Методы анализа и оценки устного дискурса людей с речевыми нарушениями тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Худякова Мария Викторовна
- Специальность ВАК РФ00.00.00
- Количество страниц 108
Оглавление диссертации кандидат наук Худякова Мария Викторовна
Contents
1. Introduction
2. Development and standardization of Discourse Comprehension and Discourse Production subtests of the Russian Aphasia Test
3. Linguistic mechanisms of discourse coherence in aphasia
4. Discourse Diversity Database
4.1 Discourse Diversity Database (3D) for clinical linguistics research
4.2 Effect of speaker's fatigue on speech parameters
5. Conclusion
6. References
Appendix A. Paper " The Russian Aphasia Test: The first comprehensive, quantitative, standardized, and computerized aphasia language battery in Russian"
Appendix B. Paper "Linguistic mechanisms of coherence in aphasic and non-aphasic discourse "
Appendix C. Paper "Diiscourse Diversity Database (3D) for Clinical Linguistics Research: Design, Development, and Analysis"
Appendix D. Paper " Effect of Speaker's Fatigue on Features of Spoken Discourse "
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Разработка лингвистических тестов для диагностики речевых нарушений и их внедрение в клиническую и исследовательскую практику2021 год, кандидат наук Буйволова Ольга Витальевна
Нейроанатомические корреляты латерализации языка в мозге2024 год, кандидат наук Больгина Татьяна Александровна
Модели и методы автоматической обработки неструктурированных данных в биомедицинской области2023 год, доктор наук Тутубалина Елена Викторовна
Экспериментальное исследование ряда основных понятий теоретической морфологии (на материале русского языка): регулярность, синкретизм, маркированность =: Experimental study of several core concepts of theoretical morphology (on the material of Russian): regularity, syncretism, markedness2018 год, кандидат наук Слюсарь, Наталия Анатольевна
Директивные речевые акты и коммуникативный стиль при взаимодействии студента и преподавателя: на примере академического дискурса в США, арабских странах и России2022 год, кандидат наук Алхадед Хашем Хани Шехадех
Введение диссертации (часть автореферата) на тему «Методы анализа и оценки устного дискурса людей с речевыми нарушениями»
1. Introduction
The dissertation includes articles on the development and use of various methods of discourse assessment in clinical and research practice. One of the articles describes the development and standardization process of the Discourse Comprehension and Discourse Production subtests of the Russian Aphasia Test - a standardized language assessment tool for clinical practice. In the second article, a new scale for assessment of four aspects of discourse coherence is introduced, and the contribution of micro- and macrolinguistic parameters into coherence is investigated. The third article describes the rationale behind the data collection protocol of the Discourse Diversity Database (3D) corpus, and the clinical and normative sections of the corpus The fourth article focuses on effects of fatigue on spoken discourse features.
In clinical linguistics, analysis of spoken discourse is considered an essential part of language assessment among populations with brain damage in language dominant hemispheres, since it allows us to evaluate language on both micro- (phonetic, lexical, syntactic) and macrolinguistic (discourse and pragmatics) levels (Bryant et al., 2017; Prins & Bastiaanse, 2004). Also, understanding coherent speech and telling stories or giving instructions are a fundamental part of human communication (Mar, 2004; Schank, 1995). That is why discourse comprehension and production subtests are included in many language assessment batteries (e.g. CAT, Swinburn, Porter, Howard, 2004; BDAE, Goodglass, Kaplan, Barresi, 2001; QAB, Wilson et al., 2018).
Development of discourse production and comprehension subtests can be challenging for several reasons. First, comprehension of a coherent text involves not only phonological, lexical-semantic, and syntactic processing, but also requires constructing inferences and understanding the connections between discourse elements, and creates a load on working memory (for a review see Carpenter et al., 1995; Linda E Nicholas & Brookshire, 1995). That is why the text length, and the number of questions should be limited, while allowing for the task to discriminate between different levels of severity. For creation of a discourse production assessment task, it is important to choose the evaluation method (annotation scheme or a rating scale) that would be low time-consuming on the one hand, while remaining objective and yielding high test-retest and inter-rater reliability. The first chapter of the thesis describes the Discourse Comprehension and Discourse Production subtests of the Russian Aphasia Test (RAT), as well as its psychometric properties.
