Композитные материалы "соль в пористой матрице": дизайн адсорбентов с заданными свойствами тема диссертации и автореферата по ВАК РФ 02.00.04, доктор химических наук Гордеева, Лариса Геннадьевна

  • Гордеева, Лариса Геннадьевна
  • доктор химических наукдоктор химических наук
  • 2013, Новосибирск
  • Специальность ВАК РФ02.00.04
  • Количество страниц 347
Гордеева, Лариса Геннадьевна. Композитные материалы "соль в пористой матрице": дизайн адсорбентов с заданными свойствами: дис. доктор химических наук: 02.00.04 - Физическая химия. Новосибирск. 2013. 347 с.

Оглавление диссертации доктор химических наук Гордеева, Лариса Геннадьевна

Введение

Глава 1. Литературный обзор

1.1. Адсорбционные технологии

1.1.1. Области использования адсорбентов 14 Разделение компонентов газовых и жидкостных смесей. 15 Адсорбционные теплотрансформаторы 17 Поддержание относительной влажности 20 Увеличение конверсии обратимых химических реакций

1.1.2. Основные подходы к формулированию требований практических приложений к свойствам ОА 24 Потенциальная теория Поляни 25 Правило Трутона 27 Адсорбционное разделение 28 Адсорбционные теплотрансформаторы

1.2. Адсорбенты и методы регулирования их сорбционных свойств

1.2.1. Активированные угли 34 Структура АУ 34 Получение АУ 34 Углеродные наноматериалы 35 Адсорбционные свойства АУ

1.2.2. Цеолиты 37 Структура цеолитов 38 Сорбционные свойства цеолитов 1.2.3. Силикагель

Структура силикагеля

Синтез и методы управления пористой структурой

Кремниевые аэрогели Адсорбция воды и других полярных газов на силикагеле

1.2.4. Оксид алюминия 43 Структура оксида алюминия 44 Получение оксида алюминия 44 Сорбционные свойства оксида алюминия

1.2.5. Упорядоченные мезопористые мезофазные материалы

Структура мезопористых мезофазных материалов

Синтез мезопористых мезофазных материалов

Сорбционные свойства мезопористых мезофазных материалов

1.2.6. Кристаллические пористые алюминофосфаты 48 Структура пористых алюминофосфатов 48 Синтез А1РО 48 Сорбционные свойства ALPO

1.2.7. Металлорганические координационные полимеры 50 Структура МОР 50 Синтез MOF 50 Адсорбционные свойства MOF

1.2.8. Модифицирование поверхности пористых адсорбентов. Композитные и гибридные адсорбенты

1.3. Композитные адсорбенты «соль в порах матрицы»

1.3.1. Методы синтеза КСПМ 56 Пропитка 56 Золь-гель метод 58 Механическое смешение

1.3.2. Свойства КСПМ 61 Сорбционное равновесие 61 Динамика сорбции

1.3.3. Практические приложения КСПМ 68 Осушка газов и жидкостей. 68 Адсорбционные теплотрансформаторы. 70 Осушительные холодильники (desiccant cooling) 73 Аккумулирование низкопотенциального тепла. 74 Регенерация теплоты и влаги в системе вентиляции. 75 Активная тепловая защита. 76 Получение питьевой воды из атмосферного воздуха.

Рекомендованный список диссертаций по специальности «Физическая химия», 02.00.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Композитные материалы "соль в пористой матрице": дизайн адсорбентов с заданными свойствами»

Прогресс науки и техники в значительной степени обусловлен развитием новых материалов, среди которых важное место занимают адсорбенты. Первое упоминание о явлении адсорбции и его использовании для практических нужд, по-видимому, относится к работам Гиппократа (около 400 лет до н.э.). Со ссылкой на более ранние египетские папирусы (около 1550 лет до н.э.) [1] он описал применение древесного угля в медицинской практике - для ускорения заживления ран и лечения уремии [2]. Научные исследования адсорбентов начались в конце 18 века [2-5]. Однако, до второй половины 19 века предметом изучения были пористые тела природного происхождения (древесный уголь, глина, известняк, вулканическая зола и т.п.). Так, способность пористых углей поглощать газы в объемах, в несколько раз превышающих их собственный объем, была описана еще в 1777 г. [6].

Первыми синтетическими пористыми телами были оксиды металлов, приготовленные термическим разложением солей и гидроксидов металлов или методом осаждения. До сих пор пористые оксиды кремния (силикагель) [7] и алюминия [8] являются одними из наиболее часто применяемых адсорбентов. Пионерские работы Бэррера [9] положили начало эре синтетических цеолитов, которая продолжается до сих пор [10—11]. Их получают методом гидротермального синтеза, дальнейшее развитие которого позволило открыть целые семейства новых кристаллических пористых материалов, таких как мезопористые мезофазные материалы (МСМ, SBA, FSM, MCF, MSU и др.) [12, 13] и метало-алюминофосфаты (А1РО, SAPO, МеАРО, etc.) [14, 15]. В последнее время разработано много новых однокомпонентных адсорбционных материалов, таких как наноструктурированные адсорбенты различной химической природы (оксиды титана, циркония, церия и др.) [16], углеродные молекулярные сита [17], нанотрубки [18], нанорога [19], аэрогели [20], волокна из активированного угля (ACF) и мезоуглеродные микрозерна (МСВ) [21, 22], угли с супервысокой поверхностью (SIISC) [23], металдо-органические координационные полимеры (MOF) [24, 25-26] и многие другие [27].

В настоящее время явление адсорбции широко используется в различных промышленных процессах и технологиях [6 - 36]. Наиболее часто адсорбенты применяют для очистки газов и жидкостей, разделения и хранения компонентов газовых смесей, в хроматографическом анализе [35]. В последние десятилетия получили развитие и другие, менее традиционные области применения адсорбентов. В частности, адсорбционные системы считаются перспективными для преобразования (запасания) тепловой энергии, особенно с низким температурным потенциалом [37, 38]. Адсорбенты паров воды используют для поддержания фиксированной относительной влажности в витринах для демонстрации и хранения музейных ценностей [39], для сушки термочувствительных органических материалов, лекарственных препаратов [40], семян, пищевых продуктов и т.п. [34]. Предложено использование адсорбционного метода для удаления продуктов обратимых химических процессов [41]. Это приводит к увеличению конверсии и существенной экономии энергоресурсов при проведении таких процессов. Все шире адсорбенты применяются для селективной доставки лекарственных препаратов к конкретным органам [42], активной тепловой защиты [43], вакуумно-адсорбционной сушки [44] и многих других приложений.

Каждое из этих многочисленных и разнообразных адсорбционных приложений предъявляет свои специфические требования к свойствам адсорбента, выполнение которых позволяет обеспечивать максимальную эффективность процесса. Так, например, для разделения газов нужны материалы, способные селективно поглощать отделяемый газ при его ничтожно малом содержании в смеси, или, другими словами, при относительном давлении г/ = Р/Р0(Т), где Р - парциальное давление паров воды, Pq -давление насыщенных паров при температуре Т, 77 « 0 [35] . Требования к адсорбентам для поддержания влажности в витринах для хранения музейных экспонатов зависят от вида экспоната и материала, из которого он изготовлен [39]. Для такого относительно нового применения адсорбентов, как адсорбционные теплотрансформаторы (АТТ) требуемый интервал 77 достаточно широк (0.05 - 0.35), т.к. зависит от условий работы устройства. В этом случае востребованы адсорбенты, адаптированные к климатической зоне, источнику тепла, используемого для регенерации адсорбента и т.п. [38].

Несмотря на значительные достижения в развитии адсорбционных технологий, по-прежнему существуют резервы их усовершенствования. По-видимому, они, в первую очередь, связаны с лучшим согласованием свойств адсорбента с требованиями конкретного технологического процесса. Одна возможная стратегия поиска адсорбента, подходящего для данного приложения, состоит просто в анализе сорбционных свойств уже существующих материалов, или их испытании и выборе среди них лучшего для рассматриваемого приложения. Этот подход требует больших затрат времени и труда, но при этом не гарантирует оптимальное решение поставленной задачи, поскольку выбор осуществляется из ограниченного набора доступных адсорбентов, зачастую разработанных для других приложений. Удивительно, но, несмотря на широкое разнообразие областей применения и, соответственно, предъявляемых к адсорбентам требований, в реальной практике используют всего несколько типов коммерчески доступных материалов. Это, в основном, активированные угли, цеолиты, силикагели и оксид алюминия [35].

Вместе с тем, современный уровень развития материаловедения и нанотехнологии позволяет ставить вопрос о возможности принципиально отличной стратегии. Она заключается в целенаправленном синтезе (конструировании) материала с заданными адсорбционными свойствами, т.е. такими, которые наилучшим образом удовлетворяют требованиям конкретного приложения. В рамках этой методологии можно выделить два основных этапа: а) сначала необходимо понять, какой адсорбент гипотетически будет идеальным для рассматриваемого приложения, и в количественных терминах сформулировать требования к свойствам такого оптимального адсорбента (ОА); б) затем необходимо найти способ синтеза реального адсорбента с такими же свойствами, как у О А или близкими к ним.

Задача целенаправленного конструирования адсорбентов с заданными свойствами издавна привлекала исследователей [45], но надежный физико-химический базис для ее реализации появился только в последние десятилетия [35, 46 -50]. Для успешного решения этой задачи необходимо вначале выделить основные характеристики материалов, влияющие на их адсорбционные свойства, и затем разработать методы целенаправленного синтеза материалов с желаемыми характеристиками.

Для однокомпонентных материалов, как традиционных (активированные угли, цеолиты, силикагели, оксид алюминия), так и новых (аэрогели, упорядоченные мезопористые материалы, алюминофосфаты цеолитного типа, нанотрубки и т.п.), возможности регулирования свойств ограничиваются их химической природой и пористой структурой. Для расширения этих возможностей предложены многочисленные методы химического модифицирования однокомпонентных адсорбентов. Этими методами были получены ионообменные цеолиты [10, 11], замещенные металло-алюминофосфаты [17, 27, 51, 52], столбчатые глины [53], адсорбенты образующие пкомплексы с сорбатом [54, 55], органо-неорганические гибриды [56 - 60] и многие другие материалы. Если содержания химической добавки и базовой пористой матрицы становятся сравнимы, или они образуют раздельные фазы, то получающиеся материалы следует рассматривать уже не как модифицированные, а как композитные системы. Эти системы можно получать как пропиткой готовой матрицы раствором, содержащим модифицирующую добавку [54, 61], совместным осаждением золей [62], или смешением компонентов в твердой фазе через спонтанное монослойное диспергирование [54, 55, 63]. Этот подход привел к появлению новых классов пористых материалов: неорганических композитов [54, 55, 64 - 68].

Возможности для варьирования адсорбционных свойств двухкомпонентных адсорбентов существенно шире, чем традиционных однокомпонентных, таких как силикагели, цеолиты, пористые угли и пр. Данная работа посвящена композитным материалам, в которых одним компонентом является матрица, представляющая собой как раз обычный адсорбент, в поры которого помещен второй компонент - соль. Композиты «соль в пористой матрице» (КСПМ) объединяют в единой структуре преимущества различных типов сорбентов - хемосорбентов, абсорбентов и адсорбентов.

К настоящему времени КСПМ предложено использовать в самых разнообразных областях. Во многих лабораториях мира синтезированы около сотни различных адсорбентов типа КСПМ для поглощения паров воды [69 - 73], метанола [74], этанола [75], аммиака [76, 77], диоксида [78, 79] и моноксида [80] углерода, фосфина [81], диоксида серы [82], цианистого водорода [83], хлоро- [84] и сероводорода [85], паров ртути [86], диметилсульфида [87], метилмеркаптана [88] и других газов, а также, солей тяжелых металлов [89]. КСПМ рассматривают как перспективные адсорбенты для широкого ряда разнообразных технологических процессов: в первую очередь для осушки газов [90, 91], адсорбционных теплотрансформаторов [75, 92 - 102], систем испарительного кондиционирования [103, 104], запасания низкопотенциалыюго тепла [71, 105 - 109], регенерации теплоты и влаги в системах вентиляции [110, 111], буферов влаги для поддержания фиксированной влажности [112], получения питьевой воды из атмосферного воздуха [113], активной тепловой защиты [43, 114] , очистки воздуха от токсичных примесей НСЫ [115], С1СК [83], НС1 [84], 802 [82], ЫН3 [77], Щ [116], Н28 [85], и др.

И хотя к настоящему времени накоплен огромный объем экспериментальных данных, они носят разрозненный характер и требуют анализа, систематизации и обобщения. Целью данной работы является разработка физико-химических основ конструирования композитных сорбентов «соль в порах матрицы» с заданными свойствами, специализированных для конкретных практических приложений.

Для выполнения данной цели в работе были поставлены следующие задачи:

1. Формулирование термодинамических требований к ОА для ряда приложений.

2. Исследование закономерностей формирования химического, фазового состава КСПМ и их влияния на сорбционные свойства композитов.

3. Разработка физико-химических основ целенаправленного синтеза КСПМ с заданными сорбционными свойствами.

4. Дизайн КСПМ со свойствами близкими к свойствам ОА для некоторых приложений и их тестирование.

На защиту выносятся следующие положения:

• качественные и количественные требования к свойствам адсорбентов, оптимальных для следующих процессов: адсорбционное преобразование тепла, поддержание относительной влажности, вакуумно-адсорбционная сушка, удаление метанола из газовых смесей, получение воды из атмосферного воздуха, а также для увеличения конверсии синтеза метанола;

• методы целенаправленного синтеза КСПМ с заданными свойствами путем варьирования ряда факторов (химической природы соли или двойных солевых систем, содержания соли, природы и пористой структуры матрицы и условий синтеза композитов);

• корреляции между адсорбцией катионов соли на поверхности матрицы и фазовым составом, а также типом сорбционного равновесия КСПМ с парами воды и метанола;

• взаимосвязь между образованием твердых растворов солей в КСПМ на основе двойных солевых систем и изменением сорбционного равновесия таких КСПМ с парами воды, метанола и аммиака;

• банк данных по сорбционному равновесию (характеристические кривые сорбции, изостерические энтальпии и энтропии сорбции) КСПМ на основе хлоридов, бромидов и сульфатов щелочных, щелочноземельных металлов в порах мезо- и макропористых матриц с парами воды и метанола.

Работа состоит из 6 глав. В литобзоре рассматриваются обе задачи в рамках целенаправленного синтеза адсорбентов: формулирование требований к свойствам О А и синтез реального адсорбента с такими свойствами. Кратко описаны некоторые из областей, в которых используются адсорбенты, и основные подходы к формулированию требований к свойствам ОА для различных приложений. Затем приведены основные типы материалов, используемых в качестве адсорбентов, и обсуждаются методы регулирования их сорбционных свойств. Заключительная часть первой главы посвящена КСПМ, описаны их свойства, параметры, влияющие на их сорбционные свойства, а также основные области, в которых данные материалы предложено использовать.

Во второй главе описаны используемые в работе методы синтеза КСПМ и экспериментальные физико-химические методы исследования их фазового состава и сорбционных свойств.

В третьей главе на основе термодинамического анализа некоторых из адсорбционных процеесов сформулированы требования к свойствам ОА, обеспечивающего максимальную эффективность процесса.

