Gene polymorphisms associated with recurrent miscarriage in Russian women / Генные полиморфизмы, ассоциированные с привычным невынашиванием беременности у русских женщин тема диссертации и автореферата по ВАК РФ 03.02.07, кандидат наук Ахмед Абдулбари Амин Махюп
- Специальность ВАК РФ03.02.07
- Количество страниц 138
Оглавление диссертации кандидат наук Ахмед Абдулбари Амин Махюп
CONTENTS
Introduction
Chapter 1. Literature Review
1.1 Miscarriage and its causes
1.2 Genetic aspects of early miscarriage
Chapter 2. Materials and Methods
Chapter 3. Results
Chapter 4. Discussion
4.1. DNA methyltransferases
4.2. Synaptonemal complex protein
4.3. Gene polymorphisms involved in Folate and Methionine cycle
4.4. Gene polymorphisms involved in hereditary thrombophilia
4.5. Gene polymorphisms involved in impaired angiogenesis
4.6. Comparison of genotype and allele frequencies among population
group members with those among controls and case group members
Conclusion
List of abbreviations
References
Рекомендованный список диссертаций по специальности «Генетика», 03.02.07 шифр ВАК
Hearing impairment among primary school children in Yemen (Нарушения слуха среди учащихся начальных школ Республики Йемен)2023 год, кандидат наук Альшарджаби Итидал Абдо Мукред
Development of a retinal-like cell model of cone dystrophy associated with mutation in the KCNV2 gene / Разработка сетчаткоподобной клеточной модели колбочковой дистрофии ассоциированной с мутациями в гене KCNV22024 год, кандидат наук Алсаллум Алмакдад
Approaches to assessing and ensuring social well-being in the contemporary Ghanaian society /Подходы к оценке и обеспечению социального благополучия населения Ганы в современных условиях2024 год, кандидат наук Анамоа-Покоо Стэндхоуп
Mesh fixation methods during open inguinal hernioplasty (Сравнение способов фиксации синтетических имплантатов при паховых герниопластиках передним доступом)2022 год, кандидат наук Мекхаеэль Мекхаеэль Шехата Факхри
Финансирование малых и средних технологических компаний в России: гранты и собственный капитал2024 год, кандидат наук Гусева Ольга Александровна
Введение диссертации (часть автореферата) на тему «Gene polymorphisms associated with recurrent miscarriage in Russian women / Генные полиморфизмы, ассоциированные с привычным невынашиванием беременности у русских женщин»
INTRODUCTION
Topicality of the dissertation. A miscarriage is one of the most common medical and social issues, which affects numerous couples every year due to various reasons. Pregnancy loss represents 31% of total pregnancies [Simpson, et. al., 2013]. This rate could rise to 50-75% if those pre-embryonic losses occurring within the first 4 weeks of pregnancy are included, which ordinarily go unidentified by patients [Ramanathanpullai, et. al., 2017]. Approximately 80% of all miscarriage cases occur before the 12th week of gestation [ACOG Practice Bulletin, 2018; AgaM^H ..B. h coaBT., 2016; Pag3HHCKHH B.E. h coaBT., 2019]. The rate of clinically recognized early miscarriage increases with advancing women age [ACOG Practice Bulletin, 2018]. Early miscarriage (EM) refers to a process in which a loss of a clinically recognized fetus occurs spontaneously during the first three months of gestation [ACOG Practice Bulletin, 2018]. When this process occurs once in discontinuous rounds of pregnancies is known as sporadic early miscarriage (SEM), accounting for the majority of prevalence, but when it occurs two or more times it is defined as recurrent early miscarriage (REM), constituting for 2-5% of couples [Scott, et. al., 2003, Chaithra, et. al., 2011, Ford and Schust, 2009, Bashiri and Borick, 2016]. Miscarriage might be primary or secondary and the difference between them is that primary REM is when REM women had been without any full-term pregnancy before, while REM is referred to as secondary REM when it follows at least one full-term pregnancy [ESHRE Early Pregnancy Guideline Development Group, 2017].
Although many factors that have been involved as causes or risk agents for the occurrence of spontaneous miscarriage, the cause of early miscarriage could only be diagnosed in approximately 50% of cases [Rai and Regan, 2006]. It has been seen that genetic factors constitute around 3-5% of the etiology of recurrent miscarriage, a chromosomal abnormality 7%, hormonal disorders 15%, and anatomical defects 10-15% [Chaithra, et. al., 2011]. Virtually, cytogenetic abnormalities occur in 50-70% of sporadic spontaneous miscarriage cases, where
60% of cases are due to autosomal trisomies, 20% due to monosomy X, and 20% due to polyploidy [Hyde and Schust, 2015, AgaM^H .H.B. h coaBT., 2016].
Recurrent miscarriage arises due to miscellaneous risk factors among which some parental genetic factors tend to be more significant than others. In other words, there is no so far a single genetic predictor that might be used for the prognosis of subsequent pregnancy losses; however, the maternal risk factors are the most predictive because of their direct relationships to the development of a fetus. It has been believed that a series of differential gene expressions is essential to actuating many biological processes demanded to achieve a successful gestation, where found, more than 30 genes are responsible for the various gene expression levels between normal and RM women [Baek, 2004] and maybe implicated in REM. Several studies have reported that makeup variation in maternal genes, responsible for the regulation of some reproductive biological processes, may lead to the emergence of abnormal global DNA methylation in conceptus, embryonic chromosome abnormalities, placental thrombophilia, or deficiency of chorionic villous vascularization, which may lead to impairment of growth and development of the embryo, and as a result, the pregnancy ends up with failure [Li, et. al., 2014, Sazegari, et. al., 2014, Rodger, et. al., 2008, Sun, et. al., 2017].
DNA methylation is a type of epigenetic processes catalyzed by a family of DNA methyltransferases (DNMTs) that add a methyl group at the 5-carbon of the cytosine base in the dinucleotide sequence CpG located in gene promoters, thus often impacting the gene expression [Li and Zhang, 2014]. In early pregnancy, soon after zygote formation and before implantation, DNA undergoes global waves of demethylation, thereafter DNA in cells is remethylated. The DNA methylation patterns established earlier in the embryo are maintained for normal embryonic and placental development. Accordingly, genetic defects of the DNA methyltransferases may result in abnormal DNA methylation in growth regulatory genes impairing their functions and ultimately resulting in early fetal death and pregnancy loss [Li and Zhang, 2014]. The majority of the DNMTase gene polymorphisms were extensively investigated in a variety of human cancers, but
4
only a few of them were investigated in early miscarriage and are still not enough to confirm the association of aberrant global DNA methylation with recurrent early miscarriage, as well as, to the best of our knowledge, most of DNMTase gene polymorphisms haven't been investigated in Russia, in particular in women with early miscarriage. And in keeping with the demographic Concept Policy for the Russian Federation 2025, launched in 2007 by Russian Federation to reduce maternal and infant mortality by at least 50% and strengthen population reproductive health [Reproductive Health Survey Russia, 2011], and on the purpose of the effective contribution to achieving this strategy, the present study was designed to find out new genetic risk factors that may contribute to the prognosis of recurrent early pregnancy loss through identifying several candidate genes unknown or rarely known for early miscarriage.
General objective of the study
The present study was designed to find out gene polymorphisms associated with the sporadic and recurrent early pregnancy loss in Russian women living in Central Russia.
Specific objectives
1. To investigate the association of some polymorphisms within genes implicated in DNA methylation (DNMT1 rs2228611, DNMT1 rs8101626, DNMT3A rs7590760, DNMT3B rs2424913, DNMT3B rs1569686, DNMT3L rs2276248, DNMT3L rs2070565) with recurrent early miscarriage.
2. To determine whether polymorphism rs769825641 in the synaptonemal complex protein 3 (SYCP3) gene implicated in meiosis, is associated with increased risk for early pregnancy loss.
3. To assess the following gene polymorphisms in genes of prothrombin (FII rs1799963), Factor V (FVL rs6025, Leiden), VEGFA (rs3025039, rs699947), MTHFR (rs1801133, rs1801131), MTR rs1805087, and MTRR rs1801394 previously reported underlying EM to elucidate their contribution to early miscarriage among our research participants.
4. To determine the prevalence of all the studied gene polymorphisms in Russian women and make a comparison between the polymorphisms in DNMT1, DNMT3A, DNMT3B, DNMT3L, SYCP3 genes with the prevalence of gene polymorphisms, recommended previously as genetic predictors for recurrent early miscarriage.
Novelty of research. For the first time in Russia, our study has determined the genotype and allele frequencies for eight single nucleotide polymorphisms located in DNA methyltransferase genes (DNMT3B rs2424913, DNMT3B rs1569686, DNMT3A rs7590760, DNMT1 rs2228611, DNMT1 rs8101626, DNMT3L rs2276248 and DNMT3L rs2070565) and in SYCP3 gene (SYCP3 rs769825641) among women with early pregnancy loss. Moreover, most these gene polymorphisms haven't ever been yet analyzed in any diseases in Russians and there were no even statistical data about their genotype and allele distributions in the population. This study is the first that have performed the population study and assessed the prevalence of genotypes and alleles for DNMT3B rs2424913, DNMT3B rs1569686, DNMT3A rs7590760, DNMT1 rs2228611, DNMT1 rs8101626, DNMT3L rs2276248, DNMT3L rs2070565, and SYCP3 rs769825641 polymorphisms in Russian women, in addition to comparing the distribution rate of their minor genotypes and alleles with those of the common recurrent pregnancy loss (RPL) related gene polymorphisms recommended extensively as genetic predictors for RPL by previous investigators.
Theoretical and practical significance. The present research data indicate
that early miscarriage among Russian women is one of the significant
complications of aberrant fetal DNA methylation arising due to the gene makeup
variations in DNMT1, DNMT3B, or chromosomal abnormality caused by gene
structure variation in SYCP3. It is expected that the new predictive factors would
contribute to the stratification of patients with early miscarriage, in particular
REM, as well as formulating a fundamental scheme to the diagnosis and
6
prophylactic management to reduce risk factors of early abortion by performing a genetic investigation.
