Исследование процессов коллоидного синтеза наночастиц галогенидов серебра и халькогенидов кадмия различной структуры и состава тема диссертации и автореферата по ВАК РФ 02.00.04, кандидат химических наук Николенко, Денис Юрьевич

  • Николенко, Денис Юрьевич
  • кандидат химических науккандидат химических наук
  • 2009, Черноголовка
  • Специальность ВАК РФ02.00.04
  • Количество страниц 108
Николенко, Денис Юрьевич. Исследование процессов коллоидного синтеза наночастиц галогенидов серебра и халькогенидов кадмия различной структуры и состава: дис. кандидат химических наук: 02.00.04 - Физическая химия. Черноголовка. 2009. 108 с.

Оглавление диссертации кандидат химических наук Николенко, Денис Юрьевич

Введение.

Глава 1. Литературный обзор.

1.1 Квантовые размерные эффекты.

1.2 Энергетические уровни.

1.3 Оптические переходы.

1.3.1 Спектры поглощения полупроводниковых нанокристаллов. г.3.2 Спектры флуоресценции полупроводниковых нанокристаллов.

1.4 Химические методы синтеза нанокристаллов.

1.4.1 Нуклеация.

1.4.2 Рост.

1.4.3 Мицеллярный синтез.

1.4.4 Коллоидный высокотемпературный синтез полупроводниковых нанокристаллов.

1.5 Свойства полупроводниковых НК.

1.6 Свойства анизотропных НК.

Глава 2. Методика.

2.1 Реактивы.

2.2 Приготовление образцов.

Глава 3. Нанокристаллы галогенидов середра в обратных мицеллах.

3.1. Получение нанокристаллов смесевого состава.

3.2 Синтез НК Agl/AgBr типа ядро - оболочка.

3.3 Перекристаллизация НК AgHal.

Глава 4. Высокотепературный синтез наночастщ.

4.1 Получение сферических НК CdSe.

4.2s Влияние температуры на синтез CdSe.

4.3 Получение НК CdSe@ZnSe.

4.4 Высокотемпературный синтез тетраподов CdSe.

Выводы.

Публикации по материалам диссертации.

Рекомендованный список диссертаций по специальности «Физическая химия», 02.00.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Исследование процессов коллоидного синтеза наночастиц галогенидов серебра и халькогенидов кадмия различной структуры и состава»

Коллоидные полупроводниковые нанокристаллы с характерным размером в несколько нанометров, которые в литературе также называют квантовыми точками (КТ), в последнее время являются объектами пристального внимания исследователей во всем мире. В таких нанокристаллах (НК) обнаружен квантово-размерный эффект, состоящий в том, что ширина запрещенной зоны НК и энергии электронный переходов, в том числе экситонное поглощение и люминесценция, могут значительно изменяться при небольшом изменении размера НК. В ряде случаев полоса люминесценции или красная граница поглощения НК сдвигается на величину порядка 100 нм в видимой области спектра при изменении размера НК в пределах одного нм. Такие эффекты были обнаружены для наночастиц халькогенидов кадмия, галогенидов серебра и других полупроводниковых материалов. Квантово-размерный эффект находит широкое применение в наноэлектронике и нанофотонике [1,2].

Успехи в развитии методов синтеза флуоресцентных нанокристаллов (квантовых точек) с заданными свойствами и методов функционализации их поверхности открыли пути создания нового класса флуорофоров для многочисленных биологических и медицинских применений [3].

Спектрально-люминесцентными характеристиками полупроводниковых НК можно управлять не только за счет изменения их размера, но и путем изменения формы и химического состава [4]. Например, НК CdSe, имеющие форму наностержней, обладают четко выраженной поляризованной люминесценцией, при этом Стоксов сдвиг зависит от соотношения аспекта [5]. Эффективным приемом управления свойствами НК является создание структур типа «ядро/оболочка». Гетеропереход в структуре «ядро/оболочка» при соответствующем подборе пары полупроводниковых материалов позволяет существенно изменять спектрально-люминесцентные свойства НК. Кроме того наращивание оболочки из полупроводникового материала с большей шириной запрещенной зоны, позволяет в ряде случаев значительно увеличить квантовый выход люминесценции и уменьшить ее деградацию, которая, как правило, обусловлена процессами окисления поверхности полупроводникового НК.

Особенно ярко квантово-размерные эффекты проявляются в случае узкого распределения НК по размерам. Более того, при величине дисперсии распределения порядка 5-7 % ширины полос экситонной люминесценции могут составлять 15-20 нм.

Одним из наиболее простых и доступных способов, позволяющих получать нанокристаллы (НК) малого размера вплоть до нескольких нанометров, являются жидкофазные методы синтеза. Наиболее перспективными являются два метода: синтез в обратных мицеллах (ОМ) типа "вода-в-масле" и коллоидный высокотемпературный синтез. Данные методы синтеза открывают широкие возможности для получения, стабилизации и изучения свойств НК. Варьируя условия проведения химических реакций в обоих методах, можно управлять не только размером НК, но и их структурой и формой. Однако управление этими процессами с целью получения требуемых НК, а тем более заданного распределения по размерам, является непростой задачей. Для ее решения необходимо детальное исследование механизмов коллоидного синтеза и выяснение факторов, определяющих размер, структуру и форму НК.

Цель настоящей работы состояла в изучении процессов формирования НК различного состава, структуры, формы, с использованием растворов обратных мицелл и метода высокотемпературного коллоидного синтеза и исследование их спектрально-люминесцентных свойств.

Были сформулированы следующие задачи: создание лабораторной установки для высокотемпературного коллоидного синтеза, позволяющей контролировать подачу реагентов, осуществлять отбор проб, регулировать температуру синтеза,

- разработка методов получения НК халькогенидов кадмия, в том числе сферических НК CdSe, НК типа ядро/оболочка и тетраподов CdSe в процессе высокотемпературного коллоидного синтеза, а также поиск способа управления распределением по размерам получаемых НК

3"-, I

- разработка способов получение НК AgHal типа ядро/оболочка и НК смесевого галоидного состава с размером в несколько нанометров на основе мицеллярного метода

- изучение спектрально-люминесцентных свойств НК AgHal, полученных в обратных мицеллах, и НК CdSe, синтезированных высокотемпературным методом; подтверждение их структуры с помощью методов электронной микроскопии и рентгено-фазового анализа.

Положения, выносимые на защиту

На защиту выносятся следующие положения:

1. Содержание полностью сокристаллизуемого I в смесевых НК AgIxBrxi размером около 5 нм может значительно превышать равновесное значение, достигаемое в микрокристаллах.

