Методическое и программно-алгоритмическое обеспечение информационно-измерительной системы автоматизированной обработки, анализа и классификации инфракрасных изображений тема диссертации и автореферата по ВАК РФ 05.11.16, кандидат технических наук Кананадзе, Сергей Сергеевич

  • Кананадзе, Сергей Сергеевич
  • кандидат технических науккандидат технических наук
  • 2006, Москва
  • Специальность ВАК РФ05.11.16
  • Количество страниц 270
Кананадзе, Сергей Сергеевич. Методическое и программно-алгоритмическое обеспечение информационно-измерительной системы автоматизированной обработки, анализа и классификации инфракрасных изображений: дис. кандидат технических наук: 05.11.16 - Информационно-измерительные и управляющие системы (по отраслям). Москва. 2006. 270 с.

Оглавление диссертации кандидат технических наук Кананадзе, Сергей Сергеевич

Введение.

1. Технология формирования ИК изображений с использованием тепловизора.

1.1. Функциональная схема и принцип работы тепловизора.

1.2. Основные рабочие параметры тепловизора.

1.3. Выводы.

2. Цифровое представление ИК изображений и методы их обработки.

2.1. Основные сведения по моделированию и обработке

ИК изображений.

2.2. Классификация ИК изображений и операций над ними.

2.3. Основные этапы цифровой обработки и f анализа ИК изображений.

2.4. Выводы.

3. Анализ и классификация ИК изображений.

3.1. Методика применения аппарата нечётких множеств для классификации ИК изображений.

3.2. Технология построения типовых функций принадлежности нечётких множеств, используемых при классификации ИК изображений, и методы работы с ними.

3.3. Развитие концепции ИНС

I и математическая модель нейрона.ВО

3.4. Анализ достоинств и недостатков существующих схем ИНС применительно к задаче анализа ИК изображений.

3.5. Оценка возможности использования распространенных парадигм ИНС для анализа ИК изображений.

3.6. Особенности обучения ИНС при решении задачи анализа ИК изображений.

3.7. Выводы.

4. Прогнозирование ИК изображений.

4.1. Модели временных рядов, используемые при прогнозировании ИК изображений. Их достоинства и недостатки.

4.2. Алгоритм оценивания параметров модели временного ряда при построении прогноза ИК изображения.

4.3. Выводы.

5. Основные результаты экспериментальных исследований состояния футеровки печи сжигания ТБО с использованием ИК изображений.

5.1. Описание схемы работы и конструкции печи сжигания ТБО.

5.2. Описание среды разработки МПАО и схемы его функционирования в составе ИИС.

5.3. Этап предварительной обработки ИК изображений.

5.4. Этап анализа и классификации ИК изображений.

5.5. Этап прогнозирования ИК изображений.

5.6. Выводы.

Рекомендованный список диссертаций по специальности «Информационно-измерительные и управляющие системы (по отраслям)», 05.11.16 шифр ВАК

Введение диссертации (часть автореферата) на тему «Методическое и программно-алгоритмическое обеспечение информационно-измерительной системы автоматизированной обработки, анализа и классификации инфракрасных изображений»

Тепловизионные методы контроля и диагностики, которые относятся к неразрушающим методам, благодаря своему удобству использования, а также оперативности и точности проводимых исследований, находят всё более широкое применение [68, 93, 99]. Особенно актуально применение тепловизоров в местах, где доступ к объекту исследования ограничен каким-либо физическим фактором или факторами: высокой температурой, сильным шумом, вибрацией и т.п.

Начало развития инфракрасной (ИК) термографии в СССР в 1972 г. было положено академиком РАМН В.П. Казначеевым, а его работы продолжили сотрудники Института радиотехники и электроники РАН СССР академик Ю.В. Гуляев и профессор Э.Э. Годик [1, 4, 46, 50]. Их интересовал человек как биологический объект, генерирующий электромагнитные колебания. Приблизительно в это же время в крупных научно-исследовательских институтах страны начинаются работы по созданию приборов (тепловизоров), позволяющих бесконтактно регистрировать тепловое излучение любого объекта (не обязательно живого) [4, 67].

В настоящее время в большинстве случаев для измерения температуры используются термопары (термодатчики) - специальные термочувствительные датчики [5]. Преимущество таких устройств заключается в том, что они вычисляют истинную, а не эффективную («кажущуюся») температуру объекта, как это делают тепловизоры. Более того, данные устройства достаточно просты в использовании и имеют невысокую стоимость. Наибольшее распространение получили резистивные термодатчики, в которых измерение температуры осуществляется по разности падений напряжений на выходах соответствующих контактов (диапазон измеряемых температур у некоторых из них составляет от -50 °С до +2500 °С). Некоторые термопары даже преобразуют измеряемую температуру в цифровой вид. Многие современные фирмы, такие как Bosch, Sony, Intel и т.д., используют данные устройства в выпускаемой бытовой и вычислительной технике для предупреждения перегрева электронных плат и выхода из строя всей системы.

