Каркасные и мостиковые фрагменты в дизайне физиологически активных веществ тема диссертации и автореферата по ВАК РФ 02.00.16, доктор химических наук Зефирова, Ольга Николаевна

  • Зефирова, Ольга Николаевна
  • доктор химических наукдоктор химических наук
  • 2012, Москва
  • Специальность ВАК РФ02.00.16
  • Количество страниц 318
Зефирова, Ольга Николаевна. Каркасные и мостиковые фрагменты в дизайне физиологически активных веществ: дис. доктор химических наук: 02.00.16 - Химия и технология композиционных материалов. Москва. 2012. 318 с.

Оглавление диссертации доктор химических наук Зефирова, Ольга Николаевна

Введение 3

Глава Обзор литературы Использование каркасных и мостиковых структур в медицинской химии 4

Глава Применение каркасных и мостиковых фрагментов для создания упрощенных аналогов таксола 23

Глава Каркасная структура в создании лиганда «двойного действия» на тубулин и микротрубочки 83

Глава Стратегия увеличения липофильности соединения-лидера путем структурного «включения» в каркасный или мостиковый фрагмент 101

Глава Применение мостиковых группировок для ограничения конформационной подвижности мелатонина и серотонина

Глава Модификация соединения-лидера с двойной активностью с помощью мостиковой группировки 160

Экспериментальная часть 163

Выводы 294

Рекомендованный список диссертаций по специальности «Химия и технология композиционных материалов», 02.00.16 шифр ВАК

Заключение диссертации по теме «Химия и технология композиционных материалов», Зефирова, Ольга Николаевна

выводы

1. Сформулированы принципы применения каркасных и мостиковых структур в создании физиологически активных веществ, в том числе 1) как биоизостерических группировок для сложных полициклических скелетов молекул, 2) как необычных фрагментов, ограничивающих конформационную подвижность структурных прототипов лекарственных веществ, 3) как увеличивающих липофильность неароматических моноциклических соединений при их «структурном» включении в каркас.

На этой базе в результате структурного дизайна и синтеза сфокусированных библиотек физиологически активных веществ на основе каркасных фрагментов выявлены новые соединения-лидеры для таких молекулярных мишеней как белок тубулин, рецепторы мелатонина и серотонина, ферменты синтаза оксида азота и инозитмонофосфатаза.

В ходе проведенных исследований получены следующие конкретные результаты для каждой биомишени.

2. Проведен молекулярный дизайн новых структурных классов упрощенных аналогов таксола, в которых полициклический скелет исходной молекулы заменен адаман-тановым или бицикло[3.3.1]нонановым фрагментом. Синтезирована библиотека таких веществ, представляющих собой сложные эфиры замещенных или незамещенных адаман-тановых и бицикло[3.3.1]нонановых спиртов с аминокислотой (2R,55)-Ы-бензоил- (или N-т/?ет-бутоксикарбонил)-(3-фенилизосерином.

Для полученных упрощенных аналогов таксола определены значения цитотоксич-ности по отношению к клеткам А459 (минимальное значение 1С5о=0.75цМ). Доказана способность некоторых соединений вызывать олигомеризацию тубулина, максимально высокую - для 1 -(ТЧ-бензоил-(З-фенилизосерилокси)адамантана. На основании исследований «структура-активность» продемонстрирована важная роль незамещенной адамантановой группировки и (27?,55)-Ы-бензоил-Р-фенилизосерина (но не позиции его присоединения к адамантану) в обеспечении высокой тубулин-олигомеризующей активности.

2. Предложена структура «упрощенного аналога» колхитакселя на основе колхицина и адамантанового «миметика» таксола и реализована многостадийная схема его получения. Синтезирован структурный аналог этого соединения колхадам, для которого доказано проявление цитотоксичности по отношению к различным штаммам опухолевых клеток in vitro в наномолярном интервале концентраций, а также продемонстрирована способность к увеличению продолжительности жизни экспериментальных животных с перевиваемым лимфолейкозом Р388 в экспериментах in vivo. У колхадама обнаружен уникальный, не описанный в литературе механизм противоопухолевого действия, а именно способность вызывать деполимеризацию микротрубочек с последующим образованием необычных тубулиновых кластеров. Представлено возможное объяснение этого механизма и продемонстрирована важная роль адамантанового каркаса в его обеспечении.

3. В работе предложена оригинальная стратегия увеличения липофильности моноциклических соединений-лидеров путем их «включения» в каркасный или мостиковый фрагмент, реализованная на примере создания структур потенциальных ингибиторов ферментов лшо-инозитмонофосфатазы и синтазы оксида азота.

Проведено тестирование синтезированных соединений in vitro и показано наличие слабой ингибирующей активности 2-гидрокси-1-адамантил фосфата натрия по отношению к инозитмонофосфатазе, а также выявлен ингибитор индуцибельной изоформы NO-синта-зы - 2-тиа-4-азабицикло[3.3.1]нон-3-ен-3-амин - перспективный кандидат для дальнейшего изучения его антигипотензивной и радиопротекторной активности in vivo.

4. Проведен молекулярный дизайн аналогов гормона мелатонина и нейромедиатора серотонина, в которых ограничение конформационной подвижности боковых цепей природных молекул достигается за счет включения в бициклические мостиковые группировки, аннелированные с индольным ядром.

Разработаны и реализованы эффективные многостадийные препаративные схемы синтеза целевых веществ с использованием в качестве ключевой стадии реакции Фишера.

Проведено тестирование полученных веществ in vitro и ex vivo и выявлен уникальный мостиковый аналог мелатонина с наномолярной активностью по отношению к МТ2 подтипу мелатониновых рецепторов.

5. В работе (независимо от фармацевтической компании Abbot, США) получен оригинальный мостиковый аналог известного антигистаминного препарата с нейропро-текторной активностью Димебона.

Список литературы диссертационного исследования доктор химических наук Зефирова, Ольга Николаевна, 2012 год

1. K. Papanastasiou, C. Prousis, K. Georgikopoulou, T. Pavlidis, E. Scoulica, N. Kolocouris, T. Calogeropoulou. Design and synthesis of new adamantyl-substituted antileishmanial ether phospholipids. Bioorg. Med. Chem. Lett. 2010, 20 (18), 5484-5487.

2. U. Shah, C.D. Boyle, S. Chackalamannil, H. Baker, T. Kowalski, J. Lee, G. Terracina, L. Zhang. Azabicyclic sulfonamides as potent 11(3-HSD1 inhibitors. Bioorg. Med. Chem. Lett. 2010, 20 (14), 1551-1554.

3. M. Sala, A.M. De Palma, H. Hrebabecky, R. Nencka, M. Dracinsky, P. Leyssen, J. Neyts, A. Holy. Design, synthesis, and biological evaluation of novel coxsackievirus B3 inhibitors. Bioorg. Med. Chem. 2010, 18 (12), 4374^384.

4. P.C. Fritch, G. McNaughton-Smith, G.S. Amato, J.F. Burns, C.W. Eargle, R. Roeloffs, W. Harrison, L. Jones, A.D. Wickenden. Novel KCNQ2/Q3 Agonists as Potential Therapeutics for Epilepsy and Neuropathic Pain. J. Med. Chem. 2010, 53 (2), 887-896.

5. D. Macdonald, C. Brideau, C.C. Chan, J.-P. Falgueyret, R. Frenette, J. Guay, J.H. Hutchinson, H. Perrier, P. Prasit, D. Riendeau, P. Tagari, M. Therien, R.N. Young, Y.

6. Girard. Substituted 2,2-bisaryl-bicycloheptanes as novel and potent inhibitors of 5-lipoxygenase activating protein. Bioorg. Med. Chem. Lett. 2008,18 (6), 2023-2027.

7. R. Epple, H.D. Urbina, R. Russo, H. Liu, D. Mason, B. Bursulaya, C. Tumanut, J. Li, J.L. Harris. Bicyclic carbamates as inhibitors of papain-like cathepsin proteases. Bioorg. Med. Chem. Lett. 2007, 17 (5), 1254-1259.

8. H. Banie, A. Sinha, R.J. Thomas, J.C. Sircar, M.L. Richards. 2-Phenylimidazopyridines, a New Series of Golgi Compounds with Potent Antiviral Activity. J. Med. Chem. 2007, 50, 5984-5993.

9. A. Nayyar, V. Monga, A. Malde, E. Coutinhob, R. Jain. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of 4-(adamantan-l-yl)-2-substituted quinolines. Bioorg. Med. Chem. 2007, 15, 626-640.

10. G. Lamoureux, G. Artavia. Use of the adamantane structure in medicinal chemistry. Curr. Med. Chem. 2010,17, 2967-2978.

11. O.H. Зефирова, H.C. Зефиров. Физиологически активные соединения, взаимодействующие с глутаматными рецепторами. ЖОрХ. 2000, 36, 1273.

