Химический синтез природных и модифицированных РНК фосфотриэфирным методом тема диссертации и автореферата по ВАК РФ 02.00.10, кандидат химических наук Аралов, Андрей Владимирович

  • Аралов, Андрей Владимирович
  • кандидат химических науккандидат химических наук
  • 2011, Москва
  • Специальность ВАК РФ02.00.10
  • Количество страниц 117
Аралов, Андрей Владимирович. Химический синтез природных и модифицированных РНК фосфотриэфирным методом: дис. кандидат химических наук: 02.00.10 - Биоорганическая химия. Москва. 2011. 117 с.

Оглавление диссертации кандидат химических наук Аралов, Андрей Владимирович

Список сокращений.

Введение.

Защитные группы, используемые в синтезе фрагментов РНК (литературный обзор).

Рекомендованный список диссертаций по специальности «Биоорганическая химия», 02.00.10 шифр ВАК

Заключение диссертации по теме «Биоорганическая химия», Аралов, Андрей Владимирович

Выводы

1. Разработана методика введения 2'-0-азидометильной группы в нуклеозиды, позволяющая избежать побочной реакции галогенирования гетероциклических оснований.

2. Разработаны схемы синтеза мономеров, содержащих 2О-азидометильную, 2'-О-{2-азидометил)беизоильную и /У-(2-азидометил)бензоильную группы, для фосфотриэфирного метода синтеза олигорибонуклеотидов на основе 0-нуклеофильного внутримолекулярного катализа. Показано, что использование мономеров, содержащих 2'-О-азидометильную и -/V- (2-азидометил) бснзоильную группы, позволяет эффективно синтезировать фрагменты РНК.

3. Предложены новые фосфорилирующие реагенты, содержащие в своем составе О-нуклеофильную каталитическую 4-метокси-1-оксидо-2-пиколильную Р-защитную группу, использование которых позволяет повысить суммарные выходы мономеров и сократить время их синтеза.

4. Предложен способ введения (4-нитробензилокси) метальной группы в состав рибонуклеозидов, получен 2'-0-(4-ЫВ0М) уридиновый мономер для фосфотриэфирного метода и показана эффективность его использования в синтезе фрагментов РНК.

5. Разработаны схемы синтеза мономеров, содержащих модифицирующую 2 '-О-метоксиметильную группу, использование которых обеспечивает высокоэффективный синтез 2 '-0-модифицированных олигорибонуклеотидов.

6. Исследования по ферментативному расщеплению олигорибонуклеотидов, 2 ' О-модифицированных азидометилыюй или метоксиметильной группами, а также исследования термической стабильности дуплексов, образованных этими аналогами олигорибонуклеотидов с комплементарными НК, позволяют сделать вывод о возможности их применения для различных молекулярно-биологических исследований.

Список литературы диссертационного исследования кандидат химических наук Аралов, Андрей Владимирович, 2011 год

1. Yan, А. С.; Bell, К. М; Breeden М. М.; Ellington, A. D. Aptamers: Prospects In Therapeutics And Biomedicine. Front. Biosci., 2005, 10, 1802-1827.

2. Bevilacqua, P. C.; Yajima, R. Nucleobase catalysis in ribozyme mechanism. Curr. Opin. Chew. Biol., 2006, 10, 455-464.

3. Fire, A.; Xu, S.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, С. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391, 806-811.

4. Elbashir, S. M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411, 494-498.

5. Dorsett, Y.; Tuschl, T. siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discovery, 2004, 3, 318-329.

6. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116, 281-297.

7. Reese, C.B. The chemical synthesis of oligo and poly-nucleotides by the phosphotriester approach. Tetrahedron, 1978, 34, 3143-3179.

8. Jarvinen, P.; Oivanen, M.; Lonnberg, H. Interconversion and phosphoester hydrolysis of 2',5' and 3',5'-dinucleoside monophosphates: Kinetics and mechanisms. J. Org. Chem., 1991, 56, 5396-5401.

9. Kuusela, S.; Lonnberg, H. Hydrolysis and isomerisation of the internucleosidic phosphodiester bonds of polyuridylic acids: Kinetics and mechanism. J. Chem. Soc. Perkin Trans., 1994, 2, 2109-2113.

