Изучение роли белка Sgf11 в транскрипции и экспорте мРНК из ядра тема диссертации и автореферата по ВАК РФ 03.01.03, кандидат биологических наук Гурский, Дмитрий Ярославович

  • Гурский, Дмитрий Ярославович
  • кандидат биологических науккандидат биологических наук
  • 2013, Москва
  • Специальность ВАК РФ03.01.03
  • Количество страниц 124
Гурский, Дмитрий Ярославович. Изучение роли белка Sgf11 в транскрипции и экспорте мРНК из ядра: дис. кандидат биологических наук: 03.01.03 - Молекулярная биология. Москва. 2013. 124 с.

Оглавление диссертации кандидат биологических наук Гурский, Дмитрий Ярославович

СОДЕРЖАНИЕ.

СПИСОК СОКРАЩЕНИЙ.

ВВЕДЕНИЕ.

ОБЗОР ЛИТЕРАТУРЫ.

1. Общие механизмы транскрипции.

1.1. Приближенная общая схема транскрипционного цикла.

2. Комплексы, изменяющие структуру хроматина.

2.1. Комплексы АТФ-зависимого ремоделинга хроматина.

2.2. Связь комплексов ремоделинга хроматина.

2.3. Комплексы, химически модифицирующие хроматин.

2.4. Динамическая система модификаций белков, сопровождающих транскрипционнный цикл.

2.5. Гистонацетилтрансферазы. SAGA - подобные комплексы.

2.5.1. Комплексы Gcn5/PCAF. Структура белков семейства Gcn5 и PCAF.

2.5.2. Фракции весом 2MDa.

2.5.3. Фракции весом 0.7 MDa. АТАС - комплекс.

2.5.4. Функции гистонацетилтрансферазных Gcn5/PCAF комплексов.

3. Гнстонацстилтрансферазнын комплекс SAGA. Роль в процессе биогенеза мРНП частиц.

3.1. Активационные модули SAGA. НАТ-модуль. Роль в инициации и элонгации транскрипции.

3.2. DUB-модуль SAGA и его роль в инициации и элонгации транскрипции.

3.3. Связь модулей SAGA в процессе транскрипции.

4. Транскрипция и экспорт мРНП частиц.

4.1. Комплекс белков, связывающих Кэп (СВС).

4.2. От транскрипции к экспорту. THO/TREX комплекс.

4.3. Компоненты мРНП частиц, связывающие процессинг и экспорт.

4.4. Хеликаза Sub2p/UAP56.

4.5. Адапторы и рецепторы экспорта мРНП. Связь с транскрипцией.

4.5.1 Фактор экспорта Mex67-Mtr2/TAP-pl5.

4.5.2. Yralp.

4.5.3. SR-белки.

4.6. Позиционирование генов к ядерной поре и экспорт.

4.6.1. Нуклеопорины и комплекс ядерной поры.

4.6.2. TREX-2/AMEX комплекс. Позиционирование генов к ядерной поре.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

ОБЪЕКТ И ЗАДАЧИ ИССЛЕДОВАНИЯ.

МАТЕРИАЛЫ И МЕТОДЫ.

1. Материалы.

1.1. Программное обеспечение, базы данных.

1.2. Штаммы и вектора Е. coli.

1.3. Эукариотические клеточные линии и вектора, использованные в работе.

1.4. Среды для культивирования клеток.

1.5. Приборы и реактивы.

1.6. Линии i), melanogasíer.

1.7. Ферменты.

1.8. Антитела.

1.9. Праймерные олигонуклеотиды.

1.10. Генно-инженерные конструкции.

2. Методы.

2.1. Работа с ДНК.

2.1.1. Приготовление компетентных клеток.

2.1.2. Лигировсише.

2.1.3. Трансформация бактерий.

2.1.4. Выделение тазмидной ДНК (мшшпреп, щелочной лизис).

2.1.5. Обработка ДНКрестриктазами.

2.1.6. Гель-электрофорез ДНК и очистка ДНК.

2.1.7. ПЦР.

2.1.8. Секвенирование ДНК.

2.1.9. Трансформация S2 клеток.

2.1.10. Выделение геномной ДНК из мух и из культуры клеток.

2.2. Работа с РНК.

2.2.1. Выделение РНК.

2.2.2. ОТ-ПЦР.

2.2.3. Получение двуцепочечной РНК.

2.2.4. РНК-интерференция.

2.3. Гибридизация in situ.

2.3.1. РНК in situ гибридизация с СуЗ-oligo-dTпраймером.

2.3.2. РНК in situ гибридизация с ДНК-зондом к индивидуальному гену.

2.4. Работа с белками.

2.4.1. Экспрессия и очисткарекомбинантных белков.

2.4.3. Экспрессия рекомбинантных белков в S2-¡aiemKax.

2.4.3. Получение антител.

2.4.4. Очистка антител.

2.4.5. Белковый гель-электрофорез.

2.4.6. Вестерн-блот анализ.

2.4.7. Разведение популяции, сбор эмбрионов D. melanogasíer. Выделение эмбрионального ядерного экстракта и белковых экстрактов из культуры эукариотических клеток.

2.4.8. Хроматография и фракционирование эмбрионального экстракта.

2.5. Иммуноокрашивание.

2.5.1. Иммуноокрашивание S2 клеток.

2.5.2. Иммуноокрашивание иолшпенных хромосом.

2.6. Иммунопреципитация.

2.9.1. Иммунопреципитация белков из ядерного эмбрионального экстракта.

2.9.2. Иммунопреципитация белков из клеточного лизата.

2.9.3. Иммунопреципитация хроматина (СЫР).

2.9.4. Иммунопреципитация мРНП.

РЕЗУЛЬТАТЫ.

1. Изучение взаимодействия Sgfl 1 с компонентами SAGA DUBm.

2. Sgfl 1 привлекается в промоторную область гена hsp70 при активации транскрипции, и его привлечение зависит от РНК.

3. Sgfl 1 взаимодействует с мРНК индивидуальных генов и координирует общий экспорт мРНК.

4. Sgfl 1 присутствует в ядерной и цитоплазматической фракции 82-клеток, колокализуется с комплексом ядерной поры и взаимодействует с комплексом общего экспорта мРНК АМЕХ.

5. Sgfl 1 присутствует в составе нескольких комплексов, выделенных из ядерного экстракта эмбрионов дрозофилы, и ассоциирован с белком комплекса, связывающего 5'-Кэп.

6. СЬр80 необходим для привлечения Sgfl 1 в промоторную область гена hsp70.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

ВЫВОДЫ.

БЛАГОДАРНОСТИ.

