Кинетические закономерности формирования коррозионно активных биопленок и подходы к их элиминированию тема диссертации и автореферата по ВАК РФ 02.00.15, кандидат химических наук Азизов, Руфат Эйваз оглы

  • Азизов, Руфат Эйваз оглы
  • кандидат химических науккандидат химических наук
  • 2007, Москва
  • Специальность ВАК РФ02.00.15
  • Количество страниц 157
Азизов, Руфат Эйваз оглы. Кинетические закономерности формирования коррозионно активных биопленок и подходы к их элиминированию: дис. кандидат химических наук: 02.00.15 - Катализ. Москва. 2007. 157 с.

Оглавление диссертации кандидат химических наук Азизов, Руфат Эйваз оглы

СПИСОК СОКРАЩЕНИЙ

ВВЕДЕНИЕ

1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Биокоррозия.

1.1.1. Объекты, подверженные биокоррозии.

1.1.2. Участие сульфат-восстанавливающих бактерий в процессах биокоррозии.

1.1.3. Другие бактерии, участвующие в процессах биокоррозии.

1.2. Коррозионно активные биопленки.

1.2.1.Формирование коррозионно активных биопленок: состав и взаимосвязь с коррозионными процессами.

1.2.2. Факторы, влияющие на формирование коррозионно активных биопленок.

1.2.2.1. Влияние кислорода на развитие биопленок.,.

1.2.2.2. Влияние протока на формирование коррозионно активных биопленок.

1.2.2.3. Влияние химических свойств металла, на поверхности которого формируются биопленки.

1.3. Методы исследования биокоррозии.

1.3.1. Методы дифференцированного исследования планктонных культур.

1.3.1.1. Микробиологические методы.

1.3.1.2. Использование полимеразной цепной реакции (ПЦР).

1.3.1.3. Косвенные методы определения клеток.

1.3.1.4. Флуоресцентные и иммунологические методы.

1.3.2. Методы исследования коррозионно активных биопленок.

1.4. Подходы к предотвращению процессов биокоррозии.

1.4.1. Применение ингибиторов коррозии с биоцидной активностью.

1.4.2. Биоцидные вещества в нефтяной промышленности.

1.4.3. Ингибирущая роль биопленок в развитии коррозии.

1.4.4. Применение лигированных сталей.

1.4.5. Удаление накапливающихся загрязнений, нефтяные сорбенты.

1.5. Биолюминесцентный метод определения внутриклеточного АТФ.

1.5.1. Каталитические реакции, лежащие в основе биолюминесцентного метода.

1.5.2. Практическое применение биолюминесцентного метода определения АТФ.

2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1. Материалы

2.1.1. Химические реактивы

2.1.2. Ингибиторы коррозии.

2.1.3. Пробы нефти.

2.1.4. Нефтесорбент.

2.1.5. Металлические купоны.

2.1.6. Приборы.

2.1.7. Микроорганизмы.

2.2. Методы.

2.2.1. Хранение и культивирование бактерий.

2.2.2. Микробиологическое определение численности бактерий.

2.2.3. Определение концентрации внутриклеточного АТФ биолюминесцентным методом.

2.2.4. Определение с помощью биолюминесцентного метода концентрации клеток в грунте, загрязненном нефтью

2.2.5. Экстракция внутриклеточного АТФ из клеток в составе биопленок.

2.2.6. Определение удельной скорости роста клеток.

2.2.7. Определение концентрации сульфида в среде и в составе биопленок.

2.2.8. Определение концентрации сульфата в среде.

2.2.9. Определение концентрации фосфат-ионов в среде.

2.2.10. Определение концентрации железа в среде.

2.2.11. Определение массового показателя коррозии.

2.2.12. Покрытие металлической поверхности сульфидной пленкой.

2.2.13. Определение минимальных ингибирующих концентраций ингибиторов коррозии по отношению к планктонным клеткам и биопленкам.

2.2.14. Подготовка проб грунта/песка для экспериментов.

2.2.15. Определение концентрации растворенного кислорода в среде.

2.2.16. Ультразвуковая дезинтеграция клеток для определения полноты экстракции АТФ.

2.2.17. Определение органических кислот в сточных водах.

2.2.18. Проточная система.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Применение биолюминесцентного метода определения АТФ для исследования кинетики роста и численности микроорганизмов, участвующих в процессах биокоррозии.

3.1.1. Определение удельной концентрации внутриклеточного АТФ в клетках, участвующих в процессах биокоррозии.

3.1.2. Применение биолюминесцентного метода для исследования кинетики роста планктонных клеток, участвующих в процессах биокоррозии.

3.1.3. Оптимизация условий применения биолюминесцентного метода для исследования кинетики роста гетеротрофных бактерий в загрязненных нефтью пробах песка и грунта.

3.1.3.1. Исследование удельной концентрации АТФ в клетках бактерий с использованием хлороформа в качестве экстрагирующего агента.

3.1.3.2. Определение численности бактерий в модельных системах на основе грунта, загрязненного нефтью.

3.1.3.3. Исследование кинетики роста бактерий в грунте, загрязненном нефтью.

3.1.4. Оптимизация условий применения биолюминесцентного метода для исследования кинетики формирования коррозионно активных биопленок.

3.1.5. Разработка дифференцированного метода анализа состава смешанных бактериальных планктонных клеток и коррозионно активных биопленок.

3.1.6. Применение разработанных методик для анализа численности коррозионно активных клеток в пробах из реальных объектов.

3.2. Исследования закономерностей формирования и факторов, влияющих на формирование коррозионно активных биопленок.

3.2.1. Кинетические закономерности формирования биопленок в зависимости от микробного состава среды.

3.2.2. Исследование кинетики накопления сульфида железа и анализ его роли в формировании биопленок.

3.2.3. Кинетические закономерности химической коррозии различных металлов в процессе формирования биопленок.

3.2.4. Влияние присутствия нефти в среде на кинетику формирования биопленок.