Четвертая глава посвящена изучению методов направленного синтеза КСПМ с заданными свойствами. Материалы этой части основаны на всестороннем изучении физико-химических свойств КСПМ, их химического и фазового состава, сорбционного равновесия с сорбатом. Это позволило понять закономерности формирования КСПМ, определить параметры, влияющие на их структуру и фазовый состав, и, наконец, используя эти параметры, научиться регулировать свойства композитов. Представленные данные являются базисом для целенаправленного синтеза адсорбентов с заданными свойствами, удовлетворяющими требованиям конкретного приложения.

В пятой главе детально описаны сорбционные свойства новых КСПМ, специализированных для поглощения воды и спиртов (метанола, этанола). Особое внимание было уделено анализу относительного вклада соли и матрицы в сорбционные свойства КСПМ и сравнению свойств массивной и дисперсной соли. Существенные различия в свойствах, обнаруженные для большинства исследованных солей, обсуждаются в рамках двух основных явлений - размерного эффекта, связанного с диспергированием соли в порах до наноразмеров, и химического эффекта, обусловленного взаимодействием «гость (соль) - хозяин (матрица)». Изложенные здесь результаты составляют банк данных по сорбционным свойствам КСПМ, необходимый для анализа практических приложений КСПМ.

Заключительная шестая глава работы посвящена подробному описанию практических процессов, в которых используются КСПМ. В этой главе проиллюстрировано, каким образом, используя выявленные закономерности, можно сконструировать КСПМ, свойства которых близки к свойствам ОА для некоторых из процессов, рассмотренных в главе 3.

Похожие диссертационные работы по специальности «Физическая химия», 02.00.04 шифр ВАК

Заключение диссертации по теме «Физическая химия», Гордеева, Лариса Геннадьевна

Выводы

1. Разработаны физико-химические основы конструирования композитных сорбентов «соль в порах матрицы» (КСПМ), специализированных для заданных приложений. Данная методология включает в себя: а) определение термодинамических требований к свойствам сорбента, оптимального для заданного приложения; и б) целенаправленный синтез реального сорбента, свойства которого удовлетворяют этим требованиям. Показано, что для поддержания относительной влажности, вакуумно-адсорбционной сушки и увеличения конверсии реагентов синтеза метанола, оптимальными являются сорбенты со ступенчатыми (Я-образными) изотермами сорбции, характерными для систем с моновариантным равновесием. Для процессов удаления метанола из газовых смесей и получения воды из атмосферной влаги предпочтительнее сорбенты, поглощающие пары сорбтива в широком интервале относительного давления. Сформулированы количественные требования к свойствам сорбентов, специализированных для адсорбционных холодильных циклов и поддержания относительной влажности.

2. Разработаны методы целенаправленного синтеза КСПМ с заданными свойствами. Установлено, что основными факторами, влияющими на сорбционные свойства композитов, являются химическая природа соли и матрицы, пористая структура матрицы и условия синтеза композитов (концентрация и рН пропиточного раствора, температура сушки). Модифицирование силикагелей, угля Сибунит, расширенного графита, оксида алюминия и вермикулита хлоридами, бромидами и сульфатами 1л, N3, Са, Mg, Си и Ва приводит к существенному росту их сорбционной емкости по отношению к парам метанола и воды (0.4-1.2 г/г), что превышает емкость традиционных однокомпонентных адсорбентов (0.1-0.4 г/г). Показано, что основным сорбирующим компонентом КСПМ является соль, которая реагирует с сорбтивом с образованием сольватов «соль - сорбат» и водных (спиртовых) растворов соли в порах.

3. Установлены закономерности формирования химического и фазового состава КСПМ в процессе приготовления. На стадии пропитки адсорбция катионов соли на поверхности матрицы приводит к образованию поверхностных комплексов. Доля катионов, входящих в состав поверхностных комплексов, зависит от природы соли и матрицы, концентрации и рН пропиточного раствора и варьируется от 0.02 до 0.51. На стадии сушки композита в порах матрицы происходит формирование двух фаз соли: кристаллической и рентгеноаморфной. В процессе сорбции паров воды и метанола первой фазой, образуются кристаллические сольваты с моновариантным типом сорбционного равновесия. В композитах, содержащих вторую фазу соли, образуются рентгеноаморфные сольваты, вариантность таких систем равна 2. Увеличение доли поверхностных комплексов способствует образованию рентгеноаморфной соли. Таким образом, варьируя условия приготовления КСПМ можно направленно изменять тип их сорбционного равновесия с парами воды и метанола в соответствии с требованиями конкретного процесса.

4. Матрица влияет на сорбционное равновесие соли с сорбтивом и играет роль диспергирующего агента, препятствующего агломерации частиц соли. При помещении соли в поры со средним размером 15 нм и менее сорбционные свойства соли становятся размерно-зависимыми. В процессе сорбции паров воды и метанола солыо, диспергированной в порах размером 10-15 нм и более, происходит образование кристаллических сольватов соли (при ее содержании выше 10-20 масс. %). В порах размером 6-8 нм кристаллические сольваты не образуются. Равновесное относительное давление паров метанола и воды, при котором происходит образование сольватов соли, уменьшается при диспергировании соли в порах меньшего размера, что позволяет регулировать сорбционные свойства КСПМ.

5. Установлены закономерности сорбции паров воды, метанола и аммиака на КСПМ на основе двойных солевых систем (1ЛС1 + ЫВг), (СаС12 + СаВг2) и (ВаС12 + ВаВг2) в порах силикагеля и вермикулита. Образование в порах твердого раствора солей приводит к изменению равновесной температуры (давления) образования кристаллических сольватов, а, следовательно, и характеристических кривых сорбции. При образовании в порах смеси двух твердых растворов каждый из них поглощает сорбтив независимо, в своем температурном интервале. Показано, что варьируя соотношение солей в составе композита, можно направленно изменять температурный интервал сорбции на 20-30°С.

6. Осуществлен целенаправленный синтез новых композитных сорбентов метанола и аммиака, специализированных для двух адсорбционных холодильных циклов, использующих тепловую энергию с низким температурным потенциалом (80

100°С): кондиционирование воздуха и получение льда. Показано, что композит LiCl/Si02, синтезированный для цикла кондиционирования воздуха, обменивает в условиях цикла в 3 - 5 раз больше метанола, чем традиционные адсорбенты. Испытания композита в лабораторном прототипе адсорбционного холодильника показали, что он позволяет осуществлять эффективные циклы кондиционирования воздуха с холодильным коэффициентом 0.32 - 0.40 и удельной холодильной мощностью 210 - 340 Вт/кг. Синтезированный для цикла получения льда композит (ВаС12+ВаВг2)/вермикулит позволяет вырабатывать 0.64 кг льда с 1 кг сорбента в цикле с производительностью 2 кг/(кг час), что существенно превышает соответствующие характеристики традиционных адсорбентов.

7. Осуществлен целенаправленный синтез нового композитного буфера влаги ARTIC (Na2S04/Si02) для поддержания относительной влажности в интервале 50 - 60 % в витринах и контейнерах для экспозиции и хранения музейных и библиотечных ценностей. Показано, что в этом интервале влажности буферная емкость ARTIC в 2.5 раза выше емкости коммерческого буфера ArtSorb®. Испытания ARTIC в Музее истории и культуры народов Сибири и Дальнего Востока Института археологии и этнографии СО РАН и в Государственной публичной научно-технической библиотеке СО РАН продемонстрировали его высокую эффективность: продолжительность буферного действия ARTIC в витрине с воздухообменом интенсивностью 1/25 объема в сутки при загрузке 0.15 кг сорбента на 1 м витрины составила 6 месяцев.

Автор выражает глубокую благодарность научному консультанту, заведующему лабораторией энергоаккумулирующих процессов и материалов, проф., д.х.н. Ю.И. Аристову, а также всем коллегам, принимавшим участие в исследовании КСПМ, описанных в данной работе, и обсуждении результатов: В.И. Алексееву, Ж.В. Веселовской, Н.М. Винокуровой, И.С. Глазневу, А.Д. Грековой, A.B. Губарю, JI.C.

Довлитовой, Б.В. Елепову, Т.А. Кригер, [Э.А. Левицкому), В.В. Малахову, Э.М. Мороз, Ю. Мровец-Бялонь, Л.М. Плясовой, С.И. Прокопьеву, Д. Рестучча, И.В. Сальниковой, А.З. Сибгатулина, И.А. Симонову, М.М. Токареву, А. Френи, A.A. Хасину, Г.К.

Чермашенцевой, [В.Е. Шаронову), А. Яржебскому и другим.

Заключение

Адсорбционные процессы широко используются в ряде промышленных технологий, как традиционных (очистка и разделение газовых смесей), так и относительно новых, таких как адсорбционное преобразование тепла, буферы влаги для гигростатов пассивного типа, активная тепловая защита, интенсификации обратимых химических реакции и многие другие, не рассмотренные в данной работе. Новые процессы требуют новых материалов, специализированных для этих процессов. Тем не менее, до сих пор задача выбора адсорбента для конкретного процесса, в основном, решается традиционным способом - перебором коммерчески доступных материалов.

Современный уровень развития материаловедения позволяет решить эту задачу альтернативным методом - путем целенаправленного синтеза адсорбентов с заданными свойвами. Основное содержание данной работы составляет рассмотрение физико-химических основ целенаправленного конструипрования КСПМ с заданными свойствами, специализированных для конкретных приложений.

В главе 3 сформулированы термодинамические требования к ОА, который обеспечивает максимальную эффективность ряда адсорбционных процессов. Показано, что для ряда процессов требуются адсорбенты со ступенчатыми изотермами сорбции, или поглощающие пары сорбтива при фиксированном значении (в узком интервале) 77 или АР. Для других процессов напротив, предпочтительнее адсорбенты с пологими изотермами, или поглощающие пары сорбтива в широком интервале 77 (АР). Требования к О А для некоторых процессов: адсорбционных холодильных циклов кондиционирования воздуха и получения льда, гигростатов для поддержания ОВ в интервале 50 - 60% и увеличения конверсии синтеза метанола, были сформулированы в количественных терминах, в виде значений г|, АР, или Г(Р), при которых сорбент должен поглощать пары сорбтива. Таким образом, при целенаправленном синтезе КСПМ для заданного приложения важно регулировать как тип их сорбционного равновесия (ступенчатые и пологие изотермы), так значения т] (АР), при которых происходит рост сорбции.

В главе 4 выделены основные факторы, влияющие на адсорбционные свойства КСПМ. Возможности регулирования сорбционных свойств КСПМ намного шире, чем для традиционных пористых адсорбентов, что позволяет на практике реализовать методологию целенаправленного конструирования адсорбентов с заданными свойствами для конкретных приложений. Результаты этой главы позволили выявить некоторые фундаментальные закономерности формирования химического, фазового состава и сорбционных свойств КСПМ. Показано, что основным сорбирующим компонентом КСПМ является соль, и именно ее равновесие с парами сорбтива, в первую очередь, определяет сорбционные свойства КСПМ. Несмотря на небольшой вклад адсорбции паров на поверхности матрицы, она также оказывают важное влияние на свойства КСПМ. Матрица играет роль диспергирующего соль агента, препятствующего естественной тенденции частиц соли к агломерации. Пористая структура матрицы влияет на сорбционное равновесие диспергированной соли с парами сорбтивов за счет «размерного эффекта». Варьируя размер пор матрицы можно осуществлять более «тонкую» подгонку свойств КСПМ к сформулированным требованиям. Условия синтеза, внесение в поры двойных солевых систем предоставляют дополнительные широкие возможности для регулирования сорбционных свойств КСПМ. Показано, что использую эти факторы можно направленно изменять как тип сорбционного равновесия, так и значения г\ (АР), при которых происходит образование комплекса соли с сорбтивом, а, следовательно, и скачек сорбции. Данные, представленные в данной главе, составляют физико-химические основы для целенправленного конструирования КСПМ с заданными свойствами.

В главе 5 приведены результаты систематического изучения сорбционных свойств широкого ряда КСПМ на основе хлоридов, бромидов и сульфатов металлов 1 и 2 групп Периодической системы Менделеева, заключенных в поры матриц, обладающих различной химической природой (как гидрофильной, так и гидрофобной) и пористой структурой. Результаты представляют базу данных по сорбционному равновесию КСПМ с парами воды и метанола и могут быть использованы для анализа перспективности их использования в различных адсорбционных процессах.

В 6 главе, следуя концепции целенаправленного конструирования адсорбентов, был осуществлен синтез КСПМ, свойства которых удовлетворяют требованиям к ОА, сформулированным в главе 3 для некоторых приложений: адсорбционных холодильников, гигростатов для поддержания ОВ в интервале 50 - 60% и увеличения конверсии синтеза метанола. Полученные материалы были испытаны в лабораторных прототипах, а также в реальных устройствах. Наиболее широкое поле для применения новой методологии, по-видимому, можно найти в области адсорбционного преобразования тепла, поскольку для АТТ реализовано большое число циклов с сильно отличающимися граничными условиями, а, следовательно, и требованиями к OA. Возможность конструирования адсорбентов с различными свойствами может дать интересные результаты и в области адсорбционных буферов влаги для гигростатов пассивного типа. В работе описан новый материал ARTIC для поддержания ОВ в интервале 50 - 60 %, специализированный для хранения музейных, библиотечных и архивных ценностей. Развитые подходы будут очень полезны для синтеза буферов влаги для других диапазонов ОВ. Эти материалы могут быть востребованы не только в музеях и библиотеках, но и в различных отраслях промышленности, в которых применяются стадии осушки сырья или продукта, например, в пищевой промышленности. Потенциальный интерес представляет использование КСПМ для вакуумно-адсорбционной сушки термолабильных материалов (медицинских препаратов, пищевых продуктов, взрывчатых веществ и пр.). Интересным представляется подтверждение принципиальной возможности увеличения конверсии реагентов в реакции синтеза метанола путем сорбции продукта на специально сконструированном для этого композитном сорбенте, способном удерживать метанол при высокой температуре. Вместе с тем, представляется перспективным распространение этого подхода на другие химические (каталитические) реакции, в которых термодинамический выход продуктов невелик, в первую очередь, на процесс синтеза аммиака.

Во всех описанных приложениях сравнение результатов тестирования различных адсорбентов демонстрируют, что КСПМ, целенапраленно сконструированные для этих приложений, обеспечивают более высокую эффективность устройств. Это ярко демонстрирует преимущества разработанного в данной работе метода целенаправленного конструирования КСПМ с заданными свойствами для конкретных приложений перед традиционным подбором подходящего адсорбента среди уже известных материалов. Распространение данного подхода и на другие адсорбционные процессы и технологии в будущем может открыть широкие перспективы для развития и совершенствования этих процессов.

Список литературы диссертационного исследования доктор химических наук Гордеева, Лариса Геннадьевна, 2013 год

1. Joachim, Papyrus Ebers, Berlin, 1890, p. 8

2. Handbook of Porous Solids, Eds. F. Schueth, K.S.W. Sing, J. Weitkamp, Willey-VCH, 2002,v. 1, pp. 3-12.

3. W. McBain, The sorption of gases by solids, Routledge, London, 1932.

4. D.M. Kehi, Observations et Journal sur la Physique, de Chemie et d'Histoire Naturelle et des

5. Arts, Paris, Tome XLII, 1793, p. 250.

6. V.R. Deitz, Bibliography of solid adsorbents, Lancaster Press, Washington, DC, 1944.

7. F. Fontana, Memorie Mat. Fis. Soc. Ital. Sei., I, 1777, p. 679.

8. Р. Айлер, Химия кремнезема, M., Мир, 1982, 483 с.