10. Griffin, B.E.; Jarman, M.; Reese, C.B. The synthesis of oligoribonucleotides. IV. Preparation of dinucleoside phosphates from 2',5' protected ribonucleoside derivatives. Tetrahedron, 1968, 24, 639-662.

11. Schaller, II.; Weimann, G.; Lerch, В.; Khorana, H.G. Protected derivatives of deoxyribonucleosides and new syntheses of deoxyribonucleoside-3'-phosphates. J. Am. Chem. Soc., 1963, 85, 3821-3827.

12. Chattopadhyaya, J.В.; Reese, C.B. The 9-phenylxanthen-9-yl protecting group. J. Chem. Soc.; Chem. Commun., 1978, 639-640.

13. Sonveaux, E. Protecting groups in oligonucleotide synthesis. In Protocols for Oligonucleotide Conjugates: Synthesis and Analytical Techniques (Ed. Agrawal, S.) Humana Press, Totowa, N.J., 1994, 1-71.

14. Chattopadhyaya, J.B.; Reese, C.B.; Todd, A.H. 2-Dibromobenzoyl: An acyl protecting group removable under exceptionally mild conditions. J. Chem. Soc.; Chem. Commun., 1979, 987-988.

15. Rao, M.V.; Reese, C.B.; Schehlmann, V.; Yu, P.S. Use of the l-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp) protecting group in the solid phase synthesis of oligo- and polyribonucleotides. J. Chem. Soc. Perkin Trans., 1993, 1, 43-55.

16. Vinayak, R.; Anderson, P.; McCollum, C.; Hampel, A. Chemical synthesis of RNA using fast oligonucleotide deprotection chemistry. Nucleic Acids Res., 1992, 20, 1265-1269.

17. Jones, S.S.; Reese, C.B.; Sibanda, S.; Ubasawa, A. The protection of uracil and guanine residues in oligonucleotide synthesis. Tetrahedron Lett., 1981, 22, 4755-4758.

18. Reese, C.B.; Skone, P.A. The protection of thymine and guanine residues in oligodeoxyribonucleotide synthesis. J. Chem. Soc. Perkin Trans., 1984, 1, 1263-1271.

19. Reese, C.B.; Zard, L. Some observations relating to oximate ion promoted unblocking of oligonucleotide aryl esters. Nucleic Acids Res., 1981, 9, 4611-4626.

20. Kamimura, 71; Tsuchiya, M.; Urakami, K.; Koura, K.; Sekine, M.; Shinozaki, K.; Miura, K.; Hata, T. Synthesis of a dodecaribonucleotide GUAUCAAUAAUG by use of fully protected ribonucleotide building blocks. J. Am. Chem. Soc., 1984, 106, 4552-4557.

21. Reese, C.B. A systematic approach to oligoribonucleotide synthesis. Colloq. Int. Cent. Natl. Rech. ScL, 1970, 182, 319-328.

22. Reese, C.B.; Titmas, R.C.; Yau, L. Oximate ion promoted unblocking of oligonucleotide phosphotriester intermediates. Tetrahedron Lett., 1978, 30, 2727-2730.

23. Honda, S.; Urakami, K; Koura, K.; Terada, K; Sato, Y.; Kohno, K.; Sckine, M.; Hata, T. Synthesis of oligoribonucleotides by the use of S,S-diphenyl TV-monomethoxytrityl ribonucleoside 3'-phosphorodithioates. Tetrahedron, 1984, 40, 153-163.

24. Griffin, B.E.; Reese, C.B.; Stephenson, G.F.; Trentham, D.R. Oligoribonucleotide synthesis from nucleoside 2'-0-benzyl ethers. Tetrahedron Lett., 1966, 4349-4354.

25. Reitz, G. and Pfleiderer, W. Synthese und Eigenschaften von 0-benzyl substituierten Diuridylphosphaten. Chem. Ber., 1975, 108, 2878-2894.

26. Ohtsuka, E.; Tanaka, S.; Ikehara, M. Synthesis of the heptanucleotide corresponding to a eukaryotic initiator tRNA loop sequence. J. Am. Chem. Soc., 1978, 100, 8210-8213.

