Изучение активации различных отделов гиппокампа после выполнения грызунами пространственных тестов тема диссертации и автореферата по ВАК РФ 03.00.13, кандидат биологических наук Купцов, Павел Андреевич

  • Купцов, Павел Андреевич
  • кандидат биологических науккандидат биологических наук
  • 2006, Москва
  • Специальность ВАК РФ03.00.13
  • Количество страниц 150
Купцов, Павел Андреевич. Изучение активации различных отделов гиппокампа после выполнения грызунами пространственных тестов: дис. кандидат биологических наук: 03.00.13 - Физиология. Москва. 2006. 150 с.

Оглавление диссертации кандидат биологических наук Купцов, Павел Андреевич

1. Введение.

2. Обзор литературы.

2.1. Строение гиппокампа и зубчатой фасции.

2.2. Роль гиппокампа в процессах, обеспечивающих пространственное обучение и память животных.

2.3 Использование метода картирования с помощью экспрессии ранних генов и других неинвазивных методов для оценки функций гиппокампа.

2.4. Пространственное обучение у полевок и других мышевидных грызунов.

3. Эксперимент 1А и 1Б. Пространственное обучение в модифицированном «открытом поле» с контролируемыми зрительными стимулами.

3.1. Методика.

3.2. Результаты.

3.3. Обсуждение.

4. Эксперимент 2А и 2Б. Обучение в модифицированном радиальном лабиринте, с возможностью выхода в домашнюю клетку.

4.1. Методика.

4.2. Результаты.

4.3. Обсуждение.

5. Общее обсуждение.

6. Выводы.

Рекомендованный список диссертаций по специальности «Физиология», 03.00.13 шифр ВАК

Введение диссертации (часть автореферата) на тему «Изучение активации различных отделов гиппокампа после выполнения грызунами пространственных тестов»

