Rev. -1988. - B 37. - P. 785-789.

[115] Stephens, P.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields / P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch // J. Phys. Chem. -1994. - v 98. - P. 11623-11627.

[116] Schaefer, A. Ahlrichs. Fully optimized contracted Gaussian- basis sets of triple zeta valence quality for atoms Li to Kr / A. Schaefer, C. Huber and R. Ahlrichs // J. Phys. Chem. -1994. - V 100. - P. 5829-5835.

[117] Caldeweyher E. Extension of the D3 dispersion coefficient model/ E. Caldeweyher, C. Bannwarth and S. Grimme// J. Chem. Phys. -2017. - Vol. 147.- N 3.- P. 034112.

[118] Glendening E.D, Badenhoop J.K, Reed A.E, Carpenter J.E, Bohmann J.A, Morales C.M and Weinhold F. NBO 5.G. Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2004.

[119] Granovsky A.A. Firefly version 8.20.- 2013.

[120] Практический курс спектроскопии ядерного магнитного резонанса: учебное пособие / И.Э. Нифантьев и П.В. Ивченко - М.: Московский государственный университет имени М.В. Ломоносова. -2006. - 200c.

[121] Rodriguez-Martin, Y. Structural versatility of the malonate ligand as a tool for crystal engineering in the design of molecular magnets / Y. Rodriguez-Martin, M . Hernandez-Molina and F.S. Delgado // J. Cryst. Eng. Comm. -2002. - V 4, Issue 87. - P. 522-535.

[122] Sheldrik, G.M. SHELX-86. Program for the Crystal Structure Determination / G.M Sheldrik. - Univ. of Cambridge. - Cambridge. -1986.

[123] Sheldrick, G.M. a short history of shelx // Acta Crystallogr. A. -2008.

- V 64. - P. 112-122.

[124] Sheldrick, G.M. Structure determination software suite / SHELXTL. Version 6.14 // Madison (WI, USA): Brucker AXS. - 2000.

[125] Накамото, K. Инфракрасные спектры неорганических и координационных соединений. - Мир, Москва. - 1991. - C.412.

[126] Eshwika, A. Metal complexes of 1,10-phenanthroline-5,6-dione alter the susceptibility of the yeast Candida albicans to Amphotericin B and Miconazole / A. Eshwika, B. Coyle and M. Devereux // Bio Metals. -2004.

- V 17. - P. 415-422.

[127] Geraghty, M. Synthesis and anti-Candida activity of copper(II) and manganese(II) carboxylate complexes: X-ray crystal structures of

[Cu(sal)(bipy)] -CiHsOH-^O and [Cu(norb)(phen)2] -6.5^0 (salH2=salicylic acid; norbH2=cis-5-norbornene-endo-2,3-dicarboxylic acid; bipy=2,2'-bipyridine; phen=1,10-phenanthroline / M. Geraghty, V. Sheridan and M. McCann // Polyhedron. -1999. - V 18, Issue 22. - P. 29312939.

[128] Chenoweth, M.B. Chelation as a mechanism of pharmacological action // Pharmocol. Rev. -1956. - V 8, Issue 1. - P. 57 -87.

[129] Reid, J. Sodium gamma-resorcylate in rheumatic fever / J Reid, R.D Watson, J.B Cochran, D.H Sproull // BMG -1951. - V 2. - C. 321-326.

[130] Sorenson, J.R.J. Bis(3,5-diisopropylsalicylato)copper(II), a potent radioprotectant with superoxide dismutase mimetic activity // J. Med. Chem. -1984. - V 27, Issue 12. - P. 1747- 1749.

[131] Sorenson, J. R. J. Sorenson, The anti-flammatory activities of some copper complexes. In Metal ions in Biological Systems // Metal ions in Biological Systems. -1982. - V 14, Issue 12. - P. 77- 124.

[132] Congradyova A., Jomova K. Antifungal effect of copper(II) -phenanthroline complex with 5-chlorosalicylic acid / A Congradyova and K. Jomova / J. Microbiol. Biotechnol. Food Sci. -2013. - V 2, (Special issue 1). - P. 1377- 1383.

[133] Korolkiewicz, Z. The pharmacologic activity of complexes and mixtures with copper and salicylates or aminopyrine following oral dosing in rats / Z. Korolkiewicz, E. Hac and I. Gagalo // Agents Actions. -1989. - V 26, Issue 3 - 4. - P. 355.

[134] Kawata, T.Structures of aqua and pyridine adducts of dimeric copper (II) 2-chlorobenzoate / T Kawata, S. Ohba and T. Tokii // Acta Crystallogr. C. -1992. - V 48. - P. 1590 - 1594.