Methodology and methods of research investigation. Determination of the prevalence of the gene polymorphisms studied in the framework of this thesis was by genotyping of DNA samples extracted from blood samples of research participants, which was carried out by using Real-Time PCR, Polymerase chain reaction for Restriction fragments length polymorphisms (PCR-RFLP) and allele-specific PCR. The results were statistically processed using the SPSS software version 22.
Statements of defense
1. The genotypes and alleles for gene polymorphisms DNMT3B rs2424913, DNMT1 rs2228611, DNMT1 rs8101626 implicated in global DNA methylation, are associated with the increased risk of occurrence of sporadic and recurrent early pregnancy loss among Russian women.
2. The heterozygous genotype and allele C for SYCP3 rs769825641 (T657C) polymorphism are associated with the occurrence of sporadic early miscarriage among Russian women.
3. The prevalence of DNMT3B rs2424913, DNMT1 rs2228611, DNMT1 rs8101626, and SYCP3 rs769825641 minor alleles are as equivalent as the prevalence of minor alleles of common RPL-associated polymorphisms among Russian women.
Reliability and validity of scientific results. The reliability and validity of research results are provided by the sufficient number of investigated samples (237), as well as that the genotyping was performed with the use of modern technologies and high-quality chemicals and kits. The statistical methods met the tasks set.
Approbation of research results. The findings of the thesis were reported at the scientific conference "Agajanyan readings" (Moscow, 2018), and the
7
international congresses "43rd FEBS Congress" (Prague, 2018), "44th FEBS Congress" (Krakow, 2019) as well as at the meeting of the Department of Biology and General Genetics of the RUDN Medical Institute (2020).
Implementation of research results in practice. The results of the presented work were introduced into the educational process when studying the disciplines "Biology" "Biology with the basics of Medical Genetics", and "Molecular Genetics in practical Biology and Medicine" at the Department of Biology and General Genetics of the RUDN Medical institute.
Publications of research results. Based on the research materials, 7 scientific papers have been published, out of them, four articles, including two in scientific journals indexed in Scopus/WoS and two articles in journals from RUDN's list.
Personal contribution of the author. The author systematized the literature data on the topic of the dissertation. The author has independently established and developed new PCR protocols. Independently the author has conducted the molecular-genetic analysis. Description of the obtained results were performed by the author personally. As well as the author has taken part in analyzing and writing the published articles and abstracts. The whole dissertation was written by the author independently.
Volume and structure of the Thesis. The thesis is displayed on 138 pages of typewritten texts and consists of an introduction, a literature review, a description of materials and research methods, a chapter of results, a chapter of discussion, conclusions and a list of references. This research work is illustrated by 13 figures and 15 tables. The literature index contains 224 Russian and foreign bibliographic sources.
Похожие диссертационные работы по специальности «Генетика», 03.02.07 шифр ВАК
Влияние оттоков прямых иностранных инвестиций на экономический рост в национальной экономике2025 год, кандидат наук Осабуохиен-Ирабор Осарумвенсе
Магнитная анизотропия оксидных наноархитектур2022 год, кандидат наук Омельянчик Александр Сергеевич
Морфофункциональная характеристика и способы лечения отитов у мелких домашних животных2025 год, кандидат наук Олабоде Ифараджими Рафеал
Эконометрические модели для анализа гетерогенности экономических агентов2023 год, доктор наук Бесстремянная Галина Евгеньевна
Автоматические методы распознавания метафоры в текстах на русском языке2019 год, кандидат наук Бадрызлова Юлия Геннадьевна
Заключение диссертации по теме «Генетика», Ахмед Абдулбари Амин Махюп
CONCLUSION
The studies included in this thesis were designed to investigate the genotype and allele frequencies for some gene polymorphisms (DNMT3B rs2424913, DNMT3B rs1569686, DNMT3A rs7590760, DNMT1 rs2228611, DNMT1 rs8101626, DNMT3L rs2276248, DNMT3L rs2070565, SYCP3 rs769825641, FII rs1799963, FVL rs6025, MTHFR rs1801131, MTHFR rs1801133, MTRR rs1801394, MTR rs1805087, VEGFA rs699947, and VEGFA rs3025039) and detect the association between them and early pregnancy loss in Russian women. The results of the studies allow us to draw the following conclusions:
1. The minor allele T and the minor homozygous genotype TT for DNMT3B rs2424913 polymorphism are associated with the increased risk of early miscarriage.
2. The minor allele G and the minor homozygous genotype GG for DNMT1 rs2228611 polymorphism show a significant association with recurrent early miscarriage, whereas the homozygous genotype GG for DNMT1 rs8101626 is associated with both sporadic and recurrent early pregnancy loss.
3. The heterozygosity for VEGFA rs699947 polymorphism predisposes to recurrent early miscarriage.
4. The heterozygous genotype for SYCP3 rs769825641 polymorphism is significantly associated with sporadic early miscarriage.
5. No significant association was observed between DNMT3A rs7590760, DNMT3L rs2276248 polymorphisms and early pregnancy loss.
6. The distribution of genotypes and alleles for DNMT3B rs2424913, DNMT1 rs2228611, DNMT1 rs8101626, and SYCP3 rs769825641 among Russian women is comparable with that for common polymorphisms associated with increased risk of pregnancy loss.
Recommendations
1. DNMT3B rs2424913, DNMT1 rs2228611, DNMT1 rs8101626 polymorphisms may be recommended as genetic predictors for recurrent early miscarriage.
2. The heterozygosity for SYCP3 rs769825641 polymorphism may be considered as a predictive factor for sporadic early miscarriage.
For future study
1. Conducting genetic studies to investigate the distribution of alleles and genotypes for DNMT3B rs2424913, DNMT1 rs2228611, DNMT1 rs8101626 polymorphisms among the aborted fetuses and males in couples with early pregnancy loss.
2. Karyotyping of aborted fetuses from mothers that are heterozygous for SYCP3 rs769825641 polymorphism
3. Conducting genetic studies to investigate the distribution of alleles and genotypes for DNMT3B s2424913, DNMT1 rs2228611, DNMT1 rs8101626, and SYCP3 rs769825641 polymorphisms in other ethnic groups.
4. As the SYCP3 rs769825641 polymorphism is significantly associated with sporadic early miscarriage and is quite frequent among women experiencing recurrent pregnancy loss, larger prospective studies on Russian women with recurrent miscarriage are advisable.
Список литературы диссертационного исследования кандидат наук Ахмед Абдулбари Амин Махюп, 2020 год
REFERENCES
1. Адамян Л.В., Артымук Н.В., Белокриницкая Т.Е., Петрухин В.А, Смольнова Т.Ю, Сутурина Л.В, Тетруаивили Н.К, Филиппов О.С, Чечнева М.А, Шмаков Р.Г. Выкидыш в ранние сроки беременности: диагностика и тактика ведения. Клинические рекомендации (протокол лечения), 2016 г.
2. Белоус А.С., Трубникова Е.В., Брежнев А.Ю., Иванов В.П. Оценка распределения генотипов генов факторов транскрипции рибосомных генов у здоровых и больных открытоугольной глаукомой в популяции Курской области. Auditorium. 2015. № 3 (7). С. 17-21.
3. Мурадян Е.М., Оразмурадов А.А., Златовратская Т.В., Сащенко А.И., Саюнов М.А. Анализ течения беременности, родов, послеродового периода и развития плода у женщин с ожирением и метаболическим синдромом. Вестник Российского университета дружбы народов. Серия: Медицина. 2012. № 6. С. 205-210.
4. Радзинский В.Е., Димитрова В.И., Майскова И.Ю. Неразвивающаяся беременность / Под редакцией члена-корреспондента РАН, профессора В.Е. Радзинского, 3-е издание, переработанное и дополненное, 2019: С. 176.
5. Радзинский В.Е., Запертова Е.Ю., Мисник В.В. Генетические и иммунологические аспекты привычного невынашивания Беременности. Акушерство и гинекология. 2005; 6: С. 24-29.
6. Татаркова Е.А. Роль метилирования ДНК в канцерогенезе. Вестник АГУ. Выпуск. 2014; 1 (133): C. 74-79.
7. Татаркова Е.А., Тугуз А.Р., Цикуниб А.А., Руденко К.А., Муженя Д.В., Смольков И.В., Шумилов Д.С. Влияние полиморфных вариантов генов фолатного цикла на процесс раннего прерывания беременности у
жительниц республики Адыгея. Биологические Науки. 2016; 176 (1): C. 33-41.
8. Татаркова Е.А., Тугуз А.Р., Цикуниб А.А., Шумилов Д.С., Смольков И.В., Руденко К.А., Муженя Д.В. Полиморфизмы генов IL-ip (C511T), IL-17A (G197A), IL-12B (A1188C), TNFa (G308A) и IL-4 (C589T) при угрозе ранних репродуктивных потерь. Медицинская иммунология. 2019; 21(6): C. 1179-1186. https://doi.org/10.15789/1563-0625-2019-6-1179-1186
9. Третьякова Т.Б., Демченко Н.С. Ассоциация полиморфных маркеров генов метаболизма фолатов с ранними потерями беременности. Акушерство, гинекология и репродукция. 2018; 12 (1): C. 42-52. doi: 10.17749/2313-7347.2018.12.1.042-052.
10. Abdelazim I.A., AbuFaza M., Purohit P., Farag R.H. Miscarriage Definitions, Causes and Management: Review of Literature. ARC Journal of Gynecology and Obstetrics. 2017; 2 (3): pp 20-31. https://doi.org/10.20431/2456-0561.0203005
11. ACOG Practice Bulletin No. 200. Early pregnancy loss. Obstetrics & Gynecology. 2018; 132 (5): e197-e207. https://doi.org/10.1097/aog.0000000000002899
12. Ahmed A. A. M., Azova M. M., Ramazanova F. U., Gigania O. B. DNMT1 and DNMT3A Gene Polymorphisms and Early Pregnancy Loss. Russian Journal of Genetics, 2020; 56(3): pp 379-382. https://doi.org/10.1134/S1022795420030023
13. Ahmed A.A., Azova M.M. Distribution of the T657C Polymorphism of the SYCP3 gene among Russian women living in Central Russia. Aghajanian's reading. 2018. pp 37-38.