12. G. Zoidis, N. Kolocouris, J.M. Kelly, S.R. Prathalingam, L. Naesens, E. De Clercq. Design and synthesis of bioactive adamantanaminoalcohols and adamantanamines. Eur. J. Med. Chem. 2010, 45 (11), 5022-5030.

13. V.V. Zarubaev, E.L. Golod, P.M. Anfimov, A.A. Shtro, V.V. Saraev, A.S. Gavrilov, A.V. Logvinov, O.I. Kiselev. Synthesis and anti-viral activity of azolo-adamantanes against influenza A virus. Bioorg. Med. Chem. 2010,18 (2), 839-848.

14. J. Balzarini, B. Orzeszko-Krzesin'ska, J.K. Maurin, A. Orzeszko. Synthesis and anti-HIV studies of 2- and 3-adamantyl-substituted thiazolidin-4-ones. Eur. J. Med. Chem. 2009, 44(1),Ш-Ш.

15. G. Zoidis, C. Fytas, I. Papanastasiou, G.B. Foscolos, G. Fytas, E. Padalko, E. De Clercq, L. Naesens, J. Neytsb, N. Kolocouris. Heterocyclic rimantadine analogues with antiviral activity. Bioorg. Med. Chem. 2006,14, 3341-3348.

16. I. Papanastasiou, A. Tsotinis, N. Kolocouris, S.R. Prathalingam, J.M. Kelly. Design, Synthesis, and Trypanocidal Activity of New Aminoadamantane Derivatives. J. Med. Chem. 2008,57, 1496-1500.

17. T. Zhang, Z. Yan, A. Sromek, B.I. Knapp, T. Scrimale, J.M. Bidlack, J.L. Neumeyer. Aminothiazolomorphinans with Mixed к and ц Opioid Activity. J. Med. Chem. 2011, 54 (6), 1903-1913.

18. S.D. Banister, I.A. Moussa, C. Beinat, A.J. Reynolds, P. Schiavini, W.T. Jorgensen, M. Kassiou. Trishomocubane as a scaffold for the development of selective dopamine transporter (DAT) ligands. Bioorg. Med. Chem. Lett. 2011, 21 (1), 38-41.

19. M. Purushotham, A. Sheri, D.-P. Pham-Huu, B.K. Madras, A. Janowsky, P.C. Meltzer. The synthesis and biological evaluation of 2-(3-methyl or 3-phenylisoxazol-5-yl)-3-aryl-8-thiabicyclo3.2.1.octanes. Bioorg. Med. Chem. Lett. 2011, 21 (1), 48-51.

20. Z. Mao, Y. Li, J. Chen, Y. Wang, H. Zhang. Recombination of diterpenoid structure units: synthesis of antitumor amides bearing functionalized bicyclo3.2.1.octane ring. Bioorg. Med. Chem. Lett. 2010, 20 (14), 4116-4119.

21. R. Ratnayake, D. Covell, T.T. Ransom, K.R. Gustafson, J.A. Beutler. A. Englerin. Selective Inhibitor of Renal Cancer Growth, from Phyllanthus engleri. Org. Lett. 2008, 11, 57.

22. J. Lv, Y. Qian, T. Liub, Y. Wanga. Synthesis and evaluation of amphiphilic cationic quinine-derived or antibacterial activity against methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem. 2007, 77, 4102.

23. Z. Wei, P.A. Petukhov, Y. Xiao, W. Tiickmantel, C. George, K.J. Kellar, A.P. Kozikowski. Synthesis, Nicotinic Acetylcholine Receptor Binding Affinities, and Molecular Modeling of Constrained Epibatidine Analogues. J. Med. Chem. 2003, 46 (6), 921-924.

24. J. Quirante, X. Vila, J. Bonjoch, A.P. Kozikowski, K.M. Johnson. 2,3-Disubstituted 6-azabicyclo3.2.1.octanes as novel dopamine transporter inhibitors. Bioorg. Med. Chem. 2004,12, 1383-1391.

25. R. Ducray, C.D. Jones, F.H. Jung, I. Simpson, J. Curwen, M. Pass. Novel imidazol,2-ajpyridine based inhibitors of the IGF-1 receptor tyrosine kinase: optimization of the aniline. Bioorg. Med. Chem. Lett. 2011, 21 (16), 4702-4704.

26. S. Sabbani, P.A. Stocks, G.L. Ellis, J. Davies, E. Hedenstrom, S.A. Ward, P.M. O'Neill. Piperidine dispiro-l,2,4-trioxane analogues. Bioorg. Med. Chem. 2008, 18, 5804-5808.

27. A. Palani, J.R. Tagat. Discovery and Development of Small-Molecule Chemokine Coreceptor CCR5 Antagonists. J. Med. Chem. 2006, 49, 2851.

28. J.C. Barrish, S.H. Spergel, S. Moreland, G. Grover, S.A. Hedberg, A.T. Pudzianowski, J.Z. Gougoutas, M.F. Malley. Conformationally constrained calcium channel blockers: novel mimics of l-benzazepin-2-ones. Bioorg. Med. Chem. 1993,1 (4), 309-325.

29. F. Tellier, F. Acher, I. Brabet, J.-P. Pin, J. Bockaert, R. Azerad. Synthesis of conformationally-constrained stereospecific analogs of glutamic acid as antagonists of metabotropic receptors. Bioorg. Med. Chem. Lett. 1995, 5 (22), 2627-2632.

30. Medicinal Chemistry: Principles and Practice. Ed. F.D. King. Royal Society of Chemistry; 2nd edition, London, 400 pp.

31. O.H. Зефирова, H.C. Зефиров. Физиологически активные соединения, взаимодействующие с серотониновыми (5-гидрокситриптаминовыми) рецепторами. Yen. Хим. 2001, 70, 382.

32. Y. Dong, J. Chollet, M. Vargas, N.R. Mansour, Q. Bickle, Y. Alnouti, J. Huang, J. Keiser, J.L. Vennerstrom. Praziquantel analogs with activity against juvenile Schistosoma mansoni. Bioorg. Med. Chem. Lett. 2010, 20 (**), 2481-2484.

33. L.L. Chang, Q. Truong, G.A. Doss, M. MacCoss, K. Lyons, E. McCauley, R. Mumford, G. Forrest, S. Vincent, J.A. Schmidt, W.K. Hagmann. Highly constrained bicyclic VLA-4 antagonists. Bioorg. Med. Chem. Lett. 2007,17 (3), 597-601.

34. R. Pellicciari, M. Raimondo, M. Marinozzi, B. Natalini, G. Costantino, C. Thomsen. (S)-(+)-2-(3'-carboxybicyclol.l.l.-pentyl)glycine, a structurally new group 1 metabotropic glutamate receptor antagonist. J. Med. Chem. 1996, 39, 2874-2876.

35. R. Pellicciari, G. Costantino, E. Giovagnoni, L. Mattoli, I. Brabet, J.-P. Pin. Synthesis and preliminary evaluation of (S)-2-(4'-carboxycubyl)glycine, a new selective mGluRl antagonist. Bioorg. Med. Chem. Lett. 1998, 8 (*), 1569-1574.

36. C. Sankar, K. Pandiarajan. Synthesis and anti-tubercular and antimicrobial activities of some 2r,4c-diaryl-3-azabicyclo3.3.1.nonan-9-one N-isonicotinoylhydrazone derivatives. Eur. J. Med. Chem. 2010, 45, 5480-5485.

37. A. Marrazzo, A. Pappalardo, O. Prezzavento, F. Vittorio, G. Ronsisvalle. l-Phenyl-3-azabicyclo3.1.0.hexane derivatives as new ligands for sigma receptors. ARKIVOC, 2004 (V), 156-169.

38. In-H. Kim, Y.-K. Park, B.D. Hammock, K. Nishi. Structure-Activity Relationships of Cycloalkylamide Derivatives as Inhibitors of the Soluble Epoxide Hydrolase. J. Med. Chem. 2011, 54 (6), 1752-1761.

39. H.S. Rho, H.S. Baek, S.M. Ahn, J.W. Yoo, D.H. Kim, H.G. Kim. Studies on depigmenting activities of dihydroxyl benzamide derivatives containing adamantane moiety. Bioorg. Med. Chem. Lett. 2009, 19 (**), 1532-1533.

40. Z. Yu, A.R. Sawkar, L.J. Whalen, C.-H. Wong, J.W. Kelly. Isofagomine- and 2,5-Anhydro-2,5-imino-D-glucitol-Based Glucocerebrosidase Pharmacological Chaperones for Gaucher Disease Intervention. J. Med. Chem. 2007, 50, 94-100.

41. Т. Ganesh, A. Norris, S. Sharma, S. Bane, A.A. Alcaraz, J.P. Snyder, D.G.I. Kingston, Design, synthesis, and bioactivity of simplified paclitaxel analogs based on the T-Taxol bioactive conformation. Bioorg. Med. С hem. 2006,14, 3447.