Актуальность исследованияГиппокамп - одна из центральных структур мозга отвечающая за рядсложных когнитивных процессов, в том числе ориентировочноисследовательское поведение (напр. Douglas, 1967; Виноградова 1975; Save etal., 1992) и пространственное обучение и память (Olton et al., 1978; Morris et al.,1982), Несмотря на долгую историю изучения, функции и принципы работыгиппокампа во многом не ясны и активно обсуждаются (Vinogradova, 2001;Burgess, 2002; Good, 2002; Small, 2002; Jacobs, Schenk 2003 и др.). Исследованияпоследних лет подтверждают более ранние предположения (напр. Hughes, 1965;Унгиадзе, 1970 и др.) о функциональной неоднородности разных отделовгиппокампа. Так современные морфологические данные позволяютрассматривать гиппокамп как сложную трехмерную структуру, ростральная икаудальная часть которой получает проекции от разных частей энторинальнойкоры (Amaral, Witter 1989, 1995; Insausty et al., 1997; Dolorfo et al., 1998a,6;Witter et al., 2000). Характеристики «клеток места» поля CAl отличаются вразных точках рострокаудальной оси (Jung et al., 1994). Развитие методовтонких избирательных удалений позволило накопить дапные об участии разныхотделов гиппокампа в процессах пространственного обучения и памяти (см.Poucet et. al 1994а; Moser et al., 1993, 1998; Bannerman et al, 1999, 2003, 2004;Kjelstrup et al., 2002; Ferbinteanu et al., 2003; Pothuizen et al., 2004). Однако,необходимо отметить, что выводы многих исследователей об особенностяхфункционирования разных отделов гиппокампа, часто не согласуются друг сдругом (см. напр. Richmonds et al., 1999 и Bannennann et al., 1999; Moser et al.,1993ndeHozetal.,2003).Важно подчеркнуть, что даже в случае использования щадящих удаленийструктур исследователи оценивают функционирование поврежденного мозга,пеинвазивные методы позволяют этого избежать. В представленной работе мыпроводили оценку функционирования неповрежденной структуры путемкартирования активации нейронов по экспрессии в них продуктов гена c-fos.(Sagar et al., 1988; Dragunow, Faull, 1989; Анохин, 1997; Herdegen et al., 1998;Kaczmarek, 2002), Использование такого маркера позволяет оценить активациюкак сразу многих отделов мозга, так и одной структуры на всем её протяжении,что крайне сложно сделать, применяя электрофизиологические методы иразрушая отделы мозга.Особенности экспрессии c-Fos в гиппокампе после пространственногообучения изучены недостаточно, такие исследования ноявились сравнительнонедавно и они немногочисленны (Vann et al. 2000а; Guzovski et al., 2001; He etal., 2002a,b; Passino et al, 2002; Jenkins et al., 2003, 2004; Touzani et al., 2003).Необходимо отметить, что в этих работах не оценивали активацию гиппокампана всем его протяжении, поэтому в настоящем исследовании представлялосьважным изучить экспрессию c-fos в гиппокампе вдоль всей его продольной оси.Кроме того, в перечисленных выше работах, экспрессию оценивали последлительного и сложного обучения в радиальном и других лабиринтах. Вотличие от этих исследований, нас интересовал непосредственно начальныйэффект обучения и освоения нового пространства, без дополнительныхвлияний, таких как выработанные стратегии посещений рукавов, пищеваямотивация, излишнее стрессирование и др.В качестве объектов нашего исследоваиия были выбраны лабораторныемыши хорошо изученной инбредной линии C57BL/6, для которых характернаинтенсивная исследовательская активность (Crusio, 1989) и высокий уровеньрешения пространственных тестов (Ammassari-Teule et al., 1993), ипредставители грызунов (рыжая и обыкиовенная полевка), принадлежащих кдругому семейству (Хомяковые, Cricetidae). Известио, что полевки хорошообучаются выполнению различных пространственных задач (напр. Galea et al.,1994а; Teskey et al., 1998), в ряде случаев лучше, чем лабораторные мыши(Pleskacheva et al., 2000). Сопоставление физиологических особенностей работыгиппокампа и поведения полевок и лабораторных мышей позволит, с однойстороны, избежать акцентирования на узко специализированных длялабораторных животных феноменах, а с другой стороны, выявитьвидоспецифические особенности поведения грызунов, занимающих вприродных условиях определенные экологические ниши. В то же время,схожесть данных, полученных на грызунах разных видов, позволитпредположить, что обнаруженные феномены активации гиппокампа могутносить общий характер, по крайней мере, для грызунов.Цели и задачи исследованияИзучение активации различных отделов гиппокампа грызунов наначальных этапах обучения и освоения нового нространства.В связи с этим были ноставлены следующие задачи:1. Разработать методики, позволяющие быстро оценивать начальныеэтапы пространственного обучения и освоения нового пространства,адекватные для тестирования и лабораторных мыщей, и полевок, выловленныхв местах их обитания2. Оценить экспрессию c-Fos в разных областях гиппокампа и зубчатойфасции при прострагютвенном обучении и освоении нового нространства,используя иммунногистохимический метод.3. Исследовать поведение и особенности экспрессии c-Fos улабораторных мышей линии C57BL/6 и полевок.Основные результаты и их научная новизнаДля оценки начальных этапов пространственного обучения и освоенияпространства были разработаны новые методики, нозволяющие быстро и бездополнительного стрессирования тестировать лабораторных и дикихмыщевидных грызунов: модификации теста «открытое поле» сконтролируемыми зрительиыми стимулами и 8-лучевого радиальноголабиринта с возможностью выхода в домащнюю клетку. Выявлено, чтополевки лучше, чем лабораторные мыши, запоминают местоположениеубежища (рыжие полевки) или нанравление рукава, ведущего к выходу излабиринта (обыкновенные полевки), используя для ориентации дистантныезрительные стимулы.Впервые были изучены особенности экспрессии c-Fos в гиппокампе изубчатой фасции грызунов на начальных этапах обучения и освоения иминового пространства. Необходимо отметить, что оценка экспрессии c-Fos уполевок после обучения ранее другими исследователями не проводилась.Наши данные нодтвердили выводы других исследователей об активациигиппокампа при выполнении пространственных задач (напр. Vann et al., 2000а;Guzovski et al., 2001 и др.). Однако, впервые показано, что такая активация быланеравномерна в разных частях гиппокампа. Усиление экспрессии c-Fos вразных частях структуры было вызвано различными экспериментальнымифакторами. Так, активация каудальных отделов полей гиппокампа и зубчатойфасции, очевидно, была следствием перемещения животных в пространстве.Когда ограничивали возможность их передвижения, интенсивность экспрессиизаметно снижалась. Введение новых зрительных стимулов не вызывалодополнительной активации каудальных отделов, но активировало ростральныеобласти гиппокампа. Усиление экспрессии в этом случае было слабее, чемвызванное в каудальном гиппокампе передвижепием животных. Хотяповедение животных в условиях симметричного и асимметричногорасположения зрительных стимулов различалось, этот фактор слабо влиял наэкспрессию в ростральных отделах гиппокампа. Кроме того, в проведенныхэкспериментах была выявлена синергичность в активации поля САЗ и зубчатойфасции, в отличие от поля СА1, ростральные области которого слабо изменялиактивность при перемещении животных.Сравнение особенностей активации экспрессии c-Fos в гиппокампелабораторных мышей и полевок выявило принципиальное сходство этихпроцессов у сравниваемых видов. И у тех, и у других перемещение, как воткрытом ноле, так и в лабиринте, активировало каудальные отделы, тогда какновые зрительные стимулы воздействовали преимущественно на ростральныеотделы. Это может свидетельствовать о том, что выявленные эффекты носятобщий, по крайней мере, для грызунов характер и отражают различную рольростральных и каудальных отделов гиппокампа в поведении животных.Выявлены и различия в активации гиппокампа: у лабораторных мышейотмечено большее, чем у полевок, усиление экспрессии c-Fos в ответ наперемеш,ение животных и на введение новых стимулов.Научно-практическое значениеПолученные новые результаты вносят вклад в понимапия принциповфункционирования гиппокампа, его участия в процессах, связанных сперемещением и ориентированием животных в пространстве. Проведенноеисследование позволило показать, что ростральпая и каудальная частигиппокампа по-разному вовлекаются в процессы освоения нового пространства.Обнаруженные факты существенно уточняют, дополняют имеющиесянемногочисленные данные о функциональной неоднородности гиппокампа имогут быть использовапы для дальнейшего его изучения, особенно длянейрофизиологических исследований каудальных отделов, характеристикинейронной активности которых слабо изучены. Учитывая факты,свидетельствующие о неоднородности различных частей гиппокампа изубчатой фасции приматов (см. напр. Colombo et al., 1998; Small, 2002),полученные данные могут пополнить фундаментальные знания о работе этихструктур, необходимые для развития методов диагностики и лечения рядазаболеваний человека (например, височпой эпилепсии, болезни Альцгеймера,различных травм мозга, повреждающих гиппокамп).Сравнение лабораторных и диких грызунов может быть полезно дляуточнения оценки влияния процессов доместикации и лабораторногоразведения на поведение животных и функционирование структур мозга.Разработанные поведенческие методики могут быть широкоиспользованы (в том числе и для изучения характеристик пространственногообучения и памяти диких грызунов) поскольку, по сравнению ссуществующими методами (например, водный тест Морриса, радиальныйлабиринт), они обладают рядом преимуществ, так как основаны наестественной реакцни животных (быстрое заноминание местоположенияубежища), не требуют длительного обучения и характеризуются низкимуровнем стрессирования.Апробация работыРабота была выполнена в лаборатории физиологии и генетики поведениякафедры высшей нервной деятельности биологического факультета МГУ им.М.В. Ломоносова и в отделе системогенеза ГУ НИИ нормальной физиологииим. П.К. Анохина.Материалы диссертации были представлены на конференции молодыхученых НИИ ВНД и НФ (Москва, 2002), на Международном Совещаниитериологического общества (Москва, 2003), на IV Форуме европейскогообщества нейрофизиологов (FENS, Лиссабон, Нортугалия, 2004), на XIXСъезде физиологического общества им. И.Н. Навлова (Екатеринбург, 2004), наВсероссийской конференции молодых исследователей «Физиология имедицина» (Санкт-Нетербург, 2005).Материалы диссертации были апробированы на заседании кафедрывысшей нервной деятельности Биологического ф-та МГУ им. М.В. Ломоносова27 октября 2005 г.