2. НК Agl в ОМ за счет изменения ионного окружения могут менять свою кристаллическую модификацию.

3. Предложен способ синтеза в обратных мицеллах структур типа ядро/оболочка.

4. Разработан способ управления ростом и распределением по размерам НК в методе высокотемпературного коллоидного синтеза, основанный на контролируемом понижении температуры во время синтеза. Показано, что данный способ позволяет продлевать стадию фокусировки без добавления дополнительных реагентов

5. С использованием фокусировки за счет управляемого понижения температуры разработаны методики получения высокооднородных по размерам сферических КТ CdSe, а также КТ CdSe@ZnSe со структурой ядро-оболочка.

6. Предложна модификация высокотемпературного коллоидного метода позволяющая получать тетраподы CdSe с высоким кристаллографическим выходом.

Похожие диссертационные работы по специальности «Физическая химия», 02.00.04 шифр ВАК

Заключение диссертации по теме «Физическая химия», Николенко, Денис Юрьевич

Основные результаты диссертации опубликованы в следующих работах:

1. Бричкин С. Б., Спирин М. Г., Николенко JI. М., Николенко Д. Ю., Гак В. Ю., Иванчихина А. В., Разумов В. Ф. Применение обратных мицелл для синтеза наночастиц. // Хим. Выс.энергий. 2008. Т. 42. № 4. С. 14-20.

2. Николенко Д. Ю., Бричкин С. Б., Разумов В. Ф. Синтез нанокристаллов AgHal смесевого состава в обратных мицеллах . // Хим. Выс. Энергий. 2008. Т. 42. № 4. С.347-352.

3. Николенко Д.Ю., Бричкин С.Б., Разумов В.Ф. Мицеллярный синтез AgGal-наночастиц различной структуры // Сборник статей XIV Всероссийской конференции «Структура и динамика молекулярных систем», Яльчик, 2007 г., Выпуск №1, с. 491-494

4. Николенко Д.Ю., Бричкин С.Б., Разумов В.Ф. Неизотермический коллоидный синтез CdSe // Российские нанотехнологии. Том 4, №11- 12, 2009.

Материалы диссертации также докладывались:

1. Николенко Д.Ю., Бричкин С.Б., Разумов В.Ф. Мицеллярный синтез AgGal-наночастиц различной структуры // Тезисы XIV Всероссийской конференции «Структура и динамика молекулярных систем», Яльчик. 2007, С. 168

2. Николенко Д.Ю., Бричкин С.Б., Любимова Г.Н. Особенности получения НК AgHal смесевого состава в обратных мицеллах, // Тезисы симпозиума «Нанофотоника», Черноголовка 2007, С. 135.

3. Гак В.Ю., Николенко Д.Ю., Бричкин С.Б., Разумов В.Ф. Исседование динамики люминесценции наночастиц селенида кадмия // Тезисы XIX Симпозиума «Современная химическая физика», Туапсе 2007, С. 120.

4. Николенко Д.Ю., Бричкин С.Б., Разумов В.Ф. Формирование смесевых полупроводниковых наночастиц в мицеллярных системах. // Тезисы XIX Симпозиума «Современная химическая физика», Туапсе 2007, С.133.

5. Николенко Д. Ю., Бричкин С.Б., Разумов В.Ф. Новая модификация высокотемпературного синтеза наночастиц CdSe. //XX Симпозиум «Современная химическая физика», Туапсе, 14 — 27 сентября, 2008. С. 58-59.

6. Гак В.Ю., Николенко Д.Ю., Бричкин С.Б., Разумов В.Ф. Синтез наночастиц селенида кадмия. // Международный форум по нанотехнологиям. 3-5 декабря 2008 года. Сборник тезисов докладов. Т.1. С. 147.

7. Nikolenko D. Yu., Brichkin S. В., Razumov V. F. Synthesis of nearly monodisperse CdSe quantum dots. // International Summer School "Supramolecular systems in Chemistry and Biology", Russia, Tuapse, Avtotranspotnik Rossiji, September 28-October 2, 2008. Book of abstracts. Tuapse, 2008. P. 104.

8. Brichkin S.B., Spirin M.G., Nikolenko D.Yu., Gak V.Yu., Razumov V.F. Obtaining, properties and perspectives of colloidal quantum dots. // International conference "Organic nanophotonics", Russia, St. Peterburg, june 21-28, 2009. Book of abstracts. P. 164.

9. Gak V.Yu., Nikolenko D.Yu., Brichkin S.B., Razumov V.F., Zaporozhets M.A. A comparison of photophysical properties of cadmium chalcogenide nanoparticles synthesized by various method. // International conference "Organic nanophotonics", Russia, St. Peterburg, june 21-28, 2009. Book of abstracts. P. 186.

Заключение

На основе анализа спектров поглощения мицеллярных растворов содержащих смесевые нанокристаллы AglxBrx-l размером около 5 нм показано, что содержание полностью сокристаллизуемого I может достигать 70%, что значительно превышает равновесное значение, достигаемое в микрокристаллах, благодаря большому отношению поверхностных атомов к объему. Возможность получать НК с содержанием примесных ионов значительно превышающих их равновесную концентрацию открывает новые возможности регулировать их свойства и создавать НК с новыми характеристиками. Это связано с тем что на свойства полупроводниковых кристаллов существенное влияние оказывает количество внесенных примесей, а внесение их в сверхравновесных количествах может приводить к качественно новым изменениям.

Впервые в обратных мицеллах получены нанокристаллы типа ядро/оболочка AgI@AgBr и AgBr@AgI и показано что важную роль играет соответствие типов кристаллических структур.

Предложенный в работе способ получения в ОМ НК типа ядро/оболочка позволяет стабилизировать и улучшать свойства ядра. Это имеет большую практическую значимость, так как некоторые структуры можно получить только в ОМ.

Предложенный в работе новый способ управления ростом и распределением по размерам позволяет получать НК CdSe с дисперсией около 7% в диапазоне средних размеров 3-5 нм, что нельзя достигнуть методом пролонгированного введения реагентов. Этот подход может быть применен и для других полупроводниковых НК.

Предложна модификация высокотемпературного коллоидного метода, позволяющая получать тетраподы CdSe с высоким кристаллографическим выходом

Список литературы диссертационного исследования кандидат химических наук Николенко, Денис Юрьевич, 2009 год

1. Murray С.В., Norris D.J., Bawendi M.G. Synthesis and Characterization of

2. Nearly Monodisperse CdE (E = S, Se, Те) Semiconductor Nanocrystallites. //J. Am. Chem. Soc., 1993, V.115. №19. P.8706-8715

3. Nirmal M., Norris, D. J., Kuno, M., Bawendi M. G., Efros A. L., Rosen M.

4. Ни J. Т., Li L. S., Yang W. D., Manna L., Wang L. W., Alivisatos A. P.1.nearly Polarized Emission from Colloidal Semiconductor Quantum Rods. // Science, 2001, V.292. P.2060-2063.