14. Ahmed A.A.M., Muradian A.A., Azova M.M. Prevalence Of Some Gene Polymorphisms Related To Early Pregnancy Loss Among Russian Women. RUDN Journal of Medicine. 2019 b; 23 (4): pp 381—389. https://doi.10.22363/2313-0245-2019-23-4-381-389
15. Ahmed A.A.M., Ramazanova F.U., Gigani O.B., Azova M.M. The Association Of SYCP3 T657C Polymorphism With Early Pregnancy Loss In Russian Women. Medical Genetics. 2019 a; 18 (12-209): pp 21-24. https://doi. 10.25557/2073-7998.2019.12.21-24
16. Andersen N.F., Vogel U. , Klausen T.W., Gimsing P., Gregersen H., Abildgaard N., Vangsted A.J. Vascular endothelial growth factor (VEGF) gene polymorphisms may influence the efficacy of thalidomide in multiple myeloma. International Journal of Cancer. 2012; 131 (5): pp E636-E642. https://doi.org/10.1002/ijc.27387
17. Andraweera P.H., Dekker G.A., Thompson S.D., Nowak R.C., Jayasekara R.W., Dissanayake V.H., Roberts C.T. Polymorphisms in the fibrinolytic pathway genes and the risk of recurrent spontaneous abortion. Reproductive BioMedicine Online. 2014; 29 (6): pp 745-51. https://doi.org/10.1016/j.rbmo.2014.08.014
18. Anifandis G., Messini C.I., Dafopoulos K., Messinis I.E. Genes and Conditions Controlling Mammalian Pre- and Post-implantation Embryo Development. Current genomics, 2015; 16 (1): pp 32-46. https://doi.org/10.2174/13 89202916666141224205025
19. Arabkhazaeli N., Ghanaat K., Hashemi-Soteh MB. H1299R in coagulation Factor V and Glu429Ala in MTHFR genes in recurrent pregnancy loss in Sari, Mazandaran. International Journal of Reproductive BioMedicine. 2016; 14 (5): pp 329-334. https://doi.org/10.29252/ijrm.14.5.329
20. Awata T., Inoue K., Kurihara S., Ohkubo T., Watanabe M., Inukai I., Katayama I.S. A common polymorphism in the 5-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002; 51 (5): pp 1635-1639. https://doi.org/10.2337/diabetes.5L5.1635
21. Azova M.M., Ahmed A.A., Ait Aissa A., Blagonravov M.L. Association of DNMT3B and DNMN3L Gene Polymorphisms with Early Pregnancy Loss.
Bulletin of Experimental Biology and Medicine. 2019; 167(4): pp 475-478. https://doi.10.1007/s10517-019-04553-6
22. Bae J., Shin S.J., Cha S.H., Choi D.H., Lee S., Kim N.K. Prevalent genotypes of methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) in spontaneously aborted embryos. Fertility and Sterility. 2007; 87 (2): pp 351-355. https://doi.org/10.1016Zj.fertnstert.2006.06.027.
23. Baek K.H. Aberrant gene expression associated with recurrent pregnancy loss. Molecular Human Reproduction. 2004; 10 (5): pp 291-297. https://doi.org/10.1093/molehr/gah049
24. Bao Q., He B., Pan Y., Tang Z., Zhang Y., Qu L., Xu Y., Zhu C., Tian F., Wang S. Genetic variation in the promoter of DNMT3B is associated with the risk of colorectal cancer. International Journal of Colorectal Disease. 2011; 26 (9): pp 1107-1112. https://doi.org/10.1007/s00384-011-1199-3
25. Barisic A., Pereza N., Hodzic A., Ostojic S., Peterlin B. A Single Nucleotide Polymorphism of DNA methyltransferase 3B gene is a risk factor for recurrent spontaneous abortion. American Journal of Reproductive Immunology. 2017; 78 (6): p e12765. https://doi.org/10.1111/aji.12765
26. Bashiri A., Borick J.L. Recurrent Pregnancy Loss: Definitions, Epidemiology, and Prognosis. Recurrent Pregnancy Loss. 2016; pp 3-18. DOI 10.1007/978-3-319-27452-2_1
27. Begum M.R., Ehsan M., Begum M.S., Baby H.A., Siddiqui M., Jesmin S. Recurrent Pregnancy Loss: A Tragic Reproductive Failure. Anwer Khan Modern Medical College Journal. 2011; 2 (2): pp 29-35. https://doi.org/10.3329/akmmcj.v2i2.8170
28. Belokrinitskaya T.Y., Frolova N.I., Strambovskaya N.N., Petrov A.A. Thrombophilic Mutations and Folate Gene Polymorphisms and Plasminogen Activator Inhibitor-1 in Russian Women with Unexplained Recurrent Early Spontaneous Abortion. British Journal of Medicine and Medical Research. 2015; 5 (5): pp 626-632. https://doi.org/10.9734/bjmmr/2015/12980
29. Berk L.E. (2011). Infants, children, and adolescents, (7th edition), USA, Pearson, p 96.
30. Bird A. DNA methylation patterns and epigenetic memory. Genes & Development. 2002; 16 (1): pp 6-21. https://doi.org/10.1101/gad.947102
31. Blom H.J., Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. Journal of Inherited Metabolic Disease. 2011; 34 (1): pp 7581. https://doi.org/10.1007/s10545-010-9177-4
32. Bohiltea C.L., Radoi V.E. Interleukin-6 and interleuk in-10 gene polymorphisms and recurrent pregnancy loss in Romanian population. Iranian Journal Reproductive Medicine. 2014; 12 (9): pp 617-622.
33. Bolor H., Mori T., Nishiyama S., Ito Y., Hosoba E., Inagaki H., Kogo H., Ohye T., Tsutsumi M., Kato T., Tong M., Nishizawa H., Pryor-Koishi K., Kitaoka E., Sawada T., Nishiyama Y., Udagawa Y., Kurahashi H. Mutations of the SYCP3 gene in women with recurrent pregnancy loss. American journal of human genetics. 2009; 84 (1): pp 14-20. https://doi.org/10.1016Zj.ajhg.2008.12.002
34. Borghese B., Santulli P., Hequet D., Pierre G., Ziegler D.D., Vaiman D., Chapron C. Genetic Polymorphisms of DNMT3L Involved in Hypermethylation of Chromosomal Ends Are Associated with Greater Risk of Developing Ovarian Endometriosis. The American Journal of Pathology. 2012; 180 (5): pp 17811786. https : //doi.org/ 10.1016/j.aj path.2012.01.009
35. Bozovic I.B., Stankovic A., Zivkovic M., Vranekovic J., Kapovic M., Brajenovic-Milic B. Altered LINE-1 Methylation in Mothers of Children with Down Syndrome. PLOS ONE. 2015; 10 (5): p e0127423. https://doi.org/10.1371/journal.pone.0127423
36. Brenner B. Inherited thrombophilia and pregnancy loss. Thrombosis and Haemostasis. 1999; 82 (2): pp 634-640. https://doi.org/10.1055/s-0037-1615890
37. Brenner C., Fuks F. DNA Methyltransferases: Facts, Clues, Mysteries. Current Topics in Microbiology and Immunology. 2006; 301: pp 4566. https://doi.org/10.1007/3-540-31390-7_3
38. Brogan I.J., Khan N., Isaac K., Hutchinson J.A., Pravica V., Hutchinson I.V. Novel polymorphisms in the promoter and 5= UTR regions of the human vascular endothelial growth factor gene. Human Immunology. 1999; 60(12): pp 1245-1249. https://doi.org/10.1016/s0198-8859(99)00132-9
39. Bulletti C., Flamigni C., Giacomucci E. Reproductive failure due to spontaneous abortion and recurrent miscarriage. Human Reproduction Update. 1996; 2 (2): pp 118-136. https://doi.org/10.1093/humupd/2.2.118
40. Cai B., Zhang T., Zhong R., Zou L., Zhu B., Chen W., Shen N., Ke J., Lou J., Wang Z., Sun Y., Liu L., Song R. Genetic Variant in MTRR, but Not MTR, Is Associated with Risk of Congenital Heart Disease: An Integrated Meta-Analysis. PLoS One. 2014; 9 (3): p e89609. https://doi.org/10.1371/journal.pone.0089609
41. Cao Y., Zhang Z., Zheng Y., Yuan W., Wang J., Liang H., Chen J., Du J. Shen Y. The association of idiopathic recurrent early pregnancy loss with polymorphisms in folic acid metabolism-related genes. Genes & Nutrition. 2014; 9 (3). p 402. https://doi: org/10.1007/s12263-014-0402-x.
42. Carp H.J.A, Carp H.. Recurrent Pregnancy Loss: Causes, Controversies, and Treatment. Second edition. Israel. CRC Press. 2014; pp. 29-192.
43. Carter A.M., Sachchithananthan M., Stasinopoulos S.J., Maurer F., Medcalf R.L. Prothrombin G20210A is a bifunctional gene polymorphism. Thrombosis and haemostasis. 2002; 87 (05): pp 846-853. https://doi.org/10.1055/s-0037-1613095
44. Chaithra P.T., Malini S., Sharath K.C. An Overview of Genetic and Molecular Factors Responsible for Recurrent Pregnancy Loss. International Journal of Human Genetics. 2011; 11 (4): pp 217225. https://doi.org/10.1080/09723757.2011.11886145
45. Chen T., Ueda Y., Dodge J.E., Wang Z., Li E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Molecular and Cellular Biology. 2003; 23 (16): pp 5594605. https://doi.org/10.1128/mcb.23.16.5594-5605.2003
46. Chen Z.X., Riggs A.D. DNA Methylation and Demethylation in Mammals. Journal of Biological Chemistry. 2011; 286 (21): pp 18347-53. https://doi.org/10.1074/jbc.r110.205286
47. Cheng P., Chen H., Zhang R.P., Liu S.R., Zhou-Cun A. Polymorphism in DNMT1 may modify the susceptibility to oligospermia. Reproductive BioMedicine Online. 2014; 28 (5): pp 644- 649. https://doi.org/10.1016/j.rbmo.2014.01.003
48. Choudhury S.R., Knapp L.A. Human reproductive failure I: immunological factors. Human Reproduction Update. 2001; 7 (2): pp 113-34. https://doi.org/10.1093/humupd/7.2.113
49. Clark D.A.,Coulan C.B., Daya S., Chaouat G. Unexplained sporadic and recurrent miscarriage in the new millennium: a critical analysis of immune mechanisms and treatments. Human Reproduction Update. 2001; 7 (5): pp 5015011. https://doi.org/10.1093/humupd/7.5.501
50. Coppede F., Bosco P., Tannorella, P., Romano, C., Antonucci, I., Stuppia, L., Migliore, L. DNMT3B promoter polymorphisms and maternal risk of birth of a child with Down syndrome. Human Reproduction. 2013; 28 (2): pp 545550. https://doi.org/10.1093/humrep/des376
51. Coppede F., Ricciardi R., Denaro M., De Rosa A., Provenzano C., Bartoccioni E., Baggiani A., Lucchi M., Mussi A., Migliore L. Association of the DNMT3B -579G>T polymorphism with risk of thymomas in patients with myasthenia gravis. PloS one. 2013.8 (11), e80846.