27. Hayes, J.A.; Brunden, M.J.; Gilham, P.T.; Gough, G.R. High-yield synthesis of oligoribonucleotides using o-nitrobenzyl protection of 2'-hydroxyls. Tetrahedron Lett., 1985, 26, 2407-2410.

28. Ohtsuka, E.; Iwai, S. Chemical synthesis of RNA. In Synthesis and Applications of DNA and RNA (Ed. Narang, S.A.) Academic Press, San Diego. 1987, 115-136.

29. Takaku, H; Kamaike, K. Synthesis of oligoribonucleotides using 4-methoxybenzyl group as a new protecting group of the 2'-hydroxyl group of adenosine. Chem. Lett., 1982, 189-192.

30. Takaku, H.; Kamaike, K.; Tsuchiya, H. Synthesis of ribooligonucleotides using the 4-methoxybenzyl group as a new protecting group for the 2'-hydroxyl group. J. Org. Chem., 1984, 49, 51-56.

31. Takaku, IL; Ito, T.; Lwai, K. Use of the 3,4-dimethoxybenzyl group as a protecting group for the 2'-hydroxyl group in the synthesis of oligoribonucleotides. Chem. Lett., 1986, 1005-1008.

32. Klösel, R.; König, S.; Lahnhoff.; Karl, R.M. l,l-Dianisyl-2,2,2-trichlorethyl ethers—a new protection for the hydroxyl group. Tetrahedron Lett., 1996, 52, 1493-1502.

33. Saneyoshi H.; Ando K; Seio K.; Sekine M. Chemical synthesis of RNA via 2'-cyanoethylated intermediates. Tetrahedron, 2007, 63, 11195-11203.

34. Saneyoshi, H.; Seio, K.; Sekine, M. A General Method for the Synthesis of 2 '-0~ Cyanoethylated Oligoribonucleotides Having Promising Hybridization Affinity for DNA and RNA and Enhanced Nuclease Resistance. J. Org. Chem., 2005, 70, 10453-10460.

35. Masaki, Y.; Miyasaka, R.; Ohkubo, A.; Seio K; Sekine, M. Linear Relationship between Deformability and Thermal Stability of 2'-O Modified RNA Hetero Duplexes. J. Phys. Chem. B, 2010, 114, 2517-2524.

36. Tanaka, S.; ILirakawa, T.; Oishi, K.; Hayakawa, Y.; Kitamura, M. A new synthetic route to oligoribonucleotides based on CpRu-catalyzed deallylation. Tetrahedron Lett., 2007, 48, 73207322.

37. Gopalakrishanan, V.; Kumar, V.; Ganesh, K.N. Regioselective 2',3'-0-Allylation of Pyrimidine Ribonucleosides Using Phase Transfer Catalysis. Nucleosides and Nucleotides, 1992, 11, 1263-1273.

38. Stork, G.; Hudrlik, P.F. Isolation of ketone enolates as trialkylsilyl ethers. J. Am.Chem. Soc., 1968, 90, 4462-4464.

39. Corey, E.J.; Venkatcswarlu, A. Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives. J. Am. Chem. Soc., 1972, 94, 6190-6191.

40. Ogilvie, K.K.; Sadana, K.L.; Thompson, A.E.; Quillian, M.A.; Westmore, J.B. The use of silyl groups in protecting the hydroxyl functions of ribonucleosides. Tetrahedron Lett., 1974, 2861-2863.

41. Damha, M.J.; Ogilvie, K.K. Oligoribonucleotide synthesis. The silyl-phosphoramidite method. In Protocols for Oligonucleotides and Analogs (Ed. Agrawal, S.) Humana Press, Totowa, N.J. 1993,81-114.

42. Jones, S.S.; Reese, C.B. Migration of i-butyldimethylsilyl protecting groups. J. Chem. Soc. Perkin Trans., 1979,1, 2762-2764.

43. Sproat, B.S.; Calonna, F.; Mullah, B.; Tsou, D.; Andrus, A.; Hampel, A.; Vinayak, R. An efficient method for the isolation and purification of oligoribonucleotides. Nucleosides and Nucleotides, 1995, 14, 255-273.