Похожие диссертационные работы по специальности «Физиология», 03.00.13 шифр ВАК

Заключение диссертации по теме «Физиология», Купцов, Павел Андреевич

1. На ранних этапах обучения и освоения пространства и у полевок, и у

мышей, обнаружена неравномерная активация экспрессии c-Fos на

разных рострокаудальных уровнях гиппокампа. 2. Показано, что активация экспрессии c-Fos в каудальных отделах

гиппокампа определяется собственно передвижением животного в

пространстве. Введение новых зрительных стимулов не вызывает

дополнительной активации этой области. 3. Экспрессия c-Fos в ростральных отделах гиппокампа активировалась при

введении новых стимулов. Усиление интенсивности экспрессии в этом

случае было значительно ниже, чем вызванное в каудальном гиппокампе

передвижением животпых,

4. Характер исследовательской активпости и освоения нового пространства

различался в зависимости от расположения внешних зрительных

стимулов (а также стабильного и нестабильного положение убежища). Однако, это оказывало слабое влияние на интенсивность экспрессии с Fos в гиппокампе,

5. Выявлены существенные различия активации экспрессии c-Fos в полях

СА1, САЗ гиппокампа и зубчатой фасции на разных рострокаудальных

уровнях. Характер активации поля САЗ и зубчатой фасции был сходен, и

отличался от поля СА1,

6. Лабораторные мыши отличались от полевок более высоким общим

уровнем экспрессии c-Fos в гиппокампе и большим ее увеличением в

ответ на введение новых стимулов, хотя и несколько уступали полевкам

по характеристикам прострапственной памяти,

7. Сходство данных, полученных на грызунах разных видов, позволяет

предположить, что обнаруженные особенности активации каудального и

рострального гиппокампа носят достаточно общий характер и отражают

различную роль этих отделов в поведении животных,

Список литературы диссертационного исследования кандидат биологических наук Купцов, Павел Андреевич, 2006 год

1. Анохин К.В. (1977) Молекулярно-генетические предносылки системотогенеза поведенческих актов. Теория системотогенеза / ред. СудаковК.В. Москва, с. 215-276.

2. П. Бабаи, К.В. Анохин, О.Н. Долгов, К.В. Судаков. Особенности экспрессии гена c-fos в мозге крыс с различным исследовательским иоборонительным поведением. Журн. Высш. Нерв. Деят. 50 (6):966-973, 2000.

3. Виногадова О.С. (1975) Гиппокамп и память 334с. М.: Наука.

4. Гамильтон Л.У. (1984) Основы анатомии лимбической системы крысы. 183 с.

5. Григорьев Н.Р. (1998). Функциональная организация поисковой активности. Автореферат диссертации на соискание ученой стенени докторамедицинских наук. Чита. 42 с

6. Громов И.М., М.А. Ербаева. (1993) Млекопитающие фауны России и сопредельных территорий. Зайцеобразные и грызуны. С-Нетербург:Зоологический институт АН, 520 с.

7. Зворыкина СВ. (2005) Сравнительная топография экспрессии гена c-fos в мозге мышей линий C57BL/6 и 129Sv при обучении в задачеусловнорефлекторного замирания. Автореферат на соискание ученой степеникандидата биологических наук. Москва.

8. Соколов В.Е., Башенина Н.В. (ред) (1994). Обыкновенная полевка: виды- двойники Microtus arvalis Pallas, 1779, Microtus rossiaemeridionalis Ognev, 1928.ред. M.: Наука

9. Унгиадзе A.A. (1970) Новеденческие и электрофизиологические эффекты электрического раздражения гиппокампа. Физиологический журнал СССР им.Сеченова Т. LVI. № 11.С. 1531-1538.

10. Чайченко Г.М. (1984) Функциональная роль дорзального и вентрального гиппокампа в оборонительном поведении крыс. Журн. Высш. Нерв. Деят. Т. 34С. 1109-1115.113

11. Буреш Я., Бурешова О., Хьюстон Д. (1991) "Методики и основные эксперименты по изучению мозга и поведения". Москва, Высшая школа.

12. Яскин В.А., Ленец Л.И. (1996). Специфические черты строения головного мозга видов-двойников обыкновенной полевки. Зоологический журнал 75:1715-1721.

13. Яскин В.А. (1998). Динамика массы гнппокампа и особенности пространственного поведения в годовом цикле у рыжей полевки. ДокладыАкадемии Наук 360: 141-144.

14. Aggleton J.P., Brown M.W. (1999). Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav.Brain Sci. 22:425-444.

15. Almendral J.M., Sommer D., MacDonald-Bravo H., Burckhardt J., Perera J., Bravo R. (1988). Complexity of the early genetic response to growth factors in mousefibroblasts. Mol. Cell. Biol. 8: 2140-2148.

16. Alyan S., McNaughton B.L. (1999). Hippocampectomized rats are capable of homing by path integration. Behav.Neurosci. 113:19-31.

17. Amaral D.G., Witter M.P. (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571-591.

18. Amaral D.G., Witter M. (1995). The hippocampal formation. In: Paxinos G, ed. The rat nervous system. London: Academic Press, p 443-493.