5. Huynh W. U., Peng X. G., Alivisatos A. P. CdSe Nanocrystal Rods/Poly(3hexylthiophene) Composite Photovoltaic Devices. // Adv. Mater., 1999, V.ll. №11. P.923-927.

6. Huynh W. U., Dittmer J. J., Alivisatos A. P. Hybrid Nanorod-Polymer Solar

7. Cells. // Science, 2002, V.295, P.2425-2427.

8. Хайрутдинов Р.Ф. Физико-химия нанокристаллических полупроводниковых материалов // Колл. Журн., 1997, Т.59. N.5. С. 581595

9. Трахтенберг Л.И., Герасимов Г.Н., Григорьев Е.И. Нанокластерыметаллов и полупроводников в полимерных матрицах: синтез, структура и физико-химические свойства // Журн. физ. хим. 1999. Т.73. №2. С.264-276.

10. Haase М., Alivisatos А.Р. Arrested solid-solid phase transition in 4-nm-diameter cadmium sulfide nanocrystals // J. Phys. Chem., 1992, V.96. №16. P.6756-6762.

11. Tolbert S.H., Alivisatos A.P. Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals. // Science, 1994, V.265. № 4. P.373-376.

12. Alivisatos A.P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals // J. Phys. Chem., 1996, V.100. №31 P.13226-13239.

13. Rajh Т., Micic O.I., Nozik A.J. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots // J. Phys. Chem., 1993, V. 97. № 46. P. 11999-12003.

14. Khairutdinov R. F. , Rubtsova N.A., Costa S.M.B. Size effect in steady-state and time-resolved luminescence of quantized MoS2 particle colloidal solutions // J. Lumin., 1996, V. 68. № 6. P. 299-311

15. Chrysochoos J. Recombination luminescence quenching of nonstoichiometric cadmium sulfide clusters by ZnTPP // J. Phys. Chem., 1992, V. 96. № 7. P. 2868-2873.

16. Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. // Chem. Rev., 1989, V. 89. №8. P.1861-1873.

17. Swayambunathan V., Hayes D., Schmidt K., Liao Y.X., Meisel D. Thiol surface complexation on growing cadmium sulfide clusters // J. Am. Chem. Soc, 1990, V.l 12. №10. P.3831-3837.

18. Henglein A. Q-particles: Size quantization effects in colloidal semiconductors //Prog. Colloid. Polym. Sci., 1987, V. 73. №1. P. 1- 4.

19. Weller H. Quantized Semiconductor Particles: A novel state of matter for materials science. // Adv. Mater., 1993, V. 5. №1. P. 88-95.

20. Micic O.I., Rajh Т., Nedeljkovic J. M., Comor M. I. // Isr. J. Chem. 1993. V. 33. №1. P. 59

21. Hobson R.A., Mulvaney P., Grieser F. Formation of Q-state CdS colloids using ultrasound. //J. Chem. Soc Chem. Commun, 1994, №7. P. 823-824.

22. Smotkin E. S., Lee C., Bard A. J., Campion A., Fox M. A., Mallouk Т. E., Webber S. E., White J. M. Size quantization effects in cadmium sulfide layers formed by a Langmuir-Blodgett technique // Chem. Phys. Lett., 1988, V. 152. №2-3. P. 265-268

23. Spanhel L., Anderson M. A. Synthesis of porous quantum-size cadmium sulfide membranes: photoluminescence phase shift and demodulation measurements. //J.Am. Chem. Soc., 1990. V.112. №6. P.2278-2284.

24. Rajh Т., Vucemilovic M. I., Dimitrijevic N.M., Micic О. I., Nozik A. J. Size quantization of colloidal semiconductor particles in silicate glasses // Chem. Phys. Lett., 1988, V. 143. №3. P. 305-308

25. Hayesa D., Meisel D., Micic O.I. Size control and properties of thiol capped CdS particles //Colloids Surf.,1991, V. 55. №1. P. 121-136

26. Brus L. Electronic wave functions in semiconductor clusters: experiment andtheory // J. Phys.Chem., 1986, V. 90. №12. P. 2555-2560.

27. Brus L. Size Dependent Development of Band Structure in Semiconductor Crystallites// New J. Chem. 1987. V. 11. №1. P. 123-125

28. Steigerwald M.L., Brus L.E. Semiconductor crystallites: a class of large molecules. //Acc. Chem. Res., 1990, V.23. P. 183-188.

29. Ramakrishna M.V. Friesnar R.A. Quantum confinement effects in semiconductor clusters // J. Chem. Phys., 1991, V. 95. №11. P.8309-8322.

30. Nosaka Y., Ohta N., Miyama H. Photochemical kinetics of ultrasmall semiconductor particles in solution: effect of size on the quantum yield of electron transfer //J. Phys. Chem., 1990, V. 94. №9 P. 3752-3755.

31. Rosetti R., hull R., Gibson J. M., Brus L.E. Hybrid electronic properties between the molecular and solid state limits: Lead sulfide and silver halide crystallites // J. Chem. Phys., 1985, V. 83. №3 P. 1406-1410.

32. Рубцова H. А., Хайрутдинов P. Ф., Коста С.М.Б., Оптические свойства коллоидных частиц MoS2 с квантовым размерным эффектом // Кол. Журн., 1993, Т.55. №3. С. 144-149

33. Rajh Т., Peterson М. W., Turner J.A., Nozik A.J. Size quantization in small colloidal CdS particles studied with stopped flow spectrometry// J. Electroanal. Chem., 1987, V. 228. №1-2. P. 55-68.

34. Weller H., Haase M., Spanhel L., Henglein A. Charge carrier dynamics in colloidal semiconductors // Prog. Colloid Polym. Sci., 1988, V. 76. №1. P. 24-26

35. Mittleman D.M., Schoenlein R. W., Shiang J .J., Alivisatos A. P., Shank C. V. Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. // Phys. Rev. В., 1994, V. 49. №20. P. 14435-14447

36. Эфрос Ал. Л., Эфрос А. Л Межзонное поглощение в полупроводниковом шаре // Физика и техника полупроводников, 1982, Т.16. №7. С. 1209-1214.

37. Brus L. Е. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state //J. Chem. Phys., 1984, V. 80. № 9. P. 4403-4409.