3.2.5. Влияние скорости протока и типа системы на кинетику формирования биопленок.

3.3. Разработка подходов к подавлению процессов биокоррозии.

3.3.1. Исследование возможности применения ингибиторов коррозии для предотвращения биокоррозии.

3.3.1.1. Исследование влияния различных ингибиторов коррозии на кинетические параметры люциферазной реакции.

3.3.1.2. Определение биоцидной активности ингибиторов коррозии по отношению к планктонным клеткам биолюминесцентным методом.

3.3.1.3. Определение биолюминесцентным методом биоцидной активности ингибиторов коррозии по отношению к биопленкам.

3.3.2. Использование нефтяных волокнисто-пористых сорбентов для снижения скорости биокоррозионных процессов.

3.3.2.1. Исследование способности сорбента «Мегасорб» удалять сульфид железа из среды.

3.3.2.2. Исследование возможности удаления бактериальных клеток из среды Мегасорбом.

3.3.2.3. Исследование влияния фильтрации модельных сточных вод Мегасорбом на кинетику формирования биопленок.

3.3.2.4. Совместное использование Мегасорба и ингибиторов коррозии для элиминирования факторов, приводящих к развитию коррозионно активных биопленок.

Рекомендованный список диссертаций по специальности «Катализ», 02.00.15 шифр ВАК

Введение диссертации (часть автореферата) на тему «Кинетические закономерности формирования коррозионно активных биопленок и подходы к их элиминированию»

В настоящее время наличие биоактивности, проявляемой микроорганизмами, может быть обнаружено практически везде на различных объектах, подверженных коррозии и биодеградации под воздействием ферментов, каталитически активных в отношении различных материалов (металла, пластика и др.) Коррозию металла, возникающую под воздействием микроорганизмов, принято называть биокоррозией.

Исследования показали, что коррозия под воздействием микроорганизмов представляет собой проблему большой экономической важности. Установлено, что 20% потерь от коррозии приходится именно на долю биокоррозии [1]. Нефтяная промышленность относится к тем отраслям, основные фонды которых в наибольшей степени подвергаются воздействию биокоррозии [2-4].

Коррозионно активные планктонные культуры могут существовать в сточных водах, грунте, загрязненном нефтью и в других объектах нефтяной промышленности. Микроорганизмы могут изменять характер коррозии, создавая на поверхности металлов условия для появления концентрационных электрохимических элементов, либо влиять на изменение агрессивности среды или непосредственно на кинетику электродных реакций [5].

Биопленки, представляющие собой самоиммобилизующиеся бактериальные ассоциации сложного состава, играют важную роль в развитии процессов биокоррозии [6,7]. Биопленки практически всегда состоят из различных видов бактерий, которые взаимодействуют друг с другом и окружающей их средой.

Несмотря на важность проблем, связанных с формированием коррозионно активных биопленок, из-за недостатка высокочувствительных, экспрессных и удобных для исследования биокоррозии методов, до сих пор остаются мало изученным ряд вопросов, касающихся выявления основных факторов, влияющих на формирование и состав биопленок. В частности, открытыми остаются вопросы, связанные с изучением влияния скорости протока, химической природы металла, микробного состава планктонной культуры, присутствия нефти и сульфида железа в среде на кинетические закономерности формирования коррозионно опасных биопленок. Изучение этих факторов может существенно влиять на стратегию эксплуатации промышленных систем, обработки загрязненных нефтью вод и контроля коррозионно активных культур.

В течение нескольких последних десятилетий большое внимание уделяется вопросам ингибирования и подавления процессов биокоррозии. Очевидно, что биокоррозия и процессы химической коррозии действуют в комплексе, поэтому скрининг веществ, действие которых одновременно направлено против химического корродирования и вызывает подавление роста и метаболизма микроорганизмов, способствующих развитию коррозионных процессов, является важной задачей исследований.

Основные характеристики биолюминесцентного метода определения концентрации внутриклеточного АТФ (высокая чувствительность, специфичность и экспрессность) представляют большой интерес [8-11] с точки зрения их применения для фундаментальных исследований особенностей кинетики роста планктонных клеток в различных объектах коррозии и клеток, входящих в состав биопленок.

АТФ является универсальным внутриклеточным метаболитом, который содержится во всех жизнеспособных клетках любых микро- и макроорганизмов, поэтому может рассматриваться как универсальный индикатор живых клеток в анализируемых образцах. АТФ можно определять с помощью биолюминесценции с высокой точностьюй даже при ультрамалом содержании вещества в образце - до Ю-12—Ю-14 М [152].

В связи с этим актуальной является разработка новых подходов на основе биолюминесцентного метода определения внутриклеточного АТФ к анализу кинетики роста коррозионно активных клеток в пробах воды и грунта, в том числе объектах, загрязненных нефтью, а также к исследованию влияния различных факторов на кинетику формирования коррозионно опасных биопленок.

Биолюминесцентный метод позволяет определить как делящиеся, так и неделящиеся клетки, что позволяет определять численность всех живых клеток в анализируемых образцах. В связи с этим актуальным является разработка подходов на основе биолюминесцентного метода анализа к определению биоцидной активности ингибиторов коррозии (ИК) по отношению к коррозионно активным клеткам и биопленкам, а также выяснение возможности применения ИК в качестве биоцидов.

Разработка новых экологически безопасных технологий, предотвращяющих или снижающих скорости развития биокоррозии, является одним из основных требований промышленности. С этой точки зрения удаление основных компонентов среды, влияющих на формирование биопленок, является важной задачей. Применение нефтяных сорбентов для удаления нефти из сточных вод с целью уменьшения риска развития коррозионно опасных микроорганизмов, участвующих в формировании биопленок, также может быть актуальным с точки зрения предотвращения развития процессов биокоррозии.