9. H.L. Fleming, Adsorption on aluminas current applications. Stud. Surf. Sei. Catal., 120,1998, 561-585.

10. R.M. Barrer, Syntheses and Reactions of Mordenite. J. Chem. Soc., 1948, 2158-2163.

11. D.W. Breck, Zeolite Molecular Sieves, Robert Craggier Publishing, Malabo, Florida, 1984, 771 p.

12. С.П. Жданов, E.H. Егорова, Химия цеолитов, JI., Наука, 1968. 158 с

13. S. Inagaki, Y. Fukushima, K. Kuroda, Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate. J. Chem. Soc., Chem. Commun., 1993, 680-682.

14. S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, Aluminophosphate Molecular Sieves: a New Class of Microporous Crystalline Inorganic Solids. J. Am. Chem. Soc., 104, 1982, 1146-1147.

15. J.A. Martens, P. Jacobs, Crystalline Microporous Phosphates: a Family of Versatile Catalysts and Adsorbents, in Advanced Zeolite Science and Application. Stud. Sur. Sei. Catal., 85, 1994, 653-685.

16. Y.S. Lin, S.G. Deng, Sol-gel preparation of nanostructured adsorbents. Stud. Sur. Sei. Catal., A, 120, 1999,653-686.

17. T.R. Gaffney, Porous solids for air separation. Current Opinion in Solid State & Materials Science, 1, 1996,69-75.

18. S. Iijima, Helical microtubules of graphitic carbon. Nature, 354, 1991, 56.

19. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kolcai, K. Takahashi, Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309, n 3-4, 1999, 165.

20. R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, Aerogels derived from multifunctional organic monomers. J. Non-Crystalline Solids, 145, 1992, 90-98.

21. К. Kaneko, C. Ishii, Superhigh surface area determination of microporous solids. Colloids Surf., 67, 1992, 203-209.

22. K. Kaneko, C. Ishii, H. Kanoh, Y. Hanzawa, N. Setoyama, T. Suzuki, Characterization of porous carbons with high resolution a-analysis and low temperature magnetic susceptibility. Advanc. Colloid Interface Sci., 76-77, 1998, 295-320.

23. T. Otowa, R. Tanibata, M. Itoh, Production and adsorption characteristics of MAXSORB: High-surface-area active carbon. Gas Sep. Purif, 7, 1993, 241.

24. O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature, 423, 2003, 705.

25. C. Janiak, Engineering coordination polymers towards applications. Dalton Trans., 2003, 2781-2804.

26. S. Kitagawa, R. Kitaura, S. Noro, Functional Porous Coordination Polymers. Angew. Chem. Int. Ed., 43, 2004, 2334 -2375.

27. Handbook of Porous Solids, Eds. F. Schueth, K.S.W. Sing, J. Weitkamp, Willey-VCH, 2002, v. 1 -5,3191 p.

28. Брунауэр С. Адсорбция газов и паров. М.: HJI, 1948. 379 с.

29. Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов. Новосибирск: Наука, 1999. 470 с.

30. Yang R.T. Gas Separation by Adsorption Processes. London: Imperial College Press, 1997. 522 p.

31. Ruthven D. Principles of Adsorption and Adsorption Processes. Willey, 1982. 234 p.

32. Неймарк A.B., Хейфец JI.H. Многофазные процессы в пористых средах. М.: Наука, 1982. 320 с.

33. A. Dabrowski, Adsorption — from theory to practice. Advanc. Colloid Interface Sci., 93, no 1-3, 2001, 135-224.

34. В.Б. Фенелонов, Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. Новосибирск, изд-во СО РАН, 2004. 442 с.

35. R.T. Yang, Adsorbents: Fundamentals and Applications, Hoboken, New Jersey, John Wiley &Sons Inc., 2003,410 р.

36. Авгуль H.H., Киселев A.B., Пошкус Д.П. Адсорбция газов и паров на однородных поверхностях. М.: Химия, 1975. 384 с.

37. Alefeld G., Radermacher R. Heat Conversion Systems. CRC Press, Boca Raton, 1994. 231p.

38. Yu.I. Aristov, Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties (review). J. Chem. Engn. Japan, 40, n 13, 2007, 12411251.

39. G. Tomphson, The museum environment, London-Boston, Elsevier, 2nd Ed., 1999, 270 p.

40. B.K. Куликовский, A. JI. Потапов, Вакуумная кондуктивно-сорбционная сушка медпрепаратов, Мн., ИТМО НАН Беларуси, 2007.

41. М. Kuczynski, W. I. Browne, Н. I. Fontein, К. R. Westerterp, Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study. Chem. Eng. Sci, 42, 1987, 1887-1898.

42. Drug Delivery: Principles and Applications, Eds B. Wang, T. J. Siahaan, R. A. Soltero, New Jersey, John Wiley & Sons, Hoboken, 2005, 464 p.

43. G.-W. Oetjen, P. Haseley, Freeze-Drying, 2nd Ed., N.Y., Willey, 2003, 407 p.

44. И.Е. Неймарк, Направленный синтез и пути управления пористой структурой и свойствами адсорбентов. Адсорбенты, их получение, свойства и применение. Труды III Всесоюзного Совещания по адсорбентам. Ленинград, Наука, 1971, с. 5-12.

45. P. Kluson, S. Scaife, N. Quirke, Design of Microporous graphitic adsorbents for selective separation of gases. Separ.Purif. Technol. 20, 2000, 15-24.

46. R.T. Yang, Nanostructured adsorbents. Advances Chem. Engng, 27, 2001, 79-124.

47. M. Grün, G. Büchel, D. Kumar, K. Schumacher, B. Bidlingmaier, K.K. Unger, Rational design, tailored synthesis and characterisation of ordered mesoporous silicas in the micron and submicron size range. Stud. Surf. Sei. Catal., 128, n 9, 2000, p. 155.

48. T.J. Barton, L.M. Bull, W.G. Klemperer, D.A. Loy, B. McAnaney, M. Misono, P.A. Monson, G. Pez, G.W. Scherer, J.C. Vartuli, O.M. Yaghi, Tailored Porous Materials. Chem. Mater., 11, 1999, 2633-2656.

49. E.P. Ng, S. Mintova, Nanoporous materials with enhanced hydrophilicity and high watersorption capacity. Microporous Mesoporous Mater., 114, 2008, 1-26.

50. J. Wang, J. Song, C. Yin, Y. Zou, F.-S. Xiao, Tetramethylguanidine-templated synthesis of aluminophosphate-based microporous crystals with AFI-type structure. Microporous Mesoporous Mater., 117, 2009, 561-569.

51. Z. Han, H. Zhu, K. R. Ratinac, S. P. Ringer, J. Shi, Ji. Liu, Nanocomposites of layered clays and cadmium sulfide: Similarities and differences in formation, structure and properties. Microporous Mesoporous Mater., 108, 2008, 168-182.

52. J. Padin, R. T. Yang, New sorbents for oleffn/paraffn separations by adsorption via n-complexation: synthesis and effects of substrates. Chem.Eng. Sei., 55, 2000, 2607-2616.

53. Yu. Wang, R. T. Yang, J. M. Heinzel, Desulfurization of jet fuel by 7r-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials, Chem.Eng. Sei., 63, 2008, 356-365.

54. Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, Ed. H. S. Nalwa, California, American Scientific Publishers, 810 p.

55. G. P. Knowles, J. V. Graham, S. W. Delaney, A. L. Chaffee, Aminopropyl-functionalized mesoporous silicas as C02 adsorbents. Fuel Proc. Teen., 86, 2005, 1435-1448.

56. J. H. Kim, J. H. An, Y.S. La, J. S. Jung, H. M. Jeong, S. M. Kim, N. G. Moon, B. W. Lee, Y. H. Yoon, Y. I. Choi. Inorganic-organic hybrid nanoporous materials as adsorbent to remove VOCs. J.Ind. Eng. Chem., 14, 2008, 194-201.

57. Z. Wu, H. Han, W. Han, B. Kim, К. H. Ahn, K. Lee, Controlling the Hydrophobicity of Submicrometer Silica Spheres via Surface Modification for Nanocomposite Applications. Langmuir, 23, n 14, 2007, 7799-7803.

58. K. Kaneko. Anomalous micropore filling of NO on a- FeOOH-dispersed activated carbon fibers. Langmuir, 3, 1987, 357-363.

59. И.Б. Слинякова, М.Ф. Куркова, И.Е. Неймарк, Гели кремиийоргаиических соединений. 2. Адсорбционные свойства смешанных гелей метилксилантриолаи кремниевой кислоты. Колл. Журн., 26, 1964, с. 506-512.

60. Н. Ф. Ермоленко, М. Д. Эфрос, Структура и сорбционные свойства №0-А1г03 окислов из оксихлорида. Журн. Физ. Химии, 38, 1964, 1353-1358.

61. Ю.И. Аристов, Л.Г. Гордеева, Адсорбенты "соль в пористой матрице": дизайн фазового состава и сорбционных свойств. Кин. Кат., 50, N 1, 2009, 72-79.

62. Ю.И. Аристов, Л.Г. Гордеева, М.М. Токарев, Композитные сорбенты "соль в пористой матрице": синтез, свойства, применения, Новосибирск, Изд. СО РАН, 2008, 362 с.

63. Е.В. Лосева, Г.М. Белоцерковский, А.Н.Чудинов, Н.В.Мальцева, Л.И. Белова, Влияние гигроскопичности солей на поглощение паров воды импрегнированными осушителями. В: Сб. трудов ЛТИ, Ленинград, 1992, с. 26.

64. P.R. Shukla, S. Wang, H.M. Ang, M.O. Tade, Synthesis, characterisation, and adsorption evaluation of carbon-natural-zeolite composites. Advanc. Powder Technol. 20 (2009) 245250.

65. Yu.I. Aristov, М.М. Tokarev, G. Cacciola, G. Restuccia, Selective water sorbents for multiple application, 1. CaCl2 confined in mesopores of silica gel: sorption properties. React. Kinet. Cat. Lett., 59, n 2, 1996, 325-335.

66. H. Wu, S. Wang, D. Zhu. Effects of impregnating variables on dynamic sorption characteristics and storage properties of composite sorbent for solar heat storage. Solar Energy, 81,2007, 864-871.

67. X.J. Zhang, L.M. Qiu. Moisture transport and adsorption on silica gel-calcium chloride composite adsorbents. Energy Conversion and Management, 48, 2007, 320-326.

68. L.X. Gong, R.Z. Wang, Z.Z. Xia, C.J. Chen, Adsorption Equilibrium of Water on composite Adsorbent Employing Lithium Chloride in Silica Gel. J.Chem.&Engng Data., 55, 2010, 2920-2923.

69. A.K. Khattak, K. Mahmood, M. Afzal, M. Saleem, R. Qadeer, Thermodynamic studies of methanol adsorption on metal impregnated alumina samples. Colloid. Surf., A: Physicochem. Eng. Aspects, 236, 2004, 103-110.

70. Q. Cui, G. Tao, H. Chen, X. Guo, H. Yao, Environmentally benign working pairs for adsorption refrigeration. Energy, 30, 2005, 261-271.

71. V.E. Sharonov, J.V. Veselovskaya, Yu.I. Aristov, Ammonia sorption on composites "CaC12 in inorganic host matrix": isosteric chart and its performance. Int. J. Low Carbon Techn., 1, 2006, 191-200.

72. A.G. Okunev, V.E. Sharonov, Yu.I. Aristov, Sorption of carbon dioxide from wet gases by K2C03-in-porous matrix: influence of matrix nature. React. Kinet. Cat. Lett., 71, n 2, 2000, 355-362.

73. M.F. Al-Khatib, S.E. Iyuke, А.В. Mohamad, W.R.W. Daud, A.A.H. Kadhum, A.M. Shariff, M.A. Yarmo, The effect of impregnation of activated carbon with SnCl2.2H20 on its porosity, surface composition and CO gas adsorption. Carbon, 40, nil, 2002, 1929-1936.

74. Q.F. Yu, X.L. Tang, H.H. Yi, P. Ning, L.P. Yang, L.N. Yang, L.L. Yu, H. Li, Equilibrium and heat of adsorption of phosphine on CaCl2-modified molecular sieve. Asia-Pacific J. Chem. Eng., 4, n 5, 2009, 612-617.

75. Z. Barnir, C. Aharoni, Adsorption of cyanogen chloride on impregnated active carbon. Carbon, 13, n 5, 1975, 363-366.

76. T. Bhaskar, T. Matsui, K. Nitta, Md. A. Uddin, A. Muto, Yu. Sakata, Laboratory Evaluation of Calcium-, Iron-, and Potassium-Based Carbon Composite Sorbents for Capture of Hydrogen Chloride Gas. Energy Fuels, 16, 2002, 1533-1539.

77. Y. Xiao, S. Wang, D. Wu, Q. Yuan, Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions. J. Hazard. Mater., 153,2008, 1193-1200.

78. S.-S. Lee, J.-Yo. Lee, T.C. Keener, The effect of methods of preparation on the performance of cupric chloride-impregnated sorbents for the removal of mercury from flue gases, Fuel, 88, 2009, 2053-2056.

79. H. Cui, S.Q. Turn, Adsorption/desorption of dimethylsulfide on activated carbon modified with iron chloride. Appl. Catal. B: Environmental, 88, n 1-2, 2009, 25-31.

80. D.J. Kim, J.E. Yie, Role of copper chloride on the surface of activated carbon in adsorption of methyl mercaptan. J. Colloid Interface Sci., 283, no 2, 2005, 311-315.

81. Аристов Ю.И. Селективные Сорбенты Воды для осушки воздуха: от пробирки до заводского адсорбера. Катализ в промышленности. N 6, 2004, 36.

82. R. Diaconescu, M.S. Secula, S. Petrescu, Study of Gas Drying by Adsorption on Composite Materials Using Neural Networks. Revista de Chimie, 60, n 10, 2009, 1065-1069.

83. Yu.I. Aristov, G. Restuccia, G. Cacciola, V.N. Parmon, A family of new working materials for solid sorption air conditioning systems. Appl. Therm. Engn., 22, n 2, 2002, 191-204.

84. K. Daou, R.Z. Wang, Z.Z. Xia,. Development of a new synthesized adsorbent for refrigeration and air conditioning applications. Appl. Therm. Engn., 26, 2006, 56-65.

85. K. Daou, R.Z. Wang, C.Z. Yang, Z.Z. Xia, Theoretical comparison of the refrigerating performances of a CaCl2 impregnated composite adsorbent to those of the host silica gel. Int. J. Therm. Sci., 47, 2008, 68-75.

86. K. Daou, R.Z. Wang, C.Z. Yang, Z.Z. Xia, Experimental comparison of the sorption and refrigerating performances of a CaCl2 impregnated composite adsorbent and those of the host silica gel. Int. J. Refrig., 30, 2007, 68-75.

87. B. Dawoud, A hybrid solar-assisted adsorption cooling unit for vaccine storage. Renew. Energy, 32, 2007, 947-964.

88. C. Hai-jun, C. Qun, T. Ying, C. Xiu-jun, Y. Hu-qing, Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications. Appl. Therm. Eng., 28, 2008, 2187-2193.