Вместе с тем необходимо отметить, что достаточно часто требуется иметь целостную тепловую картину для всего объекта исследования [26]. Однако термодатчики могут устанавливаться лишь в определенных местах, и поставить их по всей площади поверхности объекта (особенно крупного) не представляется физически возможным. Также следует заметить, что при больших объемах получаемых данных (в случае большого числа термодатчиков), оперативность анализа измерений резко снижается, т.к. полученные данные эксперт самостоятельно анализирует на ЭВМ.

Последовательное развитие вычислительной теплофизики, термометрии, теоретических основ бесконтактной диагностики сложных систем по температурным признакам и совершенствование оптических систем ИК-диапазона во многом определило становление нового научного направления - вычислительной ИК-термографии [49, 97, 99, 103].

Первые системы вычислительной ИК термографии (СВИКТ) появились в 1990 г. Эти системы, предназначенные для восстановления и визуализации температуры (в любой точке объекта, в том числе ненаблюдаемой), используют численные модели процессов, основанные на априорной информации о параметрах объекта и результатах интенсивности ИК излучения объекта [71, 75, 76, 84, 93, 94]. Впервые такая система была подробно рассмотрена, синтезирована и проанализирована с функциональной точки зрения в работе С.А. Филатова [97].

Традиционные системы обработки ИК изображений восстанавливают распределение температурных полей на поверхности объекта по жесткому алгоритму, который не всегда дает верные результаты[5, 71, 97]. В СВИКТ, в отличие от традиционных систем, учитывается селективный характер чувствительности датчиков, поглощение в атмосфере и ИК фильтрах, температура окружающей среды и её эффективный коэффициент излучения.

Комплекс СВИКТ включает в себя: а) программные и метрологические средства; б) аппаратуру ввода информации о пространственном и спектральном распределении интенсивности ИК излучения и температуре объектов (тепловизор, ИК спектрофотометр, многоканальный термопарный анализатор, ИК фотодиодные датчики); в) программируемые средства цифровой обработки и отображения информации по заданным алгоритмам.

Общая структура СВИКТ представлена ниже на рисунке.

Структура СВИКТ

1. Спектрофотометр б. МикроЭВМ

2. Тепловизор 7. Дисплей

3. ИК датчики 8. Графопостроитель

4. Контактные датчики температуры 9. Цветной монитор

5. Интерфейсные платы 10. Интерфейс

Программы, используемые в СВИКТ, обеспечивают адаптируемое управление экспериментом и вводом данных, коррекцию и обработку ИК изображений, моделирование исследуемых физических процессов, графическое отображение результатов экспериментов и численного ь моделирования.

Хотя СВИКТ и решают проблемы оперативности и автоматизированной обработки полученных данных, остается нерешенным вопрос о целостности получаемой информации об объекте [51, 56, 93]. Качественные тепловизоры имели высокую цену, поэтому в основном в СВИКТ применялись термопары, что приводило к вышеописанной проблеме целостности информации. К тому же, СВИКТ были громоздкими, и их транспортабельность оставляла желать лучшего.

Современные проблемы физических исследований и неразрушающего контроля требовали создания преобразователей изображений в широком интервале длин волн: от рентгеновских до радиоволн. С развитием науки и техники стало возможным появление таких преобразователей - тепловизоров - приборов, создающих и преобразующих инфракрасное (ИК) излучение нагретых тел в видимое и таким образом обеспечивающих визуализацию теплового поля нагретых объектов [12, 50, 71, 76, 99]. Они вобрали в себя все достоинства СВИКТ в области автоматизированной обработки и оперативности получения данных, и одновременно избавились от недостатков этих систем.

Для получения тепловизионного изображения используется инфракрасное (ИК) излучение, источником которого является сам объект. Подробные изложения законов излучения нагретых тел и закономерностей формирования ИК изображения приведены как в специальных монографиях [26, 27], так и в работах, посвященных оптико-электронным и ИК приборам [45, 63,71,76, 102].

В СССР работы по созданию таких устройств были положены директором Института радиотехники и электроники Ю.В. Гуляевым и продолжены его последователями: директором дочернего малого предприятия «ИРТИС» при Научно-исследовательском центре электронных диагностических систем РАН М.И. Щербаковым и сотрудниками предприятия «ИРТИС» М.Г. Уткиным, Д.В. Спириным, Н.В. Кожакиным и

Н.В. Зимохой [1, 8, 46]. Их усилиями были созданы современные тепловизоры «ИРТИС-200» и «ИРТИС-2000».

В настоящее время ведутся разработки по улучшению электронного блока тепловизоров, отвечающего за преобразование теплового изображения в электрический сигнал [93, 94, 97]. Примерами данного устройства могут служить теплоэлектрический преобразователь (разработан и запатентован В.Д. Бобрышевым и А.К. Блажисом, 2003 г.) и многоэлементное фотоприемное устройство с длинноволновой границей поглощения до 7 мкм (разработано и запатентовано А.В. Двуреченским, А.П. Ковчавцевым, Г.Л. Курышевым, И.А. Рязанцевым, патентообладатель - Институт физики полупроводников Сибирского отделения РАН, 2000 г.).

Высокое быстродействие, возможность работать в любое время суток, точность и отсутствие контакта с объектом в процессе измерения позволяют эффективно применять тепловизоры в промышленности и строительстве [68, 72, 76].