Таким образом, разработка новых подходов на основе ферментативного биолюминесцентного метода определения внутриклеточного АТФ к анализу основных факторов, влияющих на кинетику формирования коррозионно опасных биопленок, с последующей разработкой экологически безопасных методов элиминирования этих факторов является весьма актуальной и представляет большой интерес с научной, а также с экономической и экологической точек зрения.

1. ОБЗОР ЛИТЕРАТУРЫ

1.1 Биокоррозия

Похожие диссертационные работы по специальности «Катализ», 02.00.15 шифр ВАК

Заключение диссертации по теме «Катализ», Азизов, Руфат Эйваз оглы

выводы

1. Определены удельные концентрации внутриклеточного АТФ для ряда клеток бактерий, относящихся к различным таксономическим группам и участвующих в процессах биокоррозии. Показана возможность использования биолюминесцентного метода определения АТФ для исследования кинетики роста клеток, участвующих в развитии процессов биокоррозии. Оптимизированы условия применения биолюминесцентного анализа для исследования кинетики роста ГБ в пробах, загрязненных нефтью (до 60% масс.).

2. Оптимизированы условия применения биолюминесцентного метода для исследования кинетики роста коррозионно активных биопленок. Разработан способ дифференцированного определения численности бактерий в смешанных культурах, позволяющий исследовать микробный состав коррозионно активных биопленок.

3. Выявлены закономерности формирования коррозионно активных биопленок под влиянием различных факторов. Установлено, что основную роль в формировании коррозионно активных биопленок играют СВБ, на всех стадиях роста состав коррозионно опасных биопленок является гетерогенным, присутствие ГБ увеличивает скорость формирования биопленок. Показано, что присутствие сульфида железа на металлических поверхностях ускоряет рост на них биопленок. Установлено, что химический состав стали, используемой для изготовления металлических конструкций, определяет скорость развития на них коррозионно опасных биопленок. Выявлено, что присутствие 1-3 % нефти в среде ускоряет процесс формирования биопленок. Показано, что зависимость формирования биопленок от скорости протока имеет различный характер при относительно высоких и низких скоростях протока. Установлено различие в удельных скоростях роста биопленок в стационарной, открытой и замкнутой проточной системах.

4. Показано, что ИК могут влиять на люциферазную реакцию. Вместе с этим анализ кинетических параметров люциферазной реакции в присутствии ИК подтвердил возможность применения биолюминесцентного метода для исследования биоцидной активности этих веществ. Разработан подход на основе биолюминесцентного метода к определению биоцидной активности ИК по отношению к различным планктонным культурам и биопленкам. Установлено, что значения МИК исследованных ИК по отношению к биопленкам в 3-8 раз больше по сравнению с планктонными культурами. Установлено, что именно в начальной стадии формирования биопленок необходимо вводить в функционирующие системы нефтяной промышленности ИК с биоцидным действием.

5. Показана возможность использования нефтяного сорбента антибиокоррозионных целях. Применение Мегасорба позволяет снизить МИК разных с биоцидным действием в отношении биопленок на основе СВБ на 30%.

Список литературы диссертационного исследования кандидат химических наук Азизов, Руфат Эйваз оглы, 2007 год

1. Flemming Н.С. Economical and technical overview. In: Heitz E., Flemming H.C., Sand W., editors. Microbially influenced corrosion of materials. //Springer. Berlin. 1996. P.5.

2. Neria-Gonzalez I., Wang E.T., Ramirez F., Romero J.M., Hernandez-Rodriguez C. Characterization of bacterial community associated to biofilms of corroded oil pipeline from the southeast of Mexico. //Anaerobe, 2006. V.12. P.122-133.

3. Lopez M.A., Serna F.J., Jan-Roblero J., Romero J.M., Hernandez-Rodriguez C. Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico. //FEMS Microbiol. Ecol. 2006. V.58. P.145-154.

4. Tributsch H., Rojas-Chapana J.A. Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity. //Electrochim. Acta. 2000. V.45. P.4705-4716.

5. Beech I.W., Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals. //Current Opinion in Biotech. 2004. V. 15. P. 181-186.

6. Lee A.K., Buehler M.G., Newman D.K. Influence of dual-species biofilm on the corrosion of mild steel. //Corrosion Science. 2006. V.48. P.165-178.

7. Фрунджян В.Г. Биолюминесцентная АТФ-метрия в клинической и санитарной микробиологии. // Дисс. на соиск. степени к.х.н. 1999. Москва. 152с.

8. Фрунджян В.Г., Бровко Л.Ю., Карабасова М.А., Угарова Н.Н. Биолюминесцентный метод определение антибиотикочувствительности микробных клеток в септической крови. // Прикладная биохимия и микробиология. 1997. Т.ЗЗ, №4, С.455-460.

9. Dexter S.J., Camara М., Davies М., Shakesheff К.М. Development of bioluminescent ATP assay to quantify mammalian and bacterial cell number from a mixed population. //Biomaterials. 2003. V.24. P.27-34.

10. Ukuku D.O., Sapers G.M., Fett W.F. ATP bioluminescence assay for estimation of microbial populations of fresh-cut melon. //J. Food Prot. 2005. V.68. P.2427-2432.

11. Дементьева, Е.И., Кутузова, Г.Д., Люндовщих, И.А., Угарова, Н.Н. Реагент для определения аденозин-5'-трифосфата. // Патент РФ на изобретение № 2164241. 2001.

12. Shifler D.A. Understanding material interactions in marine environments to promote extended structural life. //Corrosion Sci. 2005. V.47. P.2335-2352.

13. Videla H.A., Herrera L.K. Microbiologically influenced corrosion: looking to the future. //Int. Microbiol. 2005. V.8. P. 169-180.

14. U.S. Federal Highway Administration. Corrosion costs and preventive strategies in the United States, Report FHWA-RD-01-156.// Nat. Tech. Info. Serv., 5285 Port Royal Road. Springfield. 2002. VA 22161.