19. Andersen P., Bliss T.V., Skrede K.K. (1971). Lamellar organization of hippocampal pathway. Exp Brain Res. 13(2):222-238

20. Anokhin K.V., Rose S.P.R. (1991a). Learning-induced increase of immediate early gene messenger RNA in the chick forebrain. Eiir JNeurosci 5:162-167.

21. Anokhin K.V., Mileusnic R., Shamakina l.Y., Rose S.P. (19916). Effects of early experience on c-fos gene expression in the chick forebrain. Brain Res 544:101-107.

22. Ammassari-Teule M., Restivo L., Pietteur V., Passino E. (2001). Learning about the context in genetically-defined mice. Behav.Brain Res. 125:195-204.

23. Bannerman D.M., Yee B.K., Good M.A., Heupel M.J., Iversen S.D., Rawlins J.N. (1999). Double dissociation of function within the hippocampus: a comparison114of dorsal, ventral, and complete hippocampal cytotoxic lesions. BEHAVNEUROSCI 113:1170-1188.

24. Bannerman D.M., Grubb M., Deacon R.M.J., Yee B.K., Feldon J., Rawlins J.N.P. (2002). Ventral hippocampal lesions affect anxiety but not spatial learning.Behav Brain Res. 139:197-213.

25. Bannerman D.M., Rawlins J.N.P., McHugh S.B., Deacon R.M.J.,. Yee B.K, Bast Т., Zhang W.-N., Pothuizen H.H.J., Feldon J. Regional dissociations within thehippocampus—memory and anxiety. Neuroscience and Biobehavioral Reviews 28(2004) 273-283

26. Bardgett M.E., Henry J.D. (1999). Locomotor activity and accumbens Fos expression driven by ventral hippocampal stimulation require Dl and D2 receptors.Neuroscience 94:59-70.

27. Barnes C.A., Nadel L., Honig W.K, (1980) Spatial memory deficit in senescent rats. Can J Psychol 34:29-39.

28. Barondes S.H., Cohen H.D. (1968). Memory impairment after subcutaneous injection of acetoxycycloheximide. Science. 160(827):556-7.

29. Bayer S.A. (1985). Hippocampal region. In: Paxinos G, ed. The rat nervous system. Sydney Orlando San Diego New York London Toronto Montreal Tokyo:Academic Press, p 335-352.

30. Bertaina-Anglade V., Tramu G., Destrade С (2000). Differential learning- stage dependent patterns of c-Fos protein expression in brain regions during theacquisition and memory consolidation of an operant task in mice. Eur.J.Neurosci.12:3803-3812.

31. Best P.J., White A.M., Minai A. (2001) Spatial processing in the brain: the activity of hippocampal place cells. Annu.Rev.Neurosci. 24:459-486.

32. Birke L.I., D'Udine В., Albonetti M.E. (1985). Exploratory behavior of two species of murid rodents, Acomys cahirinus and Mus musculus: a comparative study.Behav Neural Biol. 43(2): 143-61.115

33. Blum S., Moore A.N., Adams F., Dash P.K. (1999). A mitogen-activated protein kinase cascade in the CA1/CA2 sub field of the dorsal hippocampus isessential for long-term spatial memory. J. Neurosci 19:3535-3544.

34. Brown M.A., Shaф P.E. (1995). Simulation of spatial learning in the Morris water maze by a neural network model of the hippocampal formation and nucleusaccumbens. Hippocampus. 5:171-188.

35. Brun V.H., Otnass M.K., Molden S., Steffenach H.A., Witter M.P., Moser M.B., Moser E.I. (2002). Place cells and place recognition maintained by directentorhinal-hippocampal circuitry.Science. 296(5576):2243-6.

36. Burck K.B., Liu E.T., Larrick J.W. Oncogenes: An Introduction to the Concept of Cancer Genes, Springer-Verlag, New York, 1988.

37. Bures J., Fenton A.A., Kaminsky Y., Zinyuk L. (1997). Place cells and place navigation. Proc.Natl.Acad.Sci.U.S.A. 94:343-350.

38. Burwell R.D., Amaral D.G. (1998). Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J.Comp.NeuroI. 398:179-205.

39. Cassel,J.C., Cassel,S., Galani,R., Kelche,C., Will,B. & Jarrard,L. (1998). Fimbria-fomix vs selective hippocampal lesions in rats: effects on locomotor activityand spatial learning and memory. Neurobiol Leam. Mem., 69 , 22-45.

40. Chen C , Tonegawa S. (1997). Molecular genetic analysis of synaptic plasticity,activity-dependent neural development, learning, and memory in themammalian brain. Annu Rev Neurosci 20:157-84.

41. Chiba A.A., Kesner R.P. Jackson P.A. (2002). Two forms of spatial memory: a double dissociation between the parietal cortex and the hippocampus in the rat.Behav. Neurosci., 116, 874-883.

42. Clark R.E., Broadbent N.J., Squire L.R. (2004). Hippocampus and remote spatial memory in rats. Hippocampus 15(2):260-72.

43. Colombo M., Femandez Т., Nakamura K., Gross C.G. (1998). Functional differentiation along the anterior-posterior axis of the hippocampus in monkeys.J.Neurophysiol. 80:1002-1005.116

44. Crusio W.E., Schwegler H., van Abeelen J.H. (1989). Behavioral responses to novelty and structural variation of the hippocampus in mice. I. Quantitative-geneticanalysis of behavior in the open-field. Behav.Brain Res. 32:75-80.

45. Curran Т., Teich N.M., (1982). Identification of a 39,000-dalton protein in cells transformed by the FBI murine osteosarcoma virus, Virology 116: 221-233.

46. Curran Т., Miller AD., Zokas L., Verma I.M. (1984). Viral and cellular fos proteins: a comparative analysis. Cell 36:259-268.

47. Dell'Omo G., Pleskacheva M.G., Wolfer D.P., Lipp H.P., Shore R.F. (2003). Comparative effects of exposure to an organophosphate pesticide on locomotoractivity of laboratory mice and five species of wild rodents.Bull.Environ.Contam.Toxicol. 70:138-145.