42. F. Almqvist, S. Manner, V. Thornqvist, U. Berg, M. Wallin, T. Frejd. Spirobicyclo2.2.2.octane derivatives: mimetics of baccatin III and paclitaxel (Taxol). Org. Biomol. Chem. 2004, 2, 3085-3090.

43. R.S. Muthyala, K.E. Carlson, J. A. Katzenellenbogen. Exploration of the Bicyclo3.3.1.nonane System as a Template for the Development of New Ligands for the Estrogen Receptor. Bioorg. Med. Chem. Lett. 2003, 13, 4485^1488.

44. R. Sibley, H. Hatoum-Mokdad, R. Schoenleber, L. Musza, W. Stirtan, D. Marrero, W. Carley, H. Xiao, J. Dumas. A Novel Estrogen Receptor Ligand Template. Bioorg. Med. Chem. Lett. 2003, 13, 1919-1922.

45. J. Aszodi, D.A. Rowlands, P. Mauvais, P. Collette, A. Bonnefoy, M. Lampilas. Design and Synthesis of Bridged y-Lactams as Analogues of (3-Lactam Antibiotics. Bioorg. Med. Chem. Lett. 2004, 14 (10), 2489-2492.

46. M. Zurcher, F. Diederich. Structure-Based Drug Design: Exploring the Proper Filling of Apolar Pockets at Enzyme Active Sites. J. Org. Chem. 2008, 73(12), 4345-4361.

47. H.-B. Zhou, M.L. Collins, J.R. Gunther, J.S. Comninos, J.A. Katzenellenbogen. Bicyclo2.2.2.octanes: close structural mimics of the nuclear receptor-binding motif of steroid receptor coactivators. Bioorg. Med. Chem. Lett. 2007, 17 (15), 4118^-122.

48. Richardson, R. Codd. Conjugates of desferrioxamine В (DFOB) with derivatives of adamantane or with orally available chelators as potential agents for treating iron overload. J. Med. Chem. 2010, 53 (3), 1370-1382.

49. Neuraxon, Inc. 1,5 and 3,6-substituted indole compounds having NOS inhibitory activity. W02007118314, 2007.

50. J. Joubert, S. van Dyk, S.F. Malan. Fluorescent polycyclic ligands for nitric oxide synthase (NOS) inhibition. Bioorg. Med. Chem. 2008, 16, 8952-8958.

51. A. Bar-Shir, Y. Engel, M. Gozin. Synthesis and water solubility of adamantyl-OEG-fullerene hybrids. J. Org. Chem. 2005, 70 (7), 2660-2666.

52. J. Balzarini, B. Orzeszko, J.K. Maurin, A. Orzeszko. Synthesys and anti-HIV studies of 2-adamantyl-substituted tiazolidin-4-ones. Eur. J. Med. Chem. 2007, 42, 993-1003.

53. D. Guenard, F. Gueritte-Voegelein, P. Potier. Taxol and Taxotere: Discovery, Chemistry, and Structure Activity Relationships. Acc. Chem. Res. 1993, 26, 160.

54. D.G.I. Kingston. Taxol, a Molecule for All Seasons. Chem. Commun. 2001, 867.

55. O.H. Зефирова, E.B. Нуриева, B.H. Нуриев, H.B. Зык, H.C. Зефиров. Таксол: Синтез, биоактивные конформации и соотношение структура-активность для его аналогов. ЖОрХ. 2005, 41(3), 329.

56. М.Е. Wall. Camptothecin and Taxol: Discovery to Clinic. Med. Res. Rev. 1998,18, 299.

57. B. Ganem, R.R. Franke. Paclitaxel from Primary Taxanes: A Perspective on Creative Invention in Organozirconium Chemistry. J. Org. Chem., 2007, 72 (11), 3981-3987.

58. F. Pellegrini, D.R. Budman. Tubulin function, action of antitubulin drugs, and new drug development. Cancer. Invest. 2005, 25, 264.

59. R.A. Stanton, K.M. Gernert, J.H. Nettles, R. Aneja. Drugs that target dynamic microtubules: A new molecular perspective. Med. Res. Rev. 2011, 31(3), 443^-81.

60. E. Nogales, S.G. Wolf, K.H. Downing. Structure of the aP-Tubulin Dimer by Electron Crystallography. Nature. 1998, 391, 199.

61. J. Lowe, H. Li, K.H. Downing, E. Nogales. Refined Structure of сф-Tubulin at 3.5 A Resolution. J. Mol. Biol. 2001, 313, 1045.

62. P.B. Schiff, J. Fant, S.B. Horwitz. Promotion of Microtubule Assembly in Vitro by Taxol. Nature. 1979, 277, 665.

63. M.N. Islam, M.N. Iskander. Microtubulin Binding Sites as Target for Developing Anticancer Agents. Mini-Reviews in Medicinal Chemistry. 2004, 4, 1077.

64. S. Rao, L. He, S. Chakravarty, I. Ojima, G.A. Orr, S.B. Horwitz. Characterization of the989

65. Taxol Binding Site on the Microtubule. Identification of Arg in P-Tubulin as the Site of Photoincorporation of a 7-Benzophenone Analogue of Taxol. J. Biol. Chem. 1999, 274, 37990.

66. D.G. van der Velde, G.I. Georg, G.L. Grunewald, C.W. Gunn, L.A. Mitscher. "Hydrophobic Collapse" of Taxol and Taxotere Solution Conformations in Mixtures of Water arid Organic Solvent. J. Am. Chem. Soc. 1993, 115, 11650.

67. J.P. Snyder, N. Nevins, D.O. Cicero, J. Jansen. The Conformations of Taxol in Chloroform. J. Am. Chem. Soc. 2000,122, 724-725.

68. E. Nogales, M. Whittaker, R.A. Milligan, K.H. Downing. High-Resolution Model of the Microtubule. Cell. 1999, 96, 79.

69. J.P. Snyder, J.H. Nettles, B. Cornett, K.H. Downing, E. Nogales. The Binding Conformation of Taxol in P-Tubulin: A Model Based on Electron Crystallographic Density. Proc. Nat. Acad. Sci. USA. 2001, 98, 5312.

70. M. Hodge, Q.-H. Chen, S. Bane, S. Sharma, M. Loew, A. Banerjee, A.A. Alcaraz, J.P. Snyder, D.G.I. Kingston. Synthesis and bioactivity of a side chain bridged paclitaxel: A test of the T-Taxol conformation. Bioorg. Med. Chem. Lett. 2009,19, 2884-2887.

71. R. Geney, L. Sun, P. Pera, R. Bernacki, S. Xia, S. Horwitz, C. Simmerling, I. Ojima. Use of the Tubulin Bound Paclitaxel Conformation for Structure-Based Rational Drug Design. Chemistry & Biology. 2005,12(3), 339.

72. L. Suna, C. Simmerling, I. Ojima. Recent Advances in the Study of the Bioactive Conformation of Taxol. ChemMedChem. 2009, 4 (5), 719-731.

73. D.G.I. Kingston. Taxol and its analogs. In: Anticancer Agents from Natural Products (edited by G.M. Cragg, D.G.I. Kingston, D.J.Newman). 2011. USA: CRC Press (767 pp.). P. 131-132.

74. I. Ojima, S.D. Kuduk, P. Pera, J.M. Veith, R.J. Bernacki. Synthesis and structure-activity relationships of nonaromatic taxoids: effects of alkyl and alkenyl ester groups on cytotoxicity. J. Med Chem. 1997, 40 (3), 279-285.

75. M. Wang, B. Cornett, J. Nettles, D.C. Liotta, J.P. Snyder. The Oxetane Ring in Taxol. J. Org. Chem. 2000, 65, 1059.

76. L. Barboni, A. Datta, D. Dutta, G.D. Georg, D.G. van der Velde, R.H. Himes, M. Wang, J.P. Snyder. Novel D-Seco Paclitaxel Analogues: Synthesis, Biological Evaluation, and Model Testing. J. Org. Chem. 2001, 66, 3321.

77. L. Barboni, G. Giarlo, M. Ricciutelli, R. Ballini, G.I. Georg, D.G. van der Velde, R.H. Himes, M. Wang, A. Lakdawala, J.P. Snyder. Synthesis, Modeling, and Anti-Tubulin Activity of a D-Seco Paclitaxel Analogue. Org. Lett. 2004, 6, 461.

78. K. Fuji, Y. Watanabe, T. Ohtsubo, M. Nuruzzaman, Y. Hamajima, M. Kohno. Synthesis of Extremely Simplified Compounds Possessing the Key Pharmacophore Units of Taxol, Phenylisoserine and Oxetane Moieties. Chem. Pharm. Bull. 1999, 47, 1334.

79. U. Klar, H. Graf, O. Schenk, B. Rohr, H. Schulz. New Synthetic Inhibitors of Microtubule Depolymerization. Bioorg. Med. Chem. Lett. 1998, 8, 139.

80. J. Kearns, M.M. Kayser. Application of yeast-catalyzed reductions to synthesis of (2R,35)-phenylisoserine. Tetrahedron Lett. 1994, 35, 2845.