15. Jones D.A, Amy P.S. A thermodynamic interpretation of microbiologically influenced corrosion. //Corrosion. 2002. V58. P.638-645.

16. Perez-Jimenez J.R., Kerkhof L.J. Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite. //Appl. Environ. Microbiol. 2005. V.71. P. 1004-1011.

17. Morton S.C., Zhang Y., Edwards M.A. Implications of nutrient release from iron metal for microbial regrowth in water distribution systems. //Water res. 2005. V.39. P.2883-2892.

18. Nielsen A.H., Yongsiri C., Hvitved-Jacobsen Т., Vollertsen J. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks. //Water Sci. Technol. 2005. V.52. P.201-208.

19. Jensen A.B., Webb C. Ferrous sulphate oxidation using Thiobacillus ferrooxidans. II Proc. Biochem. 1995. V.30. P.225-236.

20. Linhardt P. MIC of stainless steel in freshwater and the cathodic behaviour of biomineralized Mn-oxides. //Electrochim. Acta. 2006. V.51. P.6081-6084.

21. Rubio C., Ott C., Amiel C., Dupont-Moral I., Travert J., Mariey L. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: a new approach to biocorrosion control. //J. Microbiol. Methods. 2006. V.64. P.287-296.

22. Raskin L., Rirrman B.E., Stahl D.A. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. //Appl. Environ. Microbiol. 1996. V.62. P.3847-3857.

23. Митяшина С.Ю., Давыдова M.H. Энергетические параметры клеток D.desulfuricans, растущих в среде с лактатом и сульфатом в атмосфере аргона или аргона плюс окись углерода. // Микробиол. 1998. Т.67. №4. С.471-475.

24. Hamilton W.A., Lee W. Biocorrosion. In: Barton L.L. (ed). Sulfate Reducing Bacteria. // New York: Plenum Press. 1995. P.243-264.

25. Hamilton W.A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. // Biofouling. 2003. V.19. P.65-76.

26. Семенова И.В., Флорианович Г.М., Хорошилов A.B. Коррозия и защита от коррозии. //Москва: Изд. Физматлит. 2002. 333с.

27. Da Silva S., Basseguy R., Bergel A. The role of hydrogenases in the anaerobic microbiologically influenced corrosion of steels. //Bioelectrochem. 2002. V.56. P.77-79.

28. Matias P.M., Pereira I.A.C., Soares C.M., Carrondo M.A. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. //Prog. Biophys. Molecular Biol. 2005. V.89. P.292-329.

29. Daumas S., Magot M., Crolet J.L. Measurement of the net production of acidity by a sulphate-reducing bacterium: experimental checking of theoretical models of microbially influenced corrosion. // Res. Microbiol. 1993.V.144. P.327-332.

30. Lee W., Lewandowski Z., Okabe S., Characklis W.G., Avci R. Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. Part I: at low dissolved oxygen concentration. //Biofouling. 1993. V.7. P.l97-216.

31. Hamilton W.A. Microbially influenced corrosion in the context of metal microbe interactions. In: Evans L.V. (ed). Biofilms: recent advances in their study and control. // Amsterdam: Harwood Academic Publishers. 2000. P.419-434.

32. Hamilton W.A. Microbially influenced corrosion in the context of metal microbe interactions. In: Sequira C.A.C (ed). Microbial corrosion. // London: European Federation of Corrosion. IOM Communications. 2000. P.3-17.

33. Nielsen P.H., Lee W., Lewandowski Z., Morrison M., Characklis W.G. Corrosion of mild steel in an alternating oxic and anoxic biofilm system. // Biofouling. 1993. V.7. P.267-284.

34. Lee W., Lewandowski Z., Okabe S., Characklis W.G., Avci R., Nielsen P.H. Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. Part II: at high bulk oxygen concentration. // Biofouling. 1993. V.7. P.217-239.

35. Sharma S.L., Pant A. Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus sp.// Biodegradation. 2000. V. 11. P. 289-294.

36. Жуков Д.В., Мурыгина В.П., Калюжный C.B. Механизмы деградации углеводородов нефти микроорганизмами. //Успехи современной биологии. 2006. Т.126. № 3. С. 285296.

37. Tadashi F., Tatsuya N., Koji Т., Junichi К. Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6. II Biosci. Biotechnol. Biochem. 2004. V.68. N. 10. P.2171.

38. Haak B, Fetzner S., Lingens F. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia2CBS. //J. Bacterid. 1995. V.177. P.667-675.

39. Готтшалк Г. Метаболизм бактерий. М.: "Мир". 1982. 310 с.

40. Nakatsu C.H., Wyndham R.C. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. // Appl. Environ. Microbiol. 1993. V.59. P.3625-3633.

41. Кондратьева E.H. Автотрофные прокариоты. // Москва: Изд. Московского Университета. 1996. С.237-274.

42. Okabe S., Ito Т., Sugita К., Satoh Н. Succession of internal sulphur cycles and sulphur-oxidizing bacterial communities in microaerophilic wastewater biofilms. //Appl. Environ. Microbiol. 2005. V.71. P. 2520-2529.

43. Холоденко В.П., Жиглецова C.K., Чугунов B.A., Родин В.Б., Кобелев B.C., Карпов С.В. Химико-микробиологическая диагностика стресс-коррозионных повреждений магистральных трубопроводов. // Прикл. Биохим. Микробиол. 2000. Т.36. №6. С.685-693.

44. Philippot L., Hojberg О. Dissimilatory nitrate reductases in bacteria. //Biochim. Biophys. Acta. 1999. V.1446. P.l-23.

45. Beech I.B., Sunner J.A., Hiraoka K. Microbe-surface interactions in biofouling and biocorrosion processes. //Int. Microbiol. 2005. V.8. P.157-168.

46. Coester S.E., Cloete Т.Е. Biofouling and biocorrosion in industrial water systems. //Crit.Rev. Microbiol. 2005. V.31. P.213-232.