52. Craig L.B., Ke R.W., Kutteh W.H. Increased prevalence of insulin resistance in women with a history of recurrent pregnancy loss. Fertility and Sterility. 2002; 78 (3): pp 487-90. https://doi.org/10.1016/s0015-0282(02)03247-8
53. Dawood F. Pregnancy and Thrombophilia. Journal of Blood Disorders & Transfusion. 2013; 04 (05). https://doi.org/10.4172/2155-9864.1000164
54. de Vogel S., Wouters K.A., Gottschalk R.W., van Schooten F.J., de Goeij A.F., de Brume A.P., Goldbohm R.A., van den Brandt P.A., Weijenberg M.P., van Engeland M. Genetic variants of methyl metabolizing enzymes and epigenetic regulators: associations with promoter CpG island hypermethylation in colorectal cancer. Cancer Epidemiology Biomarkers & Prevention. 2009; 18 (11): pp 3086-3096. https://doi.org/10.1158/1055-9965.epi-09-0289
55. Di Simone N., Maggiano N., Caliandro D., Riccardi P., Evangelista A., Carducci B., Caruso A. Homocystein induces trophoblast cell death with apoptopic features. Biology of Reproduction. 2003; 69 (4): pp 1129-1134. https://doi.org/10.1095/biolreprod.103.015800
56. Diejomaoh M.F.E. Recurrent Spontaneous Miscarriage Is Still a Challenging Diagnostic and Therapeutic Quagmire. Medical Principles and Practice. 2015; 24 (s1): pp 38-55. https://doi.org/10.1159/000365973
57. Dorothy M.A., Melissa A.B., Paige A.M. Coagulation Handbook. Aurora, Colorad. 2006. p 58.
58. Dürrbaum M., Storchova Z. Effects of aneuploidy on gene expression: implications for cancer. FEBS J. 2016; 283 (5): pp 791-802. https://doi.org/10.1111/febs.13591
59. D'Uva M., Micco P.D., Strina I., Placido G.D. Recurrent pregnancy loss and thrombophilia. J clin med res, 2010; 2 (1), 18-22. https://doi.org/10.4021/jocmr2010.02.260w
60. Eichinger S., Stümpflen A., Hirschl M., Bialonczyk C., Herkner K., Stain M., Schneider B., Pabinger I., Lechner K., Kyrle P.A. Hyperhomocysteinemia is a risk factor of recurrent venous thromboembolism. Thrombosis and haemostasis. 1998; 80 (4): pp 566-569.
61. El Hachem H., Crepaux V., May-Panloup P., Descamps P., Legendre G. Recurrent pregnancy loss: current perspective. International Journal of Women's Health. 2017; 9: pp 331-345. https://doi.org/10.2147/ijwh.s100817
62. Eller A.G., Branch D.W., Nelson L., Porter T.F., Silver R.M. Vascular endothelial growth factor-A gene polymorphisms in women with recurrent pregnancy loss. Journal of Reproductive Immunology. 2011; 88 (1): pp 4852. https://doi.org/10.1016/jjri.2010.06.159
63. ESHRE Early Pregnancy Guidline Development Group. Recurrent Pregnancy Loss. Guideline of the European Society of Human Reproduction and Embryology. 2017; 2: p 1-152.
64. Fan H., Zhang F., Hu J., Liu D., Zhao Z. Promoter polymorphisms of DNMT3B and the risk of colorectal cancer in Chinese: a case-control study. Journal of experimental & clinical cancer research. 2008; 27 (1). https://doi.org/10.1186/1756-9966-27-24
65. Finan R.R., Tamim H., Ameen G., Sharida H.E., Rashid M., Almawi Y.W. Prevalence of factor VG1691A (factor V-Leiden) and Prothrombin G20210A gene mutation in a recurrent miscarriage population. American Journal of Hematology. 2002; 71 (4): pp 300-305. https://doi.org/10.1002/ajh.10223
66. Foka Z.J., Lambropoulos A.F., Saravelos G.B., Kara G.Bs., Karavida A., Agorastos T., Zournatzi V., Makris PE., Bontis J., Kotsis A. Factor V Leiden and prothrombin G20210A mutations, but not methylenetetrahydrofolate reductase C677T, are associated with recurrent miscarriages. Human Reproduction. 2000; 15 (2): pp 458-462. https: //doi.org/10.1093/humrep/15.2.458
67. Ford H.B., Schust D.J. Recurrent pregnancy loss: etiology, diagnosis, and therapy. Reviews in Obstetrics & Gynecology. 2009; 2 (2): pp76-83.
68. Foy P., Moll S. Thrombophilia: 2009 Update. Current Treatment Options in Cardiovascular Medicine. 2009; 11 (2): pp 114-128. https://doi.org/10.1007/s11936-009-0012-x
69. Gao F., Sanjoy K.D. Epigenetic regulations through DNA methylation and hydroxymethylation: clues for early pregnancy in decidualization. Biomolecular Concepts. 2014; 5 (2): pp 95-107. https://doi.org/10.1515/bmc-2013-0036
70. García-Enguídanos A., Calle M.E., Valero J., Luna S., Domínguez-Rojas V. Risk factors in miscarriage: a review. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2002; 102 (2): pp 111-9. https://doi.org/10.1016/s0301-2115(01)00613-3
71. Gaudet F., Rideout W.M., Meissner A., Dausman J., Leonhardt H., Jaenisch R. Dnmt1 Expression in Pre- and Postimplantation Embryogenesis and the Maintenance of IAP Silencing. Molecular and Cellular Biology. 2004; 24 (4): pp 1640-164. https://doi.org/10.1128/mcb.24.4.1640-1648.2004
72. Gaughan D.J., Kluijtmans L.A.J., Barbaux S., McMaster D., Young I.S., Yarnell J.W.G., Evans A., Whitehead A.S. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001; 157 (2): pp 451 - 456. https://doi.org/10.1016/s0021-9150(00)00739-5
73. Gerritsen, M.E. Chapter 8 - Angiogenesis. Microcirculation (Second edition).2008. pp 351-372. https://doi.org/10.1016/B978-0-12-374530-9.00008-5
74. Gilbody S., Lewis S., Lightfoot T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. American Journal of Epidemiology. 2007; 165 (1): pp 1-13. https://doi.org/10.1093/aje/kwj347
75. Goncalves R.O., Goncalves M., Costa O.L.N. Chromosomal Abnormalities in Pregnancy Failure. Recent Advances in Biotechnology. 2017; (3): pp 2-19.
76. Gopalakrishnan S., Sullivan B.A., Trazzi S., Della Valle G., Robertson K.D. DNMT3B interacts with constitutive centromereprotein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Human Molecular Genetics . 2009; 18 (17): 31783193. https://doi.org/10.1093/hmg/ddp256
77. Green-Top Guideline No. 17. The Investigation and Treatment of Couples with Recurrent First-Trimester and Second-Trimester Miscarriages. Royal College of Obstetricians and Gynaecologists. 2011. pp1-18.
78. Hanson U., Persson B., Thunell S. Relationship between haemoglobin A1C in early type 1 (insulin-dependent) diabetic pregnancy and the occurrence of spontaneous abortion and fetal malformation in Sweden. Diabetologia. 1990; 33 (2): pp 100-104. https://doi.org/10.1007/bf00401047
79. Harper P.S. Practical Genetic Counselling 7th edition. London: Hodder Arnold. 2010. https://doi.org/10.1201/b13471
80. Hassold T., Hall H., Hunt P. The origin of human aneuploidy: where we have been, where we are going. Human Molecular Genetics. 2007; 16 (2): pp 203-208. https://doi.org/10.1093/hmg/ddm243
81. Hata K., Okano M., Lei H., Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002; 129 (8): pp 1983-1993.
82. Hernández-Hernández A., Hernádez R.O., Vázquez-Nin G.H. Meiosis-Molecular Mechanisms and Cytogenetic Diversity, Epigenetics of the Synaptonemal Complex. IntechOpen. 2012. pp 116. https://doi.org/10.5772/1232
83. Hohlagschwandtner M., Unfried G., Heinze G., Huber J.C., Nagele F., Tempfer C. Combined thrombophilic polymorphisms in women with idiopathic recurrent miscarriage. Fertility and Sterility. 2003; 79 (5): pp 11411148. https://doi.org/10.1016/s0015-0282(02)04958-0
84. Holmes Z.R., Regan L., Chilcott I., Cohen H. The C677T MTHFR gene mutation is not predictive of risk for recurrent fetal loss. British Journal of Haematology. 1999; 105 (1): pp 98-101. https://doi.org/10.1111/j.1365-2141.1999.01319.x
85. Hossain M.B., Vahter M., Concha G., Broberg K. Low-level environmental cadmium exposure is associated with DNA hypomethylation in Argentinean women. Environmental Health Perspectives. 2012; 120 (6): pp 879-884. https://doi.org/10.1289/ehp.1104600
86. Huang J.X., Scott M.B., Pu X.Y., Zhou-Cun A. Association between single-nucleotide polymorphisms of DNMT3L and infertility with azoospermia in
119
Chinese men. Reproductive BioMedicine Online. 2012; 24 (1): pp 66-71. https://doi.org/10.1016/j.rbmo.2011.09.004
87. Hyde K. J., Schust D. J. Genetic considerations in recurrent pregnancy loss. Cold Spring Harb Perspect Med. 2015; 5(3) :a023119. https://doi. 10.1101/cshperspect.a023119.