Rating scales are a common method for evaluation of spoken discourse, especially its macrolinguistic properties, both in clinical practice and fundamental research. However, we still
lack understanding of the connection between assessment and interpretation of discourse as a whole by the reader or listener, and the quantitative characteristics of speech on micro- and macro-linguistic levels (e.g. number of errors, lexical diversity, etc.). Chapter 2 describes the study on the connection of different aspects of discourse coherence measured with a newly developed rating scale and a set of linguistic features extracted from annotated narratives by people with aphasia and neurologically healthy individuals (NHI).
For multidimensional analysis of spoken discourse by people with language impairments, annotated corpora are a valuable and important instrument. Corpus analysis allows to investigate different sources of variability in speech features in various clinical populations and healthy speakers. In clinical corpus linguistics, the standards for the collection and analysis of speech samples are established and many corpora of speech by people with various neurological and psychiatric disorders exist, for example, the most well-known corpora from the TalkBank collection (https://talkbank.org, (MacWhinney, 2007), the Cambridge Cookie-Theft Corpus [Williams et al, 2010], the Greek Corpus of Aphasic Discourse (Varlokosta, 2016) etc. However, there is a lack of large clinical corpora for Russian language. In Chapter 3, we describe the newly developed Discourse Diversity Database (3D), the rationale behind the data collection procedure and the different sub-sections of the corpus. Also, we present the study of effects of fatigue on speech features based on the analysis of one of the 3D sub-sections.
The aim of the thesis is to describe a set of new methods for assessing discourse comprehension and production abilities for clinical and research purposes. The studies collected in the current thesis describe a range of instruments that can be applied to speech by people with language impairments in order to provide evaluation of discourse abilities as a whole or focus on specific features of speech. The lack of modern standardized and normed methods for discourse assessment, as well as large clinical corpora, especially for Russian, determines the relevance of the study. The object of the study are discourse production and comprehension abilities of people with various neurological and psychiatric disorders. The subject of the study is the assessment of discourse production and comprehension with newly developed rating scales and the analysis of micro- and macrolinguistic parameters of speech in various clinical populations. Research novelty:
• RAT is the first standardized comprehensive test in Russian with subtests for assessment of discourse comprehension and discourse production, developed based on the psycholinguistic parameters.
• The new rating scale allowed to analyze the concept of discourse coherence and its connection with the micro- and macrolinguistic parameters of discourse, and to address
the contradictory findings on discourse coherence in aphasia in the literature.
5
• Discourse Diversity Database (3D) is the first large corpus in Russian containing discourse samples by different discourse types by people with various neurological and psychiatric disorders, and healthy speakers in different functional states.
The theoretical significance of the study:
• We found that all aspects of coherence are significantly lower in film retellings by people with aphasia, and that different sets of micro- and macrolinguistic parameters extracted from the discourse samples contribute to the coherence ratings in different aspects.
• We found that temporal characteristics of speech are affected by the level of the speaker's fatigue.
The practical significance of the study:
• Discourse Comprehension and Discourse Production subtests of RAT were created and standardized.
• Rating scales for the aspects of discourse coherence were created.
• The annotated 3D corpus was developed with protocols for data collection in different clinical and healthy populations.
The main results of the study and provisions for the defense:
1) Discourse Comprehension and Discourse Production subtests of RAT were created according to modern psycholinguistic theory and standardized a PWA group and a control group. The results of the study showed that this instrument meets psychometric standards and makes it possible to distinguish between people with and without aphasia.
2) A new rating scale for four aspects of discourse coherence revealed lower coherence scores in the PWA group. Different sets of micro- and macrolinguistic properties contribute to each of the coherence aspects.
3) The Discourse Diversity Database (3D) is a corpus of speech samples by people with various neurological and psychiatric disorders. For elicitation of three discourse types, three types of tasks were selected. The annotation scheme allows to extract micro- and macrolinguistic parameters.