44. Brown, T.; Brown, D.J.S. Modern machine-aided methods of oligoribonucleotide synthesis. In Oligonucleotides and Analogues. A Practical Approach (Ed. Eckstein, F.) IRL Press, Oxford. 1991, 1-24.

45. Stawinski, J.; Strdmberg, R.; Thelin, M; Westman, E. Studies on the f-butyldimethylsilyl group as 2'-0-protection in oligoribonucleotide synthesis via the H-phosphonate approach. Nucleic Acids Res., 1988, 16, 9285-9298.

46. Chaix, C.; Molko, D.; Teoule, R. The use of labile base protecting groups in oligoribonucleotide synthesis. Tetrahedron Lett., 1989, 30, 71-74.

47. Mullah, B.; Andrus, A. Purification of 5'-O-trityl-on oligoribonucleotides. Investigation of phosphate migration during purification and detritylation. Nucleosides and Nucleotides, 1996, 15, 419-430.

48. Goodwin, J.T.; Stanick, W.A.; Glick, G.D. Improved solid-phase synthesis of long oligoribonucleotides. Application to tRNAPhe and tRNAGly. J. Org. Chem., 1994, 59, 79417943.

49. Wincott, F.; DiRenzo, A.; Shaffer, C.; Grimm, S.; Tracz, D.; Workman, C.; Sweedler, D.; Gonzalez, C.; Scaringe, S.; Usman, N. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res., 1995, 23, 2677-2684.

50. Gasparutto, D.; Livache, T.; Bazin, H.; Duplaa, A.-M.; Guy, A.; Khorlin, A.; Molko, D.; Roget, A.; Teoule, R. Chemical synthesis of a biologically active natural RNA with its minor bases. Nucleic Acids Res., 1992, 20, 5159-5166.

51. Westman, E.; Stromberg, R. Removal of i-butyldimethylsilyl protection in RNA synthesis. Triethylamine trihydrofluoride (TEA-3HF) is a more reliable alternative to tetrabutylammonium fluoride (TBAF). Nucleic Acids Res., 1994, 22, 2430-2431.

52. Capaldi, D.C.; Reese, C.B. Use of the l-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp) and related protecting groups in oligoribonucleotide synthesis: Stability of internucleotide linkages to aqueous acid. Nucleic Acids Res., 1994, 22, 2209-2216.

53. Smrt, J.; Sorm, F. Oligonucleotide compounds I. The direct blocking of 2'-hydroxyl in ribonucleoside-3'phosphates. The synthesis of 6-azauridylyl-(5 '—>3')-uridine. Coll. Czech. Chem. Commun., 1962, 27, 73-86.

54. Griffin, B.E.; Reese, C.B. Oligoribonucleotide synthesis via 2,5-protected ribonucleoside derivatives. Tetrahedron Lett., 1964, 2925-2931.

55. Reese, C.B.; Saffhill, R.; Sulston, J.E. A symmetrical alternative to the tetrahydropyranyl protecting group. J. Am. Chem. Soc., 1967, 89, 3366-3368.

56. Reese, C.B.; Saffhill, R.; Sulston, J.E. 4-Methoxytetrahydropyran-4-yl. A symmetrical alternative to the tetrahydropyranyl protecting group. Tetrahedron, 1970, 26, 1023-1030.

57. Norman, D.G.; Reese, C.B.; Serafinowska, H.T. The protection of 2'-hydroxy functions in oligoribonucleotide synthesis. Tetrahedron Lett., 1984, 25, 3015-3018.

58. Jones, S.S.; Rayner, B.; Reese, C.B.; Ubasawa, A.; Ubasawa, M. Synthesis of the 3'-terminal decaribonucleoside nonaphosphate of yeast alanine transfer ribonucleic acid. Tetrahedron, 1980, 36, 3075-3085.

59. Jones, S.S.; Reese, C.B.; Sibanda, S. Studies directed towards the synthesis of yeast alanine tRNA. In Current Trends in Organic Synthesis (Ed. Nozaki, H.) Pergamon Press, Oxford. 1983, 71-81.

60. Ohtsuka, E.; Yamane, A.; Doi, T.; Ikehara, M. Chemical synthesis of the 5'-half molecule of E.coli tRNA2Gly. Tetrahedron, 1984, 40, 47-57.