88. Jauniaux E., Farquharson R.G., Christiansen O.B., Exalto N. Evidence-based guidelines for the investigation and medical treatment of recurrent miscarriage. Human Reproduction. 2006. 21 (9): pp 2216-2222. https://doi.org/10.1093/humrep/del 150
89. Jebeleanu G., Procopciuc L. G20210A prothrombin gene mutation identified in patients with venous leg ulcers. Journal of Cellular and Molecular Medicine. 2001; 5 (4): pp 397-401. https://doi.org/10.1111/j.1582-4934.2001.tb00174.x
90. Jeltsch A., Jurkowska R.Z. DNA Methyltransferases -Role and Function. Advances in Experimental Medicine and Biology. 2016; 945: p 78. https://doi.org/10.1007/978-3-319-43624-1
91. Jia Z., Wu X., Cao D., Wang C., You L., Jin M., Jiang J. Polymorphisms of the DNA Methyltransferase 1 Gene Predict Survival of Gastric Cancer Patients Receiving Tumorectomy. Disease markers, 2016; 2016: pp 19. https://doi.org/10.1155/2016/8578064
92. Jivraj S., Makris M., Saravelos S., Li T. Pregnancy outcome in women with factor V Leiden and recurrent miscarriage. BJOG: An International Journal of Obstetrics & Gynaecology. 2009; 116 (7): pp 995-8. https://doi.org/10.1111/j.1471-0528.2009.02168.x
93. Jivraj S., Rai R., Underwood J., Regan L. Genetic thrombophilic mutations among couples with recurrent miscarriage. Human Reproduction. 2006. 21 (5): 1161-1165. https://doi.org/10.1093/humrep/dei466
94. Jurkowska R.Z., Jeltsch A. Enzymology of Mammalian DNA Methyltransferases. Advances in Experimental Medicine and Biology. Springer International Publishing Switzerland. Advances in Experimental Medicine and Biology. 2016; 945: pp 87-122. https://doi.org/10.1007/978-3-319-43624-1_5
95. Kacprzak M., Chrzanowska M., Skoczylas B., Moczulska H., Borowiec M., Sieroszewski P. Genetic causes of recurrent miscarriages. Ginekologia Polska. 2016; 87 (10): pp 722-726. https://doi.org/10.5603/gp.2016.0075
96. Kamali M., Hantoushzadeh S., Borna S., Neamatzadeh H., Mazaheri M., Noori-Shadkam M., Haghighi F. Association between Thrombophilic Genes Polymorphisms and Recurrent Pregnancy Loss Susceptibility in the Iranian Population: a Systematic Review and Meta-Analysis. Iranian Biomedical Journal. 2018; 22 (2): pp 78-89. doi.10.22034/ibj.22.2.78
97. Kanai Y., Ushijima S., Nakanishi Y., Sakamoto M., Hirohashi S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Letters. 2003; 192 (1): pp.75-82. https://doi.org/10.1016/s0304-3835(02)00689-4
98. Kelemen, L.E., Sellers, T.A., Schildkraut, J.M., Cunningham, J.M., Vierkant, R.A., Pankratz, V.S., Goode, E.L. Genetic variation in the one-carbon transfer pathway and ovarian cancer risk. Cancer research. 2008; 68 (7): pp 2498-2506. https://doi.org/10.1158/0008-5472.can-07-5165
99. Kenneth A.B. Prothrombin G20210A mutation. Literature review current through: 2019. This topic last updated: 2018.
100. Khaleghparast A., Khaleghparast S., Khaleghparast H. Association between the A1298C Polymorphism of the Methylenetetrahydrofolate Reductase Gene and Recurrent Spontaneous Abortion. Iranian Journal of Neonatology. 2014; 5 (2): pp 7-11. doi: 10.22038/IJN.2014.2640
101. Khan S., Dickerman J.D. Hereditary thrombophilia. Thrombosis Journal. 2006. 4 (1): p15. doi: 10.1186/1477-9560-4-15
102. Khare M.1, Nelson-Piercy C. Acquired thrombophilias and pregnancy. Best Practice & Research Clinical Obstetrics & Gynaecology. 2003; 17 (3): pp 491507. https : //doi.org/10.1016/s 1521 -6934(03)00013-0
103. Kim J.H., Jeon Y.J., Lee B.E., Kang H., Shin J.E., Choi D.H., Lee
W.S., Kim N.K. Association of methionine synthase and thymidylate synthase
genetic polymorphisms with idiopathic recurrent pregnancy loss. Fertility and
121
Sterility. 2013; 99 (6): pp 1674-80.
https://doi.org/10.1016/j.fertnstert.2013.01.108
104. Kim S.Y., Romero R., Tarca A.L., Bhatti G., Kim C.J., Lee J., Elsey A., Than N.G., Chaiworapongsa T., Hassan S.S., Kang G.H., Kim J.S. Methylome of fetal and maternal monocytes and macrophages at the feto-maternal interface. American Journal of Reproductive Immunology. 2012; 68 (1): pp 8-27. https://doi.org/10.1111/j.1600-0897.2012.01108.x
105. Lapaev N.N., Ahmed A.A., Azova M.M., Gigani O.O., Gigani O.B., Aghajanyan A.V., Syatkin S.P. Prevalence of DNMT3B 149 C>>T and SYCP3 T657C polymorphisms among Russian women. FEBS OPEN BIO. 2018; 8 (S1): p 113.
106. Larsen E.C., Christiansen O.B., Kolte A.M., Macklon N. New insights into mechanisms behind miscarriage. BMC Medicine. 2013; 11 (1). pp 210 https://doi.org/10.1186/1741-7015-11-154
107. Leng S., Stidley C.A., Bernauer A.M., Picchi M.A., Sheng X., Frasco M.A., Belinsky S.A. Haplotypes of DNMT1 and DNMT3B are associated with mutagen sensitivity induced by benzo[a]pyrene diol epoxide among smokers. Carcinogenesis. 2008; 29 (7): pp 1380-1385. https://doi.org/10.1093/carcin/bgn121
108. Li E., Bestor T.H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992; 69 (6): pp 915-926. https://doi.org/10.1016/0092-8674(92)90611 -f
109. Li H., Liu J.W., Sun L.P., Yuan Y. A Meta-Analysis of the Association between DNMT1 Polymorphisms and Cancer Risk. BioMed Research International . 2017; 2017: pp 1-10. https://doi.org/10.1155/2017/3971259
110. Li, E., Zhang, Y. DNA methylation in mammals. Cold Spring Harbor Perspectives in Biology. 2014; 6 (5): pp a019133 - a019133. https://doi.org/10.1101/cshperspect.a019133
111. Liatsikos S.A., Tsikouras P., Manav B., Csorba R., von Tempelhoff G.F.,
Galazios G. Inherited thrombophilia and reproductive disorders. Journal of the
122
Turkish German Gynecological Association. 2016; 17 (1): pp 4550. https://doi.org/10.5152/jtgga.2016.15212
112. Lin T.H., Wang C.L., Su H.M., Hsu P.C., Juo S.H., Voon W.C., Shin S.J., Lai W.T., Sheu S.H. Functional vascular endothelial growth factor gene polymorphisms and diabetes: effect on coronary collaterals in patients with significant coronary artery disease. Clinica Chimica Acta. 2010; 411 (21-22) pp 1688-1693. https://doi.org/10.1016/jxca.2010.07.002
113. Lissak A., Sharon A., Fruchter O., Kassel A., Sanderovitz J., Abramovici H. Polymorphism for mutation of cytosine to thymine at location 677 in the methylenetetrahydrofolate reductase gene is associated with recurrent early fetal loss. American Journal of Obstetrics and Gynecology. 1999. 181 (1): 126-130. https://doi.org/10.1016/s0002-9378(99)70447-3
114. Liu Y., Zheng H., Guo P., Feng S., Zhou X., Ye D., Chen X., Chen S. DNA methyltransferase 3A promoter polymorphism is associated with the risk of human spontaneous abortion after assisted reproduction techniques and natural conception. Journal of Assisted Reproduction and Genetics. 2017; 34(2): pp 245-252. https://doi.org/10.1007/s10815-016-0837-7
115. Los F.J., Van Opstal D., van den Berg C. The development of cytogenetically normal, abnormal and mosaic embryos: a theoretical model. Human Reproduction Update. 2004; 10 (1): pp 7994. https://doi.org/10.1093/humupd/dmh005
116. Luo L., Li d., Wei S., Zhang H., Zhao J., Li S. Polymorphisms in the vascular endothelial growth factor gene associated with recurrent spontaneous miscarriage. The Journal of Maternal-Fetal & Neonatal Medicine, 2013; 26 (7): pp 686-690. https://doi.org/10.3109/14767058.2012.746305
117. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nature Reviews Genetics. 2018; 19 (2): pp 8192. https://doi.org/10.1038/nrg.2017.80
118. Ma L., Yang H., Yang X., Ruan L. Methionine synthase A2756G polymorphism influences pediatric acute lymphoblastic leukemia risk: a meta-
123
analysis. Bioscience Reports. 2019; 39 (1): p BSR20181770. https://doi.org/10.1042/bsr20181770
119. Mahjoub T., Mtiraoui N., Tamim H., Hizem S., Finan R.R., Nsiri B., Almawi W.Y. Association between adverse pregnancy outcomes and maternal factor V G1691A (Leiden) and prothrombin G20210A genotypes in women with a history of recurrent idiopathic miscarriages. American Journal of Hematology. 2005; 80 (1): pp 12-19. https://doi.org/10.1002/ajh.20419
120. Marakhovskaya T.A., Butenko E.V., Kovalenko K.A., Mashkina E.V. Association of Growth Factors Genes with Miscarriage. Journal of reproduction & infertility. 2018; 19 (4): pp 219-228.