81. J.D. Bourzat, A. Commer?on. A practical access to chiral phenylisoserinates, preparation of Taxotere® analogs. Tetrahedron Lett. 1993, 34, 6049.

82. Z. Zhou, X. Mei, J. Chang, D. Feng. A practical and efficient synthesis of taxol C-13 side chain. Synthetic Commun. 2001, 31, 3609.

83. M. Altamura, P. Cesti, F. Francalanci, M. Marchi, S. Cambiaghi. A new chemoenzymatic approach to the synthesis of penems. J. Org. Chem. Perkin Trans. Pt. 1. 1989, 1225.

84. V. Farina, S.I. Hauck, D.G. Walker. A simple chiral synthesis of the Taxol side chain. Synlett, 1992, 761.

85. R.L. Danheiser, R.F. Miller, R.G. Brisbois, S.Z. Park. The synthesis and configurational stability of differentially protected (3-hydroxy-a-amino aldehydes. J. Org. Chem. 1990, 55, 1959.

86. M. Colin, D. Guenard, F. Gueritte-Voegelein, P. Potier. Fr. Pat. Appl. 1990, N 2629818.

87. Ph. Garner, M.P. Jung. The synthesis and configurational stability of differentially protected P-hydroxy-a-amino aldehydes. J. Org. Chem. 1987, 52, 2361.

88. H.W. Geluk. An improved synthesis of 1,4-disubstituted adamantanes. Synthesis. 1972, 374.

89. G. Csanady, K. Medzihradszky. A convenient synthesis of /-butyl esters of amino acids. Org. Prep. & Proced. Int. 1988, 20, 180.

90. L. Mercle, J. Dubois, E. Place, S. Thoret, F. Gueritte, D. Guenard, C. Poupat, A. Ahond, P. Potier. Semisynthesis of D-ring modified taxoids: novel thia derivatives of docetaxel. J. Org. Chem. 2001, 66, 5058.

91. S. Srivastava, C.K. Cheung, W. Le Noble. Definitive identification of the C-5 and C-7 NMR signals of adamantan-2-ol. Org. Magnetic Resonance. 1985, 23, 232.

92. W-Sh. Chung, Y-D. Liu, N-J. Wang. Face selectivity in the Paterno-Btichi reactions of methacrylonitrile to 5-substituted adamantan-2-ones. J. Chem. Soc. Perkin Trans. 2. 1995, 581.

93. E.W. Meijer, H. Wynberg. Chirality due to oxygen-18 substitution. Synthesis and chiroptical properties of (lS)-2,4-adamantanedione-4-180. J. Am. Chem. Soc. 1982, 104, 1145.

94. П.Н. Нестеренко, В.В. Кротов, С.М. Староверов. Хроматографические свойства силикагеля с привитым хинином. ЖФХ. 1991, 65(9), 2671-2670.

95. H.W. Geluk, J.L.A. Schlatmann. Hydride transfer reactions of the adamantyl cation—II : Synthesis of 1,3- and 1,4-disubstituted adamantanes. Tetrahedron. 1968, 24, 5369.

96. M.S. Wolfe. 7V-Benzoyl-4-(dimethylamino)pyridinium chloride: isolation and use for the direct benzoylation of alcohols. Synth. Commun. 1997, 27, 2975-2984.

97. X.-Q. Wang, R.-Q. Xu, P.Zhang. Synthesis of 3-hydroxyoxetane and the Finkelstein reaction of its /»-toluenesulfonate with sodium iodide. Acta Chim. Sin. 1984, 42, 1168.

98. P. Picard, D. Leclercq, J.-P. Bats, J. Moulines. An efficient one-pot synthesis of oxetanes from 1,3-diols. Synthesis. 1981, 550.

99. C. Piantadosi, C.E. Anderson, E.A. Brecht, C.L. Yarbro. The preparation of cyclic glycerol acetals by transacetylation. J. Am. Chem. Soc. 1958, 80, 6613.

100. В.Ф. Баклан, A.H. Хильчевский, Л.С. Сологуб, В.П. Кухарь. Функционализация карбоновых кислот адамантанового и бицикло3.3.1.нонанового ряда в жидком броме. Ж.ОрХ. 1992, 28, 2098.

101. Е. Didier, Е. Fouque, I. Taillepied, A. Commercpon. 2-Monosubstituted-l,3-oxazolidines as improved protective groups of N-boc-phenylisoserine in docetaxel preparation. Tetrahedron Lett. 1994, 35, 2349.

102. J.A. Peters. Synthesis of bicyclo3.3.1.nonanes. Synthesis. 1979, 321.

103. J.P. Schaefer, L.S. Endres, M.D. Moran. Bicyclo3.3.1.nonanes. III. Preparation and reactions of bicyclo[3.2.2]nonanes. J. Org. Chem. 1967, 32, 3963.

104. G.E. Renzoni, W.T. Borden. Synthesis of 7-carboxytricyclo3.3.1.03'7.nonan-3-ol. J. Org. Chem. 1983, 48, 5231.

105. J. Ondracek, J. Janku, J. Novotny, L. Vodicka, L. Csordas, B. Kratochvil. The Bayer-Villiger oxidation of diamantanone and the structure of ll-oxo-10-oxapentacyclo7,4,1,l4 l3,02'7,06 l2.-pentadecane Collect. Czech. Chem. Commun. 1989, 54, 3260.

106. P.A. Krasutsky, I.V. Kolomitsyn, P. Kiprof, R.M. Carlson, N.A. Sydorenko, A.A. Fokin. A consecutive double-Criegee rearrangement using TFPAA: stepwise conversion of homoadamantane to oxahomoadamantanes. J. Org. Chem. 2001, 66, 1701.

107. A.C. Udding, H. Wynberg, J.A. Strating ring-opening reaction of and some cyclisations to the adamantane system. A quasi-Favorsky reaction of a P-bromoketone. Tetrahedron Lett. 1968, 9, 5719.

108. K. Kaneda, S. Ueno, T. Imanaka. Catalysis of transition metal-functionalized hydrotalcites for the Baeyer-Villiger oxidation of ketones in the presence of molecular oxygen and benzaldehyde J. Mol. Catal. A: Chem. 1995, 102, 135.

109. A.C. Canos, L.T. Nemeth, M. Renz, J.G. Moscoso. Oxidation of ketones to esters using a tin substituted zeolite beta. U.S. 05.02.2002, US 6344583.

110. C. Bolm, G. Schlingloff, K. Weickhardt. Use of molecular oxygen in the Baeyer-Villiger oxidation: The influence of metal catalysts. Tetrahedron Lett. 1993, 34, 3405.

111. A.K. Mukherjee, W.J. Le Noble. On the stereochemistry of the oxidation of 5-phenyl-2-thiaadamantane. J. Org. Chem. 1993, 58, 7955.

112. P. Soucy, T.-L. Ho, P. Deslongchamps. Ceric ammonium nitrate oxidation of cyclic ketones. Can. J. Chem. 1972, 50, 2047.

113. D. Faulkner, M.A. McKervey. The n-Route to Substituted Adamantanes. J. Chem. Soc. C. 1971, 3906.

114. J.A. Zalikowski, K.E. Gilbert, W.T. Borden. Oxidation of 7-(hydroxymethyl)-bicyclo3.3.1.nonan-3-ol. Convenient synthesis of bicyclo[3.3.1]nonane-3,7-dione. J. Org. Chem. 1980, 45, 346.

115. R. Partch, W. Brewster, B. Stokes. 2-Oxaadamantane-l-iV, N, N-trimethylmethanaminium iodide: synthesis and potential for muscarinic activity. Croat. Chem. Acta. 1985, 58, 661.

116. T. Momose, O. Muraoka. Substituted bicyclo3.3.1.nonanes: a route to new classes of drugs. Chem. Pharm. Bull. 1978, 26, 288.

117. E. Butkus, R. Kubilius, S. Stoncius, A. Zilinskas. Intramolecular ring closure via ether bond in reaction of a,a'-halogeno bicyclo3.3.1.nonanediones under basic conditions. J. Chem. Soc., Perkin Trans. 1,1999, 1431.

118. J.G. Henkel, J.H. Spector. Studies in the 2,4-disubstituted adamantanes. Preparation and reactivity of pure epimeric 4-hydroxy- and 4-methoxyadamantan-2-ones. J. Org. Chem. 1983, 48, 3657.

119. H. Duddeck, P. Wolff. Carbon-13 nuclear magnetic resonance spectra: V—substituent interactions at 4-substituted adamantanones and bicyclo2.2.2.octanones. Org. Magn. Res. 1977,9, 528.

120. N.S. Zefirov, V.A. Palyulin. Conformational analysis of bicyclo3.3.1.nonanes and their hetero analogs, in "Topics in Stereochemistry", E.L. Eliel, S.H. Wilen, Eds., John Wiley & Sons Inc., NY, 1991; Vol. 20, p. 171.