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Изучение роли белка Sgf11 в транскрипции и экспорте мРНК из ядра»

Экспрессия генов является многостадийным процессом, включающим инициацию транскрипции, синтез мРНК, формирование мРНП частиц, их экспорт и трансляцию в цитоплазме. В эти процессы вовлечено большое количество различных факторов, однако механизмы сопряжения указанных этапов и взаимодействия факторов между собой остаются малоизученным. Ключевым этапом экспрессии генов является транскрипция. Транскрипция в современном понимании является совокупностью взаимосвязанных процессов, осуществляемых различными ферментативными системами и подверженных строгой многоуровневой регуляции.

Эукариотический геном характеризуется компактизацией ДНК в хроматин, который в настоящее время рассматривается как динамичная структура, принимающая участие в процессах транскрипции [1]. Для осуществления эффективной транскрипции структура хроматина должна быть изменена, или «ремоделирована». Системы, обеспечивающие изменения структуры хроматина, играют ключевую роль в регуляции экспрессии генов. Различные пути ремоделинга хроматина реализуются мультибелковыми комплексами, которые модифицируют структуру хроматина, обеспечивая факторам транскрипционного аппарата РНК - полимеразы II доступ к гену. Тонким инструментарием регуляции динамики нуклеосом является многочисленная система модификаций гистонов, осуществляемая в течение транскрипционного цикла различными многофункциональными комплексами ремоделинга хроматина [2].

Компартментализация эукариотической клетки (разделение на ядро и цитоплазму) ведет к пространственному разделению важнейших этапов экспрессии генов (таких, как транскрипция и трансляция) и обусловливает наличие процессинга мРНП частиц. В процессе созревания мРНП частица в ядре подвергается различным модификациям, включающим формирование Кэп - структуры на 5-конце мРНК, сплайсинг интронов (в большинстве случаев), созревание З'-конца мРНК и присоединение полиА-последовательности. В синтезе и контроле качества мРНП частиц задействована большая система белковых комплексов. Целый ряд регуляторных комплексов участвует в позиционировании активных генов к ядерной поре (Gene Gating). Сопряженный с синтезом и созреванием экспорт мРНП частиц осуществляется посредством белковых адаптеров, взаимодействующих с мРНК с одной стороны и ядерными рецепторами с другой и таким образом обеспечивающих перемещение мРНП частиц к комплексу ядерной поры (NPC). Комплекс ядерной поры вместе с аппаратом транскрипции также осуществляет регуляцию формирования мРНП частиц, обеспечивает ассоциацию эксирессируемых генов с ядерной порой и эффективный экспорт мРНП частиц в цитоплазму. Механизмы сопряжения процессов биогенеза и экспорта мРНП частиц в настоящее время активно изучаются.

Одним из механизмов, обеспечивающих связь процессов формирования и экспорта мРНП частиц, является полифункциональность многих компонентов аппарата экспрессии генов и их существование в составе различных белковых комплексов. Примером подобной мультифункциональности является описанный ранее в нашей лаборатории транскрипционный коактиватор ENY2, входящий в состав гистонацетилтрансферазного комплекса SAGA, комплекса элонгации транскрипции ТНО, комплекса экспорта мРНП частиц АМЕХ и других [3].

В настоящей работе впервые были охарактеризованы функции белка Sgfl 1 эукариот, изначально найденного как партнера ENY2 в дрожжевой двугибридной системе. Показано, что Sgfl 1 Drosohilci melanogaster вместе с белками ENY2 и Nonstop формируют субмодуль, интегрированный в DUBm комплекса SAGA. Показано, что Sgfl 1 ассоциирован с промотором SAGA-зависимого гена hsp70 в составе DUBm. Кроме того, Sgfl 1, не ассоциированный с DUBm, привлекается в промоторную область после активации транскрипции РНК-зависимо.

Впервые было показано, что Sgfl 1 участвует в экспорте тотальной мРНК из ядра в цитоплазму. Он взаимодействует как с мРНК гена hsp70, так и с мРНК других генов. В ядре Sgfl 1 колокализуется с ядерной порой и взаимодействует с комплексом экспорта мРНК АМЕХ.

Впервые были проанализированы комплексы, содержащие Sgfl 1, и был обнаружен новый комплекс, включающий Sgfl 1 и СЬр80, компонент комплекса СВС, связывающего Кэп-структуру на 5'-конце мРНК. Было показано, что взаимодействие Sgfll и СЬр80 существенно для участия Sgfl 1 в активации транскрипции hsp70.

На основании полученных результатов была предложена модель, определяющая роль многофункционального белка Sgfl 1 в транскрипции и экспорте мРНП частиц.

ОБЗОР ЛИТЕРАТУРЫ

Похожие диссертационные работы по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Гурский, Дмитрий Ярославович

выводы

1. Показано существование DUBm у D. melanogaster, содержащего белки Sgfl 1, ENY2 и Nonstop и ассоциированного с транскрипционным комплексом SAGA.

2. Установлено, что транскрипционный фактор Sgfll ассоциирован с промотором гена hsp70 в составе DUBm. В то же время Sgfl 1, не входящий в DUBm, привлекается на ген РНК-зависимо после активации транскрипции.

3. Выявлено, что Sgfll необходим для общего экспорта мРНК из ядра и взаимодействует с мРНК различных генов.

4. Показано, что Sgfll присутствует в ядре и цитоплазме клетки, колокализуется с комплексом ядерной поры и взаимодействует с комплексом общего экспорта мРНК АМЕХ.

5. Очищен новый белковый комплекс, в составе которого Sgfll взаимодействует с СЬр80, белком комплекса, связывающего Кэп-структуру.

6. Показано, что СЬр80 необходим для привлечения Sgfll в промоторную область гена hsp70 при активации транскрипции. Привлечение СЬр80 на промотор, так же, как и привлечение Sgfl 1, зависит от вновь синтезированной РНК.

БЛАГОДАРНОСТИ

Автор выражает благодарность коллегами, без помощи которых данная работа не смогла бы появиться на свет. Среди них особо хочется отметить Орлову Анастасию, Шидловского Юлия, Набирочкину Елену и Краснова Алексея за плодотворную совместную работу, а также Воробьеву Надежду, Сошникову Наталью за помощь в работе, ценные советы по выполнению экспериментов и обсуждение результатов. Невозможна данная работа была бы и без чуткого мудрого руководства Дарьи Копытовой и Софии Георгиевой. Искреннюю благодарность автор выражает оппонентам и рецензентам данной работы. Отдельную благодарность автор выражает своей второй половине, родственникам и друзьям за материальную и духовную помощь в работе, а также всех, поддержавших автора словом и делом.