61. Kruse, C.G.; Jonkers, F.L.; Dert, V.; van der Gen, A. Synthetic applications of 2-chlorotetrahydrofuran: Protection of alcohols as tetrahydro-2-furanyl (THF) ethers. Rec.Trav. Chim., 1979, 98, 371-380.

62. Tanaka, T.; FuJino, K.; Tamatsukuri, S.; Ikehara, M. Synthesis of oligoribonucleotides via the phosphite triester approach on a solid support. Chew. Pharm. Bull. Jpn., 1986, 34, 41264132.

63. Kierzek, R.; Caruthers, M.H.; Longfellow, C.E.; Swinton, D.; Turner, D.H.; Freier, S.M. Polymer-supported RNA synthesis and its application to test the nearest-neighbour model for duplex stability. Biochemistry, 1986, 25, 7840-7846.

64. Tanimura, H.; Mieda, M.; Fukazawa, T.; Sekine, M.; Hata, T. Chemical synthesis of the 24 RNA fragments corresponding to hop stunt viroid. Nucleic Acids Res., 1989, 17, 8135-8147.

65. Tanimura, II.; Imada, T. The utility of 2'-Thp group in the synthesis of the relatively long RNA fragments on the solid support. Chem. Lett., 1990, 2081-2084.

66. Reese, C.B.; Skone, P.A. Action of acid on oligoribonucleotide phosphotriester intermediates. Effects of released vicinal hydroxy functions. Nucleic Acids Res., 1985, 13, 5215-5231.

67. Christodoulou, C.; Agrawal, S.; Gait, M.J. Incompatibility of acid-labile 2'and 5'protecting groups for solid-phase synthesis of oligoribonucleotides. Tetrahedron Lett., 1986, 27, 1521— 1522.

68. Kierzek, R. The stability of trisubstituted internucleotide bond in the presence of vicinal 2'-hydroxyl. Chemical synthesis of uridylyl(2'-phosphate)-(3'—>5')-uridine. Nucleosides and Nucleotides, 1994, 13, 1757-1768.

69. Lehmann, C.; Xu, Y.-Z.; Christodoulou, C.; Tan, Z.-K.; Gait, M.J. Solid-phase synthesis of oligoribonucleotides using 9-fluorenylmethoxycarbonyl (Fmoc) for 5'-hydroxyl protection. Nucleic Acids Res., 1989, 17, 2379-2390.

70. Reese, C.B.; Serafinowska, H.T.; Zappia, G. An acetal group suitable for the protection of 2'-hydroxy functions in rapid oligoribonucleotide synthesis. Tetrahedron Lett., 1986, 27, 22912294.

71. Owen, G.R. and Reese, C.B. A convenient preparation of tetrahydro-4H-pyran-4-one. J. Chem. Soc. C, 1970, 2401-2403.

72. Faja, M.; Reese, C.B.; Song, Q.; Zhang, P.-Z. Facile preparation of acetals and enol ethers derived from l-arylpiperidin-4-ones. J. Chem. Soc. Perkin Trans., 1997, 1, 191-194.

73. Rao, T.S.; Reese, C.B.; Serafinowska, H.T.; Takaku, II.; Zappia, G. Solid phase synthesis of the 3' terminal nonadecaribonucleoside octadecaphosphate sequence of yeast alanine transfer ribonucleic acid. Tetrahedron Lett., 1987, 28, 4897-4900.

74. Sproat, B.S.; Beijer, B.; Groetli, M.; Ryder, U.; Morand, K.L.; Lamond, A.I. Novel solidphase synthesis of branched oligoribonucleotides including a substrate for RNA debranching enzyme. J. Chem. Soc. Perkin Trans., 1994, 1, 419-431.

75. Rao, M.V.; MacfarJane, K. Improvements to the chemical synthesis of biologically-active RNA using 2'-C-Fpmp chemistry. Nucleosides and Nucleotides, 1995, 14, 911-915.

76. Rastogi, H.; Usher, D.A. A new 2'-hydroxyl protecting group for the automated synthesis of oligoribonucleotides. Nucleic Acids Res., 1995, 23, 4872-4877.