121. N.S. Zefirov, V.A. Palyulin, E.E. Dashevskaya. Stereochemical studies. XXXIV. Quantitative description of ring puckering via torsional angles. The case of six-membered rings. J. Phys. Org. Chem. 1990, 3, 147.

122. D. Cremer, J.A. Pople. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975,97, 1354.

123. A.Yu. Zotov, V.A. Palyulin, N.S. Zefirov. RICON—the computer program for the quantitative investigations of cyclic organic molecule conformations. J. Chem. Inf. Comput. Sci., 1997, 37, 766.

124. R.M. Black. Synthesis of the four stereoisomers of 4-aminoadamantane-2-carboxylic acid, rigid analogues of y-aminobutyric acid. J. Chem. Soc., Perkin Trans. I. 1982, 73.

125. X. Geng, R. Geney, P. Pera, R. Bernacki, I. Ojima. Design and synthesis of de novo cytotoxic alkaloids through mimicking taxoid skeleton. Bioorg. Med. Chem. Lett. 2004, 14, 3491.

126. F. Roussi, Q.A. Ngo, S. Thoret, F. Gueritte, D. Guenard. The design and synthesis of new steroidal compounds as potential mimics of taxoids. Eur. J. Org. Chem. 2005, 3952.

127. L. Sun, J.M. Veith, P. Pera, R. Bernacki, I. Ojima. Design and synthesis of de novo cytotoxic alkaloids by mimicking the bioactive conformation of paclitaxel. Bioorg. Med. Chem. 2010, 18, 7101.

128. С. Le Manach, A. Baron, R. Guillot, B. Vauzeilles, J.-M. Beau. Design and synthesis by click triazole formation of paclitaxel mimics with simplified core and side-chain structures. Tetrahedron Lett. 2011, 52, 1462.

129. D.G. Weiss. Video-enhanced contrast microscopy. In: Cell Biology: A Laboratory Handbook (ed. Celis J.E.). Vol. III. Chapter 6. 2005. Academic Press, pp. 57-65.

130. V.I. Rodionov, F.K. Gyoeva, A.S. Kashina, S.A. Kuznetsov, V.I. Gelfand. Microtubule-associated proteins and microtubule-based translocators have different binding sites on tubulin molecule. J. Biol. Chem. 1990. 265. 5702.

131. B.B. Ковалев, A.K. Розов, Э.А. Шокова. Авторское свидетельство SU 1502558 Al.

132. Б.М. Михайлов, В.Н. Смирнов, О.Д. Смирнова, Е.И. Прокофьев, А.С. Шашков. Бороорганические соединения. Сообщение 366. Синтез и некоторые свойства 4,4-диметил-1-бораадамантана. Изв. АН СССР. Сер. хим. 1979,10, 2340.

133. М.Т. Reetz; J. Westermann; R. Steinbach. Direct geminal dimethylation of ketones using dimethyltitanium dichloride. J. Chem. Soc. Chem. Commun. 1981, 237.

134. N. Takaishi, Y. Fujikura, Y. Inamoto. Bridgehead hydroxylation of tricycloalkanes with от-chloroperbenzoic acid. Synthesis. 1983, 293.

135. Jl.A. Ашкинази, Я.М. Слободин, А.В. Крюков. Авторское свидетельство SU 1518334 Al.

136. H.W. Geluk, J.L.M.A. Schlatmann. Hydride transfer reactions of the adamantyl cation—I : A new and convenient synthesis of adamantanone. Tetrahedron. 1968, 24, 5361.

137. J.-N. Denis, A.E. Green, A.A. Serra, M.-J. Luche. An efficient, enantioselective synthesis of the taxol side chain. J. Org. Chem. 1986. 51, 46.

138. J. Howarth, P. Penny, S. McDonnel, A. O'Connor. The design and synthesis of guanosine compounds with in vitro activity against the colon cancer cell line SW480: non-taxane derived mimics of Taxol? Bioorg. Med. Chem. Lett. 2003. 13. P. 2693.

139. R.B.G. Ravelli, B. Gigant, P.A. Curmi, I. Jourdain, S. Lachkar, A. Sobel, M. Knossow. Insight into tubulin regulation from a complex with colchicines and a stathmin-like domain. Nature. 2004, 428, 198.

140. O.H. Зефирова, А.Г. Дийков, H.B. Зык, Н.С. Зефиров. Лиганды колхицинового сайта тубулина: фармакофорная модель и новые структурные классы. Известия РАН. Сер. хим., 2007, 4, 655.

141. T.L. Nguyen, С. McGrath, A.R. Hermone, J.C. Burnett, D.W. Zaharevitz, B.W. Day, P. Wirf, E. Hamel, R. Gussio. A Common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J. Med. Chem. 2005, 48, 6107.

142. B. Gigant, C. Wang, Ravelli R.B.G., F. Roussi, M.O. Steinmetz, P.A. Curmi, A. Sobel, M. Knossow. Structural basis for the regulation of tubulin by vinblastine. Nature. 2005, 435 (7041), 519.

143. S.S. Rai, J. Wolff. Dissociation of tubulin assembly-inhibiting and aggregation-promoting activities by a vinblastine derivative. FEBS Lett. 1997, 416, 251-253.

144. G.R.Rosania, Y.T. Chang, O. Perez, D. Sutherlin, H. Dong, D.J. Lockhart, P.G. Schultz, Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat. Biotechnol. 2000,18, 304-308.

145. Y.J. Kim, D.L. Sackett, M. Schapira, D.P. Walsh, J. Min, L.K. Pannella, Y.-T. Chang, Identification of 12Cys/?on tubulin as the binding site of tubulyzine. Bioorg. Med. Chem. 2006, 14, 1169-1175.

146. C.F. Beyer, N. Zhang, R. Hernandez, D. Vitale, J. Lucas, T. Nguyen, C. Discafani, S. Ayral-Kaloustian, J.J. Gibbons. TTI-237: A Novel Microtubule-Active Compound with In vivo Antitumor Activity. Cancer Res. 2008, 68 (7), 2292-2300.

147. E.C. Breen, J.J. Walsh. Tubulin-targeting agents in hybrid drugs. Curr. Med. Chem. 2010,17, 609-639.

148. B. Danieli, A. Giardini, G. Lesma, D. Passarella, A. Silvani, G. Appendino, A. Noncovich, G. Fontana, E. Bombardelli, O. Sterner. Synthesis and biological evaluation of paclitaxelthiocolchicine hybrids. Chem. Biodivers., 2004,1, 327-45.

149. K. Bombuwala, T. Kinstle, V. Popik, S.O. Uppal, J.B. Olesen, J. Vina, C.A. Heckman. Colchitaxel, a coupled compound made from microtub ule inhibitors colchicines and paclitaxel. BeilsteinJ. Org. Chem. 2006, 2, nol3.

150. J.W. Hill, W.H. Carothers. Studies of polimerization and ring formation. XIX. Many-membered cyclic anhydrides. J. Am. Chem. Soc. 1933, 55, 5023.

151. L. Lebeau, P. Ducray, C. Mioskowski. Simple and efficient conversion of colchicine into deacetylcolchicine. Synth. Comm. 1997, 27(2), 293.

152. B. Belleau, G. Malek. New convenient reagent for peptide syntheses. J. Am. Chem. Soc. 1968, 90, 1651

153. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55-63.

154. O. Trott, A.J. Olson. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010,31 (2), 455-461.

155. P. Karecla, E. Hirst, P. Bayley. Polymorphism of tubulin assembly in vitro. J. Cell Sci. 1989, 94, 479^188.

156. S.J. Edelstein. Patterns in the quinary structures of proteins. Plasticity and inequivalence of individual molecules in helical arrays of sickle cell haemoglobin and tubulin. Biophys. J. 1980, 32 (1), 347-360.

157. N.R. Watts, N. Cheng, W. West, A.S. Steven, D.L. Sackett. The cryptophycin-tubulin ring structure indicates two points of curvature in the tubulin dimer. Biochemistry. 2002, 41, 12662-12669.

158. D. Saltarelli, D. Pantaloni. Polymerization of the tubulin-colchicine complex and guanosine 5'-triphosphate hydrolysis. Biochemistry. 1982, 21, 2996-3006.

159. E.-M. Mandelkow, E. Mandelkow. Junctions between microtubule walls. J. Mol. Biol. 1979, 129, 135-148.

160. R. Barbier, C. Gregoire, F. Devred, M. Sarrazin, V. Peyrot. In vitro effect of Cryptophycin 52 on microtubule assembly and tubulin: molecular modeling of the mechanism of action of a new antimitotic drug. Biochemistry 2001, 40, 13510-13519.

161. B. Potter, D. Lampe. Chemistry of inositol lipid mediated cellular signaling. Angew. Chem. Int. Ed. Engl. 1995, 34, 1933-1972.

162. S.J. Pollack, J.R. Atack, M.R. Knowles, G. McAllister, C.I. Baker, S.R. Fletcher, I.I. Iverson, H.B. Broughton.Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc. Nat. Acad. Sci. USA. 1994, 91, 5766-5770.