47. Beech I.B., Sunner J.A., Arciola C.R., Cristiani P. Microbially-influenced corrosion: damage to prostheses, delight for bacteria. //Int. J. Artif. Organs. 2006. V.29. P.443-452.

48. Cutter L.A., Schie P.M., Fletcher M. Adhesion of anaerobic microorganisms to solid surfaces and the effect of sequential attachment on adhesion characteristics. //Biofouling. 2003. V.19. P.9-18.

49. Davey E.N., O'toole G.A. Microbial biofilms: from ecology to molecular genetics. // Microbiol. Mol. Biol. Rev. 2000. V.64. №4. P. 1-46.

50. Danese P.N., Pratt L.A., Kolter R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. //J. Bacterid. 2000. V.182. P.3593-3596.

51. Watnick P.I., Kolter R. Steps in the development of a Vibroi cholerae El Tor biofilm. Mol. Microbiol. 1999. V.34. P.586-595.

52. Costerton J.W. Overview of microbial biofilms. //J. Ind. Microbiol. 1995. V.15. P.137-140.

53. Raskin L., Rirrman B.E., Stahl D.A. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. //Appl. Environ. Microbiol. 1996. V.62. P.3847-3857.

54. Lewis K. Riddle of biofilm resistance. //Antimicrob. Agents Chemother. 2001. V.45. №4. P.999-1007.

55. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. //Science. 1999. V.284. P. 1318-1322.

56. Kinzler K., Gehrke Т., Telegdi J., Sand W. Bioleaching a result of interfacial processes caused by extracellular polymeric substances (EPS). //Hydrometal. 2003. V.71. P.83-88.

57. Sand W., Tilman G. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. //Research in Microbiol. 2006. V.157. P.49-56.

58. Rohwerder Т., Gehrke Т., Kinzler K., Sand W. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulphide oxidation. //Appl. Microbiol. Biotechnol. 2003. V.63. P. 239-248.

59. Santegoeds C.M., Ferdelman T.G., Muyzer G., De Beer D. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. //Appl. Environ. Microbiol. 1998. V.64. №10. P.3731-3739.

60. Lens P.N., De Poorter M.P., Cronenberg C.C., Verstraete. Sulfate reducing and methane producing bacteria in aerobic wastewater treatment systems. //Water Res. 1995. V.29. P.871-880.

61. Ito Т., Okabe S., Satoh H., Watanabe Y. Successional development of sulphate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. //Appl. Environ. Microbiol. 2002. V.68. №3. P.1392-1402.

62. Acuna N., Ortega-Morales B.O., Valadez-Gonzales A. Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNS S31603 stainless steel exposed to Gulf of Mexico seawater. //Mar. Biotechnol. 2006. V.8. P.62-70.

63. Okabe S., Yasuda Т., Watanabe Y. Uptake and release of inert fluorescence paticles by mixed population biofilms. //Biotechnol. Bioeng. 1997. V.53. P.459-469.

64. Pitonzo, B.J., Castro, P., Amy, P.S., Southam. G., Jones, D.A., Ringelberg, D. Microbiologically influenced corrosion capability of bacteria isolated from Yucca Mountain. //Corrosion. 2004. V.60. P.64-74.

65. Valencia-Cantero E., Pena-Cabriales J.J., Martinez-Romero E. The corrosion effects of sulphate- and ferric-reducing bacterial consortia on steel. //Geomicrobiol. J. 2003. V.20. P. 157-169.

66. Da Silva S., Basseguy R., Bergel A. Electron transfer between hydrogenase and 316L stainless steel: identification of a hydrogenase-catalyzed cathodic reaction in anaerobic MIC. //J. Electroanal. Chem. 2004. V.561. P. 93-102.

67. L'Hostis V., Dagbert C., Feron D. Electrochemical behavior of metallic materials used in seawater interactions between glucose oxidase and passive layers. //Electrochim Acta. 2003. V.48. P.1451-1458.

68. Wang W., Wang J., Li X., Xu H., Wu J. Influence of biofilms growth on corrosion potential of metals immersed in seawater. //Materials Corrosion-Werkstoffe Korrosion. 2004. V.55. P.30-35.

69. Beech I.B. Biocorrosion: role of sulphate-reducing bacteria. In Encyclopaedia of Environmental Microbiology. Edited by Bitton G. //John Wiley. 2002. P.465-475.

70. Чернов Б.Б., Харченко У.В. Модельные представления о концентрационных изменениях в биопленке на инертной подложке. //Исследовано в России. 2003. С.2304-2309.

71. Stewart P.S. Diffusion in biofilms. //J. Bacteriol. 2003. V.185. №5. P.1485-1491.

72. Lewandowski Z., Walser G., Characklis W.G. Reaction kinetics in biofilms / Biotech. Bioeng. 1991. V. 38, №8. P. 877-882.

73. Xu K., Dexter S.C., Luther G.W. Voltammetric microelectrodes for biocorrosion stud-ies / Corrosion. 1998. V. 54. P. 814-823.

74. Madsen B.W., Cramer S.D., Collins W.K., Watson S.W, Higdem D., Perkins W. Corrosion in a phosphate slurry pipelines. //Mater. Perform. 1995. V.32. P. 19-26.

75. Stoodley P., Lewandowski D.J., Boyle J.D., Lappin-Scott H.M. The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. //Environ. Microbiol. 1999. V.l. P.447-455.

76. Stoodley P., Hall-Stoodley L., Lappin-Scott H.M. Detachment, surface migration and other dynamic behaviour in bacterial biofilms revealed by digital time-lapse imaging. //Methods Enzymol. V.337. P.306-319.

77. George R.P., Muralledharan P., Sreekumari, K.R., Khatak H.S. Influence of surface characteristics and microstructure on adhesion of bacterial cells onto a type 304 stainless steel. //Biofoul. 2003. V.19. P.l-8.