38. Kayanuma Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape // Phys. Rev. В., 1988, V.38. №14. P. 9797-9805

39. Sandorf C. J., Hwang D. M., Chung W. M. Carrier confinement and special crystallite dimensions in layered semiconductor colloids // Phys. Rev. В., 1986, V. 33. № 8. P. 5953-5955

40. Lippens P.E., Lannoo M. Calculation of the band gap for small CdS and ZnS crystallites //Phys. Rev. В., 1989, V. 39. №15. P. 10935-10942.

41. Lippens P.E., Lannoo M. Comparison between calculated and experimental values of the lowest excited electronic state of small CdSe crystallites // Phys. Rev. В., 1990, V. 41. №9. P. 6079-6081.

42. Alivisatos A.P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. // Science, 1996, V. 271. №5251. P. 933-937.

43. Jacak L., Wojs A., Hawrylak P.,Quantum Dots. Springer, Berlin, 1998. P. 176.

44. A. P. Alivisatos, Perspectives on the Physical Chemistry of Semiconductor Nanocrystals //J. Phys. Chem., 1996, V.100. №31. 13226- 13239.

45. Gratzel M. Heterogeneous Photochemical Electron Transfer. CRC Press, Boca Raton, 1989. P. 159.

46. Мейклер П.В. Физические процессы при образовании скрытого фотографического изображения М.: Наука, 1972. С. 400

47. Murray С. В., Kagan С. R., Bawendi М. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies // Annu. Rev. Mater. Sci. 2000. V.30. №. P.545-610

48. Qu, L., Peng, Z. A., Peng, X. Alternative Routes toward High Quality CdSe Nanocrystals .//Nano Lett., 2001, V.l. №6. P.333-337.

49. Yu W., Qu, L., Guo, W., Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals // Chem. Mater., 2003, V.15. №14. P.2854-2860.

50. L. E. Brus, A. I. Efros, T. Itoh. Spectroscopy of isolated and assembled semiconductor nanocrystals//J.Lumin., 1996, V.70. P.7-12

51. Li L.-S., Hu J., Yang W., Alivisatos A. P. Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods // Nano Lett., 2001, V.l. №7. P.349-351.

52. Gaponenko S. V. Optical Properties of Semiconductor Nanocrystals. Cambridge University Press: Cambridge, U.K., 1998. P.260.

53. Leatherdale C. A., Bawendi M. G. Observation of solvatochromism in CdSe colloidal quantum dots // Phys. Rev. B, 2001, V.6316. №16. P.165315-165321.

54. Guyot-Sionnest P., Shim M., Matranga C., Hines M., Intraband relaxation in CdSe quantum dots // Phys. Rev. B, 1999, V.60. №4. P.R2181-R2184.

55. Klimov V. I., Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals // J. Phys. Chem. B, 2000, V.104. №26 P.6112-6123.

56. Peng X., Manna L., Yang W. D., Wickham J., Scher E., Kadavanish A., Alivisatos A. P. Shape control of CdSe nanocrystals // Nature, 2000, V.404. P.59-61

57. Аввакумов Е.Г. Механохимические методы активации химических процессов. Новосибирск: Наука, 1983. Р.

58. Ходаков Г.С. Физика измельчения. М.: Наука, 1972. С.240.

59. Гусев А.И. Нанокристаллические материалы: методы получения и свойства. Екатеринбург: УрО РАН, 1998. С. 199.

60. Андриевский Р.А. Получение и свойства нанокристаллических тугоплавких соединений // Усп. хим., 1994, Т.63. №5. С. 431-448.

61. Ролдугин В.И. Квантоворазмерные металлические коллоидные системы // Усп. хим., 1994, Т.69. №10. С. 899-923.

62. Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. М.:Химия, 2000. С. 672.

63. Herzer G. Grain structure and magnetism of nanocrystalline ferromagnets // IEEE Trans., 1989, V.25. №5. P.3327-3329.

64. Skorvanek I., O'Handley R. C. Fine-particle magnetism in nanocrystalline Fe—Cu—Nb—Si—В at elevated temperatures // J. Magn. Magn. Mater., 1995, V. 140-144. Part 1. P. 467-468.

65. Napper D. H., Polymeric Stabilization of Colloidal Dispersions. Academic Press, London, 1983. P. 428.

66. Overbeek J. T. G. Colloidal Dispersions. Royal Society of Chemistry, London. 1981. P. 50.

67. Bossel C., Dutta J., Houriet R., Hilborn J., Hofmann H. Processing of nano-scaled silicon powders to prepare slip cast structural ceramics // Mater. Sci. Eng., 1995, V.204. № 1-2. P.107-112.

68. Hiemenz P.C. Principles of Colloid and Surface Chemistry. CRC.1986. P. 672.

69. Myers D. Surfaces, Interfaces and Colloids. VCH, Weinheim, 1991. P. 528

70. Faraday M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light // Phil. Trans. R. Soc. Lond., 1857, V.147. P. 145181.

71. LaMer V. K., Dinegar R. H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols // J. Am. Chem. Soc, 1950, V.72. №11. P.4847-4854.

72. Peng Z. A., Peng X., Controlling the Work Function of Indium Tin Oxide: Differentiating Dipolar from Local Surface Effects // J. Am. Chem. Soc., 2002, Y.124. №13. P.3343-3193.

73. Peng X., Wickham J., Alivisatos A. P. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: "Focusing" of Size Distributions // J. Am. Chem. Soc., 1998, V.120. №21. P.5343-5344.

74. Reiss H. The growth of uniform colloidal dispersions // J. Chem. Phys., 1951, V.19.№4. P.482-487.

75. Sugimoto T. Monodispersed Particles. Elsevier, Amsterdam, 2001. P. 820.

76. Talapin D. V., Rogach A. L., Haase M., Weller H. Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study // J. Phys. Chem. B, 2001, V.105. №49. P.12278- 12285.

77. Миттел К. (ред.). Мицеллообразование, солюбилизация и микроэмульсии. М.: Мир, 1980. С. 598.

78. Абрамзон А.А. Поверхностно активные вещества; Свойства и применение. JL: Химия, 1975. С.248

79. Щукин Е.Д., Перцов А.В., Амелина Е.А. Коллоидная химия. М.: Высшая школа. 1992. С.414

80. Shinoda К., Lindman В. Organized surfactant systems: microemulsions // Langmuir, 1987, V.3. №2. P. 135-149

81. Ekwall P, Mandell L, Solyom P. The solution phase with reversed micelles in the cetyl trimethylammonium bromide-hexanol-water system // J. Colloid. Interface. Sci., 1970, V.35. №2. P.266-272

82. Blythe P.J., Morrison B.R., Mathauer K.A., Sudol E.D. El-Aasser M.S. Polymerization of Miniemulsions Containing Predissolved Polystyrene and Using Hexadecane as Costabilizer // Langmuir. 2000. V.16. №3. P.898-904.