48. Dobly A. (2001). Movement pattern of male common voles (Microtiis arvalis) in a network of Y junction: role of distant visual cues and scent marks. Can. J. Zool.79: 2228-2238.

49. Dolorfo C.L., Amaral D.G. (1998a). Entorhinal cortex of the rat: organization of intrinsic connections. J.Comp.Neurol. 398:49-82.

50. Dolorfo C.L., Amaral D.G. (19986). Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentategyrus. J.Comp.Neurol. 398:25-48.

51. He J., Yamada K., Nabeshima T. (2002a). A role of Fos expression in the CA3 region of the hippocampus in spatial memory formation in rats.Neuropsychopharmacology. 26:259-268.

52. He J., Yamada K., Nakajima A., Kamei H., Nabeshima T. (20026). Learning and memory in two different reward tasks in a radial arm maze in rats. Behav.BrainRes. 134:139-148.

53. Herdegen Т., Leah J.D. (1998). Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and ICrox,and CREBrATF proteins. Brain Research Reviews 28: 370^90

54. Hess U.S., Lynch G., Gall CM. (1995a). Changes in c-fos mRNA expression in rat brain during odor discrimination learning: differential involvement ofhippocampal subfields CAl andCA3. J.Neurosci. 15:4786-4795.

55. Hess U.S., Lynch G., Gall CM. (19956). Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versusperformance of a well-learned discrimination. J.Neurosci. 15:7796-7809.

56. Hjorth-Simonsen A., Laurberg S. (1977). Commissural connections of the dentate area in the rat. J Comp Neurol. 174(4):591-606.

57. Hock B.J.J., Bunsey M.D. (1998). Differential effects of dorsal and ventral hippocampal lesions. J.Neurosci. 18:7027-7032.

58. Hollup S.A., Molden S., Donnett J.G., Moser M.B., Moser E.L (2001). Place fields of rat hippocampal pyramidal cells and spatial learning in the watermaze.EunJ.Neurosci. 13:1197-1208.

59. Hughes K.R. (1965). Dorsal and ventral hippocampus lesions and maze learning: influence of preoperative environment. Can J Psycho 1 19: 325-332.

60. Hunt S.P., Pini A., Evan G. (1987). Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature. 328 (6131):632-4.120

61. Hyden Н,, Egyhazi. E, (1962). Changes in the base composition of nuclear ribonucleic acid of neurons during a short period of enhanced protein production. J.CellBiol. 15:37-44.

62. Hyden H., Egyhazi. E. (1964). Changes in RNA content and base composition in cortical neurons of rats in a learning experiment involving transfer of handedness.Proc Natl Acad Sci USA. 52:1030-5.

63. Hyden H., Lange P.W. (1968). Protein synthesis in the hippocampal pyramidal cells of rats during a behavioral test. Science. 159(821): 1370-3.

64. Iaria G., Petrides M., Dagher A., Pike В., Bohbot V.D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation:variability and change with practice. J Neurosci. 23(13):5945-52.

65. Insausti R., Amaral D.G., Cowan W.M. (1987). The entorhinal cortex of the monkey: II. Cortical afferents. J.Comp.Neurol. 264:356-395.

66. Insausti R., Herrero M.T., Witter M.P. (1997). Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents.Hippocampus. 7:146-183.

67. Jenkins T.A., Dias R., Amin E., Aggleton J.P. (2002a). Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei. EurJ Neurosci 16:1425-1432.

68. Jenkins T.A., Dias R., Amin E., Brown MW., Aggleton J.P. (20026). Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespreadlimbic hypoactivity in rats. J.Neurosci. 22:5230-5238.

69. Jenkins T.A., Amin E., Harold G.T., Pearce J.M., Aggleton J.P. (2003). Distinct patterns of hippocampal formation activity associated with different spatialtasks: a Fos imaging study in rats. Exp.Brain Res. 151:514-523.121

70. Jung M.W., Wiener S.I., McNaughton B.L. (1994). Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat.J.Neurosci. 14:7347-7356.

71. Kabbaj M., Akil H. (2001). Individual differences in novelty-seeking behavior in rats: a c-fos study. Neuroscience. 106:535-545.

72. Kaczmarek L., Robertson H.J., (eds) Handbook of Chemical Neuroanatomy Vol. 19: Immediate Early Genes and Inducible Transcription Factors in Mapping ofthe Central Nervous System Function and Dysfunction. 2002 Elsevier Science B. V.

73. Kavaliers M., Galea L.A. (1994). Spatial water maze learning using celestial cues by the meadow vole, Microtus pennsylvanicus. Behav.Brain Res. 61:97-100.

74. Kesner R.P., Novak J.M. (1982). Serial position curve in rats: role of the dorsal hippocampus. Science 218:173-175.

75. Kesner R.P., Beers D.R. (1988). Dissociation of data-based and expectancy- based memory following hippocampal lesions in rats. Behav. Neural. Biol., 50, 46-60

76. Kesner R.P., Lee I., Gilbert P. (2004). A behavioral assessment of hippocampal function based on a subregional analysis. Rev.Neurosci. 15:333-351.

77. Kjelstrup K.G., Tuvnes F.A., Steffenach H.A., Murison R., Moser E.I., Moser M.B. (2002). Reduced fear expression after lesions of the ventral hippocampus. ProcNatl Acad Sci USA. 99(16): 10825-30.

78. Knierim J.J., Kudrimoti H.S., McNaughton B.L. (1995). Place cells, head direction cells, and the learning of landmark stability. J.Neurosci. 15:1648-1659.122

79. Lau L.F., Nathans D. (1985). Identification of a set of genes expressed during the GOrGl transition of cultured mouse cells, EMBO J. 4 3145-3151.

80. Laurberg S. (1979). Commissural and intrinsic connections of the rat hippocampus. J. CompNeurol. 184(4):685-708.

81. Laurberg S., Sorensen K.E. (1981). Associational and commissural collaterals of neurons in the hippocampal formation (hilus fasciae dentatae and subfield CA3).BrainRes. 212(2):287-300.