89. K. Wang, J.Y. Wu, R.Z. Wang, L.W. Wang, Effective thermal conductivity of expanded graphite-CaCl2 composite adsorbent for chemical adsorption chillers. Energy Conversion Manage., 47, 2006, 1902-1912.

90. R. Critoph, Y. Zhong, Review of Trends in Solid Sorption Refrigeration and Heat Pumping Technology. Proc. IMechE Part E: J. Process Mechanical Engineering, 219, 2005, 285300.

91. J.-Y. San, H.-C. Hsu, Performance of a multi-bed adsorption heat pump using SWS-1L composite adsorbent and water as the working pair. Appl. Therm. Eng., 29, 2009, 16061613.

92. A.M. Hamed, Desorption characteristics of desiccant bed for solar dehumidification/humidification air conditioning systems. Renew. Energy, 28, 2003, 20992111.

93. T.S. Ge, Y. Li, Y.J. Dai, R.Z. Wang, Performance investigation on a novel two-stage solar driven rotary desiccant cooling system using composite desiccant materials. Solar Energy, 84, 2010,157-159.

94. J. Janchen, D. Ackermann, E. Weiler, H. Stach, W. Brosicke, Thermochemcal storage of low temperature heat by zeolites, SAPO's and impregnated carbon. 7th Workshop of IEA/ECES Annex 17, 8-12 October 2004, Beijing, PR of China.

95. C.Y. Liu, K. Morofuji, K. Tamura, K. Aika, Water sorption of CaCl2-containing materials as heat storage media. Chem. Lett., 33, no 3, 2004, 292-293.

96. H. Wu, S. Wang, D. Zhu, Y. Ding, Numerical analysis and evaluation of an open-type thermal storage system using composite sorbents. Int. J. Heat Mass Transfer, 52, 2009, 5262-5265.

97. D. Zhu, H. Wu, S. Wang, Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage. Int. J. Therm. Sci,. 45, 2006, 804-813.

98. J. Janchen, D. Ackermann, H. Stach, W. Brosicke. Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat. Solar Energy, 76, no 1-3, 2004, 339-344.

99. Ю.И. Аристов, И.С. Мезенцев, B.A. Мухин, Исследование влагообмена при протекании воздуха через неподвижный слой адсорбента. Инж.-физич. Жур., 78, N 2, 2005, 44-50.

100. Yu.I. Aristov, I.V. Mezentsev, V.A. Mukhin, A new approach to regenerating heat and moisture in ventilation systems. Energy Buildings, 40, 2008, 204-208.

101. I. Glaznev, V. Alekseev, I. Salnikova, L. Gordeeva, I. Shilova, B. Elepov, Yu. Aristov, ARTIC-1: A New Humidity Buffer for Showcases. Studies Conservation, 54, n 3, 2009, 133-148.

102. J.G. Ji, R.Z. Wang, L.X. Li, New composite adsorbent for solar-driven fresh water production from the atmosphere. Desalination, 212, 2007, 176-182.

103. Ю.Ю. Танашев, B.H. Пармон, Ю.И. Аристов, Торможение теплового фронта в пористой среде, содержащей испаряющуюся жидкость. Инж.-Физич, Жур., 74, N 5, 2001, 3-6.

104. J.F. Alder, P.R. Fielden, S.J. Smith, The adsorption of hydrogen cyanide by impregnated activated carbon cloth. Part I: Studies on cobalt and nickel acetates as impregnants for hydrogen cyanide removal. Carbon, 26, n 5, 1988, 701-711.

105. R.D. Vidic, D.P. Siler, Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon, 39, n 1, 2001, 3-14.

106. Ю.И. Аристов, Химические и адсорбционные теплотрансформаторы: эффективность и граничные температуры цикла. Теор. Осп. Хим. Техн., 42, 2008, 676-685.

107. W.M. Raldow, W.E. Wentworth, Chemical heat pumps A basic thermodynamic analysis. Solar Energy, 23, 1979,75-79.

108. Д.М. Чалаев, Ю.И. Аристов, Оценка работы низкотемпературного адсорбционного холодильника: влияние свойств адсорбента воды. Теплоэнергетика, 3, 2006, 73-77.

109. O.D. Dieng, R.Z. Wang, Literature review on solar adsorption technologies for ice-makung and air conditioning purposes and recent developments in solar technologies. Ren. Sust. Energy Rev. 5, 2001, 313-342.

110. P.А. Девина, И.В. Илларионова, Н.И. Родионова, Т.М. Юхновец, Стабилизация температурно-влажностного режима в музеях и памятниках архитектуры. Реставрация памятников истории и культуры, М., Информкультура, ГБЛ, Обзор информ, 1987, 38 с.

111. Д. Плендерлис, Консервация древностей и произведений искусства, Сообщения ВЦНИЛКР, 8-9, 1963, с. 124.

112. В. Barrett, Active and passive control of temperature and humidity. Museum, 46, 1985, 21-24.

113. Preservation of library & archival materials: A manual. 3d Ed., Ed. S.Ogden, Northeast Document; Spi Rei Su edition, 1999, 250 p.

114. Труды Международных научно-практических конференций Современные энергосберегающие тепловые технологии (сушки и термовлажностная обработка), отв. редактор Г.И. Ефремов, Москва, 2002 и 2006.

115. G.S. Srzednicki, R. Hou, R.H. Driscoll, Development of a control system for in-store drying of paddy in Northeast China. J. Food Eng., 7, 2006, 368-377.

116. A. Pelegrina, M. Elustondo, M. Urbicain, Setting the operating conditions of a vegetables rotary drier by the response surface method. J. Food Eng., 54, 2002, 59-62.

117. T.C. Bridges, L.R. Walton, I.J. Ross, A deep-layer drying model for burley tobacco curing. Transact. ASAE, 24, 1981, 1608-1612.

118. A. Noomhorm, L.R. Verma, Deep-bed rice drying simulation using two generalized single-layer models. Transact. ASAE, 29, 1986, 1456-1461.

119. D.Z. Milojevic, M.S. Stefanovic, Convective drying of thin and deep beds of grain. Chem. Eng. Commun., 13, 1982, 261-269.

120. Музейное хранение художественных ценностей, Практическое пособие, Москва, ГосНИИР, 1995,204 с.

121. S. Cursiter, Control of humidity in cases and frames. Technic. Stud. Fine Arts, 5, 19361937, 109-116.

122. D. Camuffo, G. Sturaro, A. Valentino, Showcases: a really effective mean for protecting artworks? Thermochimica Acta, 365, 2000, 65-77.

123. D.S. Carr, B.L. Harris, Solution for maintaining constant relative humidity, Ind. Engn. Chem., 41, n 8, 1949, 2014-2015.

124. B.A. Рабинович, З.Я. Хавин, Краткий химический справочник, М., Химия, 1978, 385 с.

125. J. Creahan, Controlling Relative Humidity with Saturated Calcium Nitrate Solutions. WAAC Newsletter, 13, n 1, 1991, 43-45.

126. D. Piechota, Humidity Control in Cases: Buffered Silica Gel versus Saturated Salt Solutions. WAAC Newsletter, 15, n 1, 1992, 19-21.

127. K. Toshi, Humidity control in closed package, Stud. Conserv., 4, 1959, 81-87.в г

128. J. Ashley-Smith, A.I. Moncrieff, Experience with silica gel for controlling humidity in showcases. JCOM. 7th Triennal Meeting. Copenhagen, 1984, 1-5.

129. ArtSorb. Technical information. httm://www.cwaller.de/eartsorb.htm.

130. Справочник азотчика, M., Химия, 1967, с.343-476.

131. A.W.M. Roes, W.P.M. Swaaij, Hydrodynamic Behaviour of a Gas-Solid Counter-current Packed Column at Trickle Flow. Chem. Engng. J,. 17, 1979, 81-89.

132. D.W. Agar Multifunctional reactors: Old preconceptions and new dimensions. Chem. Eng. Sci., 54, 1999, 1299-1305.

133. K.R. Westerterp, M. Kuczynski, A model for a countercurrent gas—solid—solid trickle flow reactor for equilibrium reactions. The methanol synthesis. Chem. Eng. Sci., 42, 1987, 1871-1885.

134. A.V. Kruglov, Methanol synthesis in a simulated countercurrent moving-bed adsorptive catalytic reactor. Chem. Eng. Sci., 49, 1994, 4699-4716.

135. S. K. Bhatia, Adsorption of Binary Hydrocarbon Mixtures in Carbon Slit Pores: A Density Functional Theory Study. Langmuir, 14, 1998, 6231-6240.

136. E. Riccardi, J.-C. Wang, A. I. Liapis, Rational Surface Design for Molecular Dynamics Simulations of Porous Polymer Adsorbent Media. J. Phys. Chem. B, 112, 2008, 74787488.

137. С. Грег, К. Синг, Адсорбция, удельная поверхность, пористость, М., Мир, 1984, 306 с.

138. М. Polanyi, Theories of the adsorption of gases. A general survey and some additional remarks. Introductory paper to section III. Trans. Faraday Soc., 28, 1932, 316-333.

139. M.M. Дубинин, Адсорбция в микропорах, М., Наука, 1983, 386 с.

140. М.М. Дубинин, В.А. Астахов. Развитие представлений об объемном заполнениимикропор при адсорбции газов и паров микропориствми адсорбентами. Сообщение 1.

141. Углеродные адсорбенты. Изв. АН СССР, Сер. хим., N 1, 1971, 5-11.

142. М. Jaroniec, Fifty years of the theory of volume filling of micropores. Carbon, 27, n 1, 1989,77-83.

143. S.I. Prokop'ev, Yu.I. Aristov, Selective water sorbents for multiple applications. 9. Temperature independent curves of sorption from theory of volume filling of micropores. React. Kinet. Cat. Lett., 67, 1999, 345-349.

144. Yu.I. Aristov, V.E. Sharonov, M.M. Tokarev, Universal relation between the boundary temperatures of a basic cycle of sorption heat machines. Chem. Engn. Sci., 63, n 11, 2008, 2907-2912.

145. M.M. Токарев, Б.Н. Окунев, M.C. Сафонов, Л.И. Хейфец, Ю.И. Аристов, Аналитическое описание сорбционного равновесия паров воды с композитным сорбентом «СаС12 в силикагеле». Журн. Физ. Химии, 79, N 9, 2005, 1680-1684.

146. R.E. Critoph, Performance limitation of adsorption cycles for solar cooling. Solar Energy, 41, n 1, 1988,21-31.

147. B.A. Дзисько, Основы методов приготовления катализаторов, Новосибирск, Химия, 1983,264 с.

148. Catalyst preparation. Science and Engineering. Ed. J. Regalbuto, CRC Press, Taylor & Francis Group, Boca Raton, 2007, 474 p.

149. Н.Ф. Ермоленко, М.Д. Эфрос, Регулирование пористой структуры окисных адсорбентов и катализаторов, Наука и техника, Минск, 1971, 288 с.

150. B.C. Комаров, Структура и пористость адсорбентов и катализаторов, Минск, Наука и техника, 1988, 287 с.

151. B.C. Комаров, И.Б. Дубницкая, Физико-химические основы регулирования пористой структуры адсорбентов и катализаторов, Минск, Наука и техника, 1981, 336 с.

152. S. Sircar, Т. С. Golden, М. В. Rao. Activated carbon for gas separation and storage. Carbon, 34, 1996, 1-12.

153. A. Swiqtkowski, Industrial carbon adsorbents. Stud. Surf. Sci. Catal., 120 (1998) 69-94.

154. T.F. Gafney, Porous solids for air separation. Current Opinion Solid State Mater. Sci., 1, 1996, 69-75.

155. H. Marsh, F. R. Reinoso, Activated carbon, Elseviever Science, 2005, 554 p.

156. В.Б. Фенелонов, Пористый углерод, Новосибирск, Институт катализа, 1995, с. 28.

157. С.-М. Yang, К. Kaneko, Adsorption properties of iodine-doped activated carbon fiber. J. Colloid Interface Sci., 246, 2002, 34-39.

158. Y. Hanzawa, K. Kaneko, Lack of a predominant adsorption of water vapor on carbon mesopores. Langmuir, 13, 1997, 5802-5804.

159. II. W. Kroto, J.R. Heath, S.C. O'Brein, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene. Nature, 318, 1985, 162-163.

160. A.M. Slasli, M. Jorge, F. Stoeckli, N.A. Seaton. Water adsorption by activated carbons in relation to their microporous structure. Carbon, 41, 2003, 479-486.

161. J.K. Brennan, T.J. Bandosz, K.T. Thomson, K.E. Gubbins, Water in porous carbons. Colloids Surfaces, A: Physicochem. Eng. Aspects, 187-188, 2001, 539-568.

162. Р.Ш. Вартапетьян, A.M. Волощук, М.М. Дубинин. Адсорбция паров воды и микропористые структуры адсорбентов: Сообщение 13. О механизме заполнения объема микропор активных углей. Изв. АН СССР, Сер. хим., N 5, 1987, 972-977.

163. Р.Ш. Вартапетьян, A.M. Волощук, Э.Б. Шумилина. Критический размер кластеров молекул воды на углеродной поверхности. Изв. АН СССР, Сер. хим., N 1, 1993, 5456.

164. A.M. Slasli, М. Jorge, F. Stoeckli, N.A. Seaton. Modelling of water adsorption by activated carbons: effects of microporous structure and oxygen content. Carbon, 42, 2004, 1947-1952.

165. I.I. Salame, T.J. Bandosz, Adsorption of water and methanol on micro- and mesoporous wood-based activated carbons. Langmuir, 16,2000,5435-5440.

166. J.M. Rosas, J. Bedia, J. Rodríguez-Mirasol, Т. Cordero, Preparation of Hemp-Derived Activated Carbon Monoliths. Adsorption of Water Vapor. Ind. Eng. Chem. Res., 47, 2008, 1288-1296.

167. T. Ohba, H. Kanoh, K. Kaneko, Cluster-growth-induced water adsorption in hydrophobic carbon nanopores. J. Phys. Chem. B, 108, 2004, 14964-14969.

168. T. Morimoto, K. Miurai, Adsorption sites for water on graphite. 1. Effect of high-temperature treatment of sample. Langmuir, 1, 1985, 658-662.

169. R. Ramesh, M. Francois, P. Somasundaran, J. M. Cases, Isosteric and calorimetric heats of adsorption of methanol on coal. Energy Fuels, 6, n 3, 1992, 239-241.

170. J.-S. Bae, D.D. Do, On the equilibrium and dynamic behavior of alcohol vapors in activated carbon. Chem. Eng. Sci., 61, 2006, 6468-6477.

171. S. Yamanaka, P.B. Malla, S. Komarnery, Water sorption and desorption isotherms of some naturally occurring zeolites. Zeolites, 9, 1989, 18-22.

172. B. Dawoud, T. Miltkau, A. Assefa, Combined heat and mass transfer analysis of the kinetic of water vapor sorption into a zeolite layer. Proc. Int. Sorption Heat Pump Conf. Shanghai, China, September 24-27, 2002, pp. 595-602.

173. D.A. White, R.L. Bussey, Water sorption properties of modified clinoptilolite. Separ. Purific. Technol., 11, n 2, 1997, 137-141.