83. Zulauf M., Eicke H.F. Inverted micelles and microemulsions in the ternary system water/aerosol-OT/isooctane as studied by photon correlation spectroscopy // J. Phys. Chem., 1979. V.83. №4. P.480-486

84. Bommarius A.S, Holzwarth J.F, Wang D.I.C, Hatton T.A. Coalescence and solubilizate exchange in a cationic four-component reversed micellar system // J. Phys. Chem., 1990, V.94. №18. P.7232-7239.

85. Fletcher PDI, Howe AM, Robinson ВН. The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion // J. Chem. Soc. Faraday. Trans. I., 1987, V.83. №4. P.985-1007.

86. Lopez-Quintela M.A, Tojo C, Blanco M.C, Garcia Rio L., Leis J.R. Microemulsion dynamics and reactions in microemulsions // Curr. Opin. Colloid. Interface. Sci., 2004, V.9. №3-4. P.264-278.

87. Сумм Б.Д., Иванова Н.И. Коллоидно-химические аспекты нанохимии от Фарадея до Пригожина // Вестн. Моск. ун. Сер.2. Хим., 2001, Т. 42. № 5. С. 300-305.

88. Boutonnet M, Kitzling J, Stenius P. The preparation of monodisperse colloidal metal particles from microemulsions //Coll. Surf., 1982, V.5. №3. P.209-225.

89. Lisiecki I, Pileni M-P. Copper Metallic Particles Synthesized "in Situ" in Reverse Micelles: Influence of Various Parameters on the Size of the Particles // J. Phys. Chem., 1995, V.99. №14. P.5077- 5082.

90. Cason J.P., Miller M.E., Thompson J.B., Roberts C.B. Solvent Effects on Copper Nanoparticle Growth Behavior in AOT Reverse Micelle Systems // J. Phys. Chem. B, 2001, V.105. №12. P.2297-2302.

91. Salzemann C., Urban J., Lisiecki I., Pileni M-P. Characterization and Growth Process of Copper Nanodisks // Adv. Funct. Mater., 2005, V.15. №8. P.1277-1284.

92. Salzemann C., Lisiecki I., Urban J, Pileni M-P. Anisotropic Copper Nanocrystals Synthesized in a Supersaturated Medium: Nanocrystal Growth // Langmuir, 2004, V.20. №26. P. 11772-11777.

93. Filankembo A., Giorgio S., Lisiecki I., Pileni M.P. Is the Anion the Major Parameter in the Shape Control of Nanocrystals? // J. Phys. Chem. B, 2003, V.107. P.7492-7500.

94. Filankembo A., Pileni M.P. Shape control of copper nanocrystals // Appl. Surf. Sci., 2000, V.164. №1-4. P.260.

95. Filankembo A., Pileni M.-P. Is the Template of Self-Colloidal Assemblies the Only Factor That Controls Nanocrystal Shapes? // J. Phys. Chem. B, 2000, V.104. №25 P.5865- 5868.

96. Pileni M.-P, Ninham B.W., Gulik-Krzywicki Т., Tanori J., Lisiecki I., Filankembo A. Direct Relationship Between Shape and Size of Templateand Synthesis of Copper Metal Particles // Adv. Mater., 1999, V.ll. №16. P.1358.

97. Pileni M.-P., Gulik-Krzywicki Т., Tanori J., Filankembo A., Dedieu J.C. Template Design of Microreactors with Colloidal Assemblies: Control the Growth of Copper Metal Rods // Langmuir, 1998, V.14. №26 P.7359-7363.

98. Lisiecki I., Billoudet F., Pileni M.-P. Syntheses of copper nanoparticles in gelified microemulsion and in reverse micelles // J. Mol. Liq., 1997, V.72. №1-3. P.251-261.

99. Kitchens C.L., McLeod M.C., Roberts C.B. Chloride Ion Effects on Synthesis and Directed Assembly of Copper Nanoparticles in Liquid and Compressed Alkane Microemulsions // Langmuir, 2005, V.21. №11. P.5166-5173.

100. Lisiecki I., Pileni M.-P. Synthesis of copper metallic clusters using reverse micelles as microreactors // J. Am. Chem. Soc., 1993, V.l 15. №10. P.3887-3896.

101. Kitchens C.L., McLeod M.C., Roberts C.B. Solvent Effects on the Growth and Steric Stabilization of Copper Metallic Nanoparticles in AOT Reverse Micelle Systems//J. Phys. Chem. B, 2003, № 41.V.107. P.l 1331-11338.

102. Petit C., Wang Z.L., Pileni M.-P. Seven-Nanometer Hexagonal Close Packed Cobalt Nanocrystals for High-Temperature Magnetic Applications through a Novel Annealing Process // J. Phys. Chem. B, 2005, V.l09. №32. P.15309-15316.

103. Lisiecki I., Pileni M.-P. Synthesis of Well-Defined and Low Size Distribution Cobalt Nanocrystals: The Limited Influence of Reverse Micelles //Langmuir, 2003, V.19. №22. P.9486-9489.

104. Petit C., Taleb A., Pileni M.-P. Cobalt Nanosized Particles Organized in a 2D Superlattice: Synthesis, Characterization, and Magnetic Properties // J Phys Chem В 1999. V. 103. № 11. P. 1805-1810.

105. Eastoe J., Stebbing S., Dalton J., Heenan R.K. Preparation of colloidal cobalt using reversed micelles // Colloid. Surf. A-Physicochem. Eng. Asp., 1996, V. 119. №2-3. P. 123-131.

106. Maillard M., Giorgio S., Pileni M.-P. Tuning the Size of Silver Nanodisks with Similar Aspect Ratios: Synthesis and Optical Properties // J. Phys. Chem. B, 2003, V.107. №11. P.2466-2470.

107. Maillard M., Giorgio S., Pileni M.-P. Silver Nanodisks // Adv. Mater., 2002, V.14. №15. P.1084-1086.

108. Germain V., Li J., Ingert D., Wang Z.L., Pileni M.-P. Stacking Faults in Formation of Silver Nanodisks // J. Phys. Chem. B, 2003, V.107. №34. P.8717-8720.

109. Pileni M.-P. Fabrication and physical properties of self-organized silver nanocrystals // Pure Appl. Chem., 2000, V.72. №1-2. P.53-65.

110. Petit C., Lixon P., Pileni M.-P. In situ synthesis of silver nanocluster in AOT reverse micelles // J. Phys. Chem., 1993, V.97.№49. P. 12974-12983.