82. Lee I., Kesner R.P. (2004). Encoding versus retrieval of spatial memory: double dissociation between the dentate gyms and the perforant path inputs into CA3in the dorsal hippocampus. Hippocampus. 14:66-76.

83. Leutgeb S., Leutgeb J.K., Treves A., Moser M.B., Moser E.I. (2004). Distinct ensemble codes in hippocampal areas CA3 and CAl. Science. 305(5688): 1295-8.

84. Levy R, Friedman HR, Davachi L, Goldman Rakic PS (1997) Differential activation of the caudate nucleus in primates performing spatial and nonspatialworking memory tasks. J.Neurosci. 17:3870-3882.

85. R.W. Lim, B.C. Varnum, H.R. Herschman (1987). Cloning of tetradecanoyl phorbol ester-induced primary response sequences and their expression in density-arrested Swiss 3T3 cells and a TPA. nonproliferative variant, Oncogene 1:263-270.

86. Lipp H.P., Wolfer D.P. (1998). Genetically modified mice and cognition. Curr.Opin.Neurobiol 8:272-280.

87. Maaswinkel H., Jarrard L.E., Whishaw I.Q. (1999). Hippocampectomized rats are impaired in homing by path integration. Hippocampus 9:553-561.

88. Maguire E.A., Burgess N., Donnett J.G., Frackowiak R.S., Frith CD., O'Keefe. (1998). Knowing where and getting there: a human navigation network. Science.280(5365):921-4.

89. Martin P.D. (2001). Locomotion towards a goal alters the synchronous firing of neurons recorded simultaneously in the subiculum and nucleus accumbens of rats.Behav.Brain Res. 124:19-28.123

90. Masuda Y., Odashima J., Murai S., Saito H., et al. Radial arm maze behavior in mice when a return to the home cage serves as the reinforced // Physiology &Behavior 1994. V. 56. N. 4. P. 785-788.

91. McNaughton B.L., Barnes C.A., Meltzer J., Sutherland R.J. (1989). Hippocampal granule cells are necessary for normal spatial learning but not forspatially-selective pyramidal cell discharge. Exp,Brain Res. 76:485-496.

92. Milanovic S., Radulovic J., Laban O., Stiedl O., Henn F., Spiess J. (1998). Production of the Fos protein after contextual fear conditioning of C57BL/6N mice.Brain Res. 784:37-47.

93. Mittelstaedt H. (2000) Triple-loop model of path control by head direction and place cells. Biol.Cybern. 83:261-270.

94. Mittleman G., Whishaw I.Q., Jones G.H., Koch M., Robbins T.W. (1990). Cortical, hippocampal, and striatal mediation of schedule-induced behaviors.BEHAV NEUROSCI 104:399-409.

95. Mogenson G.J., Nielsen M. (1984). A study of the contribution of hippocampal-accumbens-subpallidal projections to locomotor activity. Behav NeuralBiol. 42(1):38-51

96. Morris R.G., Garrud P., Rawlins J.N., O'Keefe J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature 297:681-683.

97. Moser E., Moser M.B., Andersen P. (1993). Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present followingventral lesions. J.Neurosci. 13:3916-3925.124

98. Moser M.B., Moser E.I., Forrest E., Andersen P., Morris R.G. (1995). Spatial learning with a minislab in the dorsal hippocampus. Proc.Natl.Acad Sci U.S.A.92:9697-9701.

99. Moser M.B., Moser E.I. (1998). Distributed encoding and retrieval of spatial memory in the hippocampus. J.Neurosci. 18:7535-7542.

100. Nilsson O.G., Strecker R.E., Daszuta A., Bjijrklund A. (1988.) Combined cholinergic and serotonergic denervation of the forebrain produces severe deficits in aspatial learning task in the rat. Brain Res 453:235-246.

101. Nitz D., McNaughton B. (2004). Differential modulation of CAl and dentate gyrus intemeurons during exploration of novel environments. J.Neurophysiol.91:863-872.

102. O'Keefe J., Conway D.H. (1978). Hippocampal place units in the freely- moving rat: whv thev fire when thev fire. Exn Brain Res 3 1:573-590.

103. O'Keefe J., Dostrovsky J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171-175

104. O'Keefe J., Nadel L. (1978). The hippocampus as a cognitive map. Oxford University Press:

105. Ohl F., Michaelis Т., Fujimori H., Frahm J., Rensing S., Fuchs E. (1999). Volumetric MRI measurements of the tree shrew hippocampus. J NEUROSCIMETHODS 88:189-193.

106. Olton D.S., Samuelson R.J. (1976). Remembrance of places passed: spatial memory in rats. J.Exp.Psychol.Anim.Behav.Proc. 2:97-116.

107. Olton D.S. (1978). Characteristics of spatial memory. In: Cognitive processes in animal behavior (Hulse SH, Fowler H, Honig WK eds), pp 341-373. Hillsdale, NJ:1.awrence Erlbaum Associates.

108. Olton D.S., Walker J.A., Gage F.H. (1978). Hippocampal connections and spatial discrimination. Brain Research 139:295-308.

109. Olton D.S., Becker J.T., Handelmann G.E. (1979). Hippocampus, space, and memory. Behav.Brain Sci. 2:313-365.125

110. Packard M.G., Teather L.A. (1997). Double dissociation of hippocampal and dorsal-striatal memory systems by posttraining intracerebral injections of 2-amino-5-phosphonopentanoic acid. Behav. Neurosci., I l l , 543-551.

111. Papa M., Pellicano M.P., Welzl H., Sadile A.G. (1993). Distributed changes in c-Fos and c-Jun immunoreactivity in the rat brain associated with arousal andhabituation to novelty. Brain Res.Bull. 32:509-515.