4) The results of the pilot study revealed the variability of phonetic and temporal characteristics of speech in different functional states and depending on the discourse type.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Совершенствование грамматического аспекта иноязычной устной речи корейских учащихся на основе развития автоматизма синтаксических структур: На материале английского языка2001 год, кандидат педагогических наук Ли Йонг Хи
Автоматические методы распознавания метафоры в текстах на русском языке2019 год, кандидат наук Бадрызлова Юлия Геннадьевна
Нейрокогнитивные механизмы обработки морфосинтаксической информации: мультимодальные исследования2024 год, кандидат наук Алексеева Мария Алексеевна
Оценка эффективности сделок слияний и поглощений для публичных компаний с целью приобретения технологий и знаний2022 год, кандидат наук Очирова Елена Сергеевна
Налоговое стимулирование производства и использования электрических автомобилей в Китае2023 год, кандидат наук Ма Цзюнь
Заключение диссертации по теме «Другие cпециальности», Худякова Мария Викторовна
Заключение
Настоящая работа — пилотное исследование влияния усталости говорящего на различные характеристики дискурса. При выборе оцениваемых параметров речи мы руководствовались необходимостью отобрать показатели речи на разных языковых уронннх (фонетика, лексика, синтаксис), а также распространенностью оценок атих параметров для оценки речи в клинической практике и афазиологии. Результаты пилотного исследования позволили определить направление для дальнейших исследований, а именно — анализ фонетических и темповых характеристик речи в Зависимости от жанра и усталости говорящею. Также в дальнейшем необходимо не только увеличить выборку неврологически здоровых взрослых рассказчиков, но и провести подобное исследование в клинических популяциях. Результаты исследования В дальнейшем мО|"ут быт ь применены не только в клинической лингвистике, но и в других областях, где производится оценка речи (например, обучение иностранным языкам, чтению или ораторскому мастерству).
Список литературы диссертационного исследования кандидат наук Худякова Мария Викторовна, 2023 год
Литература
АхутинаТ.В. Нейролингсистический анализ динамической афазии. О механизма! построения высказывание. М. Теревинф, 2002.
Доскии .'{ Л Лаврентьева H.A., Мирошнихоц H.I1., Ши рай В. Ь. Тест дифференцированной самооценки функций шального состояния Н Вопросы психологин. 1973. Т. 19. ,Y>6 С. L4I-J45.
Кибрик A.A., Литаиненко A.G., Подлесская В.И. Иру гие дискурсивные явления Ii Рассказы о сновидениях: Кор пусное исследование устного русского дискурса t Под ред. А- А. Киорика, В. И. Подлесскон. Москва: Языки славянских культур, 200У.
Кибрик А. А., Подлессхдя В.И. Рассказы о сновидениях: KopEivcHoe исследование устного русского дискурса I Ноу ред. A.A. Кибрнка. В. И. Подлесской. М : Языки славянских культур, 200У.
ЛурияА.к Травматическая афазия: "■»"■" семиотика и восстаЕювительиая тераопя. „VI.: Академия медицинских наук СССР, 1947.
Сеемозл/вдвл И. Д. Mi стон анионная система русского языка. Л.: Над-во Ленинградского университета, 1962.
Российский журнал когнитивной науки
2020. том 7, 3
www.cogtoumal.nj
Сидоров К. В., Филатова Н.Н. Анализ признаков эмоционально окрашенной речи /У Вестник ТвГТУ 2012. Т. ISO. №20. С 26-32.
Сухих С. А. Языковая репрезентация измененных состояний сознания К Язык, коммуникация и. социальная среда. 2006. Т.4. С 78 -93, URL: http://lse20 1O.narod-ru/olderfiies/
Цветкоеа Л.С., Ахутина Т. В., Пыишева Н. М. Методика оценки речи при афазии. М.: Издательство Московского университета, 1981.
Цеплитис Л. К. Анализ речевой интонации. Рига: Знание, 1974.