111. Spirin M.G., Brichkin S.B., Razumov Y.F. Synthesis and Stabilization of Gold Nanoparticles in Reverse Micelles of Aerosol ОТ and Triton X-100 // Colloid J., 2005, V.67. №4. P.485-490.

112. ПЗ.Неггега A.P., Resto O., Briano J.G., Rinaldi C. Synthesis and agglomeration of gold nanoparticles in reverse micelles // Nanotechnology, 2005, V.16. №7. P.S618-S625.

113. Zhang D.E., Ni X.M., Zheng H.G., Li Y., Zhang X.J., Yang Z.P. Synthesis of needle-like nickel nanoparticles in water-in-oil microemulsio // Mater. Lett., 2005, V.59. №16. P.2011-2014.

114. Khiew P.S., Radiman S., Huang N.M., Ahmad Md. Soot, Nadarajah K. Preparation and characterization of ZnS nanoparticles synthesized from chitosan laurate micellar solution // Mater. Lett., 2005, V.59. №8-9. P.989-993.

115. Charinpanitkul Т., Chanagul A., Dutta J., Rungsardthong U., Tanthapanichakoon W. Effects of cosurfactant on ZnS nanoparticle synthesis in microemulsion // Sci. Technol. Adv. Mater., 2005, V.6. №3-4. P.266-271.

116. Eastoe J., Cox A.R. Formation of PbS nanoclusters using reversed micelles of lead and sodium Aerosol-OT // Colloid. Surf. A-Physicochem. Eng. Asp., 1995. V.101. №1. P.63-76.

117. Pinna N., Weiss K., Sack-Kongehl H., Vogel W., Urban J., Pileni M.-P. Triangular CdS Nanocrystals: Synthesis, Characterization, and Stability // Langmuir, 2001, V.17. №26. P.7982-7987.

118. Pedone L., Caponetti E., Leone M., Militello V., Panto V., Polizzi S. Synthesis and characterization of CdS nanoparticles embedded in a polymethylmethacrylate matrix // J Coll. Int. Sci., 2005, V.284. №2. P.495-500.

119. Petit C., Pileni M.-P. Synthesis of cadmium sulfide in situ in reverse micelles and in hydrocarbon gels // J. Phys. Chem., 1988, V.92. №8. P.2282.

120. Motte L., Petit C., Boulanger L., Lixon P., Pileni M.-P. Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle: polydispersity and photochemical reaction // Langmuir, 1992, V.8. №4. P. 1049-1053.

121. Pileni M.-P, Motte L., Petit C. Synthesis of cadmium sulfide in situ in reverse micelles: influence of the preparation modes on size, polydispersity, and photochemical reactions // Chem. Mater., 1992, V.4. №2. P. 338-345.

122. Ingert D., Pileni M.-P. Limitations in Producing Nanocrystals Using Reverse Micelles as Nanoreactors // Adv. Funct. Mater., 2001, V.ll. №2. P.136-139.

123. Li L., Qing-Sheng W, Ya-Ping D, Pei-Ming W. // Mater. Lett., 2005, V.59. №13. P.1623-1626.

124. Спирин М.Г., Бричкин С.Б., Разумов В.Ф. Синтез нанокристаллов галогенидов серебра в обратных мицеллах АОТ. II. Стабилизация нанокристаллов Agl // ЖНиПФ., 2000, Т.45. №2. С.20-27.

125. Ahmad Т., Chopra R., Ramanujachary K.V., Lofland S.E., Ganguli A.K. Canted antiferromagnetism in copper oxide nanoparticles synthesized by the reverse-micellar route //Solid State Sci., 2005, V.7. №7. P.891-895.

126. Shi J., Verweij H. Synthesis and Purification of Oxide Nanoparticle Dispersions by Modified Emulsion Precipitation // Langmuir, 2005, V.21. №12. P.5570-5575

127. Bumajdad A., Zaki M.I., Eastoe J., Pasupulety L. Microemulsion-Based Synthesis of Ce02 Powders with High Surface Area and High-Temperature Stabilities // Langmuir, 2004, V.20. №25. P.l 1223-11233.

128. Saiwan C., Krathong S., Anukulprasert Т., O'Rear III E.A. Nano-Titanium Dioxide Synthesis in AOT Microemulsion System with Salinity Scan // J. Chem. Eng. Jpn., 2004, V.37. №2. P.279-285.

129. Qi L., Ma J., Cheng H., Zhao Z. Reverse Micelle Based Formation of ВаСОЗ Nanowires // J. Phys. Chem. B, 1997, V.101. №18. P.3460-3463.

130. Bagwe R.P., Khilar K.C. Effects of the Intermicellar Exchange Rate and Cations on the Size of Silver Chloride Nanoparticles Formed in Reverse Micelles of AOT // Langmuir, 1997, V.13. №24. P.6432-6438.

131. Pileni M.-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals // Nature Materials, 2003, V.2. P.145-150

132. Eastoe J., Fragneto G., Robinson B.H., Towey T.F., Heenan R.K., Leng F.J. Variation of surfactant counterion and its effect on the structure andproperties of Aerosol-OT-based water-in-oil microemulsions //J. Chem. Soc.i

133. Faraday. Trans., 1992, V.88. №3. P.461-471

134. Szleifer I., Kramer D., Ben-Shaul A., Gelbart W.M., Safran S.A. Molecular theory of curvature elasticity in surfactant films // J. Chem. Phys., 1990, V.92. №11. P.6800-6818.

135. Eastoe J., Sharpe D. Properties of Phosphocholine Microemulsions and the Film Rigidity Model //Langmuir, 1997, V.13. №13.P.3289-3294.

136. Eastoe J.5 Sharpe D., Heenan R.K., Egelhaaf S. Rigidities of Cationic Surfactant Films in Microemulsions // J. Phys. Chem. B, 1997, V.101. №6. P. 944-948.

137. Gradzieski M., Langevin D., Farago B. Experimental investigation of the structure of nonionic microemulsions and their relation to the bending elasticity of the amphiphilic film // Phys. Rev. E, 1996, V.53. № 4. P.3900-3919.

138. Uskokovic V., Drofenik M. Synthesis of materials within reverse micelles // Surf. Rev. Lett., 2005, V.12. №2. P.239-277.

139. Atik S.S., Thomas J.K. Transport of photoproduced ions in water in oil microemulsions: movement of ions from one water pool to another // J. Am. Chem. Soc, 1981, V.103. №12. P.3543-3550.

140. Atik S.S., Thomas J.K. Abnormally high ion exchange in pentanol microemulsions compared to hexanol microemulsions // J. Phys. Chem., 1981, V.85. №25. P.3921-3924.