174. N. Douss, F. Meunier, L.M. Sun, Predictive model and experimental results for a two-adsorber solid adsorption heat pump. Ind. Eng. Chem. Res., 27, 1998, 310-316.

175. G. Restuccia, V. Recupero, G. Cacciola, M. Rothmeyer, Zeolite heat pump for domestic heating. Energy, 13, 1988, 333-342.

176. F. Cakicioglu-Ozkan, S. Ulku, The effect of HC1 treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite. Microporous Mesoporous Mater., 77, 2005,47-53.

177. J.C. Moise, J.P. Bellat, A. Methivier, Adsorption of water vapor on X and Y zeolites exchanged with barium. Microporous Mesoporous Mater., 43, 2001, 91-101.

178. A. Jentys, G. Warecka, M. Derewinski, J. A. Lercher, Adsorption of water on ZSMS zeolites. J. Phys. Chem., 93, 1989, 4837-4843.

179. T. C. Bowen, L. M. Vane, Ethanol, Acetic Acid, and Water Adsorption from Binary and Ternary Liquid Mixtures on High-Silica Zeolites. Langmuir, 22, 2006, 3721-3727.

180. D.F. Plant, A. Simperler, R.G. Bell, Adsorption of methanol on zeolite Y: An atomistic and quantum chemical study. Stud. Surf. Sci. Catal., 154, 2004, 2739-2744.

181. A. Kogelbauer, C. Grulndling, J. A. Lercher, Influence of the Chemical Composition upon Adsorption, Coadsorption, and Reactivity of Ammonia and Methanol on Alkali-Exchanged Zeolites. J. Phys. Chem., 100, 1996, 1852-1857.

182. I. Halasz, S. Kim, B. Marcus, Uncommon Adsorption Isotherm of Methanol on a Hydrophobic Y-zeolite. J. Phys. Chem. B, 105, 2001, 10788-10796.

183. C.F. Mellot, A.K. Cheetham, S. Harms, S. Savitz, R.J. Corte, A.L. Myers, Calorimetric and Computational Studies of Chlorocarbon Adsorption in Zeolites. J. Am. Chem. Soc., 120, 1998, 5788-5792.

184. D. Baker, B. Kaftanoglu, Predicted Impact of Collector and Zeolite Choice on Thermodynamic and Economic Performance of a Solar Powered Adsorption Cooling System. Heat Transfer, 20, n 2, 2007, 102-122.

185. B.A. Дзисько, А.П. Карнаухов, Д.В. Тарасова, Физико-химические основы синтеза окисных катализаторов, Новосибиск, Наука, Сиб. Отд-ние, 1978, 384 с.

186. Н.Р. Boehm, Chemical Identification of Surface Groups. Adv. Catal., 16 (1966) 179-273.

187. И.Е. Неймарк, Силикагель, свойства, применение и методы его получения. Успехи химии, 25, 1956, 748-769.

188. J.G. Vait, Soluble silicates (ACS Monograph Series), New York, Reinhold, 1952, v.l, p.158; v.2, p.549.

189. A.V. Kisilev, The Effect of the Geometrical Structure and the Chemistry of Oxide Surfaces on Their Adsorption Properties. Discuss. Faraday Soc., 52, 1971, 14-32.

190. И.Е. Неймарк, Р.Ю. Шейнфан, Силикагель, его получение свойства и применение, Киев, Наукова думка, 1973.

191. Р.Ю. Шейнфан, И.Е. Неймарк, Пути получения силикагелей с заданной пористой структурой. Кинет. Катал., 8, 1967, 433-440.

192. C.J. Guo, C.W. Fairbridge, J.P.Charland, Synthesis of mesoporous catalytic materials. US Patent No. 5538710(1996).

193. C.J. Brinker, K.D. Keefer, D.W. Scaefer, R.A. Assink, B.D. Kay, C.Ashley, Sol-gel transition in simple silicates II. J. Non-Cryst. Solids, 63, 1984, 45-59.

194. S.S. Kistler, Coherent expanded aerogels and jellies. Nature, 127, 1931, 741.

195. Z.-Y. Yuan, B.-L. Su, Insights into hierarchically meso-macroporous structured materials. J. Mater. Chem., 16, 2006, 663-677.

196. A.J. Fanelli, S. Verma, T. Engelmann, J.V. Burlew, Scale-up studies on an alumina aerogel catalyst support. Ind. Eng. Chem. Res., 30, n 1, 1991, 126-129.

197. J.N. Amor, E.J. Carlson, Variables in the synthesis of unusually high pore volume aluminas. J. Mater. Set, 22, 1987, 2549-2556.

198. S.J. Teichner, G.A. Nicolaon, M.A. Vicarini, G.E.E. Grades, Inorganic oxide aerogels. Adv. Colloid Interface Sci., 5, 1976, 245-273.

199. H. Naono, R. Fujiwara, M. Yagi, Determination of physisorbed and chemisorbed waters on silica gel and porous silica glass by means of desorption isotherms of water vapor. J. Colloid Interface Sci., 76, n 1, 1980, 74-82.

200. G.J. Young, Interaction of water vapor with silica surface. J. Colloid Sci., 13, n 1, 1958, 67-85.

201. R. Leboda, M. Mendyk, Hydrothermal modification of porous structure of silica adsorbents. Mater. Chem. Pys. 27, 1991, 189-212.

202. X. Li, Z. Li, Q. Xia, H. Xi, Effect of pore size of porous silica gel on desorption activation energy of water vapour. Appl. Therm. Eng., 27, n 5-6, 2007, 869-876.

203. J.J. Hagymassy, S. Brunauer, Pore structure analysis by water vapour adsorption: II. Analysis of five silica gels. J. Colloid Interface Sci., 33, n 2, 1970, 317-327.

204. F.E. Bartel, J.E. Bower, Adsorption of vapors by silica gels of different structures. J. Colloid Set, 7, n 1, 1952, 80-93.

205. R.Sh. Michail, F.A. Shelb, Adsorption in relation to pore structure of silicas II. Water vapor adsorption on wide-pore and microporous silica gels. J. Colloid Interface Sci., 34, n 1, 1970, 65-75.

206. T.M. El-Akkad, A. Amin, S. Nashed, Adsorption of nitrogen, water and certain organic vapours on fully and partially hydraxilated silica gels with different porosity characteristics. Surface Techn., 12, n 3, 1981, 269-275.

207. H. Naono, M. Hakuman, Analysis of adsorptiuon isotherms of water vapor for non-porous and porous adsorbents. J. Colloid Interface Sci., 145, n 2, 1991, 405-412.

208. A.B. Кисилев. Межмолекулярное взаимодействие в адсорбции и хроматографии. М: Высшая школа. 1986.

209. L.T. Zhuravlev, Surface characterization of amorphous silica—a review of work from the former USSR. Colloid Surface A, 74, 1993, 71-90.

210. J. Toth, State equations of the solid-gas interface layers. Acta Chim. Acad. Sci. Hung., 69, 1971,311-328.

211. H.T. Chua, R.C. Ng, A. Chakraborty, N.M. Oo, M.A. Othman, Adsorption characteristics of silica gel + water systems. J. Chem. Eng. Data., 47, 2002, 1177-1181.

212. B.B. Saha, E.C. Boelman, T. Kashiwagi, Computer simulation of a silica gel-water adsorption refrigeration cycle The influence of operating conditions on cooling output and COP, ASHRAE Transactions: Research, 101, n 2, 1995, 348-357.

213. Yu.I. Aristov, M.M. Tokarev, A. Freni, G. Restuccia, Comparative study of water adsorption on microporous silica and SWS-1L: equilibrium and kinetics. Proc. Int. Sorption Heat Pump Conf. Denver, USA, June 22-24, 2005, 264-269.

214. F.J. Rojas, A.L. Hines, E.Pedram, Application of the BDDT model to the adsorption of water on silica gels of different porosity. Ind. Eng. Chem. Proc. Des. Dev., 21, 1982, 760764.

215. Z. Knez, Z. Novak, Adsorption of Water Vapor on Silica, Alumina, and Their Mixed Oxide Aerogels J. Chem. Eng. Data, 46, 2001, 858-860.

216. A.L. Elder, O.L. Brandes, The Adsorption of Water and Ethyl Acetate Vapors by Silica Gels. J. Phys. Chem., 35, 1931, 3022-3024.

217. R.Sh. Michail, F.A. Shelb. Adsorption in relation to pore structure of silicas II. Water vapor adsorption on wide-pore and microporous silica gels. J. Colloid Interface Sci. 34, n 1, 1970, 65-75.

218. T.M. El-Akkad, A. Amin, S. Nashed. Adsorption of nitrogen, water and certain organic vapours on fully and partially hydraxilated silica gels with different porosity characteristics. Surface Techn. 12, n 3, 1981, 269-275.

219. S. Inagaku, Y. Fukushima, K. Kuroda, K. Kuroda. Adsorption isotherm of water vapor and its large gisteresis on highly ordered mesoporous silica. J. Colloid Interface Sci., 180, n 2, 1996, 623-624.

220. P J. Branton, P.G. Hall, K.S.W. Sing, Physisorption of alcohols and water vapour by MCM-41, a model mesoporous adsorbent. Adsorption, 1, n 1, 1995, 77-82.

221. W. G. Shim, J. W. Lee, H. Moon, Adsorption equilibrium and column dynamics of VOCs on MCM-48 depending on pelletizing pressure, Microporous Mesoporous Mater., 88, 2006, 112-125.

222. C. Morterra, G. Magnacca, V. Bolis. On the critical use of molar absorption coefficients for adsorbed species: the methanol/silica system. Catalysis today, 70, 2001, 43-58.

223. L. II. Milligan, The Mechanism of the Dehydration of Crystalline Aluminum Hydroxide and of the Adsorption of Water by the Resulting Alumina. J. Phys. Chem. A, 26, n 3, 1922, 247-255.

224. H.S. Taylor, The Activated Adsorption of Water Vapor by Alumina. J. Gould. J. Am. Chem. Soc., 56, n 8, 1934, 1685-1687.

225. Y. Tokudome, K. Nakanishi, K. Kanamori, K. Fujita, H. Akamatsu, T. Hanada. Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths. J. Colloid Interface Sci., 338, 2009, 506-513.

226. C. Nedez, J.P. Boitiaux, C.J. Cameron, B. Didillon, Optimization of the textural characteristics of an alumina to capture contaminants in natural gas. Langmuir, 1, 1996, 3927-3931.

227. H. Knozenger, P. Ratnasamy, Catalytic Aluminas: Surface Models and Characterization of Surface Sites. Catal. Rev. Sci. Engn., 17, 1978, 31-70.

228. A. Serbezov, Adsorption equilibrium of water vapor on F-200 activated alumina. J. Chem. Eng. Data, 48, n 2, 2003, 421-425.

229. Ю.Д. Третьяков, E.A. Гудилин, Основные направления фундаментальных и ориентированных исследований в области наноматериалов. Успехи химии, 78, N 9, 2009, 867-888.

230. V. Chiola, J.E. Ritsko, C.D. Vanderpool, Process for producing low-bulk density silica. US Patent No. 3 556 725, January 19, 1971.

231. F. Di Renzo, H. Cambon, R. Dutartre, A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Mesoporous Mater., 10, 1997, 283-286.

232. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Frederickson, B. F. Chmelka, G. D. Stucky, Tribloek copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, 1998, 548-552.

233. F. Schueh, Non-siliceous mesostructured and mesoporous materials. Chem. Mater., 13, 2001, 3184-3195.

234. V. Gonzalez-Pena, C. Marquez-Alvarez, E. Sastre, J. Perez-Pariente, Synthesis of ordered mesoporous and microporous aluminas: strategies for tailoring texture and aluminum coordination. Stud. Surf. Sci. Catal., 142, 2002, 1283-1290.

235. M. Baca, E. Rochefoucauld, E. Ambroise, J.-M. Krafft, R. Hajjar, P. P. Man, X. Carrier, J. Blanchard, Characterization of mesoporous alumina prepared by surface alumination of SBA-15. Microporous Mesoporous Mater., 110, 2008, 232-241.

236. Q. Liu, A. Wang, J. Xu, Ya. Zhang, X. Wang, T. Zhang, Preparation of ordered mesoporous crystalline alumina replicated by mesoporous carbon. Microporous Mesoporous Mater., 116, 2008, 461-468.

237. R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B, 103, 1999, 7743-7746.

238. Z. Ma, T. Kyotani, A. Tomita, Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite. Chem. Commun., 23, 2000, 2365-2366.

239. A. Garsuch, R. R. Sattler, S. Witt, O. Klepel. Adsorption properties of various carbon materials prepared by template synthesis route. Micropor. Mesopor. Mater., 89, 2006, 164169

240. M.M.L.R. Carrott, A.J.E. Candeias, P.J.M. Carrott, K.K. Unger, Evaluation of the Stability of Pure Silica MCM-41 toward Water Vapor. Langmuir, 15, n 26, 1999, 88958901.

241. J.S. Oh, W.G. Shim, J.W. Lee, J.H. Kim, H. Moon, G. Seo, Adsorption Equilibrium of Water Vapor on Mesoporous Materials. J. Chem. Eng. Data, 48, 2003, 1458-1462.

242. H. Wellmann, J. Rathousky, M. Wark, A. Zukal, G. Sculz-Ekloff. Formation of CdS nanoparticles within functionalized silesious MCM-41. Micropor. Mesoporus Mater., 4445,2001,419-425.

243. J. M. Tiemann, M. Froba, Mesostructured Aluminophosphates Synthesized with Supramolecular Structure Directors. Chem. Mater., 13, 2001, 3211-3217.

244. D. L. Felix, M. Strauss, L. C. Ducati, H. O. Pastore. Influence of tetralkylammonium cations on the formation of silicoaluminophosphates CAL-2. Microporous Mesoporous Mater., 120, 2009, 187-194.

245. B. Chen, Y. Huang, Dry gel conversion synthesis of SAPO- and CoAPO-based molecular sieves by using structurally related preformed A1PO precursors as the starting materials. Microporous Mesoporous Mater., 123, 2009, 71-77.

246. J. Kornatowski, Adsorption isotherms of water as a tool for characterization of metal substituted aluminophosphate molecular sieves. C. R. Chimie, 8, 2005, 561-568.

247. O. Kitao, K. Gubbins, Theoretical Studies on VPI-5. 2. Energy Decomposition Analysis of the Hydrophilicity. J. Phys. Chem., 100, 1996, 12424-12430.

248. S.G. Izmailova, E.A. Vasiljeva, I.V. Karetina, N.N. Feoktistova, S.S. Khvoshchev, Adsorption of Methanol, Ammonia and Water on the Zeolite-Like Aluminophosphates A1P04-5, A1P04-17, and A1P04-18. J. Colloid Interface Sci., 179, 1996,374-379.

249. X.S. Zhao, G.Q.M. Lu, Aluminophosphate-based mesoporous molecular sieves: synthesis and characterization of TAPOs. Microporous Mesoporous Mater., 44-45, 2001, 185-194.

250. I. Kustanovich, D. Goldfarb, Sorption of water, methanol, and ammonia on A1P04-5 as studied by multinuclear NMR spectroscopy. J. Phys. Chem., 95, 1991, 8818-8823.

251. D. Sun, Y. Ke, D.J. Collins, G.A. Lorigan, II.-C. Zhou, Construction of Robust Open Metal-Organic Frameworks with Chiral Channels and Permanent Porosity. Inorg. Chem., 46, n 7, 2007, 2725-2734.