Можно выделить ряд типовых задач, решаемых с помощью тепловизоров [68]:

1. Обнаружение - установление наличия излучающего объекта в угловом поле ТВС или на экране дисплея (системы отображения);

2.Классификация - фиксация того факта, что обнаруженный объект принадлежит к некоторому достаточно широкому классу, например, к летательным аппаратам и т.п.;

3 .Распознавание - установление принадлежности объекта к сравнительно узкому классу, например, того, что объект является самолетом и т.п.;

А.Идентификация - определение конкретного типа объекта, например модели самолета и т.п.

Иногда совокупность всех этих задач несколько упрощенно называют обнаружением и распознаванием.

В настоящее время совместно с тепловизорами поставляются также ЭВМ со специализированными программными комплексами, включающими в себя следующие способы анализа термограмм (ИК изображений): а) измерение абсолютной температуры в точке или зоне; б) построение термопрофиля в любой позиции; в) построение изотермы; г) построение графика температурных изменений во времени (для динамического термографического фильма,); д) распечатка термограмм и отчетов.

Также в эти комплексы входят функции по обработке изображений термограмм для улучшения их визуального восприятия: сглаживание, увеличение резкости, контрастирование, кадрирование, вращение, цветовая коррекция. В качестве примера такого специализированного вычислительного комплекса можно привести программный пакет IRTIS, разработанный на малом предприятии «ИРТИС», с основной программой в нём NewIRTIS [1].

Программный драйвер тепловизора позволяет выполнять функции, часть из которых ранее возлагались на ЭВМ в СВИКТ, а именно:

1) обеспечение визуализации термоизображений в реальном времени;

2) вывод максимальной, минимальной и средней температур в поле кадра;

3) режим остановки кадра для предварительного анализа;

4) запись отдельных термограмм;

5) возможность записи динамического термографического фильма;

6) режим измерения температур;

7) автонастройка динамического диапазона;

8) учет коэффициента отражения;

9) возможность выбора различных цветовых палитр и изотерм;

10) режим покадрового суммирования.

Совокупность «тепловизор-ЭВМ-принтер» стала аналогом СВИКТ, применявшейся ранее, но на качественно новом уровне.

Таким образом, современный процесс обработки, анализа и классификации (OAK) ИК изображений можно представить в следующем виде: Объект -> [Тепловизор, СВИКТ, термодатчики] -> ИК изображение -> Эксперт -> Результат. Эксперт, представленный в этой цепочке, формирует заключение по объекту, исходя из полученных данных об объекте, а также целей и задач исследования. Однако любой специалист может давать лишь субъективное заключение. Кроме этого, наблюдатель формирует свою оценку, используя в большинстве случаев необработанное ИК изображение. Более того, при обработке и анализе больших объёмов информации качество принимаемых решений (их достоверность) с течением времени работы эксперта будет падать.

Следовательно, можно заключить, что основной недостаток, присущий вышеописанному процессу OAK ИК изображений - это наличие эксперта. Поэтому проблема автоматизации данного процесса является актуальной на сегодняшний момент.

Существующие в настоящее время программно-вычислительные комплексы информационно-измерительных систем (ИИС) не проводят самостоятельно анализ поступивших ИК изображений, а только подготавливают их, проводя предварительную обработку, к анализу экспертом. Этот факт создает предпосылки для разработки методического и программно-алгоритмического обеспечения (МПАО) информационно-измерительной системы (основная цель диссертации), благодаря которому удастся автоматизировать весь процесс OAK ИК изображений.

Применение в ИИС разработанного диссертантом МПАО позволит практически полностью исключить эксперта из рассмотренного выше процесса OAK ИК изображений, т.е. автоматизировать данный процесс вплоть до получения окончательного заключения по объекту исследования, уменьшая тем самым степень субъективизма принятого решения. Также данный подход позволяет снизить нагрузку на эксперта (оператора) при обработке больших объемов данных.

Для достижения поставленной цели (автоматизации процесса OAK ИК изображений) предполагается поэтапно решить ряд задач, присущих всем системам аналогичного класса.

Во-первых, требуется предварительная обработка ИК изображений, так как анализ «сырой» картины может исказить окончательный результат и привести к неверному заключению по объекту. При предварительной обработке ИК изображений используются математические методы, давно и успешно зарекомендовавшие себя в области обработки изображений: медианная фильтрация, пороговая сегментация, пирамидальное представление и т.д.

Во-вторых, необходимо выбрать методы, которые будут применяться при анализе и классификации обработанного ИК изображения. При этом именно этому этапу следует уделить особое внимание, т.к. именно на основе результатов его работы формируется «экспертное» заключение по объекту, и именно на этом этапе принимается аналитическое решение, свойственное человеку. Слово «экспертное» взято в кавычки, т.к. в качестве эксперта в данном случае выступает машина, а не человек. Одним из современных подходов к анализу и классификации ИК изображений, позволяющему учитывать особенности данного этапа, является кластерный анализ вкупе с нечеткой классификацией.

В-третьих, современный анализ невозможно представить себе без прогнозирования, которое все прочнее входит в нашу повседневную жизнь. Желание человека знать, что будет «потом», всегда было очень велико, однако только сравнительно недавно появились и успешно применяются на практике модели прогнозирования временных рядов, позволяющие получить достаточно достоверный прогноз на несколько временных единиц вперед. Прогнозирование ИК изображений особенно актуально, т.к. тепловая картина объекта достаточно точно отражает его текущее состояние, и возможность своевременно предсказать выход объекта из «нормального» рабочего режима позволит избежать серьезных последствий.