Almonroeder Т. G., Ttghe S. М, Miller Т. М.< banning С. R. The influence of fatigue on decision-making in athletes,: A systematic review // Sports Biomechanics. 2020. Vol. 19. No. 1. P. 76-89.
hmJtdQimt 1 i ИР/1 Wtt Ш.2.ШЛ 472793
Bates D., Machler M„ Bolker В., Walker S. Fitting linear mixed-effects models using Ime4 // Journal of Statistical Software. 2015. VoL67. No. 1. P. 1-48. htipsj//yioj.,,jti/l.:iJ8637^. vQ67.i0I
Веной 1С. WatanabeK.. Wang H.. Nulty R, Obeng A., Mullet S., MatsuoA. quanteda: An R package for the quantitative analysis of textual data It Journal of Open Source Software. 2018. VoL 3. No. 30. P.774. httj ^//doi.org/ 1 Q.2 E I05/ioss.Q0774
Ben-Shachar M. S'„ Makowski D., Ludecke D. Compute and interpret indices of effect size ft С RAN. 2020. URL: httpsj'/giLhub. coni/easvstats/effectsize.
Bergelson M. В., Khudyakova M. V. Narrative discourse segmentation in clinical linguistics И In search of basic units of spoken language. A corpus-driven approach / S. Izreel. H. Mello, A. Panunzi. T. Raso (Eds.). John Benjamins. 2020. P. 258-284. https://doi.org/ 10.1Q75/.sd.94.0Bber
Boksem A1.A. S.t Meijman T. F. Lorist M. M. Effec ts of mental fatigue on attention: An £RP study // Cognitive Brain Research. 2005. Vol.25. No. I. P. 107-116. ht^fr/Zdoi^g/Ap. 10t cogbrainres.2005.04.Ql 1
Bryant L.t Ferguson A., Spencer E. Linguistic analysis of discourse in aphasia: A review of the literature // Clinical Linguistics Si Phonetics. 2016. Vol.30. No.7. P.489-518. https-J/doi. org/10.31
Bryant I., Spencer E., Ferguson A. Clinical use of linguistic discourse analysis for the assessment of language in aphasia tf Aphasiology. 2017. Vol.31. No. 10. P. 1105-1126. https;//doi.oi^ L 0.1 G-S0/CI26.S7U3S 2016. ] 23-9013
Caldwell /.A. The impact of fatigue in air medical and other types of operations: A review of fatigue facts and potential coun-termeasures // Air Medical JoimiaL 200L VoL 20. No. 1. P.25-32. https://doi ,org/ i 0.1016/s 1067-991 хШ I )70076-4
Carroll}. В. Problems of measuring speech rate // Paper presented at a Conference on Speech Compression, University of Louisville. Lousiville, Kentucky. October 19. 1966. URL: https://
Covington M.A., McFaU f.D. Cutting the Gordian knot: The Moving-Average Type-Token Ratio (MATTR) // Journal of Quantitative Linguistics. 2010. VoL 17. No. 2. P.94-100. https:/Moi. ог^ 10,1OSO/Q92961710Q364 3098
Fergadiotis G., Wright И.Н., Capiioulo G.J. Productive vocabulary across discourse types ft Aphasiology. 2011. VoL 25. No. 10. P. 1261 -1278. https://dol.orgy IQ,1080/0268703S.2011. 606974
Goodglass H., Kaplan R. BarresiB. BDAE-3: Boston Diagnostic Aphasia Examination. Philadelphia. PA: Lippincott Williams & Wilkins. 2001.
Gordon IK. A quantitative production analysis of picture description // Aphasiology. 2006. Vol.20. No.2-4. P. 188-204.