163. A.G. Cole, D. Gani. Active conformation of the inositol monophosphatase substrate, adenosine 2'-phosphate: role of the ribofuranosyl O-atoms in chelating a second Mg2+ ion. J. Chem. Soc. Perkin Trans. 1,1995, 2685.

164. A.G. Cole, J. Wilkie, D. Gani. Probes for the position and mechanistic role of the second catalytic magnesium ion in the inositol monophosphatase reaction. J. Chem. Soc. Perkin Trans. 1,1995, 2695.

165. J. Wilkie, A.G. Cole, D. Gani. 3-Dimensional interactions between inositol monophosphatase and its substrates, inhibitors and metal ion cofactors. J. Chem. Soc. Perkin Trans., 1,1995, 2709.

166. C.M.J. Faroux, M. Lee, P.M. Cullis, K.T. Douglas, S. Freeman, M. Gore. Inversion of configuration during the hydrolysis of d-l-Sp-myo-inositol 170.thiophosphate catalyzed by myoinositol monophosphatase. J. Am. Chem. Soc. 1999,121, 8385.

167. J. Schulz, J. Wilkie, M.W. Beaton, D.J. Miller, D. Gani. Preparation and properties of 6-substituted cyclohexane-l,2,4-triol derivatives: mechanistic probes for the inositol monophosphatase reaction.Biochem. Soc. Trans. 1998, 26, 315.

168. D.J. Miller, M.W. Beaton, J. Wilkie, D. Gani. The 6-OH group of d-inositol 1-phosphate serves as an H-bond donor in the catalytic hydrolysis of the phosphate ester by inositol monophosphatase. Chembiochem. 2000,1, 262.

169. R. Gill, F. Mohammed, R. Badyal, L. Coats, P. Erskine, D. Thompson, J. Cooper, M. Gore, S. Wood. High-resolution structure of /r^o-inositol monophosphate, the putative target of lithium therapy. Acta Cryst. D. 2005, 61, 545-555.

170. J. Schulz, D. Gani. Synthesis and inhibitory properties of (1R, 2R, 4R, 6R)-6-0-(2-hydroxyethyl)cyclohexane-l,2,4,6-tetraol derivatives: mechanistic probes for the inositol monophosphatase reaction. J. Chem. Soc., Perkin Trans. 1. 1997, 657-670.

171. D.J. Miller, M. B-U. Surfraz, M. Akhtar, D. Gani, R.K. Allemann. Removal of the phosphate group in mechanism-based inhibitors of inositol monophosphatase leads to unusual inhibitory activity. Org. Biomol. Chem. 2004, 2, 671-688.

172. J. Schulz, M.W. Beaton, D. Gani. Synthesis of (+)-(lR, 2R, 4R, 6S)-l,6-epoxy-4-benzyloxycyclohexan-2-ol, a key precursor to inositol monophosphatase inhibitors, from (-)-quinic acid. J. Chem. Soc., Perkin Trans. 1. 2000, 943-954.

173. D.J. Miller, R.K. Allemann. myo-Inositol monophosphatase: a challenging targer for mood stabilising drugs. Mini-Rev. in Medicinal Chem. 2007, 7(2), 107-113.

174. A.M.P. van Steijn, H.A.M. Willems, Th. De Boer, J.L.T. Geurts, C.A.A. van Boeckel. Synthesis of myo-inositol-1-phosphate inhibitors in which the phosphate group is replaced with less polar groups. Bioorg. Med. Chem. Lett., 1995, 5(5), 469^-74.

175. R.J. Cremlyn, R.M. Ellam N. Akhtar. Some phosphorylated derivatives of 1- and 2-adamantanols and 1-adamantylamine. Phosph. and Sulfur. 1979, 7(3), 257-264.

176. Y. Okamoto. Synthesis of alkyl dihydrogenphosphate by the reaction of alcohols and silyl polyphosphate. Bull. Chem. Soc. Jpn. 1985, 58, 3393-3394.

177. H. Bohringer, H Vogt. Synthese der phosphorsaureester durch reaction mit 2-chlor-l,3-dioxa-2-phosphoridan-2-oxid. Arch. Pharm. 1977, 310, 894-905.

178. M.B. Анохин, H.B. Аверина, H.B. Зык, O.H. Зефирова. Вести. Моск. Ун-та. Сер. хим. 2008. 49(4), 241-245.

179. Т.А. Khwaja, С.В. Reese, J.C.M. Stewart. A convenient general procedure for the conversion of alcohols into their monophosphate esters. J. Chem. Soc., 1970, 2092-2100.

180. Z. Majerski, Z. Hamersak. Rearrangement of bridgehead alcohols to polycyclic ketones by fragmentation-cyclization: 4-protoadamantanone (tricycle-4.3.1.03'8.decan-4-one). Org. Synthesis. 1979, 59, 147.

181. Э. Преч, Ф. Бюльман, К. Аффольтер. Определение строения органических соединений. М.: Мир, 2006. 439 с.

182. A.N. Abdel-Sayed, L. Bauer. Syntheses of 1,2-disubstituted adamantanes. Tetrahedron. 1988, 44(7), 1873.

183. K. Itaya, M. Ui. A new micromethod for the colorimetric determination of inorganic phosphate. Clin. Chim. Acta. 1966,14(3), 361-366.

184. C.M. Crudden, A.C. Chen, L.A. Calhoun. A demonstration of the primary stereoelectronic effect in the Baeyer-Villiger oxidation of ы-fluorocyclohexanones. Angew. Chem. Int. Ed. 2000, 39, 2851-2655.

185. D.S. Teager and R.K. Murray, Jr. Oxidation of 2,4-didehydroadamantane. J. Org. Chem. 1993, 58, 5548.

186. N.A. Marron, J.E. Gano. Synth. Commun. A. Direct photochemical synthesis of 1,2-disubstituted adamantanes. 1977. 7. 515.

187. В.Г. Граник, Н.Б. Григорьев. Оксид азота (NO) новый путь к поиску лекарств. М.: Вузовская книга. 2004. 360 с.

188. S. Ohta, S. Matsuda, М. Gunji, A. Kamogawa. The role of nitric oxide in radiation damage. Biol. Pharm. Bull. 2007, 30(6), 1102—1107.

189. D.L. Rousseau, D. Li, M. Couture, S.-R. Yeh. Ligand-protein interactions in nitric oxide synthase. J. Inorg. Biochem. 2005, 99, 306-323.

190. С.Я. Проскуряков, А.Г. Коноплянников В.Г. Скворцов, А.А. Мандругин, В.М. Федосеев. Ингибиторы NO-синтаз, содержащие карбоксамидиновую группу и ее изостеры. Успехи Химии. 2005, 74, 939.

191. Н. Ji, J. Gomez-Vidal, P. Martasek, L. Roman, R. Silverman. Conformationally restricted dpeptide amides as potent and selective neuronal nitric oxide synthase inhibitors J. Med. Chem. 2006, 49, 6254-6263.

192. С.Я. Проскуряков, А.Г. Конопляников, В.Г. Скворцов, А.А. Мандругин, В.М. Федосеев. Структура и активность ингибиторов NO-синтаз, специфичных к L-аргининсвязывающему центру. Биохимия. 2005, 70, 14.

193. Н. Li, С. Raman, P. Martasek, V. Krai, В. Masters, Т. Poulos. Mapping the active site polarity in structures of endothelial nitric oxide synthase heme domain complexed with isothioureas. J. Inorg. Biochem. 2000, 81, 133-139.

194. А.Г. Конопляников, С.Я. Проскуряков, О.А. Коноплянникова, А.И. Тришкина, J1.B. Штейн, Ю.Г. Верховский, А.И. Колесникова, Т.П. Трофимова, А.А.

195. А.А. Мандругин, А.Г. Тарасенко, В.М. Федосеев, Э.И. Гинцбург, И.В. Некрасова. Исследование поведения 2-амино-Д2-тиазолина и 2-амино-Д2-дигидро-1,3-тиазина в организме млекопитающих. Радиобиология. 1974,14(1), 26-29.

196. S.K. Shah, S.K. Grant, М. Maccoss, К. Shankaran, Н. Qi, R. Guthikonda. Substituted heterocycles as inhibitors of nitric oxide synthase. International Patent WO 96/14842. 23.05.1996.

197. А.А. Левцова, B.B. Чупахин, А.Н. Прошин, А.Н. Пушин, Т.П. Трофимова, О.Н.Зефирова. Создание потенциальных ингибиторов синтазы оксида азота на основе производных 2-амино-5,6-дигидро-4Н-1,3-тиазина. Вестн. Моск. Ун-та. Серия 2. Химия. 2007, 48, 299.

198. B. Le Bourdonnec, L. Leister, C. Ajello, J. Casse, P. Seida, H. O'Hare, M. Gu, G. Chu, P.

199. Tuthill, R. DeHaven, R. Dolle. Discovery of a series of aminopiperidines as novel iNOS inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 336.