Поэтапное решение поставленных задач приводит к достижению поставленной цели: автоматизации процесса обработки, анализа и классификации ИК изображений с получением экспертного заключения по исследуемому объекту.

В представленной работе в качестве объекта исследования для апробации теоретических положений, положенных в основу разработанного МПАО, выступает футеровка печи сжигания твердых бытовых отходов (ТБО). Данные печи применяются на многочисленных мусоросжигательных заводах по всему миру. Используя тепловизионные методы контроля состояния футеровки печи, можно заблаговременно обнаруживать места потенциального или существующего прогара и проводить своевременный локальный ремонт футеровки в месте прогара, избегая капитального дорогостоящего ремонта или замены всей футеровки.

Рассмотрим диссертацию по главам.

В первой главе приводится описание технологии получения ИК изображений с использованием тепловизора, принцип его функционирования и основные рабочие параметры, характеризующие качество работы тепловизора.

Вторая глава включает в себя теорию по оцифровке, классификации и предварительной обработке цифровых ИК изображений: фильтрация, сегментация, уменьшение изображения, контуризация и т.п.

В третьей главе описываются технологии анализа и классификации ИК изображений с использованием аппарата нечётких множеств и нейросетевых методов, приводятся теоретические сведения по нечёткой логике, анализируются достоинства и недостатки существующих основных схем и парадигм ИНС при OAK ИК изображений, рассматриваются особенности построения и обучения ИНС применительно к задаче анализа ИК изображений,.

Четвертая глава посвящена прогнозированию ИК изображений. В этой главе уделяется внимание моделям временных рядов, используемых при построении прогноза состояния объекта исследования по представленным ИК изображениям, и методам оценивания параметров этих моделей.

В пятой главе дано описание объекта исследования (печи сжигания ТБО), использованного для экспериментальной апробации результатов диссертационной работы; приводится краткая характеристика среды программирования «С++ Builder v.5.0», примененной при разработке МПАО ИИС; отражается модульно-блочная структура МПАО вместе с алгоритмом его работы; рассматривается поэтапный процесс функционирования разработанного МПАО в составе ИИС автоматизированной OAK ИК изображений с подробным описанием использованных на каждом шаге методов и демонстрацией результатов работы каждого блока, входящего в состав МПАО, в виде рисунков и графиков.

В заключении диссертационной работы сформированы основные научные и практические результаты, которые были достигнуты в процессе работы над диссертацией.

В приложениях отражены листинги основных файлов программы и статистическая информация по обработанным обучающим, тестовым и прогнозируемым ИК изображениям. Также в текстовом виде приводятся экспертные заключения относительно ремонта футеровки печи по тестовым и прогнозируемым ИК изображениям футеровки. Кроме этого, приводится часть реальных и смоделированных тестовых" ИК изображений.

Похожие диссертационные работы по специальности «Информационно-измерительные и управляющие системы (по отраслям)», 05.11.16 шифр ВАК

Заключение диссертации по теме «Информационно-измерительные и управляющие системы (по отраслям)», Кананадзе, Сергей Сергеевич

5.6. Выводы.

1. Проведенные экспериментальные исследования показали, что по сравнению с экспертом, ИИС автоматизированной OAK ИК изображений, функционирующая на основе разработанного МПАО, обладает гораздо лучшей производительностью, особенно при анализе большого количества ИК изображений из-за свойственной человеку усталости при интенсивной работе в течении длительного периода времени, а также благодаря современным достижениям в области аппаратного и программного обеспечения ЭВМ.

2. Кроме этого, снижение внимания у человека со временем работы приводит к понижению достоверности принимаемых решений, т.е. экспертные заключения по объекту исследования начинают всё менее соответствовать действительности. В то же время МПАО, настроенное квалифицированными специалистами, будет демонстрировать качественные результаты постоянно независимо от времени и места работы.

3. Следует, однако, отметить, что существенную роль в оценке достоверности результатов работы МПАО в составе ИИС играет тот факт, кем оно было настроено. Если данная программа настраивалась группой высококвалифицированных специалистов, то с большой вероятностью можно предположить, что достоверность получаемых результатов будет не ниже, чем достоверность результатов, формируемых экспертом. Однако если настройки данного программного обеспечения устанавливались специалистами средней или низкой квалификаций, то достоверность получаемых заключений по объекту исследования также будет небольшой, и в этом случае возможность использования разработанного МПАО в ИИС по своему прямому назначению может быть поставлена под сомнение.

149

Заключение

В данной диссертационной работе был подробно описан поэтапный процесс разработки методического и программно-алгоритмического обеспечения (МПАО) информационно-измерительной системы (ИИС) автоматизированной обработки, анализа и классификации (OAK) ИК изображений с использованием среды программирования С++ Builder. В процессе работы над данным программным обеспечением были использованы научно-обоснованные технические и технологические решения, использование которых в программных комплексах аналогичного типа внесёт значительный вклад в ускорение научно-технического прогресса в области обработки и анализа ИК изображений.