252. H. Noguchi, A. Kondo, D. Noguchi, D.Y. Kim, T. Ohba, C.-M. Yang, H. Kanoh, K. Kaneko, Adsorptive properties of novel nanoporous materials. J. Chem Engng Japan, 40, n 13,2007, 1159-1165.

253. J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater., 73, 2004, 3-14.

254. B. Chen, S. Ma, F. Zapata, F.R. Fronczek, E.B. Lobkovsky, H.-C. Zhou, Rationally Designed Micropores within a Metal-Organic Framework for Selective Sorption of Gas Molecules. Inorg. Chem., 46, 2007, 1233-1236.

255. D.N. Dybtsev, M.P. Yutkin, E.V. Peresypkina, A.V. Virovets, C. Serre, G. Ferey, V.P. Fedin, Isoreticular Homochiral Porous Metal-Organic Structures with Tunable Pore Sizes. Inorg. Chem., 46, 2007, 6843-6845.

256. B. Chen, Y.Ji, M. Xue, F.R. Fronczek, E.J. Hurtado, J.U. Mondal, C. Liang, S. Dai, Metal-Organic Framework with Rationally Tuned Micropores for Selective Adsorption of Water over Methanol. Inorg. Chem., 47, n 13, 2008, 5543-5545.

257. S. Cavenati, C. A. Grande, A.E. Rodrigues, Metal Organic Framework Adsorbent for Biogas Upgrading. Ind. Eng. Chem. Res., 47, 2008, 6333-6335.

258. Y. Li, R.T. Yang, Gas Adsorption and Storage in Metal-Organic Framework MOF-177. Langmuir, 23, 2007, 12937-12944.

259. M.J. Rosseinsky, Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility. Microporous Mesoporous Mater., 73, 2004, 15-30.

260. M. Xue, G.-S. Zhu, Q.-R. Fang, X.-D. Guo, S.-L. Qiu, Design, structure and properties of a novel 3D metal-organic framework constructed from N-donor ligand supporting Cd(II)-carboxylate layer. Inorg. Chem. Commun., 9, n 6, 2006, 603-606.

261. E.J. Cussen, J.B. Claridge, M.J. Rosseinsky, C.J. Kepert, Flexible Sorption and Transformation Behavior in a Microporous Metal-Organic Framework. J. Am. Chem. Soc., 124, 2002, 9574-9581.

262. G. Ferey, Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks.Ecumenism in Chemistry. Chem. Mater., 13, 2001, 3084-3098.

263. S.-Y. Jeong, H. Jin, J.-M. Lee, D.-J. Yim, Adsorption on Ti-Al-containing mesoporous materials prepared from fluorosilicon. Microporous Mesoporous Mater., 44-45, 2001, 717723.

264. E.F. Vansant, P. Van Der Voort, K.C. Vranken, Characterization and chemical modification of the silica surface, Amsterdam, Elsevier, 1995.

265. X.S. Zhao, G.Q. Lu, X. Hu, Characterization of the structural and surface properties of chemically modified MCM-41 material. Microporous Mesoporous Mater., 41, 2000, 3747.

266. A. Sayari, S. Hamoudi, Periodic Mesoporous Silica-Based Organic-Inorganic Nanocomposite Materials. Chem. Mater., 13, 2001, 3151-3168.

267. C. Schumacher, J. Gonzalez, M. Perez-Mendoza, P.A. Wright, N.A Seaton, Modelling and experiment towards the design of mesoporous organic-inorganic hybrid adsorbents. Stud. Surf. Sei. Catal., 154, 2004, 386-393.

268. C. Sanchez, G.J.A.A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer, V. Cabuil, Designed Hybrid Organic-Inorganic Nanocomposites from Functional Nanobuilding Blocks. Chem. Mater., 13,2001,3061-3083.

269. Gmelin Data: 2000-2005 Gesellschaft Deutscher Chemiker licensed to MDL Information Systems GmbFI; 1988-1999: Gmelin Institut fuer Anorganische Chemie und Grenzgebiete der Max-Planck-Gesellschaft zur Foerderung der Wissenschaften. Vol. Li, pp. 395 440.

270. J.Y. Andersson, Kinetic and mechanistic studies of reactions between water vapour and some solid sorbents, Department Phys. Chem., The Royal Institute of Technology, S-100 44, Stockholm, Sweden, 1986,. p 27-44.

271. H.3. Ляхов, B.B. Болдырев, Механизм и кинетика дегидратации кристаллогидратов. Успехи Химии, XLI, 1972, 1960-1977.

272. Y. Hirata, К. Fujioka, S. Fujiki, Preparation of fine particles of calcium chloride with expanded graphite for enhancement of the driving reaction for chemical heat pumps. J. Chem. Eng. Japan, 36, n 7, 2003, 827-832.

273. H. Isobe, Dehydrating substance. Patent USA No 1740351, 17.12.1929.

274. В.И. Сыщиков, Сорбционные осушители воздуха, Стройиздат, Москва, 1969, 91 с.

275. Н.Ф. Федоров, Г.К. Ивахшок, О.Э. Бабкин. Факторы, определяющие сорбционные свойства импрегнированных осушителей. Журн. Прикл. Химии, 63, N 6, 1990, 12751279.

276. Ю.М. Федоров, В.Н. Дроздов, Осушитель. А. с. СССР N 406552, 21.11.1973.

277. Н.А. Прокопенко, А.Б. Белозовский, В.Н. Голубев, Способ получения осушителя. А. с. СССР N 566616, 30.07.1977.

278. R.V. Heiti, G. Thodos, Energy release in the dehumidification of air using a bed of CaCl2-impregnated Celite. Ind. Eng. Chem. Fundam., 25, 1986, 768-771.

279. T.C. Golden, P.J. Battavio, Y.C. Chen, T.S. Farris, J.N. Armor, Carbon-based oxygen selective desiccants for use in nitrogen PSA. Gas Sep. Purif., 7, 1993, 274-278.

280. C.W. Chi, D.T. Wasan, Measuring the equilibrium pressuer of supported and unsupported adsorbents. Ind. Eng. Chem. Fundam., 8, 1969, 816-818.

281. Э.А. Левицкий, В.Н. Пармой, Э.М. Мороз, С.В. Богданов, Н.Е. Богданчикова, О.Н. Коваленко. Теплоаккумулирующий материал и способ его получения. Пат. РФ N 2042695,27.08.1995.

282. М.Н.Солин, В.А.Внучкова, А.Н.Тамамьян, А.А.Хазанов, В.Э.Лейф, Н.И.Киреева. Способ получения осушителя воздуха. Пат. РФ N 2077944, 27.04.1997.

283. Б.В. Путин, В.Н. Мазин, А.С. Гурова, В.В. Самонин, М.В. Гугель. Способ получения осушителя воздуха. Пат. РФ N 2174870, 20.10.2001.

284. B.C. Медяник, В.М. Мухин. Способ получения углеродно-минерального материала. Пат. РФ No 2214304, 20.10.2003.

285. Е.А. Булучевский, А.В. Лавренов, В.К. Дуплякин, Сорбенты типа «соль в пористой матрице» в процессах переработки углеводородов. Рос. Хим. Журн., LI, 2007, 85-91.

286. Е.А. Булучевский, А.В. Лавренов, В.К. Дуплякин, В.А. Лихолобов, Новые сорбенты-осушители для процессов нефтепереработки и нефтехимии. Мир нефтепродуктов, 5, 2006, 19-21.

287. A.M. Hamed, A.A. Sultan, Mass transfer in vertical cloth layers impregnated with calcium chloride for recovery of water from air. Renewable Energy, 27, n 1, 2002, 13-25.

288. Г.К.Боресков, Гетерогенный катализ, M., Наука, 1988, 304 с.

289. К. Bourikas, С. Kordulis, A. Lycourghiotis, The Role of the Liquid Solid Interface in the Preparation of Supported Catalysts. Catal. Rev., 48, 2006, 363-444.

290. A.V. Neimark, L.I.Kheifez, V.B.Fenelonov, Theory og preparation of supported catalysts. Ind. Eng. Chem. Prod. Res. Dev., 20, 1981, 439-450.

291. H.M. Jang, D.W. Fuerstenau, The specific adsorption of alkaline-earth cations at the rutile/water interface. Colloids Surfaces, 21, 1986, 235-257.

292. Н.Ф. Уваров, В.Г. Пономарева, Композиционные ионные проводники AgCl А1203. Докл. Аккад. Наук, 351, 1996, 358-360.

293. Y.-C. Xie, Y.-Q. Tang, Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis. Advanc. Catal., 37, 1990, 143.

294. N.F. Uvarov, V.P. Isupov, V. Sharma, A.K. Shukla, Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes. Solid State Ionics, 51, 1992,41-52.

295. Н.Ф. Уваров, Стабилизация аморфных фаз в ионпроводягцих композитах. Журн. Прикл. Химии. 73, N 6, 2000, 970-975.

296. T.J. Bandosz, С. Petit, On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. J. Colloid Interface Sci., 338, 2009, 329-345.

297. R.G. Oliveira, R.Z. Wang, T.X. Li, Adsorption characteristics of methanol in activated carbon impregnated with lithium chloride. Chem. Eng. Technol., 33, n 10, 2010, 16791686.

298. C. Petit, C. Karwacki, G. Peterson, T. J. Bandosz, Interactions of ammonia with the surface of microporous carbon impregnated with transition metal chlorides. J. Phys. Chem. C, 111,2007, 12705-12714.

299. K. Okada, M. Nakanome, Y. Kameshima, T. Isobe, A. Nakajima, Water vapor adsorption of CaCl2-impregnated activated carbon. Mater. Res. Bull., 45, 2010, 1549-1553.

300. L.Xin, L. Huiling, H. Siqi, L. Zhong, Dynamics and isotherms of water vapor sorption on mesoporous silica gels modified by different salts. Kin. Catal., 51, n 5, 2010, 754-761.

301. X. Li, Z. Li, Y. Liu, J. Ding, Y. Fang. The effect of surface modification by different metal salt solutions on the hygroscopic property of silica gels. Ion Exchange and Adsorption 21, n 5, 2005, 391-396 in Chinese.

302. X. Li, Z. Li, Q.-B. Xia, Adsorption/desorption properties of mesoporous silica gel modified with CaCl2/LiCl. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science) 34, n 8, 2006, 13-17 in Chinese.

303. Yu.I. Aristov, M.M. Tokarev, G. Cacciola, G. Restuccia, Selective water sorbents for multiple applications: 2. CaCl2 confined in micropores of the silica gel: sorption properties. React. Kinet. Cat. Lett., 59, n 2, 1996, 335-342.

304. T.X. Li, R.Z. Wang, L.W. Wang, J.K. Kiplagat, Study on the heat transfer and sorption characteristics of a consolidated composite sorbent for solar-powered thermochemical cooling systems. Solar Energy, 83, 2009, 1742-1755.

305. Б. Дельмон, Кинетика гетерогенных реакций, М., Мир, 1972, 556 с.

306. Т. Dellero, D. Sarmeo, Ph. Touzain, A chemical heat pump using carbon fibers as additive. Part I: enhancement of thermal conduction. Appl. Therm. Eng., 19, 1999, 9911000.

307. Z. Aidoun, M. Ternan, Salt impregnated carbon fibres as the reactive medium in a chemical heat pump: the NH3-CoCl2 system. Appl. Therm. Eng., 22, 2002, 1163-1173.

308. S. Mauran, M. Lebrun, P. Prades, M. Moreau, B. Spinner, C. Drapier, Active composite and its use as reaction medium, US Patent 5,283,219, February 1, 1994.

309. P. Bou, M. Moreau, P. Prades, Active composite with foliated structure and its use as reaction medium, US Patent 5,861,207, January 19, 1999.

310. М.М. Токарев, Свойства композитных сорбентов «хлорид кальция в мезопористой матрице», Автореферат дисс. кан-та хим. наук, Новосибирск, Институт катализа, 2003, 18 стр.

311. Е.А. Булучевский, А. В. Лавренов, Новое поколение сорбентов-осушителей для процессов нефтехимии. Тез. II Росс. Конф. Актуальные проблемы нефтехиии. Гос. Изд-во научно-технической литературы Реактив, Уфа, 2005, с. 81.

312. А.В. Лавренов, В.К. Дуплякин, Е.А. Булучевский, Способ разделения и осушки продуктов пирполиза. Пат. РФ N 2290255, 27.12.2006.

313. T.F.N. Thoruwa, С.М. Johnstone, A.D. Grant, J.E. Smith, Novel, low cost CaCl2 based desiccants for solar crop drying applications. Renewable Energy, 19, 2000, 513-520.

314. О.Э. Бабкин, Г.К. Ивахнюк, Н.Ф. Федоров, Импрегнированный осушитель и способ его получения. А. с. СССР N 1657219, 23.03.1991.

315. Г.М. Белоцерковский, Е.В. Лосева, Н.В. Мальцева, Т.В. Малянова, О.В. Никович, Т.О. Дроздова, Импрегнированный формованыый осушитель воздуха. А. с. СССР N 1452566, 23.01.1989.

316. А.О. Шевченко, И.А. Логинова, Е.Н. Ронкова, Н.К. Куликов. Способ полукчения осушителя газов на основе силикагеля. Патент РФ № 2274484, 20.04.2006.

317. W. Womgsuwan, S. Kumar, P. Neveu, F. Meunier, A review on chemical heat pump technology and applications. Appl. Therm Eng., 21, 2001, 1489-1519.

318. B. Choudhury, P.K. Chatterjee, J.P. Sarkar, Review paper on solar-powered air-conditioning through adsorption route. Renew. Sust. Energy Rev., 14, 2010, 2189-2195.

319. N.E. Clausen, P. Worse-Schmidt, Analysis of ammoniated metal salt suspensions for the use in solar refrigeration systems, Proc. IIF meeting Jerusalem, March 14-19, 1982, pp. 173-180.

320. P.O'D. Offenhartz, F.C. Brown, R. Mar, R.W. Carling, A heat pump and thermal storage system for solar heating and cooling based on the reaction of calcium chloride and methanol vapor. J. Sol. Energ. Eng. T. ASME., 102, 1980, 59-65.

321. L. W. Wang, R. Z. Wang, J. Y. Wu, K. Wang, S. G. Wang, Adsorption ice makers for fishing boats driven by the exhaust heat from diesel engine: choice of adsorption pair. Energy Corners. Manage., 45, n 13-14, 2004, 2043-2057.

322. T.X. Li, R.Z. Wang, L.W. Wang, Z.S. Lu, J.Y. Wu, Influence of mass recovery on the performance of a heat pipe type ammonia sorption refrigeration system using CaCli/activated carbon as compound adsorbent. Appl. Therm. Eng., 28, 2008, 1638-1646.

323. S.P. Halliday, C.B. Beggs, P.A. Sleigh, The use of solar desiccant cooling in the UK: a feasibility study. Appl. Therm. Eng., 22, 2002, 1327-1338.

324. K. Sumathy, K.H. Yeung, Li Yong, Technology development in the solar adsorption refrigeration systems. Progress Energy Combus. Sci., 29, 2003, 301-327.

325. C.X. Jia, Y.J. Dai, J.Y. Wu, R.Z. Wang, Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material. Energy Corners. Manage., 47, 2006, 2523-2534.