77. Schwartz, M.E.; Breaker, R.R.; Asteriadis, G.T.; de-Bear, J.S.; Gough, G.R. Rapid synthesis of oligoribonucleotides using 2 '-O-(o-nitrobenzyloxymethyl)-protected monomers. Bioorg. Med. Chem. Lett, 1992, 1019-1024.

78. Gough, G.R.; Miller, T.J.; Mantick, N.A. />Nitrobenzyloxymethyl: A new fluoride-removable protecting group for ribonucleoside 2'-hydroxyls. Tetrahedron Lett., 1996, 37, 981— 982.

79. Sung, W.L. Synthesis of 4-(l,2,4-triazol-l-yl)pyrimidin- 2(lH)-one Ribonucleotide and its application in the synthesis of Oligoribonucleotides. J.Org.Chem., 1982, 47, 3623-3628.

80. Cieslak, J.; Kauffman, J. S.; Kolodziejski, M, J.; Lloyd, J. R.; Beaucage, S. L. Assessment of 4-nitrogenated benzyloxymethyl groups for 2'-hydroxyl protection in solid-phase RNA synthesis. Org. Lett., 2007, 9, 671-674.

81. Wincott, F.E.; Usman. N. 2'-(Trimethylsilyl)ethoxymethyl protection of the 2'-hydroxyl group in oligoribonucleotide synthesis. Tetrahedron lett., 1994, 35, 6827-6830.

82. Wagner, D.; Verheyden, J.P.H.; Moffatt, J.G. Preparation and synthetic utility of some organotin derivatives of nucleosides. J.Org.Chem., 1974, 39, 24-30.

83. Uchiyama, M; Aso, Y.; Noyori, R.; Hayakawa, Y. O-Selective Phosphorylation of Nucleosides without N-protection. J.Org.Chem., 1993, 58, 373.

84. Pitsch, 51; Weiss, P.A.; Jenny, L.; Stutz, A.; Wu, X. Reliable chemical synthesis of oligoribonucleotides (RNA) with 2'-0-(triisopropylsilyl)oxy. methyl (2 '-O-tom)-protected phosphoramidites. Helv. Chim. Acta., 2001, 84, 3773-3795.

85. Benneche, 71; Gundersen, L.L.; Undheim, K.A. (teri-Butyldimethilsilyloxy)methyl chloride:Synthesis and use as N-protecting group inpyrimidinones. Acta Chem. Scand., 1988, 42, 384-389

86. Gundersen, L.L.; Benneche, 71; Undheim, K.A. Chloromethoxysilanes as Protecting Reagents for Sterically Hindered Alcohols. Acta Chem. Scand., 1989, 43, 706-709

87. Benneche, 71; Strande, P.; Undheim, K.A. A New Synthesis of Chloromethyl Benzyl Ethers. Synthesis, 1983, 9, 762.

88. Umemoto, T.; Wada, 71 Oligoribonucleotide synthesis by the use of l-(2-cyanoethoxy)ethyl (CEE) as a 2'-hydroxy protecting group. Tetrahedron lett., 2004, 45, 9529-9531.

89. Ohgi, 71; Masutomi, Y.; Ishiyama, K.; Kitagawa, H; Shiba, Y.; Yano, J. A new RNA synthetic method with 2'-0-(2-cyanoethoxymethyl) protecting group. Org. Lett., 2005, 7, 34773480.

90. Zhou, C.; Honcharenko, D.; Chattapadhyaya, J. 2-(4-Tolysulfonyl)ethoxymethyl (TEM) -a new 2' OH protecting group for solid-supported RNA synthesis. J. Org. Biomol. Chem., 2007, 5, 333-343.

91. Bordwell, E.G. Equilibrium acidities in dimethyl sulfoxide solution. Acc.Chem.Res., 1988, 21, 456-463.

92. Semenyuk, A.; Foldesi, A.; Johansson, 7'./ Estmer-Nilsson, C.; Blomgren, P.; Brannvall, M.; Kirsebom, L; Kwiatkowski, M. Synthesis of RNA using 2'-0-DTM protection. J. Am. Chem. Soc., 2006, 128, 12356-12357.