200. S.G. Duron, A. Lindstrom, C. Bonnefous, H. Zhang, X. Chen, K.T. Symons, M. Sablad, N. Rozenkrants, Y. Zhang, L. Wang, N. Yazdani, A.K. Shiau, S.A. Noble, P. Rix, T.S.

201. Rao, Ch.A. Hassig, N.D. Smith. Heteroaromatic-aminomethyl quinolones: potent and selective iNOS inhibitors. Bioorg. Med. Chem. Lett. 2012, 22(2), 1237-1241.

202. Sh. Maddaford, P. Renton, J. Speed, S.C. Annedi, J. Ramnauth, S. Rakhit, J. Andrews,

203. G. Mladenova, L. Majuta, F. Porreca. 1,6-Disubstituted indole derivatives as selective human neuronal nitric oxide synthase inhibitors. Bioorg. Med. Chem. Lett. 2011, 21(18), 5234-5238.

204. P. Renton, J. Speed, Sh. Maddaford, S.C. Annedi, J. Ramnauth, S. Rakhit, J. Andrews. 1,5-Disubstituted indole derivatives as selective human neuronal nitric oxide synthase inhibitors. Bioorg. Med. Chem. Lett. 2011, 21(18), 5301-5304.

205. А. А. Мандругин, С.Я.Проскуряков, Т.П.Трофимова, Ю.Г.Верховский, Н.С. Зефиров, О.Н. Зефирова, В.М. Федосеев. Антигипотензивное средство. Патент РФ №2338538 от 20.11.2008.

206. Р.Т. Lang, S.R. Brozell, S. Mukherjee, E.F. Pettersen, E.C. Meng, V. Thomas, R. Rizzo, D.A. Case, T.L. James and I.D. Kuntz. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA. 2009,15, 1219.

207. The PyMOL Molecular Graphics System. Version 0.99, Schrodinger, LLC.

208. J.R. Piper, T.P. Johnston. Heteroalicyclic analogs of 2- and 3-aminoalkanethiols. J. Org. Chem. 1963, 981.

209. S.M. Fahmy, R.M. Moharev. Activated nitriless in heterociclyc synthesis: a novel synthesis or tetrazole derivatives. Synth. Commun. 1983, 6, 478.

210. R.L. Frank, P.V. Smith, R.T. Arnold, S. Sundet. a-Phenylthiourea. Org. Synth. Coll. Vol. 1955, 3, 735; 1948, 28, 89.

211. M.P. Foloppe, S. Rault, M. Robba. Pyrrolo2,l-c.[l,4]benzodiazepines: A mild conversion of thiolactam into amidine. Tetrahedron. Lett. 1992, 33, 2803.

212. W. Hanefeld, E. Bercin. Neuartige umwandlungen an Tetrahydro-l,3-thiazin-2-tionen mittels Thionylchlorid. Arch. Pharm. 1985, 318, 60.

213. M.B. Онуфриев, Т.П. Семенова, С.Г. Колаева, Ю.В. Моисеева, JI.K. Егорова,

214. H.В. Гуляева. Активность синтазы оксида азота в отделах мозга сусликов Citellus undulatus в разных фазах гибернационного цикла. Нейрохимия. 2002,19, 264-268.

215. J. von Braun, R. Haensel, F. Zobel. Uber das bicjclische 2,6-Methylenpiperidin. Justus Liebigs Ann. Chem. 1928, 462(1), 283-300.

216. P. Pevet, B. Botherel, H. Slotten, M. Saboureau. The cronobiotic properties of melatonin. Cell Tissue Res. 2002, 309, 183-191.

217. C.A. Medeiros, P.F. Carvalhedo de Bruin, L.A. Lopes, M.C. Magalhaes, M. de Lourdes Seabra, V.M. de Bruin. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson's disease. J. Neurol. 2007, 254, 459-464.

218. I.B. Hickie, N.L. Rogers. Novel melatonin-based therapies: potential advances in the treatment of major depression. Lancet. 2011, 378 (9791), 621-631.

219. M.D. Mediavilla, E.J. Sanchez-Barcelo, D.X. Tan, L. Manchester, R.J. Reiter. Basic mechanisms involved in the anti-cancer effects of melatonin. Curr. Med. Chem. 2010,17, 4462-4481.

220. A. Carrillo-Vico, R.J. Reiter, P.J. Lardone, J.L. Herrera, R. Fernandez-Montesinos, J.M. Guerrero, D. Pozo. The modualtory role of melatonin in immune responsiveness. Curr. Opin. Invest. Drugs. 2006, 7, 423-431.

221. P.K. Li, P.A. Witt-Enderby. Melatonin receptors as targets for drug discovery. Drugs of the Future. 2000, 25, 945-957.

222. M.L. Dubocovich. Melatonin receptors: are there multiple subtypes. Trends Pharmacol. Sci. 1995,16, 50-56.

223. D.P. Zlotos. Recent advances in melatonin receptor ligands. Arch. Pharm. Chem. Life Sci. 2005, 338, 229-247.

224. А.Э. Воронков, А.А. Иванов, И.И. Баскнн, В.А. Палюднн, H.C. Зефиров. Изучение механизма связывания лигандов мелатониновых рецепторов человека методом молекулярного моделирования. ДАН. 2005, 403(3), 409—413.

225. O.N. Zefirova, T.Yu. Baranova, A.A. Ivanova, A.A. Ivanov, N.S. Zefirov. Application of the bridgehead fragments for the design of conformationally restricted melatonin analogues. J. Bioorg. Chem. 2011, 39, 67-72.

226. M.L. Dubocovich. Agomelatine targets a range of major depressive disorder symptoms. Curr. Opin. Invest. Drugs. 2006, 7, 670-680.

227. I.C. Sumaya, M.I. Masana, M.L. Dubocovich. The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MTi melatonin receptors. J. Pineal. Res. 2005, 39, 170-177.

228. S. Rivara, M. Mor, M. Lorenzi, A. Lodola, P.V. Plazzi, G. Spandoni, A. Bedini, G. Tarzia. MT selective receptor antagonists: design and structure activity relationships. ARKIVOC. 2006, 8, 8-16.

229. P.J. Garratt, R. Jones, D.A. Tocher, D. Sugden. Mapping the melatonin receptor. 3. Design and synthesis of melatonin agonists and antagonists derived from 2-phenyltryptamines. J. Med. Chem. 1995, 38, 1132-1139.

230. D.J. Davies, P.J. Garratt, D.A. Tocher, S. Vonhoff. Mapping the melatonin receptor 5. Melatonin aginists and antagonists derived from tetrahydrocyclopentb.indoles, tetrahydrocarbazoles and hexahydrocyclohept[b]indoles. J. Med. Chem. 1998, 41, 451467.

231. P. Scheerer, J.H. Park, P.W. Hildebrand, Y.J. Kim, N. KrauB, H.-W. Choe, K.P. Hofmann, O.P. Ernst. Crystal structure of opsin in its G-protein-interacting conformation. Nature. 2008, 455, 497-502.

232. M. Gerdin, F. Mseeh, M.L. Dubocovich. Mutagenesis studies of the human MT2 melatonin receptor. Biochem. Pharmacol. 2003, 66, 315-320.

233. A. Farce, A.O. Chugunov, C. Loge, A. Sabaouni, S. Yous, S. Dilly, N. Renault, G. Vergoten, R.G. Efremov, D. Lesieur, P. Chavatte. Homology modeling of MTi and MT2 receptors Eur. J. Med. Chem. 2008, 43, 1926-1944.

234. M.L. Trudell, J.M. Cook. Total synthesis of (,+-.)-suaveoline. J. Am. Chem. Soc. 1989, 777,7504.

235. X. Fu, J.M. Cook. General approach for the synthesis of ajmaline-related alkaloids. Enantiospecific total synthesis of (-)-suaveoline, (-)-raumacline, and (-)-Nb-methylraumacline. J. Org. Chem. 1993, 58, 661.

236. P.D. Bailey, K.M. Morgan. The total synthesis of (-)-suaveoline. J. Chem. Soc., Perkin Trans. I. 2000, 3578.

237. П.П. Кадзяускас, Ю.А. Буткус, H.B. Васюлите, Н.В. Аверина, Н.С. Зефиров. Синтез индолов, скондесированных с бицикло3.3.1.нонановым скелетом. ХГС. 1979, 3, 315.

238. Е. Butkus, U. Berg, J. Malinauskien, J. Sandstrom. Synthesis and chiroptical properties of methanocyclooctab.indoles. J. Org. Chem. 2000, 65, 1353.

239. I.M. Gilbert, C.L. Hewett, D.R. Rae, J. Redpath, D.S. Savage, T. Sleigh. 5,9-Methanobenzoannulenamines. Part 1. Improved synthesis of 1 l-amino-5,9-methanobenzo8.annulenes. J. Chem. Soc., Perkin Trans. I. 1995, 133.