326. X.J. Zhang, K. Sumathy, Y.J. Dai, R.Z. Wang, Dynamic hygroscopic effect of the composite material used in desiccant rotary wheel. Solar Energy, 80, 2006, 1058-1061.

327. C.X. Jia, Y.J. Dai, J.Y. Wu, R.Z. Wang, Use of compound desiccant to develop high performance desiccant cooling system. Int. J. Refrig., 30, 2007, 345-353.

328. J. Janchen, D. Ackermann, E. Weiler, H. Stach, W. Brosicke, Calorimetric investigation on zeolites, AlP04's and CaCl2 impregnated attapulgite for thermochemical storage of heat. Thermochimica Acta, 434, 2005, 37-41.

329. К. Posern, Ch. Kaps, Calorimetric studies of thermochemieal heat storage materials based on mixtures of MgSC>4 and MgCl2. Thermochimica Acta, 502, 2010, 73-76.

330. Ю. И. Аристов, И. В. Мезенцев, В. А. Мухин, Новый подход к регенерации теплоты и влаги в системе вентиляции помещений. I. Лабораторный прототип регенератора. Инж. Физич. Журн., 79, N 3, 2006, 143-151.

331. Ю. И. Аристов, И. В. Мезенцев, В. А. Мухин. Новый подход к регенерации теплоты и влаги в системе вентиляции помещений. II. Прототип реального устройства. Инж. Физич. Журн., 79, N 3, 2006, 151-157.

332. Y. Fueda, J. Matsmuoto, Т. Shiragami, К. Nobuhara, М. Yasuda, Porphyrin/MgCl2/silica gel composite as a cobalt-free humidity indicator. Chem. Lett., 36, n 10, 2007, 1246-1247.

333. D.V. Andreev, L.L. Makarshin, V.N. Parmon, Sorption and sensing characteristics of polyvinyl alcohol films impregnated with CaCl2. Reac. Kinet. Catal. Lett., 80, n 1, 2003, 181-188.

334. Л.Г. Гордеева, Д. Рестучча, Г. Каччиола, Ю.И. Аристов, Свойства системы «бромид лития вода», диспергированной в порах силикагеля: равновесие «пар -конденсированное состояние». Журн. Физ. Химии, 72, N 7, 1998, 1236-1240.

335. Л.Г.Гордеева, Д.Рестучча, М.М,Токарев, Г.Каччиола, Ю.И.Аристов, Адсорбционные свойства системы «бромид лития вода» в порах расширенного графита, Сибунита и оксида алюминия. Журн. Физ. Химии, 74, N 11, 2000, 2065-2069.

336. Современные подходы к исследованию и описанию процессов сушки пористых тел. Под. Ред. Ак. В.Н. Пармона. Новосибирск: Издательство СО РАН, 2001, 298 с.

337. J. Mrowiec-Bialon, A.L. Lachowski, A.B. Jarzebski, L.G. Gordeeva, Yu.I. Aristov. Si02-LiBr nanocomposite sol-gel adsorbents of water vapor: preparation and properties. J. Colloid Interface Sci., 218, 1999, 500-503.

338. Ю.Д. Панкратьев, Ю.Ю. Танашев, E.B. Кулько, A.C. Иванова, Э.М. Мороз, В.Н. Пармон, Теплота смачивания гидроокиси алюминия, полученного путем термической активации гидраргиллита. Журн. Физ. Химии, 80, N 7, 2006, 1186-1193.

339. А.В. Киселев, Работа и теплота адсорбции. Журн. Физ. Химии, 20, N 3, 1946, 239256.

340. G.L. Yong, J.J. Chessick, F.H. Hearley, A.C. Zettlemayer, Thermodynamics of the Adsorption of Water on Graphon from Heats of Immersion and Adsorption Data. J. Phys. Chem., 58, n 4, 1954,313-315.

341. V.V. Malakhov, Stoichiography as applied to studying composition and real structure of catalysts. J. Molec. Catal. A., 158, n 1, 2000, 143-148.

342. T.A. Krieger, L.M. Plyasova, T.M. Yurieva, In-Situ X-Ray Diffraction of Catalysts. Phase Transformation of Cu/Cr-Oxides with Different Initial Structure under Redox Conditions. Mater. Sci. Forum, 321-324, 2000, 386-392.

343. C.3. Мумииов, Установка для непосредственного измерения изостер адсорбции. Узб. Хим. журн., N 6, 1965, 58-62.

344. М. Bulow, D. Shen, S. Jale, Measurement of sorption equilibria under isosteric conditions: The principles, advantages and limitations. Appl. Surf. Sci., 196, 2002, 157-172.

345. L.G. Gordeeva, A. Freni, G. Restuccia, Yu.I. Aristov, Influence of Characteristics of Methanol Sorbents "Salt in Mesoporous Silica" on the Performance of Adsorptive Air Conditioning Cycle. Ind. Eng. Chem. Res., 46, 2007, 2747-2752.

346. Справочник химика. Т. 1. Ленинград, Госхимиздат, 1963, 1071 с.

347. Yu.I. Aristov, В. Dawoud, I.S. Glaznev, A. Elyas, A new methodology of studying the dynamics of water sorption/desorption under real operating conditions of adsorption heatpumps: Experiment. Int. J. Heat Mass Transfer, 51, 2008, 4966-4972.

348. G. Soave, Equilibrium constants from a modified Redlikh-Kwong equation of state. Chem. Eng. Sci., 27, 1972, 1197-1203.

349. R.E. Critoph, An ammonia carbon solar refrigerator for vaccine cooling. Renew. Energy, 5, 1994, 502-508.

350. Ж. Веселовская. Сорбционные свойства композитных поглотителей аммиака на основе дисперсных хлоридов щелочноземельных металлов. Автореферат диссертации на соискание ученой степени кандидата химических наук. Новосибирск: Институт катализа, 2011, 21с.

351. J.V. Veselovskaya, M.M. Tokarev, Novel ammonia sorbents "porous matrix modified by active salt" for adsorptive heat transformation: 4. Dynamics on quasi-isobaric sorption and desorption on BaCl2/vermiculite. Appl. Therm. Eng., 31, 2011, 566-572.

352. L.G. Gordeeva, A.A. Khassin, G.K. Chermashentseva, T.A. Krieger, New adsorbents of methanol for the intensification of methanol synthesis. React. Kin., Mechan., Catal., 105, 2012, 391-400.

353. В. Haut, V. Halloin, Н. Ben Amor, Development and analysis of a multifunctional reactor for equilibrium reactions: benzene hydrogenation and methanol synthesis. Chem. Eng. Proc., 43, 2004, 979-986.

354. J. Pires, A. Carvalho, De M.B. Carvalho, Adsorption of volatile organic compounds in Y zeolites and pillared clays. Micropor. Mesopor. Mater., 43, 2001, 277-287.

355. I. Dekany, F. Szanto, W. Armin, G. Lagaly, Interactions of hydrophobic layer silicates with alchohol-benzen mixtures: I. Adsorption isotherms. Ber. Bunsen-Ges. Phys. Chem., 90, 1986, 422-427.

356. J. Goworek, A. Swiatkowski, S. Zietek, Studies on the adsorption process of benzene-methanol mixtures on the carbon blacks containing chemically bonded sulfur. Mater. Chem. Phys., 21, 1989, 357-365.

357. K. Jerabek, Z. Prokop, Polymer adsorbents for methanol separation from a hydrocarbon stream. React. Polym., 18, 1992, 221-227.

358. N.W. Arnell, Global Environmental Change 14 (2004) 31-52.

359. World Survey of Climatology. V.8. Climates of Northern and Eastern Asia. Ed. by H.Arakawa. Elsevier Scientific Publishing Company, 1969; World Survey of Climatology.

360. V.9. Climates of Southern and Western Asia. Ed. by K.Takahashi and H.Arakawa. Elsevier Scientific Publishing Company, 1981; World Survey of Climatology. V.10. Climates of Africa. Ed. by J.F.Griffiths. Elsevier Scientific Publishing Company, 1972.

361. Л.Г. Гордеева, Новые процессы и материалы для термохимического запасания тепла: Автореферат диссертации на соискание ученой степени кандидата химических наук. Новосибирск: Институт катализа, 1998, 18с.

362. Л.Г. Гордеева, И.С. Глазнев, Ю.И. Аристов, Сорбция воды сульфатами натрия, меди и магния, диспергированными в порах силикагеля и оксида алюминия. Журн. Физ. Химии, 77, N 10, 2003, 1906-1911.

363. Е. Loid, С. В. Brown, D. G. R. Bonnel, W.J. Jones., Equilibrium beween alchohols and salts. Part II. J. Chem. Soc. London, 1928, 658-667.

364. D. Glynwyn, R. Bonnel, W.J. Jones, The dissociation pressure of alchoholates. Part I. J. Chem. Soc. London, 1926, 321-328.

365. B.N. Menschutkin, Uber einige krystalalkoholate. Z. Anorgan. Chem., 52 (1907) 9-24.

366. L. Gordeeva, A. Freni, T. Krieger, G. Restuccia, Yu. Aristov, Composites "lithium halides in silica gel pores": Methanol sorption equilibrium. Micropor. Mesopor. Mater., 112, No 1-3,2008,264-271.

367. Г.Б. Сергеев, Нанохимия, M., Изд-во МГУ, 2003, 288 с.

368. L. Vradman, М. L. Landau, D. Kantorovich, Y. Koltypin, A. Gedanken, Evaluation of metal oxide phase assembling mode inside the nanotubular pores of mesostructured silica. Micropor. Mesopor. Mater., 79, 2005, 307-318.

369. B.A. Гусев, B.A. Гагарина, Э.М. Мороз, Э.А. Левицкий, Рентгенографическое исследование распределения солей типа «ионных кристаллов» в порах дисперсных матриц. Кин. Кат., XVII, вып. 2, 1976, 500-508.

370. Л.Г. Гордеева, И.С. Глазнев, В.В. Малахов, Ю.И. Аристов, Сорбционные свойства хлорида кальция, диспергированного в порах силикагеля. Журн. Физ. Химии, 77, N 11,2003,2048-2052.

371. Yu.I. Aristov, L.G. Gordeeva, Yu.D.Pankratiev, T.M. Plyasova, I.V. Bikova, A. Freni, G. Restuccia, Sorption Equilibrium of Methanol on New Composite Sorbents «CaCl2/Silica Gel». Adsorption, 13, 2007, 121-127.

372. B. Bixon, R. Guerry, D. Tassios, Salt effect on the vapor pressure of pure solvents: methanol with seven salts at 24.9.degree.C. J. Chem. Eng. Data, 24, n 1, 1979, 9-11.

373. T.J. Chou, A. Tanioka, A vapor pressure model for aqueous and non-aqueous solutions of single and mixed electrolyte systems. Fluid Phase Equilib., 137, 1997, 17-32.

374. И.А. Симонова, Ю.И. Аристов, Сорбционные свойства нитрата кальция, диспергированного в силикагеле: влияние размера пор. Журн. Физ. Химии, 79, N 8, 2005, 1477-1481.

375. И.А. Симонова, Ю.И. Аристов, Реакции дегидратации кристаллогидратов неорганических солей для аккумулирования низкопотенциального тепла: выбор перспективных реакций и синтез новых материалов. Алътернатитвная энергетика и экология, 10, 2007, 62-69.

376. D.I. Kolokolov, I.S. Glaznev, Yu.I. Aristov, A.G. Stepanov, H. Jobic, Water Dynamics in Bulk and Dispersed in Silica CaCl2 Hydrates Studied by 2H NMR. J. Phys. Chem. C, 112, n 33, 2008, 12853-12860.

377. И.А. Симонова, Композитные сорбенты воды «Са^Оз)2/силикагель» и «LiNOз/cиликaгeль». Автореф. дисс. кан-та хим. наук, Новосибирск, Институт катализа, 2008, 19 с.

378. М. Kosmulski, J. Hartikainen, Е. Maczka, W. Janusz, J. Rosenholm, Multiinstrument Study of the Electrophoretic Mobility of Fumed Silica. Anal. Chem., 74, 2002, 253-256.

379. R.O. James, T.W. Healy, Adsorption of hydrolyzable metal ions at the oxide—water interface. I. Co(II) adsorption on Si02 and ТЮ2 as model systems. J. Colloid Interface Sci., 40, 1972, 42-52.

380. K.B. Agashe, J.R. Regalbuto, A Revised Physical Theory for Adsorption of Metal Complexes at Oxide Surfaces. J. Colloid Interface Sci., 185, 1997, 174-189.

381. W. Stumm, C.P. Huang, S.R. Jenkins, Specific chemical interaction affecting the stability of dispersed systems. Croat. Chem. Acta, 42, 1970, 223-245.

382. T. Hiemstra, W.H. van Riemsdijk, Physical chemical interpretation of primary charging behaviour of metal (Hydr)oxides. Colloids Surf, 59, 1991, 7-25.

383. О. Stern, Zur theorie der elektrolytischen doppelschicht. Z Electrochem., 30, 1924, 508516.

384. J.W. Bowden, A.M. Posner, J.P. Quirk, Ionic adsorption on variable charge mineral surfaces. Theoretical-charge development and titration curves. Aust. J. Soil. Res., 15, 1977, 121-136.

385. D.E. Yates, S. Levine, T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. I, 70, 1974, 1807-1818.

386. J.A. Davis, R.O. James, J.O. Leckie, Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes. J. Colloid Interface Sci., 63, 1978, 480-499.

387. L.G. Gordeeva , I.S. Glaznev, E.V. Savchenko, V.V. Malakhov, Yu.I. Aristov, Impact of phase composition on water adsorption on inorganic hybrids "salt/silica". J. Colloid Interface Sci., 301, 2006, 685-691.

388. M. Doula, A. Ioannou, A. Dimirkou, Thermodynamics of coper adsorption desorption by Ca-kaolinite. Adsorption, 6, 2000, 325-335.

389. A.B. Киселев, Теплоты адсорбции жидкостей и работа адсорбционных сил, Успехи химии, 9, N 1, 1940, 1-8.

390. D.A. Griffits, D.W. Fuerstenau, The effect of ph and temperature on the heat of immersion of alumina. J. Colloid Interface Sci., 80, n 1, 1981, 271.

391. S.B. Jonson, P.J. Scales, T.W. Healy, The Binding of Monovalent Electrolyte Ions on a-Alumina. I. Electroacoustic Studies at High Electrolyte Concentrations. Langmuir, 15, 1999, 2836-2843.

392. A. Neimark, L.I. Kheifez, V.B. Fenelonov, Theory of preparation of supported catalysts. Ind. Eng. Chem.: Product Res. Devel., 20, 1981, 439-450.

393. Yu.I. Ermakov, V.F. Surovikin, G.V. Plaksin, V.A. Semikolenov, V.A. Likholobov, L.V. Chuvilin, New carbon material as support for catalysts. React. Kinet. Cat. Lett., 33, N 2, 1987, 435-440.

394. Т. Takey, М. Chikazawa, Origin of Differences in Heats of Immersion of Silicas in Water. J. Colloid Interface Sci., 208, 1998, 570-574.

395. Ю.Д. Панкратьев, M.M. Токарев, Ю.И. Аристов, Теплоты сорбции воды на силикагеле, содержащем СаС12 и LiBr. Журн. Физ. Химии, 75, N 5, 2001, 910-914.