[135] Ковальчукова, O. В. Алкил- и бензилнитрозогидроксиламинаты меди(П) как прекурсоры для синтеза микро- и наноразмерных оксидов меди(!) различной морфологии / О. В. Ковальчукова О . В . Ковальчукова , Али Шейх Бостанабад , Н . Н . Лобанов , Т. А .

Рудакова , П . В . Страшнов , Ю . А . Скаржевский и И. Н. Зюзин // Неорган. материалы. - 2014. - Т. 50, № 11, C. 1183. Kovalchukova O. V, Ali Sheikh Bostanabad, N. N. Lobanov, T. A. Rudakova, P. V. Strashnov, Yu. A. Skarzhevskii and I. N. Zyuzin / Inorg. Mater. (Engl. Transl.). - 2014. - Т. 50. - C. 1093

[136] Нечаев, А. И. Влияние параметров эмульсии на размер наночастиц Fe3O4 при гетерофазном синтезе / А. И. Нечаев, В. А. Вальцифер и В. Н. Стрельников // Бутлеров. сообщ. - 2015. - Т. 42, № 5, C. 89 - 97.

[137] Белослудцев, А. П. Влияние состава исходного раствора на морфологию наночастиц оксида никеля, получаемых методом пиролиза аэрозолей / А. П. Белослудцев, Д. В. Кузнецов, Д. В. Лысов, А. Г. Юдин и С. Э. Кондаков // Вестн. Моск. ун-та. Сер. 2. - 2012. -Т. 53, № 5, C. 339 - 343.

[138] Фарбун, И. А. Свойства наноразмерных материалов на основе оксидов марганца и церия, полученных из цитратных растворов / И. А. Фарбун, И. В. Романова, С. А. Хайнаков и С. А.Кириллов, // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. - 2010. - Т. 17, № 2, - C. 197 - 204.

[139] Мамонтов, Г. В. Влияние добавок оксидов переходных металлов на активность катализатора Ag/SiO2 в реакции окисления ^ / Г. В. Мамонтов, В. В. Дутов, В. И. Соболев и О. В. Одянкина // Кинетика и катализ. - 2013. - Т. 54, № 4, C. 513.

[140] Endradi, B. One-step electrodeposition of nanocrystalline TiO2 films with enhanced photoelectrochemical performance and charge storage / B Endradi, E. Kecsenovity, K. Rajeshwar, C. Ja^ky // ACS Appl. Energy Mater. - 2018. - V 1, № 2. - P. 851- 858.

[141] Xiao, G. Nb-doping TiO2 electron transporting layer for efficient perovskite solar cells / G. Xiao, C. Shi, K. Lv, C. Ying and Y. Wang // ACS Appl. Energy Mater. - 2018. - V 1. - P. 2576-2581.

[142] Wang, Y. Preparation, photocatalytic activity, and mechanism of nano-TiO2 Co-doped with nitrogen and iron(III) / Y. Wang, Y.-Y Zhang, J. Tang, H. Wu, M. Xu, Z. Peng, X.-G. Gong and G. Zheng // ACS Nano. -

2013. - V 7. - P. 9375-9383.

[143] Willke, P. Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties / P. Willke, J.A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsgss and M. Wenderoth // Nano Lett. - 2015. - V 15. - P. 5110-5115.

[144] Siriwong, P. Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods / P. Siriwong, T. Thongtem, A. Phuruangrat and S. Thongtem // CrystEngComm.- 2011.- V 13.- P.1564-1569.

[145] Prabhu, S. Synthesis, Surface acidity and photocatalytic activity of WO3/TO2 nanocomposites - An overview / S. Prabhu, A. Nithya, S. Chandra Mohan, and K. Jothivenkatachalam // Materials Science Forum.-

2014.- V. 781.- P. 63-78.

[146] Hongmei, Luo. Photocatalytic activity enhancing for titanium dioxide by Co-doping with bromine and chlorine / Luo Hongmei, Takata Tsuyoshi, Lee Yungi, Zhao Jinfeng, Domen Kazunari and Yan Yushan // Chem. Mater. - 2004. - V 16, Issue 5. - P. 846 - 849.

[147] Absalan, Y. Doped rare and transition metal perovskite-type titanate nanoparticles: a new method for developing synthesizing and photocatalytic ability / Y. Absalan, I.G. Bratchikova and O.V. Kovalchukova // J. Mol. Liq. -2018. - V 268. - P. 882-894.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.