112. Pare D., Llinas R. (1994). Non-lamellar propagation of entorhinal influences in the hippocampal formation: multiple electrode recordings in the isolated guinea pigbrain in vitro. Hippocampus. 4(4):403-9.

113. Parron C, Poucet В., Save E. (2001). Re-evaluation of the spatial memory deficits induced by hippocampal short lasting inactivation reveals the need forcortical co-operation. BEHAV BRAIN RES, 127, 71-79.

114. Pleskacheva M.G., Wolfer D.P., Kupriyanova I.F., Nikolenko D.L., Scheffrahn H., DeirOmo G., Lipp H.P. (2000). Hippocampal mossy fibers and swimmingnavigation learning in two vole species occupying different habitats. Hippocampus.10:17-30.

115. Poucet В., Thinus B.C., MuUer R.U. (1994a). Place cells in the ventral hippocampus of rats. Neuroreport. 5:2045-2048.

116. Poucet В., Buhot M.C. (19946). Effects of medial septal or unilateral hippocampal inactivations on reference and working spatial memory in rats.Hippocampus. 4:315-321.

117. Poucet В., Lenck-Santini P.P., Hok V., Save E., Banquet J.P., Gaussier P., Muller R.U. (2004). Spatial navigation and hippocampal place cell firing: theproblem of goal encoding. Rev Neurosci. 15(2):89-107.

118. Ransone L.J., Verma I.M. (1990). Nuclear proto-oncogenes FOS and JUN, Annu. Rev. Cell Biol. 6: 539-557.

119. Redish A.D. (2001). The hippocampal debate: are we asking the right questions? Behav.Brain Res. 127:81-98.

120. Rusakov,D.A., Davies,H.A., Harrison,E., Diana,G., Richter,L.G., Bliss,T.V. & Stewart,M.G. (1997). Ultrastructural synaptic correlates of spatial learning in rathippocampus. Neuroscience, 80, 69-77.

121. Ros J., Pellerin L., Magara F., Dauguet J., Schenk F., Magistretti P.J. (2005). Metabolic activation pattern of distinct hippocampal subregions during spatiallearning and memory retrieval. J Cereb Blood Flow Metab. Aug, 31.127

122. Roullet P., Lassalle J.M, (1990). Genetic variation, hippocampal mossy fibres distribution, novelty reactions and spatial representation in mice. Behav.Brain Res.41:61-70.

123. Roullet P., Lassalle J.M. (1992). Behavioural strategies, sensorial processes and hippocampal mossy fibre distribution in radial maze performance in mice.Behav.Brain Res. 48:77-85.

124. Sagar S.M., Sharp F.R., Curran T. (1988). Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240:1328-1331.

125. Sakurai H., Yamashita Y., Sassone-Corsi P., Gombos G. (1991). Immunohistochemistry of c-fos in mouse brain during postnatal development: basallevels and changing response to metrazol and kainite injection, Eur. J. Neurosci. 3:764-770.

126. Save E., Poucet В., Foreman N., Buhot M.C. (1992). Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage toparietal cortex or hippocampal formation. Behav.Neurosci. 106:447-456.

127. Save E., Cressant A., Thinus B.C., Poucet B. (1998). Spatial firing of hippocampal place cells in blind rats. J.Neurosci. 18:1818-1826.

128. Save E., Poucet B. (2000). Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. BEHAVBRAIN RES 109:195-206.

129. Schacter,G.B., Yang,C.R., Innis,N.K. & Mogenson,G.J. (1989). The role of the hippocampal-nucleus accumbens pathway in radial-arm maze performance. BRAINRES, 494, 339-349.

130. Schenk F. (1989) A homing procedure for studying spatial memory in immature and adult rodents. J.Neurosci.Methods 26:249-258.

131. Schwegler H., Crusio W.E., Lipp H.P. (1989). A correlation between radial maze learning and the size of the mossy fiber terminal field in mice. Behav.BrainRes. Suppl. 33:309-0.128

132. Schwegler Н., Crusio W.E., Brust I. (1990). Hippocampal mossy fibers and radial-maze learning in the mouse: a correlation with spatial working memory but notwith non- spatial reference memory. Neuroscience. 34:293-298.

133. Schwegler H., Crusio W.E., Lipp H.P., Brust I., Mueller G.G. (1991). Early postnatal hyperthyroidism alters hippocampal circuitry and improves radial-mazelearning in adult mice. J NEUROSCI 11:2102-2106.

134. Shen A.Y., Tsai C.T. (1995). Neural connection from hippocampus to nucleus accumbens and the subpallidal area and their contribution to locomotor activity.Chin.J.Physiol. 38:111-116.

135. Small S.A. (2002). The longitudinal axis of the hippocampal formation: its anatomy, circuitry, and role in cognitive function. Rev.Neurosci. 13:183-194.

136. Smeyne R.J., Curran Т., Morgan J.l. (1992). Temporal and spatial expression of a fos-lacZ transgene in the developing nervous system. Brain Res.Mol.Brain Res.16:158-162.

137. Smith J, Hurst JL, Barnard CJ (1994) Comparing behaviour in wild and laboratory strains of the house mouse: Levels of comparison and functional inference.Behav.Processes 32: 79-86.

138. Squire L.R., Barondes S.H. (1970). Actinomycin-D: effects on memory at different times after training. Nature. 225(5233):649-50.

139. Stackman R.W., Golob E.J., Bassett J.P., Taube J.S. (2003). Passive transport disrupts directional path integration by rat head direction cells. J Neurophysiol.90:2862-2874.

140. Steffenach H.A., Sloviter R.S., Moser Е.1., Moser M.B. (2002). Impaired retention of spatial memory after transection of longitudinally oriented axons ofhippocampal CA3 pyramidal cells. Proc. Nat. Acad. Sci. USA. 99(5):3194-8.129

141. Steffenach H.A., Witter M., Moser M.B., Moser E.I. (2005). Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45:301-313.