78. Mueller R.F., Charackilis W.G., Jones W.L., Sears J.T. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis. //Biotechnol. Bioeng. 1992. V.39. P.l 161-1170.

79. Camper A.K., Hayes J.T., Sturman P.J., Jones W.L., Cunningham, A.B. Effects of motility and absorption rate coefficient on transport of bacteria through saturated porous media. //Appl. Environ. Microbiol. 1993. V.59. P.3455-3462.

80. Borenstein S.W. Microbiologically Influenced Corrosion Handbook. //Woodhead publishing limited. Cambridge. England. 1994. 305p.

81. Ruppel D.T., Dexter S.C., Luther G.W. Role of manganese dioxide in corrosion in the presence of natural biofilms. //Corrosion. 2001. V.57. P. 863-873.

82. Shi X., Avci R., Lewandowski Z. Microbially deposited manganese and iron oxides on passive metals-their chemistry and consequences for materials performance. //Corrosion. 2002. V.58. P. 728-738.

83. Lopes F.A., Morin P., Oliveira R., Melo L.F. The influence of nickel on the adhesion ability of Desulfovibrio desulfiricans. //Colloids Surf. В Biointerfaces. 2005. V.46. P. 127-133.

84. Lloyd J.R., Mabbett A.N., Williams D.R., Macaskie L.E. Metal reduction by sulphate-reducing bacteria: physiological diversity and metal specificity. //Hydrometallurgy. 2001. V.59. P.327-337.

85. Lloyd J.R., Yong P., Macaskie L.E. Enzymatic recovery of elemental palladium by using sulphate-reducing bacteria. //Appl. Environ. Microbiol. 1998. V.64. P.4607-4609.

86. Smith W.L. Hexavalent chromium reduction and precipitation by sulphate-reducing bacterial biofilms. //Environ. Geochem. Health. 2001. V.23. P.297-300.

87. Dubey R.S., Upadhyay S.N. Microbial corrosion monitoring by an amperometric microbial biosensor developed using whole cell of Pseudomonas sp. //Biosenors Bioelect. 2001. V.16. P.995-1000.

88. Жиглецова C.K., Родин В.Б., Кобелев B.C., Александрова H.B., Расулова Г.Е., Холоденко В.П. Исследование начальных этапов биокоррозии стали. //Прикл. Биохим. Микробиол. 2000. Т.36. №6. С.637-641.

89. Wrenn В.А., Venosa A.D. Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure.//Can. J. Microbiol. 1996. V.42. P.252-258.

90. Заварзин Г.А., Колотилова H.H. Введение в природоведческую микробиологию. //Изд.: Москва. 2001. С.71-74.

91. Глик Б., Пастернак Дж. Молекулярная биотехнология принципы и применения. //Изд.: Мир. 2002. С. 94-103.

92. Jan-Roblero J., Romero J.M., Amaya M., Borgne S.Le. Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline. //Appl. Microbiol. Biotechnol. 2004. V.64. P.862-867.

93. Padmanabhan P., Shanker R., Khanna P. A method for extraction of DNA and PCR-based detection of polycyclic hydrocarbon-degrading bacteria in soil contaminated with oil and grease. //World J. Microbiol. Biotech. 1998. V.14. P.925-926.

94. Tanaka Y., Sogabe M., Okumura K., Kurane R. A highly selective direct method of detecting sulphate-reducing bacteria in crude oil. //Lett. Appl. Microbiol. 2002. V.35. P.242-246.

95. Tanaka Y., Sogabe M., Okumura K., Kurane R. A highly selective direct method of detecting sulphate-reducing bacteria in crude oil. //Lett. Appl. Microbiol. 2002. V.35. P.242-246.

96. Xu L.C., Chan K.Y., Fang H.P. Application of atomic force microscopy in the study of microbiologically influenced corrosion. //Materials Characterization. 2002. V.48. P. 195-203.

97. Johansson L.S., Saastamoinen T. Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species. //Appl. Surface Sci. 1999. V.144-145. P.244-248.

98. Vinnichenko M., Chevolleau Th., Pham M.T., Poperenko L., Maitz M.F. Spectroellipsometric, AFM and XPS probing of stainless steel surfaces subjected to biological influences. //Appl. Surface. Sci. 2002. V.201. P.41-50.

99. O.Nielsen P.H., Aquino de Muro M., Nielsen J.L. Studies on the in situ physiology of Thiothrix spp. in activated sludge. //Environ. Microbiol. 2000. V.2. P.389-398.

100. Videla H.A. Prevention and control of biocorrosion. //Int. Biodeterior. Biodegrad. 2002. V.49. P.259-270.

101. Смолянец Е.Ф., Рагулин B.B. Анализ микробиологической зараженности поверхностного оборудования месторождений западной Сибири. //Отечественный опыт. 1996. №10. С.17-23.

102. Ramesh S., Rajeswari S., Maruthamuthu S. Effects of inhibitors and biocide on corrosion control of mild steel in natural aqueous environment. //Materials letters. 2003. V.57. P.4547-4554.

103. Ramesh S., Rajeswari S. Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives. //Electrochim. Acta. 2004. V.49. P.811-820.

104. Ramesh S., Rajeswari S. Evaluation of inhibitors and biocide on the corrosion control of copper in neutral aqueous environment. //Corrosion science. 2005. V.47. P.151-169.

105. Иб.Самедов A.M. Применение алифатических аминов в качестве ингибиторов бактериальной и кислотной коррозии в нефтяной промышленности. //Процессы Нефтехимии и Нефтепереработки. 2000. №2. С.35-39.

106. И7.Кузнецов Ю.И. Физико-химические аспекты ингибирования коррозии металлов в водных растворах. //Успехи химии. 2004. Т.73. №1. С.79-93.

107. Жиглецова С.К., Родин, В.Б. Повышение экологической безопасности при использовании биоцидов для борьбы с коррозией, индуцируемого микроорганизмами. //Прикл. Биохим. Микробиол. 2000. Т.36. №6. С.694-700.