bmH;//d«.flf>/lQ.iQW№2W7Q3gMM7a777
Gordon J.K., dough S. How fluent? Part B. Underlying contributors to continuous measures of fluency in aphasia fi Aphasiology. 2020. VoL34. No.5. P.643-663. https://doi.org/ LP. 1080/02 687038.2020.1712586
Gorrto- Tempini M. L., Hillis A. E.. Weintraub S., Kertesz A.. MendezM., CappaS.E, Ogarj. M., Rohrer}. D.. Black S.. Bo-eve B.F., Manes F.t Dronkers N.F., Vandenberghe P., Rascovsky K., Patterson K.t Miller К L. Knopman D.S., Hodges J. R., Me-
sulam M. M., Grossman M. Classification of primary progressive aphasia and its variants // Neurology. 2011. Vol.76. No. II. P. 1006-1014. http*://d'.i.ot d ] I-i.l212AvnL0bfl I3e?1821103e6
Greeley H.R, Friets £.. Wilson J. R^ Raghavan S., Pi cone /., Berg /. Detecting fatigue from voice using speech recognition It 2006 IEEE International Symposium on signal processing and information technology. IEEE, 2006. P. 567-571. https://doi. org/10. E1 Qg/isspit.2006-270865
Hansen J. H. L., Patil S. Speech under stress: Analysis, modeling and recognition if Speaker Classification 1. Lecture notes in computer science / C. Miiller (Ed.). Berlin. Heidelberg: Springer Berlin Heidelberg. 2007. Vol.4343. P. 108-137. httpj,://doL org/10,1007/978-3-540-74200-5 6
HeatonK.f., Williamson /. R., Lammert A. C., Hirfcei-ifiiH K. R.. Haven CC. Sturim D., Smalt C J., QuatkriT.F. Predicting changes in performance due to cognitive fatigue: A multimodal approach based on speech motor coordination and electro-dermal activity fi The Clinical Neuropsychologist 2020. VoL 34. No-6. P. 1190-1214. htips://^iui.ij. ^ 3^^4046.2020 1787522
Ivanovo M., Dragoy Q. Akinina K, SoiouJyiiWfl O., isfcrj £.. Khudyakova M, £.s Butvolova O.. Akhutina T. Standard-
izing the Russian Aphasia Test: Normative data of healthy controls and stroke patients // Frontiers in. Human Neuroscience. 2019. Vol. 13. https://doi.org/ 10.33S9/conf-fnhum.2Ql9.01.00088
Kertesz A. Western Aphasia Battery (Revised). San Antonio, TX: PsychCorp. 2007.
Krajewski f„ Tmtschel U„ Sommer D., GolzM.. Edwards D. Estimating fatigue from predetermined speech samples transmitted by operator communication systems if Proceedings of the 5th International driving symposium on human factors in driver assessment, training, and vehicle design: Driving assessment 2009. University of Iowa, 2009. P.468-473. httpsJ/doi.orj.'/11 17077/ dr ivingassessment. 1359
Liu E, LiXLv T, Xu F. A review of driver fatigue detection: Progress and prospect ft 2019 IEEE International conference on consumer electronics {1CCE). IEEE, 2019. https://doi. org/10 J 109/icce,2Q 19.8662098
MacWhinney B. The CHILDES project: Tools for analyzing talk // Child language Teaching and Therapy: 1992. Vol.8. No. 2. P.217-218. https://doi.org/10.1177/026565909200800211
MacWhinney B., Fromm D.t Forbes M.. Holland A. Apha-siaBank: Methods for studying discourse // Aphasiology. 2011. Vol.25. No. 11. P. 1.286-1307. !:ttp.s://doLotij/10.10^0/02687038.2
Qilr5fi3S93
Majid A. Current emotion research in the language sciences JI Emotion Review. 2012. VoL 4. No. 4. P. 432-443. iuipji/dfil, org/10,1177/ ] 754073912445827
McCarthy P.M., Jar vis S. MTLD, vocd-D, and HD-Eh A validation study of sophisticated approaches to lexical diversity assessment // Behavior Research Methods. 2010. VoL 42. No. 2.
Olness G.S. Genre, verb, and coherence in picture-elicited discourse of adults with aphasia fi Aphasiology. 2006. VoL 20. No. 2-4. P. 175-187. iittps://doLorp U 1.1 ■ J-S0/02687030500472710 Park H , RogalskiY., Rodriguez A. D., Zlaiar Z.t Benjamin M., Harnish S.t Bennett J.* Rosenbek J.C,, Crosson B., Redly f. Perceptual cues used by listeners to discriminate fluent from nonfluent narrative discourse // Aphasiology. 2011. VoL 25. No. 9. P. 998-1015. h11p v ■■ .■' doj-org/10.1 Li80/026S703S.2 011.57Q77Q
Prins R.t Ba5tiaanse R. Analysing the spontaneous speech of a phasic speakers ff Aphasiology. 2004. Vol. 18. No. 12, P. 1075-1091. http^//i3QLtfrs/10.1QSQ/Q^6S7Q?Q-mQQq>,H
Quatieri T. F., Williamson f.R., Smalt C. J., Pateil, Petri-cone U Mehta D. D., Heifer B. S., Ciccarelli G . Ricke D., Malyska N., Palmer ]., Heaton K., Eddy AL, Moran }. Vocal biomarkers to discriminate cognitive load in a working memory task II InterSpeech, September 6-10, 2015. Dresden. Germany: 2015. P. 2684-2688. URL: https-./Avwwisca-speech.urg/aichive/interspeech 20357 papers/it5 2684.pdf.