Список литературы диссертационного исследования кандидат биологических наук Гурский, Дмитрий Ярославович, 2013 год

1. Carey, М., Smale, S.T., (2000) Transcriptional regulation in eucaryotes. New York: CSHL Press. 640.

2. Grunstein, M., (1992) Histories as regulators of genes. Sci Am 267(4): p. 68-74B.

3. Kopytova, D.V., et al., (2010) ENY2: couple, triple.more? Cell Cycle 9(3): p. 479-81.

4. Zeitlinger, J., et al., (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39(12): p. 1512-6.

5. Lodish, H., Berk, A., Matsudaira, P., Kaiser, C.A., Krieger, M., Scott, M.P., Zipursky, L., Darnell, J., ed. Molecular Cell Biology. 5 ed. 2004, W.II.Freeman: New York. 973.

6. Narlikar, G.J., H.Y. Fan, and R.E. Kingston, (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108(4): p. 475-87.

7. Orphanides, G. and D. Reinberg, (2002) A unified theory of gene expression. Cell 108(4): p. 439-51.

8. Trojer, P. and D. Reinberg, (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28(1): p. 1-13.

9. Bannister, A.J., et al., (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain Nature 410(6824): p. 120-4.

10. Eissenberg, J.C. and A.J. Hilliker, (2000) Versatility of conviction: heterochromatin as both a repressor and an activator of transcription. Genetica 109(1-2): p. 19-24.

11. Filion, G.J., et al., (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143(2): p. 212-24.

12. Handler, A.M. and R.A. Ilarrell, 2nd, (1999) Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol 8(4): p. 449-57.

13. Tirosh, I. and N. Barkai, (2008) Evolution of gene sequence and gene expression are not correlated in yeast. Trends Genet 24(3): p. 109-13.

14. Egloff, S„ et al., (2007) Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression Science 318(5857): p. 1777-9.

15. Fuda, N.J., M.B. Ardehali, and J.T. Lis, (2009) Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461(7261): p. 186-92.

16. Ingvarsdottir, K., et al., (2005) H2B ubiquitin protease Ubp8 and Sgfl 1 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex. Mol Cell Biol 25(3): p. 1162-72.

17. Lee, T.I., et al., (2000) Redundant roles for the TFIID and SAGA complexes in global transcription Nature 405(6787): p. 701-4.

18. Hassan, A.H., K.E. Neely, and J.L. Workman, (2001) Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104(6): p. 817-27.

19. Weake, V.M. and J.L. Workman, (2010) Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 11(6): p. 426-37.

20. Патрушев, Л.И., (2000) Экспрессия генов. Москва: Наука. 45-80.

21. Saunders, A., L.J. Core, and J.T. Lis, (2006) Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7(8): p. 557-67.

22. Zeitlinger, J., et al., (2007) Whole-genome ChlP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. Genes Dev 21(4): p. 385-90.

23. Veenstra, G.J. and A.P. Wolffe, (2001) Gene-selective developmental roles of general transcription factors. Trends Biochem Sci 26(11): p. 665-71.

24. Luna, R., et al., (2008) Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 117(4): p. 319-31.

25. Hampsey, M. and D. Reinberg, (2003) Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113(4): p. 429-32.

26. Hieb, A.R., et al., (2006) An 8 nt RNA triggers a rate-limiting shift of RNA polymerase II complexes into elongatioa EMBOJ 25(13): p. 3100-9.

27. Svejstrup, J.Q., (2004) The RNA polymerase II transcription cycle: cycling through chromatia Biochim Biophys Acta 1677(1-3): p. 64-73.

28. Nechaev, S. and K. Adelman, (2011) Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. Biochim Biophys Acta 1809(1): p. 34-45.

29. Wada, T., et al., (1998) DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12(3): p. 343-56.

30. Yamaguchi, Y., et al., (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97(1): p. 41-51.

31. Wu, C.H., et al., (2003) NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev 17(11): p. 1402-14.

32. Peterlin, B.M. and D.H. Price, (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23(3): p. 297-305.

33. Wood, A. and A. Shilatifard, (2006) Burl/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb. Cell Cycle 5(10): p. 1066-8.

34. Pokholok, D.K., N.M. Ilannett, and R.A. Young, (2002) Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol Cell 9(4): p. 799-809.

35. Yamada, T., et al., (2006) P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell 21(2): p. 227-37.

36. Ahn, S.I-I., M. Kim, and S. Buratowski, (2004) Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol Cell 13(1): p. 67-76.

37. Yoh, S.M., et al., (2007) The Spt6 SII2 domain binds Ser2-P RNAPII to direct Iwsl-dependent mRNA splicing and export Genes Dev 21(2): p. 160-74.

38. Hani, J., et al., (1999) Mutations in a peptidylprolyl-cis/trans-isomerase gene lead to a defect in 3'-end formation of a pre-mRNA in Saccharomyces cerevisiae. J Biol Chem 274(1): p. 108-16.

39. Zhang, Z. and D.S. Gilmour, (2006) Pcfll is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript Mol Cell 21(1): p. 65-74.

40. Kim, M., et al., (2004) The yeast Rati exonuclease promotes transcription termination by RNA polymerase II. Nature 432(7016): p. 517-22.

41. Buratowski, S., (2005) Connections between mRNA 3' end processing and transcription termination. Curr Opin Cell Biol 17(3): p. 257-61.

42. West, S., N. Gromak, and N.J. Proudfoot, (2004) Human 5' -> 3' exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432(7016): p. 522-5.

43. Krishnamurthy, S., et al., (2004) Ssu72 Is an RNA polymerase II CTD phosphatase. Mol Cell 14(3): p. 387-94.

44. Shilatifard, A., (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75: p. 243-69.

45. Orphanides, G., T. Lagrange, and D. Reinberg, (1996) The general transcription factors of RNA polymerase II. Genes Dev 10(21): p. 2657-83.

46. Shidlovskii Iu, V. and E.N. Nabirochkina, (2005) The effect of chromatin remodeling and modification on RNA-polymerase-mediated transcription initiation. Genetika 41(7): p. 884-93.

47. Lohr, D., (1997) Nucleosomc transactions on the promoters of the yeast GAL and PHO genes. J Biol Chem 272(43): p. 26795-8.

48. Hirschhorn, J.N., et al., (1992) Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6(12A): p. 2288-98.

49. Venters, B.J. and B.F. Pugh, (2009) How eukaryotic genes are transcribed. Crii Rev Biochem Mol Biol 44(2-3): p. 117-41.

50. Becker, P.B. and W. Horz, (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71: p. 247-73.

51. DiRenzo, J., et al., (2000) BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol Cell Biol 20(20): p. 7541-9.

52. Saha, A., J. Wittmeyer, and B.R. Cairns, (2006) Mechanisms for nucleosome movement by ATP-dependent chromatin remodeling complexes. Results Probl Cell Differ 41: p. 127-48.