108. Абдуллаев Е.Ш. Ингибитор «Азери» и его применение в нефтедобывающей промышленности стран СНГ. //Процессы Нефтехимии и Нефтепереработки. 2000. №3. С.18-25.

109. Paulus W. Development in Microbicides for the Protection of materials. //Biodeteriation: Proceedings of 7th IBS. London. 1987. P. 1-19.

110. Paulus W. Biocides. //Biodeteriation: Proceedings of 4th IBS. London. 1980. P.307-314.

111. Williams T.W., Levy R., Hegarty B. Control of SRB biofouling and MIC by chloromethyl-methylisothiazolone. //NACE Int. Corrosion. Houston. TX. 2001. Paper No. 01273.

112. Prasad R. Assessment and control of MIC in the oil industry in the 20th century. //NACE Int. Corrosion. Houston. TX. 2000. Paper No. 00390.

113. Коррозионная стойкость оборудования химических производств. //Справочное издание. Химия. 1990.400 с.

114. De Beer D., Srinivasan R., Stewart P.S. Direct measurement of chlorine penetration into biofilms during disinfection. //Appl. Environ. Microbiol. 1994. V.60. P.4334-4339.

115. Kramer J.F. Biofilm control with bromo-chloro-dimethyl-hydantoin. //NACE Int. Corrosion. Houston. TX. 2001. Paper No. 1277.

116. Viera M.R., Guiamet P.S., Mele M.F.L., Videla H.A. Use of dissolved ozone for controlling planktonic and sessile bacteria in industrial cooling systems. //Int. Biodeterior. Biodegrad. V.44. P.201-207.

117. Videla H.A., Saravia G.S.G., Guiamet P.S., Allegreti P., Furlong J. Microbial degradation of film-forming inhibitors and its possible effects on corrosion inhibition performance. //NACE Int. Corrosion. Houston. TX. 2000. Paper No. 00386.

118. Gomez В., Likhanova N.V., Dominguez Aguilar M.A., Olivares O., Hallen J.M., Martinez-Magadan J.M. Theoretical study of a new group of corrosion inhibitors. //J. Phys. Chem. Mol. Spectrosc. Kinet. Environ. Gen. Theory. 2005. V.109. P.8950-8957.

119. Berchmans L.J., Sivan V., Iyer S.V.K. Studies on triazole derivatives as inhibitors for the corrosion of muntz metal in acidic and neutral solutions. //Mat. Chem. Phys. 2006. V.98. P.395-400.

120. Weiss S., Reemtsma T. Determination of benzotriazole corrosion inhibitors from aqueous environmental samples by liquid chromatography-electrospray ionization-tandem mass spectrometry. //Anal. Chem. 2005. V.77. P.7415-7420.

121. Ramesh S., Rajeswari S., Maruthamuthu S. Corrosion inhibition of copper by new triazole phosphonate derivatives. //Appl. Surf. Sci. 2004. V.229. P.214-225.

122. Duda Y., Govea-Rueda R., Galicia M., Beltran H.I., Zamudio-Rivera L.S. Corrosion inhibitors: design, performance and computer simulations. //J. Phys. Chem. В Condens. Matter. Mater. Surf. Interfaces. Biophys. 2005. V.109. P.22674-22684.

123. Samardzija B.K., Lupu C., Hackerman N., Barron A.R., Luttge A. Inhibitive properties and surface morphology of group of heterocyclic diazoles as inhibitors for acidic iron corrosion. //Langmuir. 2005. V.21. РЛ 2187-12196.

124. Классификация буровых растворов. //Нефть, газ и энергетика. 2005. №6. С.28-63.

125. Rajasekar A., Babu T.G., Maruthamuthu S., Pandian S.T.K., Mohanan S., Palaniswamy N. Role of Serratia marcescens on corrosion inhibitor degradation and its influence on corrosion. //Int. Biodeterior. Biodegrad. 2006, doi: 10.1018/ibbj.2006.06.012.

126. Rajasekar A., Maruthamuthu S., Palaniswamy N., Rajendran A. Biodegradation of corrosion inhibitors and their influence on petroleum product pipeline. //Microbiol. Res. 2006, doi: 10.1016/j .micres.2006.02.002.

127. Лецкий Д.В., Вурзель С.В. Биоциды для лакокрасочных материалов. //Лакокрасочные материалы. 2005. №12. С.20-23.

128. Dubiel М., Hsu С.Н., Chien С.С., Mansfeld F., Newman D.K. Environmental microbiology and biodegradation: microbial iron respiration can protect steel from corrosion. //Appl. Environ. Microbiol. 2002. V.68. P.1440-1445.

129. HO.Chongdar S., Gunasekaran G., Kumar P. Corrosion inhibition of mild steel by aerobic biofilm. //Electrochim. Acta. 2005. V.50. P.4655-4665.

130. Zuo R., Kus E., Mansfeld F., Wood Т.К. The importance of live biofilms in corrosion protection. //Corrosion Sci. 2005. V.47. P.279-287.

131. Теплинский Ю.А., Конакова M.A. Аварийные запасы труб. // Коррозия: материалы, защита. 2005. № 3. С. 23-28.

132. Denny A.J. Principles and prevention of corrosion. //Prentice Hall, Upper Saddle River. NY. 1996. 572p.

133. Шоль H.P., Коптяева Г.Б., Коптяев A.B. Термическая обработка и микролегирование стали //Новые технологии в машиностроении, металлургии, материаловедении. Межвуз. сб. науч. Тр. / Н.Новгород; НГТУ. 2001. С.237-240.

134. Borenstein S.W. Microbiologically Influenced Corrosion Handbook. //Industrial Press Inc. NY. 1994. 288p.

135. Banerjee S.S., Joshi M. V., Jayaram R.V. Treatment of oil spill by sorption technique using fatty acid grafted sawdust. //Chemosphere. 2006. V.64. P. 1026-1031.