141. Lee Y, Lee J, Bae CJ, Park J-G, Noh H-J, Park J-H. Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions // Adv. Funct. Mater., 2005, V.15. № 3. P.503-509.

142. Dresco P.A., Zaitsev V.S., Gambino R.J., Chu B. Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles // Langmuir, 1999, V.15. №6. P.1945-1951.

143. Pileni M.-P. Nanosized Particles Made in Colloidal Assemblies // Langmuir, 1997, V.13. №13. P.3266-3276.

144. Berkovich Y., Aserin A., Wachtel E., Garti N. Preparation of Amorphous Aluminum Oxide-Hydroxide Nanoparticles in Amphiphilic Silicone-Based Copolymer Microemulsions // J. Coll. Int. Sci., 2002, V.245. №l.P.58-67.

145. Kimijima K., Sugimoto T. Effects of the water content on the growth rate of AgCl nanoparticles in a reversed micelle system// J. Coll. Int. Sci., 2005, V.286. №2. P.520-525.

146. Nanni A., Dei L. Ca(OH)2 Nanoparticles from W/O Microemulsions // Langmuir, 2003, V.19. №3. P.933-938.

147. Makovec D., Kosak A., Znidarsic A., Drofenik M. The synthesis of spinel-ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications // J. Magn. Magn. Mater., 2005, V.289. P.32-35.

148. Lemyre J.-L., Ritcey A.M. Synthesis of Lanthanide Fluoride Nanoparticles of Varying Shape and Size // Chem. Mater., 2005, V.17. №11. P.3040-3043.

149. Levy L., Ingert D., Feltin N., Briois V., Pileni M.-P. Solid Solution of Cdj. yMnyS Nanocrystals // Langmuir, 2002, V.18. №5. P.1490-1493.

150. Pileni M.-P. Reverse micelles as microreactors // J. Phys. Chem., 1993, V.97. №27. P.6961-6973.

151. Natarajan U., Handique K., Mehra A., Bellare J.R., Khilar K.C. Ultrafine Metal Particle Formation in Reverse Micellar Systems: Effects of Intermicellar Exchange on the Formation of Particles // Langmuir, 1996, V.12. №11. P.2670-2678.

152. Lopez-Quintela M.A. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control // Curr. Opin. Coll. Int. Sci., 2003, V.8.№2. P.137-144.

153. Holmberg K. Surfactant-templated nanomaterials synthesis// J. Coll. Int. Sci., 2004. V.274. №2. P.355-364.

154. Krauel К., Davies N.M., Hook S., Rades T. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization // J. Control. Release, 2005, V.106. №1-2. P.76-87.

155. Dresco P.A., Zaitsev V.S., Gambino R.J., Chu B. Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles // Langmuir, 1999, V.15. №6. P.1945-1951.

156. Barnickel P., Wokaun A., Sager W., Eickel H. F. Size tailoring of silver colloids by reduction in W/O microemulsions // J. Coll. Int. Sci., 1992, V.148. №1. P.80-90

157. Wang С. C., Chen D. H., Huang Т. C. Synthesis of palladium nanoparticles in water-in-oil microemulsions // Coll. Surf. A, 2001, V.189. №1-3. P. 145154.

158. Bawendi M.G., Kortan A.R., Steigerwald M.L., Brus L.E., X-ray structural characterization of larger CdSe semiconductor clusters. // J. Chem. Phys., 1989., V.91,P.7282-7290

159. Peng Z.A., Peng X.G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. //J. Am. Chem. Soc. 2001. V.123. №1. P.183-184

160. Talapin D.V., Rogach A.L., Kornowski A., Haase M., Weller H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. //Nano Lett., 2001, V.l. №4. P.207-211

161. Peng X., Wickham J., Alivisatos A.P. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: "Focusing" of Size Distributions. // J. Am. Chem. Soc., 1998, V.120. №21. P.5343-5344

162. Джеймс T.X. Теория фотографического процесса. Л.: Химия, 1980. С. 672.

163. Meehan E.I., Viller I.K. Complex refractive index of colloidal silver bromide in the near-ultraviolet // J. Phys. Chem., 1968, V. 72. №5. P. 15231529.

164. Berry C.R. Structure and Optical Absorption of Agl Microcrystals // Phys. Rev., 1967, V. 161. №3. P. 848-851.

165. Сикоренко Н.П., Ефимов С.П., Разумов В.Ф., Алфимов М.В. Проявление эффекта размерного квантования в спектрах люминесценции и поглощения микрочастиц AgHal // ЖНиПФ., 1992, Т. 37. №6. С. 439.

166. Мейкляр П.В. Физические процессы при образовании скрытого фотографического изображения М.: Наука, 1972. С. 400.

167. Nano Lett., Vol. 7, No. 10, 2007

168. Gopidas K.R., Kamat P.V. Photophysical behavior of ultrasmall CdSe semiconductor particles in a perfluorosulfonate membrane // Mater. Lett., 1990, V.9. №10 P. 372-378.

169. Dimitrijefic N.M. Electron-transfer reactions on CdSe colloids as studied by pulse radiolysis // J.Chem.Soc.Faraday Trans. 1., 1987, V. 83. №4. P. 1193-1201.

170. Hines M. A.; Guyot-Sionnest, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals // P. J. Phys. Chem., 1996, V.100. №2. P.468-471.

171. Danek M., Jensen K. F., Murray K. F., Murray С. В., Bawendi M. G. Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe // Chem. Mater., 1996, V.8. №1. P.173-180.

172. Reiss P., Bleuse J., Pron A. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion //Nano Lett., 2002, V.2. P.781-784.

173. Reiss P., Carayon S., Bleuse J., Large fluorescence quantum yield and low size dispersion from CdSe/ZnSe core/shell nanocrystals // Physica E, 2003, V.17. P.95-96.

174. Mews A., Eychmuller A., Giersig M., Schooss D., Weller H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide // J. Phys. Chem., 1994, V.98. P.934-941.

175. Battaglia D., Li J. J., Wang Y. J., Peng X. G., Colloidal Two-Dimensional Systems: CdSe Quantum Shells and Wells // Angew. Chem. Int. Ed., 2003, V.42. P.5035-5039.

176. Zhong X. H., Xie R. G., Zhang Y., Basche Т., Knoll W. High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals // Chem. Mater. 2005, 17, 4038-4042.

177. Talapin D. V., Koeppe R., Goetzinger S., Kornowski A., Lupton J. M., Rogach A. L., Benson O., Feldmann J., Weller H. Highly Emissive Colloidal

178. CdSe/CdS Heterostructures of Mixed Dimensionality I I Nano Lett., 2003, V.3. №12. P.1677-1681.

179. Mekis I., Talapin D. V, Kornowski A., Haase M., Weller H. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and "Greener" Chemical Approaches // J. Phys. Chem. B, 2003, V.107. №30. P.7454-7462.