Основные научные и практические результаты работы могут быть сформулированы следующим образом:

1. На основе проведенных исследований было выявлено, что существующие программные комплексы обработки ИК изображений не в полной мере удовлетворяют современным требованиям по качеству и оперативности OAK получаемых с помощью систем тепловидения ИК изображений объекта ввиду необходимости наличия эксперта, осуществляющего анализ этих изображений.

2. Исходя из данного факта, было разработано МПАО, используемое в ИИС автоматизированной OAK ИК изображений.

3. Разработана модульно-блочная структура реализации МПАО в ИИС и предложена схема взаимодействия между элементами этой структуры, реализующая поэтапный принцип функционирования ИИС в процессе OAK ИК изображений.

4. Наглядность предложенной структуры МПАО и схемы его функционирования вносит логическую ясность в весь рабочий процесс OAK ИК изображений, выполняемый ИИС: a. этап предварительной обработки необходим для повышения качества ИК изображений и уменьшения объёма обрабатываемых данных; b. на этапе анализа и классификации проводятся собственно сами процедуры анализа и классификации ИК изображений с г использованием технологии кластер-анализа и аппарата нечётких множеств, по завершении которых формируется экспертное заключение о состоянии объекта; c. прогнозирование состояний диагностируемых объектов с использованием концепции временных рядов позволяет избежать возникновения нештатных ситуаций и преждевременного выхода диагностируемого объекта из строя. Следует также отметить, что изучая полученный прогноз, можно увидеть, насколько интенсивно используется тот или иной объект, а в ряде случаев и оценить его качество.

1 5. Совокупное использование технологий кластер-анализа и нечеткой классификации позволяет повысить точность принятия окончательных экспертных заключений. Более того, нечёткие множества используются для классификации прогнозируемых состояний объекта, позволяя соотнести полученные данные прогноза с экспертными заключениями.

6. Обосновано применение разработанной научно-методической концепции поэтапного функционирования МПАО как комплекса программно-алгоритмических средств, основанного на использовании существующих математических алгоритмов ЦОАИ, адаптированных под конкретные задачи OAK ИК изображений.

7. Модульно-блочная структура МПАО позволяет модифицировать алгоритм каждого блока, отвечающего за решение определенной задачи, в отдельности для повышения качества работы (производительности и достоверности получаемых результатов) и расширения области применения данного МПАО, что позволит довести технику работы МПАО до совершенства в смысле заданных технико-экономических критериев, не упуская из внимания возможность дальнейшего изменения специфики решаемых задач.

8. Использование в качестве среды разработки МПАО для ИИС современного программного комплекса быстрого создания оконных приложений «С++ Builder v.5.0» позволило создать в программе удобный пользовательский интерфейс. Благодаря использованию оконного принципа можно, например, просматривать в окне на графиках результаты работы, переходить от одного окна к другому и т.п. Наглядность и информативность интерфейса разработанного МПАО позволяет применять его даже пользователям со средней квалификацией.

Результаты диссертационной работы были внедрены в ИИС на Московском научно-производственном предприятии «Нефтехимия» и Московском научно-производственном объединении «Спектр».

Основные положения диссертации опубликованы в работах:

1. Ивченко В.Д., Кананадзе С.С. Применение нейросетевых технологий в различных областях науки и техники // Приборы и системы. Управление, контроль, диагностика. 2005, №6. С. 28-29.

2. Ивченко В.Д., Кананадзе С.С. Применение методов цифровой обработки и кластерного анализа в ИК термографии на примере специализированной вычислительной системы // Труды VIII Межд. научн.-практ. конф. «Фундаментальные и прикладные проблемы приборостроения, информатики и экономики». Дополнительный сборник. -Сочи: 2005. С. 207

215.

3. Ивченко В.Д., Кананадзе С.С. Использование нечеткой классификации и прогнозирования при экспертном анализе ИК изображений // Вестник МГАПИ. -М.: 2006, №3. С. 34-48.

4. Ивченко В.Д., Кананадзе С.С. Комплекс вычислительных методов, алгоритмов и программ для автоматизации обработки, анализа и классификации ИК изображений в задачах контроля и диагностики // Мехатроника, автоматизация, управление. 2006, №4 (в печати).

5. Ивченко В.Д., Кананадзе С.С. Обзор современных технологий тепловизионного контроля // Приборы и системы. Управление, контроль, диагностика. 2006, №2. С. 50-52.

6. Ивченко В.Д., Кананадзе С.С. Система автоматизированной обработки и анализа ИК изображений // Сборник трудов молодых ученых и специалистов МГАПИ. -М.: 2005, №7. С. 1-4. I I

Список литературы диссертационного исследования кандидат технических наук Кананадзе, Сергей Сергеевич, 2006 год

1. Визуализация и измерение тепловых полей // Интернет-ресурс компании «ИРТИС»: http://irtis.ru/prod2.htrnl.

2. Нейрокомпьютеры в системах обработки изображений / Под ред. академика РАН Ю.В. Гуляева и докт. техн. наук, проф. А.И. Галушкина // -М.: Радиотехника, 2003.