136. Lim T.T., Huang X. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup. //Chemosphere. 2006, doi: 10.1016/j.chemosphere.2006.05.062.

137. Wei Q.F., Mather R.R., Fotheringham A.F., Yang R.D. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. //Marine Pollution. Bull. 2003. V.46. P.780-783.

138. Каменщиков Ф.А., Богомольный Е.И. Нефтяные сорбенты. //Москва. Ижевск. 2005. 268 с.

139. Cambiella A., Ortea Е., Rios G., Benito J.M., Pazos С., Coca J. Treatment of oil-in-water emulsions: performance of a sawdust bed filter. //J. Haz. Mat. B. 2006. V.131. P.195-199.

140. Annunciado T.R., Sydenstricker T.H.D., Amico S.C. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. //Marine Pollution Bull. 2005. V.50. P. 1340-1346.

141. Haussard M., Gaballah I., Kanari N., Donato P., Barres O., Villieras F. Separation of hydrocarbons and lipid from water using treated bark. //Wat. Res. 2003. V.37. P.362-374.

142. Смирнов А.Д. Сорбционная очистка воды. //Ленинград. Химия. 1982. 168 С.

143. Арене В.Ж., Гридин О.М., Гридин А.О. Проблема нефтяных разливов и роль сорбентов в ее решении. //Нефть, газ и бизнес. 2000. №5.

144. Хлесткин Р.Н., Самойлов Н.А., Шеметова А.В. Ликвидация разливов нефти при помощи синтетических органических сорбентов. //Нефтяное хозяйство. 1999. №2. С.46-49.

145. Арене В.Ж., Гридин О.М., Гридин А.О. Семь раз отмерь. //Нефтегазовая вертикаль. 2000. №2.

146. Угарова H.H., Фрунджян В.Г. Применение биолюминесцентной АТФ-метрии в биоаналитических целях. // Метод, разработка к спецкурсу "Прикладная энзимология". М.: Изд. МГУ, Хим. факультет. 2003. 45с.

147. Rodionova N.S., Petushkov V.N. Effect of different salts and detergents on luciferin-luciferase luminescence of the enchyraeid Fridericia heliota. //J. Photochem. Photobiol. B. 2006. V.83. P.123-128.

148. Sakakibara Т., Murakami S., Imai K. Enumeration of bacterial cell numbers by amplified firely bioluminescence without cultivation. //Anal. Biochem. 2003. V.312. P.48-56.

149. Assessment of photodynamic destruction of Escherichia coli 0157: H7 and Listeria monocytogenes by using ATP bioluminescence. //Appl. Environ. Microbiol. 2003. V.69. P.6393-6398.

150. Aycicek H., Oguz U., Karci K. Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination surface cleanliness at a hospital kitchen. //Int. J. Hyg. Environ. Health. 2006. V.209. P.203-206.

151. Watarai M., Yamato Y., Murakata K., Kim S., Omata Y., Furuoka H. Detection of Lawsonia intracellularis using immunomagnetic beads and ATP bioluminescence. //J. Vet. Med. Sci. 2005. V.67. P.449-451.

152. Bell C., Stallard, P.A., Brown S.E., Standley J.T.E. ATP-bioluminescent techniques for assessing hygienic condition of milk transport tankers. //Int. Dairy J. 1994. V.4. P.629-640.

153. Douillet C.D., Suy S., Zarzaur B.L., Robinson W.P., Milano P.M., Boucher R.C., Rich P.B. Measurement of free and bound fractions of extracellular ATP in biological solutions using bioluminescence. //Luminescence. 2005. V.20. P.435-441.

154. Tian H.M., Shi X.Y., Fu J., Chao D.Y., Zhang K., Wu L.Y., Wang J.W., Zhang W. Correlation between ATP bioluminescence tumor chemosensitivity assay and clinical response in ovarian cancer. //Zhonghua Zhong. Liu. Za. Zhi. 2005. V.27. P.296-298.

155. Спиричева O.B. Биокаталитические системы на основе иммобилизованных клеток гриба Rhizopus oryzae: способы получения и свойства. // Дисс. на соиск. степени к.х.н. 2006. Москва. 160с.

156. Abbasov V.M., Isayeva G.A., Abbasov М.М., Aliyev B.M. Results of studies of medicinal nafitalan oil from different wells. //Proc. Petrochem. Oil Refining. 2002. V. 2. P.26-29.

157. Abbasov V.M., Samedova F.I., Aliyev B.M., Isayeva G.A. Composition and structure of 50-degree fractions of Surakhany white oil from different wells. //Proc. Petrochem. Oil Refining. 2003. V. 15.P.17-19.

158. Варфоломеев С.Д., Калюжный C.B. Биотехнология: «Высшая школа». 1990, С.52-78.

159. Лурье Ю.Ю. Аналитическая химия промышленных сточных вод. М: «Химия». 1984, С.303-315.

160. Gilbert T.W., Behymer T.D., Castaneda Н.В. Determination of dissolved oxygen in natural and wastewaters. //American Laboratory. 1982. №3. P. 119-134.

161. Скляр В. И. Биокаталитические системы получения водорода и метана: Дис. канд. хим. наук. Фрунзе, 1987. - 154 с.

162. Шлегель Г. Общая микробиология. //Мир. 1987. 567с.

163. Murzakov В., Akopova G., Kruglova N. The technology of bioremediation of oil polluted objects by biopreparations (project "biodestructor"). //Comm. Agricul. Appl. Biolog. Sci. 2003. V.68. P.181-184.

164. Щукин Е.Д., Перцов A.B, Амелина E.А. Коллоидная химия. //Высшая школа. 1992. С.64-89.

165. Егоров Н.С. Основы учения об антибиотиках. //Высшая школа. 1986. С.369-374.

166. Ronald L., Crawford L. Bioremediation: Principles and Applications. //Springier. 1996. P.100-125.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.