180. Peng X., Schlamp M. C., Kadavanich A. V, Alivisatos A. P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility // J. Am. Chem. Soc., 1997, V.119. №30. P.7019-7029.о

181. Chen X., Lou Y., Burda C. Spectroscopic investigation of II-VI core-shell nanoparticles: CdSe/CdS // Int. J. Nanotech., 2004, V.l. №1-2. P. 105-118.

182. Chen X., Lou Y., Samia A. C., Burda C. Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures // Nano Lett., 2003, V.3. №6. P.799-803.

183. Zeng H., Li J., Wang Z. L., Liu J. P., Sun S. Bimagnetic Core/Shell FePt/Fe304 Nanoparticles //Nano Lett. 2004. V.4. №1. P.187-190.

184. Kim S., Fisher В., Eisler H., Bawendi M. Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures // J. Am. Chem. Soc., 2003, V.125. №38. P.l 1466-11467.

185. Haubold S., Haase M., Kornowski A., Weller H. Strongly Luminescent InP/ZnS Core-Shell Nanoparticles // Chem. Phys. Chem., 2001, V.2. №5. P.331-334.

186. Cizeron I., Pileni M.P. Solid Solution of CdyZniyS Nanosize Particles Made in Reverse Micelles // J. Phys. Chem., 1995, V. 99. №48. P. 1741017416.

187. Levy L., Hochepied I.F., Pileni M.P. Control of the Size and Composition of Three Dimensionally Diluted Magnetic Semiconductor Clusters // J. Phys. Chem, 1996, V. 100. №47. P. 18322-18326.

188. Peng X. Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals // Adv. Mater., 2003, V.15. №5. P.459-463.

189. Peng Z. A., Peng X. Mechanisms of the Shape Evolution of CdSe Nanocrystals // J. Am. Chem. Soc., 2001, V.123. №7. P.1389-1395.

190. Link S., Burda C., Nikoobakht В., El-Sayed M. A. Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses // J. Phys. Chem. B, 2000, V.104. №26. P.6152-6163.

191. Manna L., Milliron D. J., Meisel A., Scher E. C., Alivisatos A. P. Controlled growth of tetrapod-branched inorganic. nanocrystals // Nat. Mater. 2003. V.2. №6. P.382-385.

192. Simmons B. A., Li S., John V. Т., Mcpherson G. L., Bose A., Zhou W., He J. Morphology of CdS Nanocrystals Synthesized in a Mixed Surfactant System // Nano Lett., 2002, V.2. №4. P.263-268

193. Sun В., Marx E., Greenham N. C. Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers // Nano Lett., 2003, V.3. №7. P.961-963.

194. Yeh C. Y., Lu Z. W., Froyen S., Zunger A. Zinc-blende-wurtzite polytypism in semiconductors // Phys. Rev. В 1992. V.46. №16. P. 10 08610097.

195. Ito T. Simple Criterion for Wurtzite-Zinc-Blende Polytypism in Semiconductors // Jpn. J. Appl. Phys. Part 2, 1998, V.37. P.L1217-1220.

196. Manna L., Scher E. C., Alivisatos A.P. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals // J. Am. Chem. Soc., 2000, V. 122. № 51. P. 12700-12706

197. Yu W. W., Wang Y. A., Peng X. G. Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals: Ligand Effects on Monomers and Nanocrystals // Chem. Mater., 2003. Y.15. №22. P.4300-4308.

198. Mohamed M. В., Tonti D., Al-Salman A., Chemseddine A., Chergui M. Synthesis of High Quality Zinc Blende CdSe Nanocrystals // J. Phys. Chem. В 2005. V.109. №21. P.10 533-10537.

199. Deng Z. Т., Cao L., Tang F. Q., Zou B. S. A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis // J. Phys. Chem. B, 2005, V.109. №35. P.16671-16675.

200. Peng Z. A., Peng X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor // J. Am. Chem. Soc., 2001, V.l23. №1. P.183-184.

201. Jun Y. W., Lee S. M., Kang N. J., Cheon J. Controlled Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant System // J. Am. Chem. Soc., 2001, V.123. №21. P. 5150-5151.

202. Manna L., Milliron D.J., Meisel A., Scher E. C., Alivisatos A. P. Controlled growth of tetrapod-branched inorganic nanocrystals // Nature materials, 2003, V.2. P. 382 385.

203. Сикоренко Н.П., Ефимов С.П., Разумов В.Ф., Алфимов М.В. Проявление эффекта размерного квантования в спектрах люминесценции и поглощения микрочастиц AgHal // ЖНиПФ., 1992, Т. 37. №6. С. 439

204. Lianos P., Thomas J.K. Cadmium sulfide of small dimensions produced in inverted micelles// Chem. Phys. Lett., 1986, V.125. № 3. P. 299-302.

205. Lianos P., Thomas J.K. Small CdS particles in inverted micelles// J. Coll. Int. Sci., 1987, V.l 17. № 2. P. 505-512.

206. Sato H., Hirai Т., Komasawa I. Mechanism of Formation of Silver Halide Ultrafine Particles in Reverse Micellar Systems// J. Chem. Eng. Jap., 1996, V. 29. №3. P. 501-507

207. Спирин М.Г., Бричкин С.Б., Разумов В.Ф. Особенности получения нанокристаллов Agl в обратных мицеллах аэрозоля ОТ // Коллоидный журнал. 2004. Т. 66. № 4. С. 533-538.

208. Краткий справочник физико-химических величин. Изд. 7-е, испр. Под ред. Мищенко К.П. и Равделя A.A. JL: Химия, 1974. С. 200.

209. Wei S.H., Zhang S. В., Zunger A. First-principles Calculation of Band Offsets, Optical Bowings, and Defects in CdS, CdSe, CdTe and their Alloys. // J. Appl. Phys. 2000. Vol. 87. P. 1304-1311

210. Mikulec F.V., Kuno M., Bennati M., Hall D.A., Griffin R.G., Bawendi M. G., // Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals // J. Am. Chem. Soc., 2000, V.122, №11. P.2532-2540.

211. Elghanian R., Storhoff J.J., Mucic R.C., Letsinger R.L., Mirkin C.A. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles // Science, 1997, V. 277. P. 1078-1081.

212. Li Y., Zhong H., Li R., Zhou Y., Yang C., Li Y. High-Yield Fabrication and Electrochemical Characterization of Tetrapodal CdSe, CdTe, and CdSexTel-x Nanocrystals // Adv. Funct. Mater., 2006, V.l6. №13. P. 17051716.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.