53. Whitehouse, I., et al., (2007) Chromatin remodelling at promoters suppresses antisense transcription Nature 450(7172): p. 1031-5.

54. Bhaumik, S.R., (2011) Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID. Biochim BiophysActa 1809(2): p. 97-108.

55. Sterner, D.E. and S.L. Berger, (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64(2): p. 435-59.

56. Carey, M., B. Li, and J.L. Workman, (2006) RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell 24(3): p. 481-7.

57. Syntichaki, P., I. Topalidou, and G. Thireos, (2000) The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature 404(6776): p. 414-7.

58. Flanagan, J.F., et al., (2005) Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438(7071): p. 1181-5.

59. Pray-Grant, M.G., et al., (2005) Chdl chromodomain links histone 113 methylation with SAGA- and SLIK-dependent acetylation. Nature 433(7024): p. 434-8.

60. Fazzio, T.G., et al., (2001) Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21(19): p. 6450-60.

61. Allfrey, V.G., R. Faulkner, and A.E. Mirsky, (1964) Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U SA 51: p. 786-94.

62. Luger, K., et al., (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648): p. 251-60.

63. Bannister, A.J. and T. Kouzarides, (2011) Regulation of chromatin by histone modifications. Cell Res 21(3): p. 381-95.

64. Lee, J.S., E. Smith, and A. Shilatifard, (2010) The language of histone crosstalk. Cell 142(5): p. 682-5.

65. Bannister, A.J., R. Schneider, and T. Kouzarides, (2002) Histone methylation: dynamic or static? Cell 109(7): p. 801-6.

66. Bedford, M.T. and S.G. Clarke, (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1): p. 1-13.

67. Rea, S., et al., (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796): p. 593-9.

68. Wolf, S.S., (2009) The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 66(13): p. 210921.

69. Chang, B., et al., (2007) JMJD6 is a histone arginine demethylase. Science 318(5849): p. 444-7.

70. Shi, Y., et al., (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7): p. 941-53.

71. Whetstine, J.R., et al., (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125(3): p. 467-81.

72. Berger, S.L., (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12(2): p. 142-8.

73. Dawson, M.A., et al., (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1 alpha from chromatin. Nature 461(7265): p. 819-22.

74. Oki, M., H. Aihara, and T. Ito, (2007) Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Sitbcell Biochem 41: p. 319-36.

75. Maile, T., et al., (2004) TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304(5673): p. 1010-4.

76. Hassa, P.O., et al., (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3): p. 789-829.

77. Krishnakumar, R. and W.L. Kraus, (2010) PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol Cell 39(5): p. 736-49.

78. Rouleau, M., R.A. Aubin, and G.G. Poirier, (2004) Poly(ADP-ribosyl)ated chromatin domains: access granted J Cell Sci 117(Pt 6): p. 815-25.

79. Yang, X.J. and E. Seto, (2007) IIATs and IIDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37): p. 5310-8.

80. Tjeertes, J.V., K.M. Miller, and S.P. Jackson, (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBOJ 28(13): p. 1878-89.

81. Kurdistani, S.K., S. Tavazoie, and M. Grunstein, (2004) Mapping global histone acetylation patterns to gene expression. Cell 117(6): p. 721-33.

82. Shogren-Knaak, M., et al., (2006) Histone II4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762): p. 844-7.

83. Reinke, H. and W. Horz, (2003) Histones are first hyperacetylated and then lose contact with the activated PH05 promoter. Mol Cell 11(6): p. 1599-607.

84. Zhao, J., J. Herrera-Diaz, and D.S. Gross, (2005) Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol Cell Biol 25(20): p. 8985-99.

85. Nagy, Z. and L. Tora, (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26(37): p. 5341-57.

86. Kurdistani, S.K. and M. Grunstein, (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4(4): p. 276-84.

87. Zhang, Y., (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 17(22): p. 2733-40.

88. Henry, K.W., et al., (2003) Transcriptional activation via sequential histone II2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17(21): p. 2648-63.

89. Jason, L.J., et al., (2002) Histone ubiquitination: a tagging tail unfolds? Bioessays 24(2): p. 166-74.

90. Wang, II., et al., (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431(7010): p. 873-8.

91. Schulze, J.M., et al., (2011) Splitting the task: Ubp8 and UbplO deubiquitinate different cellular pools of H2BK123. Genes Dev 25(21): p. 2242-7.

92. Frappier, L. and C.P. Verrijzer, (2011) Gene expression control by protein deubiquitinases. Curr Opin Genet Dev 21(2): p. 207-13.

93. Reyes-Turcu, F.E., K.II. Ventii, and K.D. Wilkinson, (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78: p. 363-97.

94. Seeler, J.S. and A. Dejean, (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4(9): p. 690-9.

95. Champagne, K.S. and T.G. Kutateladze, (2009) Structural insight into histone recognition by the ING PHD fingers. Curr Drug Targets 10(5): p. 432-41.

96. Maurer-Stroh, S., et al., (2003) The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28(2): p. 69-74.

97. Sims, R.J., 3rd, et al., (2005) Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 280(51): p. 41789-92.

98. Huang, Y., et al., (2006) Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312(5774): p. 748-51.

99. Guccione, E., et al., (2007) Methylation of histone H3R2 by PRMT6 and I I3K4 by an MLL complex are mutually exclusive. Nature 449(7164): p. 933-7.

100. Mujtaba, S., L. Zeng, and M.M. Zhou, (2007) Structure and acetyl-lysine recognition of the bromodomaia Oncogene 26(37): p. 5521-7.

101. Hassan, A.H., et al., (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111(3): p. 369-79.

102. Zeng, L., et al., (2010) Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466(7303): p. 258-62.

103. Clayton, A.L., et al., (2000) Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBOJ 19(14): p. 3714-26.

104. Macdonald, N., et al., (2005) Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol Cell 20(2): p. 199-211.

105. Karam, C.S., et al., (2010) 14-3-3 mediates histone cross-talk during transcription elongation in Drosophila PLoS Genet 6(6): p. el000975.

106. Zippo, A., et al., (2009) Histone crosstalk between II3S10ph and H4K16ac generates a histone code that mediates transcription elongatioa Cell 138(6): p. 1122-36.

107. Lo, W.S., et al., (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5(6): p. 917-26.

108. Zegerman, P., et al., (2002) Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J Biol Chem 277(14): p. 11621-4.

109. Schneider, R., et al., (2004) Direct binding of INI-IAT to H3 tails disrupted by modifications. J Biol Chem 279(23): p. 23859-62.