3. Нейронные сети. STATISTICA Neural Networks / Пер. с англ. // М.: Горячая линия - Телеком, 2001.

4. Открытие № 122 // Сборник «Открытия в СССР». 1972.

5. Приборы для неразрушающе го контроля материалов и изделий. Справочник в 2-х т. / Под ред. В.В. Клюева // -М.: Машиностроение, 1976.

6. Прикладные нечёткие системы / Под ред. Т. Тэрано, К. Асаи, М. Сугено//- М.: Мир, 1993.

7. Проектирование оптико-электронных приборов / Под ред. Ю.Г. Якушенкова// -М.: Машиностроение, 1981.

8. Цифровые измерительно-информационные системы, теория и практика / Под ред. А.Ф. Фомина, О.Н. Новоселова // -М.: Энергоатомиздат, 1996.

9. Carpenter G.A., Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine // Computer Vision, Graphics and Image Processing. 1987.

10. Kohonen T. The self-organizing map // Proceedings of the IEEE, 78(9).1990.

11. Widrow В., Steans S.D. Adaptive signal processing // Prentice-Hall, Englewood Cliffs. -New Jersey, 1985.

12. Wormser E.M. Sensing the invisible world //-Appl. Opt., 1968, v.7, №9.

13. Абламейко С.В., Лагуновский Д.М. Обработка изображений: технология, методы, применение. -Минск: Нац. акад. наук Беларуси, ин-т техн. кибернетики, 1999.

14. М.Аведьян Э.Д. Алгоритмы обучения нейронных сетей // Автореферат дисс. на соиск. учен. степ, д-ра техн. наук: 05.13.01. -М.: 1997.

15. Аммерааль Л. STL для программистов на С++ / Пер. с англ. // М.: ДМК, 1999.

16. Архангельский А.Я. Программирование в С++ Builder 6. М.: ЗАО «Издательство БИНОМ», 2002.

17. П.Архипова А.Е., Дегтярев С.В., Садыков С.С. и др. / Методы цифровой обработки изображений // Учебное пособие. -Курск: Курский государственный техн. ун-т, 2002, ч. II.

18. Беньямовский Д.Н., Левин Б.И. Термическая переработка ТБО и экономия топливных ресурсов в крупных городах // Проблемы больших городов. 1982, №6.

19. Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. -М.: Мир, 1988.

20. Бокс Дж., Дженкинс Г. Анализ временных рядов. Прогноз и управление // Вып. 1, 2. -М.: Мир, 1974.

21. Борисов В.В., Круглов В.В. Основы построения нейронных сетей. -Смоленск: Изд-во Военного ун-та войсковой ПВО ВС РФ, 1999.

22. Борисов Ю., Кашкаров В., Сорокин С. Нейросетевые методы обработки информации и средства их программно-аппаратной поддержки // Открытые системы. 1997, №4.

23. Боровиков В. STATISTICA. Искусство анализа данных на компьютере. Для профессионалов. -СПб: Питер, 2003.

24. Боровиков В.П., Боровиков И.П. STATISTICA. Статистический анализ и обработка данных в среде Windows// Издание 2-е, стереотипное. -М.: Информационно-издательский дом «Филинъ», 1998.

25. Боровков А.А. Математическая статистика. -М.: Наука, 1984.

26. Брамсон М.А. Инфракрасное излучение нагретых тел. -М.: Наука,

27. Брамсон М.А. Справочные таблицы по инфракрасному излучению нагретых тел. -М.: Наука, 1964.

28. Брамсон М.А., Каликеев А.Е. Инфракрасная техника капиталистических стран. -М.: Сов. радио, 1960.

29. Бриллинджер Д. Временные ряды. Обработка данных и теория. -М.: Мир, 1980.

30. Бураковский Т., Гизиньский Е., Саля А. Инфракрасные излучатели. -Л.: Энергия, 1978.

31. Волков Е.А. Численные методы. -М.: Наука, 1997.

32. Галушкин А.И. Теория нейронных сетей // Учебное пособие для ВУЗов. -М.: ИПРЖР, 2000, кн. 1.

33. Геппенер В.В., Черниченко Д.А., Экало С.А. Вейвлет-преобразование в задачах цифровой обработки сигналов // Учебное пособие. -СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2002.

34. Гибсон X. Фотографирование в инфракрасных лучах. -М.: Мир,1982.

35. Гитис Э.И., Пискулов Б.А. Аналого-цифровые преобразователи. -М.: Энергоиздат, 1981.

36. Говорухин В.Н., Цибулин В.Г. Компьютер в математическом исследовании// Учебный курс. -СПб: Питер, 2001.

37. Горбань А., Россиев Д. Нейронные сети на персональном компьютере. -Новосибирск: Наука, 1996.

38. Горбань А.Н. Обучение нейронных сетей. -М.: СП Параграф, 1991.

39. Гуриков В.А. Возникновение и развитие оптико-электронного приборостроения.-М.: Наука, 1981.

40. Данилина Н.И., Дубровская Н.С., Кваша О.П. и др. Численные методы// Учебник для техникумов. -М.: Высшая школа, 1976.

41. Дегтярев С.В., Садыков С.С., Тевс С.С. и др. Методы цифровой обработки изображений // Учебное пособие. -Курск: Курский государственный техн. ун-т, 2001, ч. I.