240. Э.П. Буткус, А.И. Жилинскас, Н.С. Зефиров, П.П. Кадзяускас. Реакции кетонов ряда бицикло3.3.1.нонана с сужением цикла. ЖОрХ. 1986, 22, 871.

241. Е. Butkus, U. Berg, A. Stoncius, A. Zilinskas. Chromatograpphic separation and absolute configuration of chiral methyl 2-oxobicyclo3.2.1.octane-6-carboxylate. Mendeleev Commun. 1995, 5, 96-97.

242. M. Takemoto, Y. Iwakiri, Y. Suzuki, K. Tanaka. A mild procedure for the oxidative cleavage of substituted indoles catalyzed by plant cell cultures. Tetrahedron Lett. 2004, 45, 8061.

243. T. Itoh, K. Kaneda, I. Watanabe, S. Ikeda, S. Teranishi. Amino substituent effect on oxygenation of enamines catalyzed by cupric chloride. Chem. Lett. 1976, 227.

244. A.B. Smith III, H. Cui. Total Synthesis of (-)-21-Isopentenylpaxilline. Org. Lett. 2003, 5, 587.

245. A. Sali, T.L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779.

246. V-P. Jaakola, M.T. Griffith, M.A. Hanson, V. Cherezov, E.Y. Chien, J.R. Lane, A.P. IJzerman, R.C. Stevens. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science. 2008, 322, 1211.

247. M. Regits. New methods of preparative organic chemistry. Transfer of diazo groups. Angew. Chem. Int. Ed. 1967, 6, 733-749.

248. P.E. Eaton, K. Nyi. 4.2.2.- and [3.2.2]Propellanes. J. Am. Chem. Soc. 1971, 93, 27862788.

249. A.A. Asselin, L.G. Humber. Ethanocarbazolederivatives and antidepressant compositions. US Patent 4.304.772. Chem. Abstr. 1982. PI22632k.

250. K.B. White, W. Reusch. The synthesis of bicyclo2.2.2.octan-2-ones by sequential Michael reaction. Tetrahedron. 1978, 34, 2439-2444.

251. H. Hagiwara, S. Endou, M. Fukushima, T. Hoshi, T. Suzuki. Autocatalytic domino Michael reaction leading to bicyclo2.2.2.octan-2,5-dione derivatives. Org. Lett. 2004, 6(7), 1115-1118.

252. P. Paul, C. Lahaye, P. Delagrange, J.P. Nicolas, E. Canet, J.A. Boutin. Characterization of 2-l2:>I.iodomelatonin binding sites in Syrian hamster peripheral organs. J. Pharmacol. Exp. Ther. 1999, 290, 334-340.

253. M. Pytliak, V. Vargova, V. Mechirova, M. Felsoci. Serotonin receptors from molecular biology to clinical applications. Physiol. Res. 2011, 60, 15-25.

254. D.E. Nichols, C.D. Nichols. Serotonin Receptors. Chem. Rev. 2008, 108(5), 1614-1641.

255. Serotonin Receptors and their Ligands. Eds. B. Olivier, I. van Wijngaarden, W. Soudijn. Elsevier, Amsterdam, 1997, 367 pp.

256. Y.D. Paila, S. Tiwari, D. Sengupta, A. Chattopadhyay. Molecular modeling of the human serotonin(l A) receptor: role of membrane cholesterol in ligand binding of the receptor. Mol. Biosyst. 2011, 7(1), 224-34.

257. M. Nowak, M. Koaczkowski, M. Pawowski, A.J. Bojarski. Homology modeling of the serotonin 5-HTia receptor using automated docking of bioactive compounds with defined geometry. J. Med. Chem. 2006, 49, 205-214.

258. V. Isberg, Th. Balle, T. Sander, F.S. Jorgensen, D.E. Gloriam. G Protein- and agonist-bound serotonin 5-HT2A receptor model activated by steered molecular dynamics simulations. J. Chem. Inf. Model. 2011, 51(2), 315-325.

259. C. Melis, P.-L. Chau, K.L. Price, S.C.R. Lummis, C. Molteni. Exploring the binding of serotonin to the 5-ht3 receptor by density functional theory. J. Phys. Chem. 2006, 110, 26313-26319.

260. M. Dukat, P.D. Mosier, R. Kolanos, B.L. Roth, R.A. Glennon. Binding of serotonin and ./W-benzenesulfonyltryptamine-related analogs at human 5-HT6 serotonin receptors: receptor modeling studies. J. Med. Chem. 2008, 51, 603-611.

261. Y.-C. Xu, J.M. Schaus, C. Walker, J. Krushinski, N. Adham, J.M. Zgombick, S.X. Liang, D.T. Kohlman, J.E. Audia. /V-Methyl-5-/er/-butykryptamine: a novel, highly potent 5-HT1D receptor agonist. J. Med. Chem. 1999, 42, 526-531.

262. B. Grella, M. Teitler, C. Smith, K. Herrick-Davis, R.A. Glennon. Binding of (3-carbolines at 5-HT2 serotonin receptors. Bioorg. Med. Chem. Lett. 2003, 13, 4421-4425.

263. N. Khorana, C. Smith, K. Herrick-Davis, A. Purohit, M. Teitler, B. Grella, M. Dukat, R. Glennon. A binding of tetrahydrocarboline derivatives at human 5-HT5A receptors. J. Med. Chem. 2003, 46, 3930-3937.

264. D. Hamprecht, F. Micheli, G. Tedesco, D. Donati, M. Petrone, S. Terreni, M. Wood. 5-HT2C antagonists based on fused heterotricyclic templates: Design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2007, 17, 424^-27.

265. R.A. Glennon. Higher-end serotonin receptors: 5-HT5, 5-HT6, and 5-HT7. J. Med. Chem. 2003, 46, 2795-2812.

266. S. Vangveravong, A. Kanthasamy, V.L. Lucaites, D.L. Nelson, D.E. Nichols. Synthesis and serotonin receptor affinities of a series of /ra«i-2-(indol-3-yl)cyclopropylamine derivatives. J. Med. Chem. 1998, 41, 4995-5001.

267. M. Gerasimov, D. Marona-Lewicka, D.M. Kurrasch-Orbaugh, A.M. Qandil, D.E. Nichols. Further studies on oxygenated tryptamines with LSD-like activity incorporating a chiral pyrrolidine moiety into the side chain. J. Med. Chem. 1999, 42, 4257—4263.

268. E. Hedner, M. Sjogren, P.-A. Frandberg, T. Johansson, U. Goransson, M. Dahlstrom, P. Jonsson, F. Nyberg, L. Bohlin. Brominated cyclodipeptides from the marine sponge geodia barretti as selective 5-HT ligands. J. Nat. Prod. 2006, 69, 1421-1424.

269. G. Maksay, Z. Bikadi, M. Simonyi. Binding Interactions of Antagonists with 5-Hydroxytryptamine3A Receptor Models. J. Recept. Sign. Transduct. 2003, 23(2-3), 255270.

270. H. Nishio, A. Fujii, Y. Nakata. Re-examination for pharmacological properties of serotonin-induced tachycardia in isolated guinea-pig atrium. Behav. Brain Res. 1996, 73, 301-304.

271. S. Yoshida, T. Watanabe, Y. Sato. Regulatory molecules for the 5-НТз receptor ion channel gating system. Bioorg. Med. Chem. 2007, 15, 3515-3523.

272. S. Bachurin, E. Bukatina, N. Lermontova, S. Tkachenko, A. Afanasiev, V. Grigoriev, I. Grigorieva, Y. Ivanov, S. Sablin, N. Zefirov. Ann. N.Y. Acad. Sci. 2001, 939, 425.

273. M. Кадиева, Э.Т. Оганесян, O.H. Зефнрова. Антагонисты АМРА/КА и NMDA (глициновый сайт) подтипов глутаматных рецепторов. Хим. фарм. журнал. 2008, 21-30.

274. V.V. Grigor'ev, О. A. Dranyi, S.O. Bachurin. Comparative study of action mechanisms of Dimebon and Memantine on AMP A- and NMDA-subtypes glutamate receptors in rat cerebral neurons. Bull. Exp. Biol. Med. 2003,136(5), 474^177.

275. D. Hung. Dimebon: A phase 3 investigational agent for Alzheimer's disease with a novel mitochondrial mechanism of action. Presented at the International conference on Alzheimer's disease, Chicago, IL, USA, July 2008, papre S4-04-05.

276. P.H. Reddy, M.F. Beal. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol. Med. 2008,14(2), 45-53.

277. A.H. Кост, M.A. Юровская, T.B. Мельникова, О.И. Потанина. Химия индола. XXXIII. О пиридилэтилировании группы NH у индольных соединений. ХГС. 1973, 207-212.

278. Е.Д. Плотникова, Е.В. Нуриева, О.Н. Зефирова. Материалы Всероссийской конференции «Инновации в химии: достижения и перспективы». 19-23.04.2010, Москва, С. 29.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.