121. Massalska D., Zimowski J G., Bijok J., Pawelec M., Czubak-Barlik M., Jakiel G., Roszkowski T. First trimester pregnancy loss: Clinical implications of genetic testing. Journal of Obstetrics and Gynaecology Research. 2017; 43 (1): pp 23-29. https://doi.org/10.1111/jog.13179
122. McFadden D.E., Friedman J.M. Chromosome abnormalities in human beings. Mutat Res. 1997; 396 (1-2): pp 129-40.
123. Mentch S.J., Locasale J.W. One-carbon metabolism and epigenetics: understanding the specificity. Annals of the New York Academy of Sciences. 2016; 1363 (1): pp 91-8. https://doi.org/10.1111/nyas.12956
124. Mierla D., Szmal C., Neagos D, Cretu R., Stoian V., Jardan D. Association of Prothrombin (A20210G) and Factor V Leiden (A506G) with Recurrent Pregnancy Loss. Maedica (Buchar). 2012; 7 (3): pp 222-226.
125. Min G., Daqiang H., Fanji M., Jianing L., Yan S. Associations of DNMT3B -149C>T and -2437T>A polymorphisms and lung cancer risk in Chinese population. World Journal of Surgical Oncology. 2016; 14 (1): pp 1-7. https://doi.org/10.1186/s12957-016-1052-9
126. Mitraui N., Borgi L., Hizem S., Nsiri B., Finan R.R,. Gris J.C., Almawi W.Y., Mahjoub T. Prevalence of antiphospholipid antibodies, factor V G1691A (Leiden ) and prothrombin G20210A mutations in early and late recurrent
pregnancy loss. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2005.119 (2):164-170. https://doi.org/10.1016Zj.ejogrb.2004.07.003
127. Miyamoto T., Hasuike S., Yogev L., Maduro M.R., Ishikawa M., Westphal H., Lamb D.J. Azoospermia in patients heterozygous for a mutation in SYCP3. The Lancet. 2003; 362 (9397): pp 1714-1719. https://doi.org/10.1016/s0140-6736(03)14845-3
128. Mizutani E., Suzumori N., Ozaki Y., Oseto K., Yamada-Namikawa C., Nakanishi M., Sugiura-Ogasawara M. SYCP3 mutation may not be associated with recurrentmiscarriage caused by aneuploidy. Human Reproduction. 2011; 26 (5): pp 1259-1266.https: //doi. org/10.1093/humrep/der03 5
129. Mohammad M.A.M., Al-Halabi M G., Monem F M.S. Prevalence of factor V Leiden mutation and its relation with recurrent spontaneous pregnancy loss in a group of Syrian women. Middle East Fertility Society Journal. 2007; 12 (3): pp 179-183.
130. Mohammadi M., Ollier W.E., Hutchinson I.V. A functional association study of VEGF gene promoter polymorphisms with VEGF expression by stimulated pbm cells. Human Immunology. 2003; 64 (10): p s125. https://doi.org/10.1016/j.humimm.2003.08.234
131. Moscrop A. "'Miscarriage or abortion?' Understanding the medical language of pregnancy loss in Britain; a historical perspective". Medical Humanities. 2013; 39 (2): pp 98-104. https://doi.org/10.1136/medhum-2012-010284
132. Mostowska A., Sajdak S., Pawlik P., Lianeri M., Jagodzinski P.P. DNMT1, DNMT3A and DNMT3B gene variants in relation to ovarian cancer risk in the Polish population. Mol Biol Rep, 2013; 40 (8): pp 4893-4899. https://doi.org/10.1007/s11033-013-2589-0
133. Moyer R.A., Wang D., Papp A.C., Smith R.M., Duque L., Mash D.C., Sadee W. Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology. 2011; 36: pp 753-762. https://doi.org/10.1038/npp.2010.208
134. Mtiraoui N., Zammiti W., Ghazouani L., Braham N.J., Saidi S., Finan R.R., Almawi W.Y., Mahjoub T. Methylenetetrahydrofolate reductase C677T and A1298C polymorphism and changes in homocysteine concentrations in women with idiopathic recurrent pregnancy losses. Reproduction. 2006; 131 (2): pp395-401. https://doi.org/10.1530/rep.L00815
135. Muradian A.A., Ahmed A.A., Azova M.M., Ait Aissa A., Gigani O.B., Aghajanyan A.V., Tskhovrebova L.V., Syatkin S.P. Association of DNMT1 rs8101626 polymorphism with the early miscarriage in Russian women. FEBS OPEN BIO. 2019; 9 (S1): p 97.
136. Naghibalhossaini F., Mokarram P., Khalili E. Naghibalhossaini S. DNMT3b -149C/T promoter variants and methylation of colorectal cancer-associated genes. Cancer Biomarkers. 2015; 15 (3): pp 227-233. https://doi.org/10.3233/cbm-150463.
137. Nair R.R., Khanna A., Singh R., Singh K. Association of maternal and fetal MTHFR A1298C polymorphism with the risk of pregnancy loss: a study of an Indian population and a meta-analysis. Fertility and Sterility. 2013; 99 (5): pp1311-1318. https://doi.org/10.1016/j.fertnstert.2012.12.027
138. Nazemi A., Tolami H.F., Navaderi M., Toulami S., Hondori M.J., Tameshkel F.S., Seyedinasab S.R. Screening for mutations in 10 exons of the 5 coagulation factor gene in Gilan province thrombosis patients. European Journal of Experimental Biology. 2013; 3 (3): pp 589-592.
139. Nazki F.H., Sameer A.S., Ganaie B.A. Folate:metabolism, genes, polymorphisms and the associated diseases. Gene. 2014; 533 (1): pp 11-20. https://doi.org/10.1016Zj.gene.2013.09.063
140. Neago§ D., CreNu R., Sfetea R.C., Mierla D., Bohiltea L.C. Investigation of the relationship between the risk of spontaneous abortion and C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene. Revista Romana de Medicina de Laborator. 2012; 20: pp 335-343.
141. Okada H., Tsuzuki T., Murata H. Decidualization of the human endometrium. Reproductive medicine and biology. 2018; 17 (3): pp 220227. https://doi.org/10.1002/rmb2.12088
142. Okano M., Bell D.W., Haber D.A., Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999; 99 (3): pp 247-257. https://doi.org/10.1016/s0092-8674(00)81656-6
143. Ornstein D.L., Cushman M. Cardiology patient page. Factor V Leiden. Circulation. 2003; 107 (15): pp e94-e97. doi: 10.1161/01.CIR.0000068167.08920.F1
144. Osman O.M., Abulata, N.N. Inherited Thrombophilia and Early Recurrent Pregnancy Loss among Egyptian Women. Open Journal of Obstetrics and Gynecology. 2015; 05 (05): pp 251-258. https://doi.org/10.4236/ojog.2015.55037
145. Ozdemir O., Yenicesu G.I., Silan F., Koksal B., Atik S., Ozen F., Gol M., Cetin A. Recurrent pregnancy loss and its relation to combined parental thrombophilic gene mutations. Genetic Testing and Molecular Biomarkers. 2012; 16 (4): pp 279-86. https://doi.org/10.1089/gtmb.2011.0191.
146. Page S.L., Hawley R.S. The Genetics Andmolecular Biology Of The Synaptonemal Complex. Annual Review of Cell and Developmental Biology . 2004; 20 (1): pp 525-558. https://doi.org/10.1146/annurev.cellbio.19.111301.155141
147. Papazoglou D., Galazios G., Papatheodorou K., Liberis V., Papanas N., Maltezos E., Maroulis G.B. Vascular endothelial growth factor gene polymorphisms and idiopathic recurrent pregnancy loss. Fertility and Sterility. 2005; 83 (4): pp 959-963. https://doi.org/10.1016/j.fertnstert.2004.12.017
148. Parand, A., Zolghadri, J., Nezam, M., Afrasiabi, A., Haghpanah, S., Karimi, M. Inherited thrombophilia and recurrent pregnancy loss. Iranian Red Crescent Medical Journal. 2013; 15 (12): p e13708. https://doi.org/10.5812/ircmj.13708
149. Petrussa L., de Van H.V, De Rycke M. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted
127
reproductive technologies. MHR: Basic science of reproductive medicine. 2014; 20 (9): pp 861-874. https://doi.org/10.1093/molehr/gau049
150. Piotrowski P., Grobelna M.K., Wudarski M., Olesinska M., Jagodzinski P.P. Genetic variants of DNMT3A and systemic lupus erythematosus susceptibility. Modern Rheumatology . 2015; 25 (1): pp 96-9. https://doi.org/10.3109/14397595.2014.902296
151. Pokale Y.S. Recurrent Miscarriage. International Research Journal of Medical Sciences. 2015; 3 (9): pp 13-19.
152. Practice Committee of American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2013; 99 (1): p 63.
153. Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertility and Sterility. 2012; 98 (5): pp 11031111. https: //doi.org/ 10.1016/j.fertnstert.2012.06.048
154. Quenby S., Vince G., Farquharson R., Aplin J. Recurrent miscarriage: a defect in nature's quality control? Human Reproduction. 2002; 17 (8): pp 19591963. https: //doi.org/10.1093/humrep/17.8.1959
155. Rai R., Regan L. Recurrent miscarriage. Lancet. 2006; 368 (9535): pp 601611. doi:10.1016/S0140-6736(06)69204-0
156. Rai R., Backos M., Rushworth F., Regan L. Polycystic ovaries and recurrent miscarriage - a reappraisal. Hum Reprod. Human Reproduction. 2000; 15 (3): pp 612-615. https: //doi. org/10.1093/humrep/15.3.612
157. Ramanathanpullai C, S Subbannagounder, B Subramani. Role of Natural Killer cells in Recurrent Spontaneous Abortions. Bulletin of Environment, Pharmacology and Life Sciences. 2017; 6 (10): pp 122-128.