42. Демидович Б.П., Марон И.А. Основы вычислительной математики. -М.: Наука, 1970.

43. Денисов Д.А., Дудкин А.К., Пяткин В.П. Цифровой анализ изображений (методы описания геометрических структур). -Новосибирск: ВЦ СО АН СССР, 1987.

44. Дерибере М. Практические применения инфракрасных лучей / Пер. с франц. / Под ред. В.Г. Вафиади и И.Б. Левитина // -М.: Госэнергоиздат, 1959.

45. Джемисон Дж., Мак-Фи Р., Пласс Дж. Физика и техника инфракрасного излучения / Пер. с англ. / Под ред. Н.В. Васильченко // -М.: Сов. радио, 1965.

46. Дорожкин Н. Свет видимый, невидимый и видимый не всеми // Иллюминатор. 2003, №№4,5.

47. Дьяконов В.П., Абраменкова И.В. Mathcad 7.0 в математике, физике и в Internet. -М.: Нолидж, 1999.

48. Дьяконов В.П., Абраменкова И.В., Круглов В.В. Matlab 5.3.1 с пакетами расширений. -М.: Нолидж, 2001.

49. Евреинов Э.В. Цифровая и вычислительная техника. -М.: Радио и связь, 1991.

50. Жуков А.Г., Горюнов А.Н., Кальфа А.А. Тепловидение. -М.: Знание,1974.

51. Жуков А.Г., Горюнов А.Н., Кальфа А.А. Тепловизионные приборы и их применение / Под ред. академика Н.Д. Дёвяткова // -М.: Радио и связь, 1983.

52. Иваненко В.Г. Дискретные ортогональные преобразования // Учебное пособие. -М: Моск. гос. инж.-физ. институт (техн. ун-т), 1998.

53. Игнатьев В.М., Данилкин Ф.А. Обработка изображений на основе теории нечетких множеств. -Тула: Тульский гос. ун-т, 1997.

54. Каллан Р. Основные концепции нейронных сетей / Пер. с англ. // -М.: Издательский дом «Вильяме», 2001.

55. Каралюнец А.В., Маслова Т.Н., Медведев В.Т. Основы инженерной экологии. Термические методы обращения с отходами // Учебное пособие. -М.: Изд-во МЭИ, 2000.

56. Козелкин В.В., Усольцев И.Ф. Основы инфракрасной техники // Учебник для техникумов. -3-е издание, переработанное и дополненное. -М.: Машиностроение, 1985.

57. Короткий С. Нейронные сети: обучение без учителя // Интернет ресурс: http://www.neuropower.de/rus/books/index.html

58. Короткий С. Нейронные сети: основные положения // Интернет-ресурс: http://www.neuropower.de/rus/books/index.html

59. Кочетков Е.С., Осокин А.В. Задачи по теории вероятностей. Случайные события. -М.: Витапресс Графике, 1998.

60. Кочетков Е.С., Осокин А.В. Случайные величины. -М.: Витапресс Графике, 1999.

61. Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. М.: Горячая линия - Телеком, 2001.

62. Круглов В.В., Борисов В.В., Харитонов Е.В. Нейронные сети: конфигурации, обучение, применение. -Смоленск: Изд-во Моск. энерг. ин-та, фил-л в г. Смоленске, 1998.

63. Круз П., Макглоулин JI., Макквистан Р. Основы инфракрасной техники / Пер. с англ. / Под ред. В.Н. Чернышева, А.Г. Шереметьева // -М.: Воениздат, 1964.

64. Крыжановский Б.В., Крыжановский М.В. Распознавание в параметрической нейросети // Сб. научных трудов IV Всероссийской НТК «Нейроинформатика-2002». -М.: Моск. инж.-физ. ин-т (техн. ун-т), 2002, ч. II.

65. Кулачев А.П. Компьютерный контроль процессов и анализ сигналов. -М.: НПО «Информатика и компьютеры», 1999.

66. Куприянов М.С., Матюшкин Б.Д. Цифровая обработка сигналов: процессоры, алгоритмы, средства проектирования. -СПб.: Политехника, 1999.

67. Куртев Н.Д. Тепловизионная аппаратура и некоторые задачи ее совершенствования // Межвуз. сб. научных трудов «Тепловидение». -М.: 1976, вып. 1.

68. Левитин И.Б. Применение инфракрасной техники в народном хозяйстве. -М.-Л.: Энергия, 1981.

69. Леконт Ж. Инфракрасное излучение / Пер. с франц. / Под ред. Л.А. Гумермана // -М.: Физматгиз, 1958.

70. Либерти Д. Освой самостоятельно С++ за 21 день / Пер. с англ. // -М.: Издательский дом «Вильяме», 2001.

71. Ллойд Дж. Системы тепловидения / Пер. с англ. / Под ред. А.И. Горячева//-М.: Мир, 1978.

72. Лукаш В.П. Определение температуры объектов с помощью тепловизионных систем // Обзор. 1982, №156.

73. Манита А. Д. Теория вероятностей: понятие доверительного интервала // Интернет-ресурс: http://bib.imm.uran.ru/ver/l/teorver57.html

74. Медведев Г.А., Морозов В.А. Практикум на ЭВМ по анализу временных рядов. -Минск: Изд-во «Электронная книга БГУ», 2004.