110. Jenuwein, T. and C.D. Allis, (2001) Translating the histone code. Science 293(5532): p. 1074-80.

111. Hon, G.C., R.D. Hawkins, and B. Ren, (2009) Predictive chromatin signatures in the mammalian genome. Hum Mol Genet 18(R2): p. R195-201.

112. Barski, A., et al., (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4): p. 823-37.

113. Schneider, R., et al., (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6(1): p. 73-7.

114. Bannister, A.J., et al., (2005) Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280(18): p. 17732-6.

115. Ng, H.H., et al., (2003) Targeted recruitment of Setl histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11(3): p. 709-19.

116. Xiao, T., et al., (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 17(5): p. 654-63.

117. Carrozza, M.J., et al., (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4): p. 58192.

118. Li, B., et al., (2007) Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316(5827): p. 1050-4.

119. Nielsen, S.J., et al., (2001) Rb targets histone H3 methylation and IIPl to promoters. Nature 412(6846): p. 561-5.

120. Cai, Y., et al., (2010) Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem 285(7): p. 4268-72.

121. Robert, F., et al., (2004) Global position and recruitment of IIATs and HDACs in the yeast genome. Mol Cell 16(2): p. 199-209.

122. Neely, K.E., et al., (2002) Transcription activator interactions with multiple SWI/SNF subunits. Mol Cell Biol 22(6): p. 1615-25.

123. Workman, J.L. and R.E. Kingston, (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67: p. 545-79.

124. Pokholok, D.K., et al., (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122(4): p. 517-27.

125. Dover, J., et al., (2002) Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277(32): p. 28368-71.

126. Nakanishi, S., et al., (2008) A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat Struct Mol Biol 15(8): p. 881-8.

127. Lacoste, N., et al., (2002) Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277(34): p. 30421-4.

128. Lee, J.M. and A.L. Greenleaf, (1997) Modulation of RNA polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I. J Biol Chem 272(17): p. 10990-3.

129. Wyce, A., et al., (2007) II2B ubiquitylation acts as a barrier to Ctkl nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol Cell 27(2): p. 275-88.

130. Tous, C., et al., (2011) A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors. EMBOJ 30(10): p. 1953-64.

131. Sanso, M., et al., (2011) Gcn5 facilitates Pol II progression, rather than recruitment to nucleosome-depleted stress promoters, in Schizosaccharomyces pombe. Nucleic Acids Res 39(15): p. 6369-79.

132. Shukla, A., et al., (2006) Ubp8p, a histone deubiquitinase whose association with SAGA is mediated by Sgfl lp, differentially regulates lysine 4 methylation of histone H3 in vivo. Mol Cell Biol 26(9): p. 3339-52.

133. Fleming, A.B., et al., (2008) H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 31(1): p. 57-66.

134. Weake, V.M. and J.L. Workman, (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29(6): p. 653-63.

135. Li, B., et al., (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278(11): p. 8897-903.

136. Li, J., D. Moazed, and S.P. Gygi, (2002) Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem 277(51): p. 49383-8.

137. Nelson, C.J., H. Santos-Rosa, and T. Kouzarides, (2006) Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126(5): p. 905-16.

138. Rao, B., et al., (2005) Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol Cell Biol 25(21): p. 9447-59.

139. Kurshakova, M., et al., (2007) Evolutionarily conserved E(y)2/Susl protein is essential for the barrier activity of Su(IIw)-dependent insulators in Drosophila. Mol Cell 27(2): p. 332-8.

140. Thiagalingam, S., et al., (2003) I-Iistone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983: p. 84-100.

141. Brownell, J.E. and C.D. Allis, (1995) An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci U SA 92(14): p. 6364-8.

142. Brownell, J.E., et al., (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84(6): p. 843-51.

143. Xu, W., D.G. Edmondson, and S.Y. Roth, (1998) Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol Cell Biol 18(10): p. 5659-69.

144. Clements, A., et al., (1999) Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. EMBOJ 18(13): p. 3521-32.

145. Grant, P.A., et al., (1999) Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem 274(9): p. 5895-900.

146. Kuo, M.H., et al., (1996) Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383(6597): p. 269-72.

147. Schiltz, R.L., et al., (1999) Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274(3): p. 1189-92.

148. Owen, D.J., et al., (2000) The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBOJ 19(22): p. 6141-9.

149. Hudson, B.P., et al., (2000) Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. J Mol Biol 304(3): p. 355-70.

150. Dhalluin, C., et al., (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735): p. 491-6.

151. Carre, C., et al., (2005) The histone H3 acetylase dGcn5 is a key player in Drosophila melanogaster metamorphosis. Mol Cell Biol 25(18): p. 8228-38.

152. Linares, L.K., et al., (2007) Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol 9(3): p. 331-8.

153. Carón, C., C. Boyault, and S. Khochbin, (2005) Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays 27(4): p. 408-15.

154. Brand, M., et al., (1999) Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J Biol Chem 274(26): p. 18285-9.

155. Kusch, T., et al., (2003) Two Drosophila Ada2 homologues function in different multiprotein complexes. Mol Cell Biol 23(9): p. 3305-19.

156. Baker, S.P. and P.A. Grant, (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26(37): p. 5329-40.

157. Martinez, E., et al., (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 21(20): p. 6782-95.

158. Barlev, N.A., et al., (2003) A novel human Ada2 homologue functions with Gcn5 or Brgl to coactivate transcription. Mol Cell Biol 23(19): p. 6944-57.

159. Demeny, M.A., et al., (2007) Identification of a small TAF complex and its role in the assembly of TAF-containing complexes. PLoS One 2(3): p. e316.

160. Koutelou, E., C.L. Hirsch, and S.Y. Dent, (2010) Multiple faces of the SAGA complex. Curr Opin Cell Biol 22(3): p. 374-82.

161. Rodríguez-Navarro, S., (2009) Insights into SAGA function during gene expression. EMBO Rep 10(8): p. 843-50.

162. Kohler, A., et al., (2010) Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell 141(4): p. 606-17.

163. Pascual-Garcia, P. and S. Rodriguez-Navarro, (2009) A tale of coupling, Susl function in transcription and mRNA export RNA Biol 6(2): p. 141-4.

164. Weake, V.M., et al., (2008) SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system. EMBO J 27(2): p. 394-405.

165. Zhao, Y., et al., (2008) A TFTC/STAGA module mediates histone H2A and I-I2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 29(1): p. 92-101.

166. Pray-Grant, M.G., et al., (2002) The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 22(24): p. 8774-86.

167. Sterner, D.E., R. Belotserkovskaya, and S.L. Berger, (2002) SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription. Proc Natl AcadSci USA 99(18): p. 11622-7.

168. Daniel, J.A., et al., (2004) Deubiquitination of histone II2B by a yeast acetyltransferase complex regulates transcription. J Biol Chem 279(3): p. 1867-71.