93. Olejnik, J.; Krzymanska-OleJnik, E.; Rothschild, K. J. Photocleavable biotin phosphoramidite for 5'-end-labeling, affinity purification and phosphorylation of synthetic oligonucleotides. Nucleic Acids Res., 1996, 24, 361-366.

94. Fang, S.; Bergstrom, D. E. Reversible 5'-end biotinylation and affinity purification of synthetic RNA. Tetrahedron Lett., 2004, 45, 7987-7990.

95. Tomaya, K; Takahashi, M.; Minakawa, N.; Matsuda, A. Convenient RNA Synthesis Using a Phosphoramidite Possessing a Biotinylated Photocleavable Group. Org Lett, 2010, 12, 38363839.

96. Hat a, T.; Azizian. J. 2-chloroethyl orthoformate as a reagent for protection in nucleotides synthesis. Tetrahedron lett., 1969, 51, 4443-4446.

97. Scaringe, S. A.; Wincott, F. E.; Caruthers, M. LI. Novel RNA Synthesis Method Using 5'-Silyl-2'-Orthoester Protecting Groups. J. Am. Chem. Soc., 1998, 120, 11820-11821.

98. Scaringe, S. A.; Kitchen, D.; Kaiser, R. J.; Marshall, W. S. RNA Oligonucleotide Synthesis Via 5'-Silyl-2'-Orthoester Chemistiy. Current Protocols in Nucleic Acid Chemistry, Wiley, 2004, 2.10.1-2.10.16.

99. Reese, C.B.; Trentham, D.R. Acyl migration in ribonucleoside derivatives. Tetrahedron Lett, 1965, 2467-2472.

100. Fromageot, H.P.M.; Reese, C.B.; Sulston, J.E. The synthesis of oligoribonucleotides. VI. 2'-0-Acyl ribonucleoside derivatives as intermediates in the synthesis of dinucleoside phosphates. Tetrahedron, 1968, 24, 3533-3540.

101. Ohtsuka, E.; Iwari, S. 5'-Levulinyl and 2'-tetrahydrofuranyl protection for the synthesis of oligoribonucleotides by the phosphoramidite approach. Nucleic Acids Res., 1988, 16, 94439456.

102. Ogilvie, K. K.; Nemer, M. J. The synthesis of oligoribonucleotides VI. The synthesis of a hexadecamer by a block condensation approach. Can. J. Chem., 1980, 58, 1389-1397.

103. Ogilvie, K. K.; Nemer, M. J.; Hakimelahi, G. H.; Proba, Z. A.; Lucas, M. N-Levulination of nucleosides. Tetrahedron Lett., 1982, 23, 2615-2618.

104. Parey, N.; Baraguey, C.; Vasseur, J.-J.; Debart, F. First Evaluation of Acyloxymethyl or Acylthiomethyl Groups as Biolabile 2'-0-Protections of RNA. Org. Lett., 2006, 8, 3869-3872.

105. Lavergne, T.; Bertrand J.-R.; Vasseur J.-J.; Debart, F. A Base-Labile Group for 2'-OH Protection of Ribonucleosides: A Major Challenge for RNA Synthesis. Chem. Eur. J., 2008, 14, 9135-9138.

106. Martin, A. R.; Lavergne, T.; Vasseur, J.-J.; Debart, F. Assessment of new 2'-0-acetalester protecting groups for regular RNA synthesis and original 20-modified proRNA. Bioorg. Med. Chem. Lett, 2009, 19, 4046-4049.

107. Polushin, N. N.; Smirnov I. P.; Verentchikov, /1. N.; Coull, J. M. Synthesis of oligonucleotides containing 2'-azido- and 2'-amino-2'-deoxyuridine using phosphotriester chemistry. Tetrahedron Lett., 1996, 19, 3227-3230.

108. Aimer, H.; Szabo, T.; Stawinski, J. A new approach to stereospecific synthesis of P-chiral phosphorothioates. Preparation of diastereomeric dithymidyl-(3'-5') phosphorothioates. Chem. Commun., 2004, 290-291.

109. Uhlmann E.; Peyman A. Antisense oligonucleotides: a new therapeutic principle. Chem. Rev., 1990, 90, 543-584.

110. Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem., 2003, 270, 1628-1644.