158. Raziel A., Komberg Y., Friedler S., Schachter M., Sela B.A., Ron-El R. Hypercoagulable thrombophilic defects and hyperhomocysteinemia in patients with recurrent pregnancy loss. American Journal of Reproductive Immunology. 2001; 45 (2): pp 65-71. https://doi.org/10.1111/j.8755-8920.2001.450201.x
159. Renner W., Kotschan S., Hoffmann C., Obermayer-Pietsch B., Pilger E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. Journal of Vascular Research. 2000; 37 (6): pp 443-448. https://doi.org/10.1159/000054076
160. Reproductive Health Survey Russia 2011. Executive Summary. Federal State Statistic Service (ROSSTAT). Ministry of Health of the Russian Federation Information and Publishing Center "Statistics of Russia". Atlanta: CDC, 2012. pp 1- 51.
161. Rey E., Kahn S.R., David M., Shrier I. Thrombophilic disorders and fetal loss: a meta-analysis. The Lancet. 2003; 361 (9361): pp 901-908. https://doi.org/10.1016/s0140-6736(03)12771-7
162. Rhee I., Bachman K.E., Park B.H., Jair K.W., Yen R.W., Schuebel K.E., Cui H., Feinberg A.P., Lengauer C, Kinzler K.W., Baylin S.B., Vogelstein B. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002; 416 (6880): pp 552-556. https://doi.org/10.1038/416552a
163. Rhee I., Jair K.W., Yen R.W., Lengauer C.,Herman J.G., Kinzler K.W., Vogelstein B., Baylin S.B., Schuebel K.E. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000; 404 (6781): pp 10031007. https://doi.org/10.1038/35010000
164. Ribas-Maynou J., Garcia-Peiro A., Fernandez-Encinas A., Amengual M.J., Prada E., Cortes P., Navarro J., Benet J. Double stranded sperm DNA breaks, measured by Comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS One. 2012; 7 (9): p e44679. https://doi.org/10.1371/journal.pone.0044679
165. Robinson L., Gallos I.D., Conner S.J., Rajkhowa M., Miller D., Lewis S., Kirkman-Brown J., Coomarasamy A. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Human Reproduction. 2012; 27 (10): pp 2908-2917. https://doi.org/10.1093/humrep/des261
166. Rodger M.A., Paidas M., McLintock C., Middeldorp S., Kahn S., Martinelli I., Hague W., Rosene Montella K., Greer I. Inherited thrombophilia and pregnancy complications revisited. Obstetrics & Gynecology . 2008; 112 (2 Pt 1): pp 320-324. https://doi.org/10.1097/aog.0b013e31817e8acc
167. Rull K., Christiansen O.B., Nagirnaja L., Steffensen R., Margus T., Laan M. A modest but significant effect of CGB5 gene promoter polymorphisms in modulating the risk of recurrent miscarriage. Fertility and Sterility. 2013; 99 (7): pp1930-1936.e6. https://doi.org/ 10.1016/j.fertnstert.2013.02.019
168. Sachchithananthan M., Stasinopoulos S.J., Wilusz J., Medcalf R.L. The relationship between the prothrombin upstream sequence element and the G20210A polymorphism: the influence of a competitive environment for mRNA 3'-end formation. Nucleic Acids Research. 2005; 33 (3): pp 10101020. https://doi.org/10.1093/nar/gki245
169. Saini V., Arora S., Yadav A., Bhattacharjee J. Cytokines in recurrent pregnancy loss. Clinica Chimica Acta. 2011; 412 (9-10): pp 702-708. https://doi.org/10.1016/j.cca.2011.01.002
170. Salker M., Teklenburg G., Molokhia M., Lavery S., Trew G., Aojanepong T., Mardon H.J., Lokugamage A.U., Rai R., Landles C., Roelen BA., Quenby S., Kuijk E.W., Kavelaars A., Heijnen C.J., Regan L., Macklon N.S., Brosens J.J. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS One. 2010; 5 (4): p e10287. https://doi.org/10.1371/journal.pone.0010287
171. §amli H., Demir B.Q., Ozgoz A., Atalay M.A. Uncu G. Vascular endothelial growth factor gene 1154 G/A, 2578 C/A, 460 C/T, 936 C/T polymorphisms and association with recurrent pregnancy losses. Genetics and Molecular Research. 2012. 11 (4): pp 4739-4745. https://doi.org/10.4238/2012.december.17.6
172. Saradalekshmi, K.R., Neetha, N.V., Sathyan, S., Nair, I.V., Nair, C.M., Banerjee, M. DNA Methyl Transferase (DNMT) Gene Polymorphisms Could
Be a Primary Event in Epigenetic Susceptibility to Schizophrenia. PLoS ONE. 2014; 9 (5): p e98182. https://doi.org/10.1371/journal.pone.0098182
173. Sazegari A., Kalantar S.M., Pashaiefar H., Mohtaram S., Honarvar N., Feizollahi Z., Ghasemi N. The T657C polymorphism on the SYCP3 gene is associated with recurrent pregnancy loss. Journal of Assisted Reproduction and Genetics. 2014; 31 (10): pp 1377-1381. https://doi.org/10.1007/s10815-014-0272-6
174. Scott J.R., Gibbs R.S, Karlan B.Y., Arthur F., Haney A.F., Danforth D.N. Danforth's obstetrics and gynecology, 9th edition. Lippincott Williams & Wilkin, 2003, p.48.
175. Sehirali S.I., M., Yildirim Y., Balim, Z., Kosova B., Karamizrak T., Sanci M., Topcuoglu N., Tinar S. Prothrombin G20210A mutation in cases with recurrent miscarriage: a study of the mediterranean population. Archives of Gynecology and Obstetrics. 2005; 273 (3): pp 170-173. https://doi.org/10.1007/s00404-005-0061-7
176. Shakarami F., Akbari M. T., Zare Karizi S. Association of plasminogen activator inhibitor-1 and angiotensin converting enzyme polymorphisms with recurrent pregnancy loss in Iranian women. Iranian Journal of reproductive medicine. 2015; 13 (10): pp 627-632.
177. Shen H., Wang L., Spitz M.R., Hong W.K., Mao L., Wei Q. A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Research. 2002; 62 (17): pp 4992-4995.
178. Silva C., Keating E., Pinto E. The impact of folic acid supplementation on gestational and long term health: Critical temporal windows, benefits and risks. Porto Biomedical Journal. 2017; 2 (6): pp 315332. https://doi.org/10.1016/j.pbj.2017.05.006
179. Simpson J.L, Carson S.A. Genetic and Nongenetic Causes of Pregnancy Loss. The Global Library of Women's Medicine. 2009; (updated 2013). https://doi.org/10.3843/glowm.10319.
180. Stirrat G.M. Recurrent miscarriage I: definition and epidemiology. The Lancet. 1990; 336 (8716): pp 673-675. https://doi.org/10.1016/0140-6736(90)92159-F
181. Suetake I., Shinozaki F., Miyagawa J., Takeshima H., Tajima S. DNMT3L Stimulates the DNA Methylation Activity of Dnmt3a and Dnmt3b through a Direct Interaction. Journal of Biological Chemistry. 2004; 279 (26): pp 2781627823. https://doi.org/10.1074/jbc.m400181200
182. Sun M.Y., Yang X.X., Xu W.W., Yao G.Y., Pan H.Z., Li M. Association of DNMT1 and DNMT3B polymorphisms with breast cancer risk in Han Chinese women from South China. Genetics and Molecular Research. 2012; 11 (4): pp 4330-4341. https: //doi.org/10.4238/2012.september.26.1
183. Sun Y., Chen M., Mao B., Cheng X., Zhang X., Xu C. Association between vascular endothelial growth factor polymorphism and recurrent pregnancy loss: A systematic review and meta-analysis. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2017; 211: pp 169176. https://doi.org/10.1016/j.ejogrb.2017.03.003
184. Svyatova G.S., Berezina G.M., Murtazalieva A.V. Association between the 657t>c polymorphism of the chromosome segregation gene SYCP3 and idiopathic recurrent pregnancy loss in the Kazakh population. Akusherstvo i Ginekologiya / Obstetrics and gynecology. 2019; 12: pp 105-110. https://dx.doi.org/10.18565/aig.2019.12.105-110
185. Szeto C.C., Chow K.M., Poon P., Szeto C.Y., Wong T.Y., Li P.K. Genetic polymorphism of VEGF: Impact on longitudinal change of peritoneal transport and survival of peritoneal dialysis patients. Kidney International. 2004; 65 (5): pp 1947-1955. https://doi.org/10.1111/j.1523-1755.2004.00605.x
186. Tajima S., Suetake I., Takeshita K., Nakagawa A., Kimura H. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. Advances in Experimental Medicine and Biology. 2016; 945: pp 6386. https://doi.org/10.1007/978-3-319-43624-1_4
187. Teklenburg G., Salker M., Molokhia M., Lavery S., Trew G., Aojanepong T., Mardon H.J., Lokugamage A.U., Rai R., Landles C., Roelen B.A., Quenby S., Kuijk E.W., Kavelaars A., Heijnen C.J., Regan L., Brosens J.J., Macklon N.S. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One. 2010; 5 (4): p e10258. https://doi.org/10.1371/journal.pone.0010258
188. Terrazzino S., Deantonio L., Cargnin S., Donis L., Pisani C., Masini L., Gambaro G., Canonico P.L., Genazzani A.A., Krengli M. DNA Methyltransferase Gene Polymorphisms for Prediction of Radiation-Induced Skin Fibrosis after Treatment of Breast Cancer: A Multifactorial Genetic Approach. Cancer Research and Treatment. 2016; 49 (2): pp 464-472. https://doi.org/10.4143/crt.2016.256
189. The Johns Hopkins Manual of Gynecology and Obstetrics, Fourth edition. Lippincott Williams & Wilkins. 2012. p. 438.
190. Turek-Plewa J., Jagodzinski P.P. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cellular & Molecular Biology Letters. 2005; 10 (4): pp 631-647.