169. Malik, S., et al., (2000) The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol Cell 5(4): p. 753-60.

170. Kurabe, N., et al., (2007) Deregulated expression of a novel component of TFTC/STAGA histone acetyltransferase complexes, rat SGF29, in hepatocellular carcinoma: possible implication for the oncogenic potential of c-Myc. Oncogene 26(38): p. 5626-34.

171. Eberharter, A. and P.B. Becker, (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3(3): p. 224-9.

172. Guelman, S., et al., (2006) Host cell factor and an uncharacterized SANT domain protein are stable components of ATAC, a novel dAda2A/dGcn5-containing histone acetyltransferase complex in Drosophila Mol Cell Biol 26(3): p. 871-82.

173. Nagy, Z., et al., (2010) The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes. Cell Mol Life Sci 67(4): p. 611-28.

174. Suganuma, T., et al., (2008) ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 15(4): p. 364-72.

175. Ciurciu, A., O. Komonyi, and I.M. Boros, (2008) Loss of ATAC-specific acetylation of histone H4 at Lysl2 reduces binding of JIL-1 to chromatin and phosphorylation of histone H3 at SerlO. J Cell Sci 121(Pt 20): p. 3366-72.

176. Brand, M., et al., (2001) UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J 20(12): p. 3187-96.

177. Li, J., Z. Wang, and Y. Li, (2012) USP22 nuclear expression is significantly associated with progression and unfavorable clinical outcome in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 138(8): p. 1291-7.

178. Lin, Z., et al., (2012) USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirtl to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell 46(4): p. 484-94.

179. Piao, S., et al., (2012) USP22 is useful as a novel molecular marker for predicting disease progression and patient prognosis of oral squamous cell carcinoma. PLoS One 7(8): p. e42540.

180. Zhang, X.Y., et al., (2008) The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progressioa Mol Cell 29(1): p. 102-11.

181. Shimada, M., et al., (2008) Chkl is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132(2): p. 221-32.

182. Atanassov, B.S., et al., (2009) Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol Cell 35(3): p. 352-64.

183. Helmlinger, D., et al., (2008) The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes Dev 22(22): p. 3184-95.

184. Yang, X.J., (2004) Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26(10): p. 1076-87.

185. Gunderson, F.Q. and T.L. Johnson, (2009) Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLoS Genet 5(10): p. el000682.

186. Rockx, D.A., et al., (2000) UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc Natl Acad Sci U S A 97(19): p. 10503-8.

187. Flinn, E.M., et al., (2002) Recruitment of Gcn5-containing complexes during c-Myc-dependent gene activation. Structure and function aspects. J Biol Chem 277(26): p. 23399406.

188. Paulson, M., et al., (2002) IFN-Stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff Nat Cell Biol 4(2): p. 140-7.

189. Yanagisawa, J., et al., (2002) Nuclear receptor function requires a TFTC-type histone acetyl transferase complex. Mol Cell 9(3): p. 553-62.

190. Balasubramanian, R., et al., (2002) Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation J Biol Chem 277(10): p. 7989-95.

191. Brown, C.E., et al., (2001) Recruitment of HAT complexes by direct activator interactions with the ATM-related Tral subuniL Science 292(5525): p. 2333-7.

192. Wu, P.Y., et al., (2004) Molecular architecture of the S. cerevisiae SAGA complex. Mol Cell 15(2): p. 199-208.

193. Grant, P.A., et al., (1998) A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94(1): p. 45-53.

194. Marcus, G.A., et al., (1994) Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBOJ 13(20): p. 4807-15.

195. Sterner, D.E., et al., (1999) Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 19(1): p. 86-98.

196. Mohibullah, N. and S. I-Iahn, (2008) Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Genes Dev 22(21): p. 2994-3006.

197. Ard, P.G., et al., (2002) Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes. Mol Cell Biol 22(16): p. 5650-61.

198. Deleu, L., et al., (2001) Recruitment of TRRAP required for oncogenic transformation by E1A. Oncogene 20(57): p. 8270-5.

199. McMahon, S.B., et al., (1998) The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94(3): p. 363-74.

200. Timmers, H.T. and L. Tora, (2005) SAGA unveiled. Trends Biochem Sci 30(1): p. 7-10.

201. Govind, C.K., et al., (2007) Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol Cell 25(1): p. 31-42.

202. Steger, D.J., et al., (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299(5603): p. 114-6.

203. Jiang, H., et al., (1999) PCAF interacts with tax and stimulates tax transactivation in a histone acetyltransferase-independent manner. Mol Cell Biol 19(12): p. 8136-45.

204. Huisinga, K.L. and B.F. Pugh, (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13(4): p. 573-85.

205. Weake, V.M., et al., (2011) Post-transcription initiation function of the ubiquitous SAGA complex in tissue-speciílc gene activatioa Genes Dev 25(14): p. 1499-509.

206. Lee, K.K., et al., (2005) The deubiquitylation activity of Ubp8 is dependent upon Sgfl 1 and its association with the SAGA complex. Mol Cell Biol 25(3): p. 1173-82.

207. Kohler, A., et al., (2006) The mRNA export factor Susl is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgfl 1. Mol Biol Cell 17(10): p. 4228-36.

208. Kohler, A., et al., (2008) Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export Nat Cell Biol 10(6): p. 707-15.

209. Samara, N.L., et al., (2010) Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 328(5981): p. 1025-9.

210. Nakamura, Y., et al., (2011) Ataxin-7 associates with microtubules and stabilizes the cytoskeletal network. Hum Mol Genet.

211. Weake, V.M., et al., (2009) A novel histone fold domain-containing protein that replaces TAF6 in Drosophila SAGA is required for SAGA-dependent gene expression. Genes Dev 23(24): p. 2818-23.

212. Kopytova, D.V., et al., (2010) Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev 24(1): p. 86-96.

213. Kurshakova, M.M., et al., (2007) SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J 26(24): p. 4956-65.

214. Krasnov, A.N., et al., (2005) A retrocopy of a gene can functionally displace the source gene in evolutioa Nucleic Acids Res 33(20): p. 6654-61.

215. Pascual-Garcia, P., et al., (2008) Susl is recruited to coding regions and functions during transcription elongation in association with SAGA and TREX2. Genes Dev 22(20): p. 2811-22.

216. Bjork, P. and L. Wieslander, (2011) Nucleocytoplasmic mRNP export is an integral part of mRNP biogenesis. Chromosoma 120(1): p. 23-38.

217. Singh, B.N. and M. Hampsey, (2007) A transcription-independent role for TFIIB in gene looping. Mol Cell 27(5): p. 806-16.