142. Stoelzel C.R., Stavnezer A.J., Denenberg V.H., Ward M., Markus E.L (2002). The effects of aging and dorsal hippocampal lesions: performance on spatial andnonspatial comparable versions of the water maze. Neurobiol Learn.Mem. 78:217-233.

143. Suzuki S.W., Augerinos G., Black B.A (1980). Stimulus control of spatial behavior on the eight-arm maze in rats // Learning and Motivation V. 1 P. 11-18.

144. Swanson L.W., Wyss J.M., Cowan W.M. (1978). An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol.181(4):681-715.

145. Sziklas,V., Petrides,M. (2002). Effects of lesions to the hippocampus or the fomix on allocentric conditional associative learning in rats. Hippocampus, 12, 543-550.

146. Taube J.S. (1998). Head direction cells and the neurophysiological basis for a sense of direction. Prog.Neurobiol. 55:225-256.

147. Thinus Blanc C, Save E., Poucet В., Buhot M.C. (1991). The effects of reversible inactivations of the hippocampus on exploratory activity and spatialmemory. Hippocampus., 1, 365-371.

148. C. Thinus-Blanc. Animal spatial cognition: behavioural and brain approach. World Scientific: Singapore-New Jersey-London-Hong Kong, 1996.

149. Tischmeyer W., Kaczmarek L., Strauss M., Jork R., Matthies H. (1990). Accumulation of c-fos mRNA in rat hippocampus during acquisition of a brightnessdiscrimination. Behav.Neural.Biol. 54:165-171.

150. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189-208130

151. Touzani К., Marighetto A., Jaffard R. (2003). Fos imaging reveals ageing- related changes in hippocampal response to radial maze discrimination testing inmice. Eur.J.Neurosci. 17:628-640.

152. Tsien J.Z., Huerta P.T., Tonegawa S. (1996). The essential role of hippocampal CAl NMDA receptor-dependent synaptic plasticity in spatial memory seecomments.. Cell 87:1327-1338.

153. Tubbiola M.L., Wysocki C.J. (1997). FOS immunoreactivity after exposure to conspecific or heterospecific urine: where are chemosensory cues sorted? Physiol.Behav. 1997. V. 62. № 4. P. 867-870.

154. Van Beveren C , van Straaten F., Curran Т., Muller R., Verma I.M. (1983). Analysis of FBJ-MuSV provirus and c-fos (mouse) gene reveals that viral andcellular fos gene products have different carboxy termini. Cell 32:1241-1255.

155. Vann S.D., Brown M.W., Erichsen J.T., Aggleton J.P. (2000a). Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activationin rats in response to different spatial memory tests. J.Neurosci. 20:2711-2718.

156. Vann S.D., Brown M.W., Aggleton J.P. (20006). Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatialmemory tests. Neuroscience. 101:983-991.

157. Vann S.D., Brown M.W., Erichsen J.T., Aggleton J.P. (2000B). Using fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornixlesions. J.Neurosci. 20:8144-8152.

158. Vazdarjanova A., Guzowski J.F. (2004). Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence fordistinct, yet complementary, functions of CA3 and CAl ensembles. J Neurosci.24(29):6489-96.131

159. Vinogradova O.S. (2001) Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration ofinformation. Hippocampus. 11:578-598.

160. Wallace D.G., Hines D.J., Whishaw I.Q. (2002) Quantification of a single exploratory trip reveals hippocampal formation mediated dead reckoning.J.Neurosci.Methods. 113:131-145.

161. Wan H., Aggleton J.P., Brown M.W. (1999). Different contributions of the hippocampus and perirhinal cortex to recognition memory. J.Neurosci. 19:1142-1148.

162. Wan H., Warburton E.C., Kusmierek P., Aggleton J.P., Kowalska D.M., Brown M.W. (2001). Fos imaging reveals differential neuronal activation of areas ofrat temporal cortex by novel and familiar sounds. Eur.J.Neurosci. 14:118-124.

163. Whishaw I.Q., Vanderwolf C.H. (1971). Hippocampal EEG and behavior: effects of variation in body temperature and relation of EEG to vibrissae movement,swimming and shivering. PHYSIOL BEHAV 6:391-397.

164. Whishaw I.Q. (1972). Hippocampal electroencephalographic activity in the Mongolian gerbil during natural behaviours and wheel running and in the rat duringwheel running and conditioned immobility. Can.J Psychol. 26:219-239.

165. Whishaw I.Q., McKenna J.E., Maaswinkel H. (1997) Hippocampal lesions and path integration. Curr.Opin.Neurobiol 7:228-234.

166. White L.E., Price J.L. (1993). The functional anatomy of limbic status epilepticus in the rat. I. Patterns of 14C-2-deoxyglucose uptake and Fosimmunocytochemistry. J.Neurosci. 13:4787-4809.

167. Wimer C.C., Wimer R.E., Roderick Т.Н. (1971). Some behavioral differences associated with relative size of hippocampus in the mouse. J Comp Physiol Psychol76:57-65.132

168. Witter M.P., Wouterlood F.G., Naber P.A., van Haeften T. (2000). Anatomical organization of the parahippocampal-hippocampal network. Ann.N.Y.Acad.Sci.911:1-24.

169. Wolf O.T., Dyakin V., Patel A., Vadasz C , De Leon M.J., McEwen B.S., BuUoch K. (2002). Volumetric structural magnetic resonance imaging (MRI) of therat hippocampus following kainic acid (KA) treatment. Brain Res. 934:87-96.

170. Wolfer D.P., Madani R., Valenti P., Lipp H.P. (2001). Extended analysis of path data from mutant mice using the public domain software Wintrack.Physiol.Behav. 73:745-753.

171. Zemp J.W., Wilson J.E., Schlesinger K., Boggan W.O., Glassman E. (1966). Brain function and macromolecules. I. Incorporation of uridine into RNA of mousebrain during short-term training experience. Proc. Nat. Acad. Sci. USA. 55(6): 1423-31.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.