111. Iyer R.P.; Devlin T.; Habus I.; Ho N. II.; Yu D.; Agrawal S. N-Pent-4-enoyl nucleosides: Application in the synthesis of support-bound and free oligonucleotide analogs by the H-phosphonate approach. Tetrahedron Lett., 1996, 37, 1539-1542.

112. Efimov V.A.; Buryakova A.A.; Choob M.V.; Chakhmakhcheva O.G. Polyester and N-methyl analogues of peptide nucleic acids: synthesis and hybridization properties. Nucleosides and Nucleotides, 1999, 18, 2533-2549.

113. Wada, T.; Ohkubo, A.; Mochizuki, A.; Sekine, M. 2-(Azidomethyl)benzoyl as a new protecting group in nucleosides. Tetrahedron Lett., 2001, 42, 1069-1072.

114. Kawanaka, T.; Shimizu, M.; Wada, T. Synthesis of dinucleoside phosphates and their analogues by the boranophosphotriester method using azido-based protecting groups. Tetrahedron Lett., 2007, 48, 1973-1976.

115. Zavgorodny, S.G.; Pechenov, A.E.; Shvets, V.I.; Miroshnikov, A.I. S,X-Acetals in Nucleoside Chemistry. III. Synthesis of 2'-and 3'- O-Azidomethyl Derivatives of Ribonucleosides. Nucleosides, Nucleotides, and Nucleic Acids, 2000, 19, 1977-1991.

116. Bizdena, E.; Rozners, E.; Stromberg, R. Synthesis and Properties of 2'-O-Methoxymethyl Oligonucleotides. Collect. Czech. Chem. Commun., 1996, 61, S283-S286.

117. Gomez, C.; Maciay, B.; Lillo, V. J.; Yus, M. 1,2.-Wittig rearrangement from chloromethyl ethers. Tetrahedron, 2006, 62, 9832-9839.

118. ERmov, V.A.; Aralov, A. V.; Klykov, V.N.; Chakhmakhcheva, O.G. Synthesis of RNA by the rapid phosphotriester method using azido-based 2'-O-protecting group. Nucleosides, Nucleotides, and Nucleic Acids, 2009, 28, 846-865.

119. Efimov V. A.; Aralov A. V.; Grachev S. A.; Chakhmakhcheva O. G. N-azidomethylbenzoyl blocking group in the phosphotriester synthesis of oligoribonucleotides. Russ. J. Bioorg. Chem., 2010, 36, 6280-633.

120. Efimov V.A.; Buryakova A.A.; Reverdatto, S.V.; Chakhmakhcheva O.G.; Ovchinnikov, Y.A. Rapid synthesis of long-chain deoxyribooligonucleotides by the N-methylimidazole phosphotriester method. Nucleic Acid Res., 1983, 11, 8369-8387.

121. Scott, S.; Hardy, P.; Sheppard, R.C.; McLean, M.J. Innovations and Perspectives in Solid Phase Synthesis, 3rd International Symposium (Ed. Epton, R.) Mayflower Worldwide, 1994, 115-124.

122. Eskandari R.; Jayakanthan K; Kuntz D.A.; Rose D.R.; Pinto B.M. Synthesis of a biologically active isomer of kotalanol, a naturally occurring glucosidase inhibitor. Bioorg. Med. Chem., 2010, 18, 2829-2835.

123. Han J.H.; Kwon Y.E.; Sohn J.-H.; Ryu D.H. A facile method for the rapid and selective deprotection of methoxymethyl (MOM) ethers. Tetrahedron, 2010, 66, 1673-1677.

124. Jomes, R.A. Preparation of protected deoxyribonucleotides. Oligonucleotide synthesis: a practical approach (Ed. Gait, M.J.) Oxford, Washington DC: IRL Press, 1984, 23-34.

125. Pechenov, A.E.; Zavgorodny, S.G.; Shvets, V.L.; Miroshnikov, A.I. The S,X-acetals in nucleoside chemistry. I. The synthesis of 2'-and 5'-O methylthiomethylribonucleosides. Russ. J. BioOrg. Chem., 2000, 26, 327-333.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.