218. Kohler, A. and E. Hurt, (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8(10): p. 761-73.

219. Rodríguez-Navarro, S. and E. Hurt, (2011) Linking gene regulation to mRNA production and export Curr Opin Cell Biol 23(3): p. 302-9.

220. Pickersgill, H., et al., (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina Nat Genet 38(9): p. 1005-14.

221. Cockell, M. and S.M. Gasser, (1999) Nuclear compartments and gene regulation. Curr Opin Genet Dev 9(2): p. 199-205.

222. Zink, D., et al., (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166(6): p. 815-25.

223. Blobel, G., (1985) Gene gating: a hypothesis. Proc Natl Acad Sci USA 82(24): p. 8527-9.

224. Brown, C.R. and P.A. Silver, (2007) Transcriptional regulation at the nuclear pore complex. Curr Opin Genet Dev 17(2): p. 100-6.

225. Taddei, A., et al., (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441(7094): p. 774-8.

226. Mendjan, S., et al., (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila Mol Cell 21(6): p. 811-23.

227. Gilbert, N., S. Gilchrist, and W.A. Bickmore, (2005) Chromatin organization in the mammalian nucleus, hit Rev Cytol 242: p. 283-336.

228. Taddei, A., et al., (2004) The function of nuclear architecture: a genetic approach. Annu Rev Genet 38: p. 305-45.

229. Dieppois, G., N. Iglesias, and F. Stutz, (2006) Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol 26(21): p. 7858-70.

230. Ishii, K., et al., (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109(5): p. 551-62.

231. Akhtar, A. and S.M. Gasser, (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8(7): p. 507-17.

232. Cabal, G.G., et al., (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441(7094): p. 770-3.

233. Casolari, J.M., et al., (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117(4): p. 427-39.

234. Moteki, S. and D. Price, (2002) Functional coupling of capping and transcription of mRNA. Mol Cell 10(3): p. 599-609.

235. Myers, L.C., et al., (2002) The yeast capping enzyme represses RNA polymerase II transcriptioa Mol Cell 10(4): p. 883-94.

236. Cheng, II., et al., (2006) Human mRNA export machinery recruited to the 5' end of mRNA. Cell 127(7): p. 1389-400.

237. Guiguen, A., et al., (2007) Recruitment of P-TEFb (Cdk9-Pchl) to chromatin by the cap-methyl transferase Pcml in fission yeast. EMBOJ 26(6): p. 1552-9.

238. Mandal, S.S., et al., (2004) Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc Natl AcadSci USA 101(20): p. 7572-7.

239. Pei, Y., B. Schwer, and S. Shuman, (2003) Interactions between fission yeast Cdk9, its cyclin partner Pchl, and mRNA capping enzyme Pctl suggest an elongation checkpoint for mRNA quality control. J Biol Chem 278(9): p. 7180-8.

240. Izaurralde, E., et al., (1994) A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78(4): p. 657-68.

241. Wong, C.M., et al., (2007) Yeast cap binding complex impedes recruitment of cleavage factor IA to weak termination sites. Mol Cell Biol 27(18): p. 6520-31.

242. Lejeune, F., et al., (2002) The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBOJ 21(13): p. 3536-45.

243. Lahudkar, S., et al., (2011) The mRNA cap-binding complex stimulates the formation of pre-initiation complex at the promoter via its interaction with Motlp in vivo. Nucleic Acids Res 39(6): p. 2188-209.

244. Lenasi, T., B.M. Peterlin, and M. Barboric, (2011) Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb). J Biol Chem 286(26): p. 22758-68.

245. Hossain, M.A., et al., (2009) The cap binding complex influences II2B ubiquitination by facilitating splicing of the SUS1 pre-mRNA. RNA 15(8): p. 1515-27.

246. Izaurralde, E., et al., (1995) A cap-binding protein complex mediating U snRNA export. Nature 376(6542): p. 709-12.

247. Jimeno, S. and A. Aguilera, (2010) The THO complex as a key mRNP biogenesis factor in development and cell differentiation. J Biol 9(1): p. 6.

248. Chavez, S., et al., (2000) A protein complex containing Tho2, Hprl, Mftl and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBOJ 19(21): p. 5824-34.

249. Aguilera, A., (2005) Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr Opin Cell Biol 17(3): p. 242-50.

250. Jimeno, S., et al., (2002) The yeast TI-IO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBOJ 21(13): p. 3526-35.

251. Rondon, A.G., S. Jimeno, and A. Aguilera, (2010) The interface between transcription and mRNP export: from THO to THSC/TREX-2. Biochim Biophys Acta 1799(8): p. 533-8.

252. Reed, R. and II. Cheng, (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol 17(3): p. 269-73.

253. Strasser, K., et al., (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417(6886): p. 304-8.

254. Masuda, S., et al., (2005) Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 19(13): p. 1512-7.

255. Rehwinkel, J., et al., (2004) Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat Struct Mol Biol 11(6): p. 558-66.

256. Zenklusen, D., et al., (2002) Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yralp and Sub2p by Hprlp. Mol Cell Biol 22(23): p. 8241-53.

257. Saguez, C., et al., (2008) Nuclear mRNA surveillance in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol Cell 31(1): p. 91-103.

258. Katahira, J. and Y. Yoneda, (2009) Roles of the TREX complex in nuclear export of mRNA. RNA Biol 6(2): p. 149-52.

259. Katahira, J., et al., (2009) Adaptor Aly and co-adaptor Thoc5 function in the Tap-pl5-mediated nuclear export of IISP70 mRNA EMBOJ 28(5): p. 556-67.

260. Abruzzi, K.C., S. Lacadie, and M. Rosbash, (2004) Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBOJ 23(13): p. 2620-31.

261. Luo, M.L., et al., (2001) Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413(6856): p. 644-7.

262. Rougemaille, M., et al., (2008) TIIO/Sub2p functions to coordinate 3'-end processing with gene-nuclear pore association. Cell 135(2): p. 308-21.

263. Ideue, T., et al., (2007) Introns play an essential role in splicing-dependent formation of the exon junction complex. Genes Dev 21(16): p. 1993-8.

264. Le Hir, H. and G.R. Andersen, (2008) Structural insights into the exon junction complex. Curr Opin Struct Biol 18(1): p. 112-9.

265. Perales, R. and D. Bentley, (2009) "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 36(2): p. 178-91.

266. Dantonel, J.C., et al., (1997) Transcription factor TFIID recruits factor CPSF for formation of 3' end of mRNA. Nature 389(6649): p. 399-402.

267. Glover-Cutter, K., et al., (2008) RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol 15(1): p. 71-8.

268. Anderson, J.T., et al., (1993) NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability. Mol Cell Biol 13(5): p. 2730-41.