191. Uysal F., Akkoyunlu G.1., Ozturk S. Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie. 2015; 116: pp 103-113. https://doi.org/10.1016/j.biochi.2015.06.019
192. Van den Boogaard E., Vissenberg R., Land J.A., van Wely M., van der Post J.A., Goddijn M., Bisschop P.H. Significance of (sub) clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review. Human Reproduction Update. 2011; 17 (5): pp 605-619. https://doi.org/10.1093/humupd/dmr024
193. Van den Berg M.M., van Maarle M.C., van Wely M., Goddijn M. Genetics of early miscarriage. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2012; 1822 (12): pp 19511959. https://doi.org/10.1016/j.bbadis.2012.07.001
194. Van Dunne F.M., de Craen A.J., Heijmans B.T., Helmerhorst F.M., Westendorp R.G. Gender-specific association of the factor V Leiden mutation with fertility and fecundity in a histories cohort. The Leiden 85-plus study. Human Reproduction. 2006; 21 (4): pp 967971. https://doi.org/10.1093/humrep/dei422
195. Van Dunne F.M., Doggen C.J., Heemskerk M., Rosendaal F.R., Helmerthorst F.M. Factor V Leiden mutation in relation to fecundity and miscarriage in women with venous thrombosis. Human Reproduction. 2005. 20 (3): pp 802-806. https://doi.org/10.1093/humrep/deh640
196. Voronin K.V., Davidenko N.V., Loskutova T.O. Multigenic forms of thrombophilia in habitual miscarige. Medicni perspektivi (Medical perspectives). 2015; 20 (1): pp 69-75. https://doi.org/10.26641/2307-0404.2015.1.40307
197. Walia G.K., Mukhopadhyay R., Saraswathy K.N., Puri M., Chahal1 S.M.S. Immuno-Molecular Etiology of Recurrent Pregnancy Loss and the Anthropological Perspective. INTERNATIONAL JOURNAL OF HUMAN GENETICS. 2008. 8 (1-2): pp 227235. https://doi.org/10.31901/24566330.2008/08.02.08
198. Walker I.D., Greaves M., Preston F.E. Investigation and management of heritable thrombophilia. British Journal of Haematology, 2001; 114 (3): pp 512 -528. https://doi.org/10.1046/j.1365-2141.2001.02981.x
199. Walter J., Hümpel A. Introduction to Epigenetics. Epigenetics. 2017; pp 1129. https://doi.org/10.1007/978-3-658-14460-9_2
200. Wang H., Hoog C. Structural damage to meiotic chromosomes impairs DNA recombination and checkpoint control in mammalian oocytes. The Journal of Cell Biology. 2006; 22; 173 (4): pp 485-495. https://doi.org/10.1083/jcb.200512077
201. Wang Y.M., Wang R., Wen D.G., Li Y., Guo W., Wang N., Wei L.Z., He Y.T., Chen Z.F., Zhang X.F., Zhang J.H. Single nucleotide polymorphism in DNA methyltransferase 3B promoter and its association with gastric cardiac
134
adenocarcinoma in North China. World Journal of Gastroenterology. 2005; 11 (23): pp 3623-3627.
202. Wang, P., Li, S., Wang, M., He, J., Xi, S. Association of MTRR A66G polymorphism with cancer susceptibility: Evidence from 85 studies. Journal of Cancer. 2017, 8 (2): pp 266-277. https://doi.org/10.7150/jca.17379
203. Watkins D., Ru M., Hwang H.Y., Kim C.D., Murray A., Philip N.S., Kim W., Legakis H., Wai T., Hilton J.F., Ge B., Doré C., Hosack A., Wilson A., Gravel R. A., Shane B., Hudson T.J., Rosenblatt D.S. Hyperhomocysteinemia Due to Methionine Synthase Deficiency, cblG: Structure of the MTR Gene, Genotype Diversity, and Recognition of a Common Mutation, P1173L. The American Journal of Human Genetics. 2002; 71 (1): pp 143-153. https://doi.org/10.1086/341354
204. Watson C.J., Webb N.J., Bottomley M.J., Brenchley P.E. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine. 2000; 12 (8): pp 1232-1235. https://doi.org/10.1006/cyto.2000.0692
205. Webster A., Schuh M. Mechanisms of Aneuploidy in Human Eggs. Trends in Cell Biology. 2017; 27(1): pp 5568. https://doi.org/10.1016/j.tcb.2016.09.002
206. Williams R.H. Hyperhomocysteinemia Pathogenesis, Clinical Significance, Laboratory Assessment, and Treatment. Laboratory Medicine. 1999; 30 (7): pp 468-475. https://doi.org/10.1093/labmed/30.7.468
207. Wilson A., Platt R., Wu Q., Leclerc D., Christensen B., Yang H., Gravel R.A., Rozen R. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Molecular Genetics and Metabolism. 1999; 67 (4): pp 317323. https://doi.org/10.1006/mgme.1999.2879
208. Wramsby M.L., Sten-Linder M., Bremme K. Primary habitual abortions are associated with high frequency of factor V Leiden mutation. Fertility and
Sterility. 2000; 74 (5): pp 987-991. https://doi.org/10.1016/s0015-0282(00)01545-4
209. Wu X., Zhao L., Zhu H., He D., Tang W., Luo Y. Association between the MTHFR C677T Polymorphism and Recurrent Pregnancy Loss: A Meta-Analysis. Genetic Testing and Molecular Biomarkers. 2012; 16 (7): pp 806-811. https://doi.org/10.1089/gtmb.2011.0318
210. Xiang G., Zhenkun F., Shuang C., Jie Z., Hua Z., Wei J., Da P., Dianjun L. Association of DNMT1 gene polymorphisms in exons with sporadic infiltrating ductal breast carcinoma among Chinese Han women in the Heilongjiang Province. Clinical Breast Cancer. 2010; 10 (5): pp 373-377. https://doi.org/10.3816/cbc.2010.a049
211. Xie X., Zhang Y., Xin L., Leng J., Lu Y., Xue Y. Relationship of folate metabolism related enzymes MTHFR and MTRR gene polymorphisms with unexplained recurrent spontaneous abortion. International Journal of Clinical & Experimental Pathology. 2017; 10 (3): pp 3746-3752.
212. Xu J., Zhou W. The relationship between gene polymorphism of MTRR A66G and lower extremity deep venous thrombosis. Hematology. 2018; 23 (10): pp 828-832. https://doi.org/10.1080/10245332.2018.1479498
213. Xu X., Du C., Li H., Du J., Yan X., Peng L., Li G., Chen Z.J. Association of VEGF Genetic Polymorphisms with Recurrent Spontaneous Abortion Risk: A Systematic Review and Meta-Analysis. PLoS ONE, 2015, 10 (4): p e0123696. https://doi.org/10.1371/journal.pone.0123696
214. Yalcintepe S., Ozdemir O., Hacivelioglu S. O., Akurut C., Koc E., Uludag A., Cosar E., Silan F. Multiple Inherited Thrombophilic Gene Polymorphisms in Spontaneous Abortions in Turkish Population. International Journal of Molecular and Cellular Medicine. 2015; 4 (2): pp120-127.
215. Yang B., Fan S., Zhi X., Wang D., Li Y., Wang Y., Sun G. Associations of MTHFR C677T and MTRR A66G gene polymorphisms with metabolic syndrome: a case-control study in Northern China. International Journal of
Molecular Sciences. 2014; 15 (12): pp 2168721702. https://doi.org/10.3390/ijms151221687
216. Yang S.M., Huang C.Y., Shiue H.S., Pu Y.S., Hsieh Y.H. Chen W.J., Lin Y.C., Hsueh Y.M. Combined effects of DNA methyltransferase 1 and 3A polymorphisms and urinary total arsenic levels on the risk for clear cell renal cell carcinoma. Toxicology and Applied Pharmacology . 2016; 305: pp103-110. https://doi.org/10.1016/j.taap.2016.06.011
217. Yin L.J., Zhang Y., Lv P.P., He W.H., Wu Y.T., Liu A.X., Ding G.L., Dong M.Y., Qu F., Xu C.M., Zhu X.M., Huang H.F. Insufficient maintenance DNA methylation is associated with abnormal embryonic development. BMC Medicine. 2012; 10 (1): p 26. https://doi.org/10.1186/1741-7015-10-26
218. Younis J.S., Ohel G., Brenner B., Ben-Ami M. Familial thrombophilia-the scientific rationale for thrombophylaxis in recurrent pregnancy loss? Human Reproduction. 1997; 12 (7): pp 1389-1390. https://doi.org/10.1093/humrep/12.7T389
219. Yousefian E., Kardi M.T., Allahveisi A. Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphism in Iranian Women With Idiopathic Recurrent Pregnancy Losses. Iranian Red Crescent Medical Journal. 2014; 16 (7): p e16763. https://doi.org/10.5812/ircmj.16763
220. Yuan L., Liu J.G., Zhao J., Brundell E., Daneholt B., Hoog C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Molecular Cell . 2000; 5 (1): pp 7383. https://doi.org/ 10.1016/s1097-2765(00)80404-9
221. Yuan L., Liu J.G., Hoja M.R., Wilbertz J., Nordqvist K., Höög C. Female Germ Cell Aneuploidy and Embryo Death in Mice Lacking the Meiosis-Specific Protein SCP3. Science. 2002; 296 (5570): pp 11151118. https://doi.org/10.1126/science.1070594
222. Zahed L.F., Rayes R.F., Mahfouz R.A., Taher A.T., Maarouf H.H., Nassar A.H. Prevalence of factor V Leiden, prothrombin and methylene tetrahydrofolate reductase mutations in women with adverse pregnancy
137
outcomes in Lebanon. American Journal of Obstetrics and Gynecology. 2006; 195 (4): pp 1114-1118. https://doi.org/10.1016/j.ajog.2006.06.082
223. Zetterberg H. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: Biological and clinical implications. Reproductive Biololgy and Endocrinology. 2004; 2-7. https://doi. 10.1186/1477-7827-2-7
224. Zhao Y., Chen Z., Ma Y., Xia Q., Zhang F., Fu D., Wang X. Lack of Association between Methionine Synthase A2756G Polymorphism and Digestive System Cancer Risk: Evidence from 39327 Subjects. PLoS ONE. 2013; 8(4): p e61511. https://doi.org/10.1371/journal.pone.0061511
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.