396. M.Conde, Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. Int. J. Thermal Sci., 43, 2004, 367-382.

397. L.J. Kriscenti, D.A. Sverjensky, The role of electrolyte anions (C104~, N03~, and СГ) in divalent metal (M ) adsorption on oxide and hydroxide surfaces in salt solutionsio Am. J. Sci., 299, 1999, 828-899.

398. H. Knoezenger, P. Ratnasamy, Catalytic aluminas: surface models and characterization of surface sites, Catal. Rev. Sci. Engn., 17, 1978, 31-69.

399. К. B. Agashe, J. R. Regalbuto, A Revised Physical Theory for Adsorption of Metal Complexes at Oxide Surfaces. J. Colloid Interface Sci., 185, 1997, 174-189.

400. C.Yi. Liu, K. Aika, Effect of the CI/Br Molar Ratio of a CaCl2-CaBr2 Mixture Used as an Ammonia Storage Material. Ind. Eng. Chem. Res., 43, 2004, 6994-7000.

401. C.Yi. Liu, K. Aika, Ammonia Absorption into Alkaline Earth Metal Halide Mixtures as an Ammonia Storage Material. Ind. Eng. Chem. Res., 43, 2004, 7484-7491.

402. L.G. Gordeeva, A.D. Grekova, T.A Krieger, Yu.I. Aristov, Adsorption properties of composite materials (LiCl+LiBr)/silica. Microporous Mesoporous Mater. 126, n 3, 2009, 262-267.

403. L. Gordeeva, A. Grekova, T. Krieger, Yuri Aristov, Composites "binary salts in porous matrix" for adsorption heat transformation. Appl. Therm. Engin., 50, 2013, 1633-1638.

404. C. Robelin, P. Chartrand, A.D. Pelton, Thermodynamic evaluation and optimization of the (MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system. J. Chem. Thermod., 36, 2004, 793-808.

405. Facility for the Analysis of Chemical Thermodynamics compound and solution database. LiCl-LiBr system. http://www.crct.polymtl.ca/FACT/phasediagram.php7file =LiBr-LiCl.jpg&dir=FTsalt

406. L.G. Gordeeva, G. Restuccia, G. Cacciola, Yu.I. Aristov, Selective water sorbents for multiple applications: 5. LiBr confined in mesopores of silica gel: sorption properties. React. Kinet. Catal. Lett., 63, 1998, 81-88.

407. L.A. McNeely, Thermodynamic properties of aqueous solution of lithium bromide. ASHRAE Trans., 85, 1979, 413-434.

408. G. Feuerecker, J. Scharfe, I. Greiter, C. Frank, G. Alefeld, Measurement of thermodynamic properties of LiBr-solutions at high temperetures and concentrations. AES, ASME, 31, 1993,493-499.

409. D.A. Boryta, A.J. Maas, C.B. Grant, Vapor pressure temperature - concentration relationship for system lithium bromide and water (40-70% lithium bromide). J. Chem. Eng. Data, 20, n.3, 1975, 316-319.

410. S. Iyoki, T. Uemura, Vapour pressure of the water-lithium bromide system and the waterlithium bromide-zink bromide-lithium chloride system at high temperatures. Int. J. Refrig., 12, 1989, 278-282.

411. Handbook of Chemistry and Physics, Ed. by C.D.Hodsman, Cleveland, Chemical Rubber Publishing Co., v.l, p. 536.

412. L.G. Gordeeva, A. Freni, G. Restuccia, Yu.I. Aristov, Water sorption on "LiBr in porous carbons". Fuel Proces. Technol., 79, n 3, 2002, 225-231.

413. Yu.I. Aristov, G. Restuccia, M.M. Tokarev, H.-D. Buerger, A.F reni, Selective water sorbents for multiple applications. 11. CaCl2 confined to expanded vermiculite, React. Kinet. Cat. Lett., 71, n 2, 2000, 377-384.

414. K.R. Patil, A.D. Tripathi, S.S. Katti, Thermodynamic properties of aqueous electrolite solutions. Vapor pressure of aqueous solutions of LiCl, LiBr and Lil. J. Chem. Eng. Data, 35, 1990, 166-168.

415. R.A. Robinson, The coefficient of the alkali bromides and iodides in aqueous solution from vapor pressure measurements. J. Amer. Chem. Soc., 57, 1935, 1161-1165.

416. Gmelins Handbuch der Anorganischen Chemie. Syst. N 27. Magnezium. Teil B. Lft 2. S. Verlag Chemie GMBH, 1938, 114-119.

417. Encyclopedia of chemical reactions, VII. Edited by C.A.Jacobson, New York, Reinold Publishing Corporation, 1951, 425-429.

418. J.C. Mutin, G. Watelle, Y. Dusausoy, Study of a lacunary solid phase I—Thermodynamic and crystallographic characteristics of its formation. J. Solid State Chem., 27, 1979, 407421.

419. Gmelins Handbuch der Anorganischen Chemie. Syst. N 21. Natrium. Teil B. 992 S. Verlag Chemie GMBH, 1928, 548-569.

420. Gmelins Handbuch der Anorganischen Chemie. Syst. N 60. Kupfer. Teil B. Lft. 1. 624 S. Verlag Chemie GMBH, 1958, 500-551.

421. J. Mrowiec-Bialon, A.B. Jarzebskii, A. Lachowski, J. Malinovski, M.M. Tokarev, L.G. Gordeeva, Yu.I. Aristov, Adsorbent рагу wodnej i sposob otrzymywania (Water sorbent and its application), Polish Patent N 728/191/97 of 1/04/97 (in Polish).

422. Б.М. Гурвич, P.P. Каримов, C.M. Межерицкий, Расчет теплоты парообразования водных растворов СаС12. Журн. Прикл. Химии., 59, 1986, 2692-2694.

423. М. Clausse, К.С.А. Alam, F. Meunier, I. Bacardit, Ch. Patterer, Proc. Int. Conference on Heat Powered Cycles 2006, Newcastle upon Tyne, Sept. 11-14, 2006, p. 55.

424. P.O'D Offenhartz, Thermochem. Energy Storage, Proc. Int. Semin., Stockholm, Swed., 1980, p.lll.

425. Gmelins Handbuch der Anorganischen Chemie, Calcium Teil В Lieferung 2. Hauptredakteur E.H.Erich Pietsch. Verlag Chemie GmbH, 1957, 520-527.

426. H. Gillier-Pandraud, M. Philoche-Levisalles, Structure cristalline du compose CaClr2CH3OH. Comptes Rendus de V'Academie des Sciences, 273, 1979, 949-951.

427. Y. Hamamoto, K.C.A. Alam, B.B. Saha, S. Koyama, A. Akisawa, T. Kashiwagi, Study on adsorption refrigeration cycle utilizing activated carbon fibers. Part 1. Adsorption characteristics. Int. J. Refrig., 29, 2006, 305-314.

428. S.-K.J. Oh, Total Pressure Measurements for Lithium Chloride + Methanol + Ethanol at 303.15 K. J. Chem. Eng. Data, 42, 1997, 1082-1084.

429. II. Oosaka, Cryoscopic studies on the transition points of the compounds of organic solventd with salts. III. The congruent melting points of some alcoholates of alkali halides. Bull. Chem. Soc. Japan, 12, 1937, 177-187.

430. И.А. Скабичевский, Осмотические коэффициенты растворов хлорида и бромида лития в метаноле. Журн. Физ. Химии, 43, N 10, 1969, 2556-2558.

431. W. Raatschen, Thermophysikalishe eigenschaften von methanol/wasser lithiumbromid lüsungen. Diss. TH Aachen, Germany, 1985, 59 p.

432. T. Megyes, T. Radnay, A. Wakisaka, Complementary Relation between Ion-Counterion and Ion-Solvent Interaction in Lithium Halide-Methanol Solutions. J. Phys. Chem. A, 106, 2002, 8059-8065.

433. S. Mochizuki, A.Wakisaka, Solvation for Ions and Counterions: Complementary Relation between Ion-Counterion and Ion-Solvent Interaction. J. Phys. Chem. A, 106, 2002, 5095-5100.

434. L. Gordeeva, A. Freni, G. Restuccia, Yu. Aristov, A new family of methanol sorbents for adsorptive air conditioning driven by low temperature heat. Book of abstracts Int. Conf. Heat Powered Cycles 2006, 12-14 Sept, Newcastle upon Tyne, UK, p.21.

435. L.G. Gordeeva, A. Freni, G. Resticcia, Yu.I. Aristov. Adsorptive Air Conditioning Systems Driven by Low Temperature Energy Sources: Choice of the Working Pairs. J. Chem. Eng. Japan, 40, n 13, 2007, 1287-1291.

436. A.P.F. Leite, M. Daguenet, Performance of a new solid adsorption ice maker with solar energy regenereation. Energy Comers. Manage., 41, 2000, 1625-1647.

437. N. Douss, F. Meunier, Effect of operating temperatures on the coefficient of performance of active carbon methanol system. Heat Recov. Syst. CHP., 8, 1988, 383-392.

438. D. Chernev, Waste heat driven automotive air conditioning system. Proc. Int. Sorp. Heat Pump Conf, Munich, Germany, March 24-26, 1999, pp. 65-69.

439. L. Gordeeva, Yu. Aristov, A. Freni, G. Restuccia, Preparation of zeolite layers with enhanced mass transfer properties for adsorption air conditioner. Proc. Int. Sorption Heat Pump Conf., Shanghai, China, September 24-27, 2002, pp. 625-630.

440. Y. Hamamoto, K.C.A Alam, B.B. Saha, S. Koyama, A. Akisawa, T. Kashiwagi, Study on adsorption refrigeration cycle utilizing activated carbon fibers. Part 2. Cycle performance evaluation. Int. J. Refrig., 29, 2006, 315-327.

441. R. Nasuto, The adsorption of methanol vapors on silica gel Si-100 and its surface containing different concentrations of chemically bonded fluoride ions. J. Thermal Anal. Calorimetry, 62, 2000, 581-585.

442. A.P.F. Leite, M.B. Grilo, R.R.D. Andrade, F.A. Belo, F. Meunier, Experimental thermodynamic cycles and performance analysis of a solar-powered adsorptive icemaker in hot humid climat", Renew. Energy, 32, 2007, 697-712.

443. Ю.И. Аристов, M.M. Токарев, Г. Каччиола, Д. Рестучча, Теплоемкость и теплопроводность водных растворов хлорида кальция в порах силикагеля. Журн. Физ. Химии, 71, N 3, 1997, 391-394.

444. М. Pons, F. Meunier, G. Cacciola, R. E. Critoph, M. Groll, L. Puigjaner, B. Spinner, F. Ziegler, Thermodynamic based comparison of sorption systems for cooling and heat pumping. Int. J. Refrig., 22, 1999, 5-17.

445. L.G. Gordeeva, Yu.I. Aristov, Novel adsorbent of methanol "LiCl inside silica pores" for adsorption cooling: dynamic optimization. Energy, 36, 2011, 1273-1279.

446. I.S. Glaznev, Yu.I. Aristov, The effect of cycle boundary conditions and adsorbent grain size on dynamics of adsorption chillers, Int. J. Heat Mass Transfer, 53, 2010, 1893-1898.

447. Yu.I. Aristov, A. Sapienza, A. Freni, D.S. Ovoschnikov, G. Restuccia, Reallocation of adsorption and desorption times for optimizing the cooling cycle parameters. Int. J. Refrig., 35,2012, 525-531.

448. I.V. Koptyug, L.Yu. Khitrina, Yu.I. Aristov, M.M. Tokarev, K.T. Iskakov, V.N. Parmon, R.Z. Sagdeev, An 'H NMR microimaging study of water vapor sorption by individual porous pellets. J. Phys. Chem. B, 104, 2000, 1695-1700.

449. L.G. Gordeeva, A. Freni, Yu.I. Aristov, G. Restuccia, Composite sorbent of methanol ""lithium chloride in mesoporous silica gel" for adsorption cooling machines: performance and stability evaluation. Ind. Eng. Chem. Res., 48, n 13, 2009, 6197-6202.

450. G. Restuccia, A. Freni, F. Russo, S. Vasta, Experimental investigation of a solid adsorption chiller based on a heat exchanger coated with hydrophobic zeolites. Appl. Therm. Eng., 25, n. 10, 2005, 1419-1428.

451. G. Restuccia, A. Freni, S. Vasta, Yu.I. Aristov, Selective water sorbent for solid sorption chiller: experimental results and modelling. Int. J. Refrig., 27, n 3, 2004, 284-293.

452. A. Freni, F. Russo, S. Vasta, M. Tokarev, Yu.l. Aristov, G. Restuccia, An advanced solid sorption chiller using SWS-1L CaCL in mesoporous silica gel. App. Therm. Eng., 27, 2007, 2200-2204.

453. IL-W. Lerner, M. Bolte, An orthorombic modification of lithium chloride monohydrate. Acta Cryst., 59, 2003, 20-21.

454. M. Li, H.B. Huang, R.Z. Wang, L.L. Wang, W.D. Cai, W.M. Yang, Experimental study on adsorbent of activated carbon with refrigerant of methanol and ethanol for ice maker. Renew. Energy, 29, n 15, 2004, 2235-2244.

455. I.I. El-Sharkawy, K. Kuwahara, B.B. Saha, S. Koyama, K.C. Ng, Experimental investigation of activated carbon iibers/ethanol pairs for adsorption cooling system application. Appl. Therm. Eng. 26, n 8-9, 2006, 859-865.

456. B.B. Saha, I.I. El-Sharkawy, A. Chakraborty, S. Koyama, Study on an activated carbon fiber ethanol adsorption chiller: Part I - system description and modelling. Int. J. Refrig. 30, n 1, 2007, 86-95.

457. J.-S. Bae, D.D. Do, On the equilibrium and dynamic behavior of alchohol vapor in activated carbon. Chem. Eng. Sei., 61, n 19, 2006, 6468-6477

458. M.S. Stul, L. van Leemput, L. Leplat, J.B. Uytterhoeven, The adsorption of organic vapors on alkylammonium smectitees. The influence of mineral charge density and monofunctional ammonium cation type. J. Colloid Interface Sei., 94, n 1, 1983, 154-165.

459. R. Saure, E.U. Schlunder, Sorption isotherms for methanol, benzene and ethanol on polyvinyl acetate) (PVAc). Chem. Eng. Proces., 34, n 3, 1995, 305-316.

460. L. Gordeeva, Yu. Aristov, Novel sorbents of ethanol "salt confined to porous matrix" for adsorptive cooling. Proc. 7th Int. Conf. Sustainablre Energy Technologies, SET 2008, Seoul, August 24-27, 2008, v.l, pp 1748-1755.

461. L. Gordeeva, Yu. Aristov. Novel sorbents of ethanol "salt confined to porous matrix" for adsorptive cooling. Energy. 35, 2010, 2703-2708.

462. Ph. Touzain, Thermodynamic values of ammonia-salts reactions for chemical sorption heat pumps. Proc. Int. Sorption Heat Pump Conf., Munich, Germany, March 24-26, 1999, pp. 225-238.

463. В.И. Мол один, H.B. Полосьмак и др., Археологические памятники плоскогорья Укок (Горный Алтай), Новосибирск, Изд-во СО РАН, 2004, стр. 179-180.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.