269. Johnson, S.A., G. Cubberley, and D.L. Bentley, (2009) Cotranscriptional recruitment of the mRNA export factor Yral by direct interaction with the 3' end processing factor Pcfl 1. Mol Cell 33(2): p. 215-26.

270. Cole, C.N. and J.J. Scarcelli, (2006) Transport of messenger RNA from the nucleus to the cytoplasm. Curr Opin Cell Biol 18(3): p. 299-306.

271. Tran, E.J., et al., (2007) The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol Cell 28(5): p. 850-9.

272. Strasser, K. and E. Hurt, (2001) Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yralp. Nature 413(6856): p. 648-52.

273. Gruter, P., et al., (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1(5): p. 649-59.

274. Segref, A., et al., (1997) Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBOJ 16(11): p. 3256-71.

275. Gilbert, W. and C. Guthrie, (2004) The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol Cell 13(2): p. 201-12.

276. Lei, E.P., H. Krebber, and P.A. Silver, (2001) Messenger RNAs are recruited for nuclear export during transcription. Genes Dev 15(14): p. 1771-82.

277. Herold, A., L. Teixeira, and E. Izaurralde, (2003) Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBOJ 22(10): p. 2472-83.

278. Longman; D., I.L. Johnstone, and J.F. Caceres, (2003) The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans. RNA 9(7): p. 881-91.

279. Huang, Y. and J.A. Steitz, (2005) SRprises along a messenger's journey. Mol Cell 17(5): p. 613-5.

280. Caceres, J.F., G.R. Screaton, and A.R. Krainer, (1998) A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev 12(1): p. 55-66.

281. Yun, C.Y. and X.D. Fu, (2000) Conserved SR protein kinase functions in nuclear import and its action is counteracted by arginine methylation in Saccharomyces cerevisiae. J Cell Biol 150(4): p. 707-18.

282. Gilbert, W., C.W. Siebel, and C. Guthrie, (2001) Phosphorylation by Skylp promotes Npl3p shuttling and mRNA dissociation. RNA 7(2): p. 302-13.

283. Lei, E.P. and P.A. Silver, (2002) Intron status and З'-end formation control cotranscriptional export of mRNA. Genes Dev 16(21): p. 2761-6.

284. Hurt, E., et al., (2004) Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrbl to nascent mRNA via the TREX complex. Proc Natl Acad Sci U S A 101(7): p. 1858-62.

285. Fahrenkrog, B. and U. Aebi, (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond Nat Rev Mol Cell Biol 4(10): p. 757-66.

286. Stewart, M., (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8(3): p. 195-208.

287. Cronshaw, J.M., et al., (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5): p. 915-27.

288. Rout, M.P., et al., (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148(4): p. 635-51.

289. Rexach, M. and G. Blobel, (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83(5): p. 683-92.

290. Lim, R.Y., et al., (2006) Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc Natl Acad Sci USA 103(25): p. 9512-7.

291. Stewart, P., et al., (2010) Performance characteristics of the Cavidi ExaVir viral load assay and the ultra-sensitive P24 assay relative to the Roche Monitor I-IIV-1 RNA assay. J Clin Virol 49(3): p. 198-204.

292. Stewart, M., (2010) Nuclear export of mRNA. Trends Biochem Sci 35(11): p. 609-17.

293. Terry, L.J. and S.R. Wente, (2009) Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot Cell 8(12): p. 1814-27.

294. Capelson, M., et al., (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140(3): p. 372-83.

295. Kalverda, B., et al., (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140(3): p. 360-71.

296. Vaquerizas, J.M., et al., (2010) Nuclear pore proteins nupl53 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet 6(2): p. el000846,

297. Fischer, T., et al., (2002) The mRNA export machinery requires the novel Sac3p-Thplp complex to dock at the nucleoplasm^ entrance of the nuclear pores. EMBO J 21(21): p. 5843-52.

298. Gallardo, M., et al., (2003) Nab2p and the Thplp-Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J Biol Chem 278(26): p. 24225-32.

299. Fischer, T., et al., (2004) Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat Cell Biol 6(9): p. 840-8.

300. Lei, E.P., et al., (2003) Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol Biol Cell 14(3): p. 836-47.

301. Rodríguez-Navarro, S., et al., (2004) Susl, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116(1): p. 75-86.

302. Jani, D., et al., (2009) Susl, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol Cell 33(6): p. 72737.

303. Ellisdon, A.M., et al., (2010) Structural basis for the interaction between yeast Spt-Ada-Gcn5 acetyltransferase (SAGA) complex components Sgfl 1 and Susl. J Biol Chem 285(6): p. 3850-6.

304. Klockner, C., et al., (2009) Mutational uncoupling of the role of Susl in nuclear pore complex targeting of an mRNA export complex and histone I-I2B deubiquitination. J Biol Chem 284(18): p. 12049-56.

305. Georgiev, P.G. and T.I. Gerasimova, (1989) Novel genes influencing the expression of the yellow locus and mdg4 (gypsy) in Drosophila melanogaster. Mol Gen Genet 220(1): p. 1216.

306. Lebedeva, L.A., et al., (2005) Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activation. Proc Natl Acad Sci U SA 102(50): p. 18087-92.

307. Georgieva, S., et al., (2001) The novel transcription factor e(y)2 interacts with TAF(II)40 and potentiates transcription activation on chromatin templates. Mol Cell Biol 21(15): p. 5223-31.

308. Georgieva, S., et al., (2000) Two novel Drosophila TAF(II)s have homology with human TAF(II)30 and are differentially regulated during development. Mol Cell Biol 20(5): p. 1639-48.

309. Studier, F.W., (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41(1): p. 207-34.

310. King, J. and U.K. Laemmli, (1971) Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol 62(3): p. 465-77.

311. Sandaltzopoulos, R., et al., (1995) Dual regulation of the Drosophila hsp26 promoter in vitro. Nucleic Acids Res 23(13): p. 2479-87.

312. Baroni, T.E., et al., (2008) Advances in RIP-chip analysis : RNA-binding protein immunoprecipitation-microarray profiling. Methods Mol Biol 419: p. 93-108.

313. Tenenbaum, S.A., et al., (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 97(26): p. 14085-90.

314. Voellmy, R., (2004) Transcriptional regulation of the metazoan stress protein response. Prog Nucleic Acid Res Mol Biol 78: p. 143-85.

315. Zhang, X.Y., et al., (2008) USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A. Cell Cycle 7(11): p. 1522-4.

316. Hu, J., et al., (2012) Expression patterns of USP22 and potential targets BMI-1, PTEN, pAKT in non-small-cell lung cancer. Lung Cancer 77(3): p. 593-9.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.