75. Миловзоров В.П. Элементы информационных систем. -М.: Высшая школа, 1989.

76. Мирошников М.М. Теоретические основы оптико-электронных приборов. -JI.: Машиностроение, 1977.

77. Огнев И.В., Борисов В.В. Ассоциативные среды. -М.: Радио и связь,2000.

78. Павлидис Т. Алгоритмы машинной графики и обработки изображений. М.: Радио и связь, 1986.

79. Пирумов У.Г. Численные методы // Учебное пособие. М.: Изд-во МАИ, 1998.

80. Поспелов Д.А. Нечёткие множества в моделях управления и искусственного интеллекта. -М.: Наука, 1986.

81. Протасов В.И. Метасистемный эффект самоорганизации интеллекта более высокого уровня из искусственных и естественных компонент // Сб. научных трудов IV Всероссийской НТК «Нейроинформатика-2002». -М.: Моск. инж.-физ. ин-т (техн. ун-т), 2002, ч. I.

82. Путилин А.Б. Стандартные интерфейсы для информационно-измерительных систем. -М.: Изд-во МГОУ, 1995.

83. Рабинер JI., Гоулд Б. Теория и применение цифровой обработки сигналов / Пер. с англ. / Под ред. Ю.И. Александрова // М.: Мир, 1978.

84. Раннев Г.Г. Измерительные информационные системы. -М.: Изд-во МГОУ, 1993.

85. Сапожникова Е.П. Новый подход к образованию категорий в нечетких нейронных сетях APT типа // Сб. научных трудов IV Всероссийской НТК «Нейроинформатика-2002». -М.: Моск. инж.-физ. ин-т (техн. ун-т), 2002, ч. II.

86. Сергиенко А.Б. Цифровая обработка сигналов. -СПб.: Питер, 2003.

87. Сигеру Омату, Марзуки Халид, Рубия Юсоф Нейроуправление и его приложения / Пер. с англ. Н.В. Батина / Под ред. А.И. Галушкина, В.А. Птичкина // М.: ИПРЖР, 2000.

88. Силов В.Б. Принятие стратегических решений в нечёткой обстановке. -М.: ИНПРО-РЕС, 1995.

89. Систер В.Г. Химико-термические технологии переработки ТБО. -М.: 2003.

90. Смит Г., Дрейпер Н. Прикладной регрессионный анализ. Книга 1 / Перевод с англ. Ю.П. Адлера и В.Г. Горского // -М.: Финансы и статистика, 1986.

91. Тайц A.M., Тайц А.А. Adobe Photoshop 5.5. -СПб.: БХВ-Санкт-Петербург, 1999.

92. Тараканов А.Н., Хрящев В.В., Приоров A.JI. Адаптивная цифровая обработка сигналов // Учебное пособие. -Ярославль: Ярославский гос. ун-т, 2001.

93. Тарасов В.В. Оптико-электронные тепловизионные системы. -М.: МИИГАиК, 2001.

94. Тымкул В.М., Ананич М.И. Системы тепловидения. -Новосибирск: СГГА, 1995.

95. Тюрин Ю.Н., Макаров А.А. Анализ данных на компьютере. -М.: Финансы и статистика, 1990.

96. Уоссермен Ф, Нейрокомпьютерная техника. М.: Мир, 1992.

97. Френке Л. Теория сигналов / Пер. с англ. / Под ред. Д.Е. Вакмана // -М.: Сов. радио, 1974.

98. Хадсон Р. Инфракрасные системы / Пер. с англ. / Под ред. Н.В. Васильченко // -М.: Мир, 1972.

99. Хехт-Нильсен Р. Нейрокомпьютинг: история, состояние, перспективы // Открытые системы. 1998, №4.

100. Хэзфилд Р., Кирби Л. Искусство программирования на С. Фундаментальные алгоритмы, структуры данных и примеры приложений / Пер. с англ. II К.: Издательство «Диасофт», 2001.

101. Хэкфорд Г.Л. Инфракрасное излучение / Пер. с англ. / Под. ред. В.И. Проскурякова//-М.: Энергия, 1964.

102. Цапенко М.П. Измерительные информационные системы: структуры и алгоритмы, системотехническое проектирование. -М.: Энергоатомиздат, 1985.

103. Чередниченко Л.Е. Исследование процессов и параметров шахтных плазменных электропечей для переработки ТБО // Автореферат дисс. на соиск. учен. степ. канд. техн. наук: 05.09.10. -Новосибирск: 1999.

104. Шамис В.A. Borland С++ Builder 6. Для профессионалов. -СПб.: Питер, 2003.

105. Шахнов В.А., Власов А.И., Поляков Ю.А. и др. Нейрокомпьютеры: архитектура и схемотехника // ChipNews. 2000, №5-10.

106. Шевелев А. Нейронные сети Кохонена // Программист. 2001,12.

107. Бендат Дж., Пирсол Алан Дж. Прикладной анализ случайных данных. -М.: Мир, 1989.

108. Большее Л.Н., Смирнов Н.В. Таблицы математической статистики.-М.: Наука, 1983.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.