RaoH.M., Smalt C.U Rodriguez A., Wright H.M., Meh-taD.D., Brattain L.f., Edwards H.M., Lammert A., Heaton K.J., Quatieri T.F. Predicting cognitive load and operational
Российский журнал когнитивной науки
2020 том 7, №3
www.cogfaurnal.ru
Effect of Speaker's Fatigue on Features of Spoken Discourse
Mariya V. Khudyakova
HSE University, Moscow, Russia
Abstract. In dinical linguistics, spoken discourse analysis is a crucial pari of diagnostics as well as fundamental research of Speech produced by people with various language impairments. The most common leatures lor assessment are speech ilucncy, speech faiiures, errors, and syntactic complexity measures. However, several studies have shown thai some of these parameters can be affected by fatigue or physical stress. Our study on narrative and procedural spoken discourse by healthy speakers with different levels of fatigue has shown a significant effect of fatigue level on speech tempo, and the ehcitatloa task significantly affected multiple characteristics of spoken discourse.
Correspondence: Mariya V. Khndyakova, manva.khi^; anuiii.cuni. 101000 Moscow, 3 Krivokolenny 111., КЗ-ЗОЯ. Keywords: spoken discourse, fatigue level, speech rate, procedural discourse, narratives
Copyright © 2020. Mariya V. Khudyakova. This is an open-access article distributed under the terms of (he (..rcalne t щппцща ДИйкцкикШ . ■ i1 : , which permits unrestricted use, distribution, and reproduction in any medium, provided that the original author is credited and that the originaE publication in this journal is cited, in accordance with accepted academic practice.
Acknowledgements The study was supported by the Russian Foundation for Basic Research, Grant No. 18-312-00157. Received July 12, 2020, acCepLed September 29. 2020.
References
Akhutina, T. V. (2002). tfsno&tgvisft'cftisfcii analiz dinamicheskoi afazii. O mekhanizmakh postroentya vyskazyvatiiya [Neu-rolinguislic analysis of dynamic aphasia]. Moscow: Terevinf. (In Russian).
Almonroeder, T.G., Tighe. S.M., „Vliller, T.M., & Lanning, C.R. (2020). The influence of fatigue on decision-making in athletes: A systematic review. Sy.rl.- Biomechanics, 19(1), 76-89. h I tps:/Moi.ot^/10.1 OBOn 4763141.2018.1472798 Bates. D., Mächler, M., Belker, B., & Walker, S (2015). Fining linear mixed-effects models using lnie4_ '«rd.- ;i..J' of Statistical Software, 67(1), 1-48. hup W fdni or^l (I.) 8637/iss.vtl67.i01 Benoit. K„ Watanabe, K., Wang, H., Nulty. P., Obeng. A.. Müller, i., & Matsuo, A. (201B). quanEeda: An St package For the quantitative analysis of textual data, Journal of Open Source Software, 5(30). 774. lutps:/Ja>i.ori.'fl D.21H)5/ joss.00774
Ben-Shachar, M.S., Makowski, D., & Lüdedte, D. (2020} Compute and interpret indices of effect »■•<■ CÄAN, R package. Retrieved from hiuii^j^li^cai^J^L^idfeiiaii;-Bergelson, M. ß., 8r Khudyakova, M. V, (2020). Narrative discourse segmentation in clinical linguistics. En S. Izrelel, H. Mello, A. Panunzi, Si X Raso (Eds.). In search of basic units of spoken language, A corpus-ilmvn approach (pp. 258-284). John Benjamins. https://doLQ] g/l 0. i 075/scl.94.05b«r Büksem, M A S., Meijman, T.F., Si lorist, M M. (2005). EffecLs of mental fatigue on attention: An ERP study. Q?A.'irIivT Brain Research, 25(1). 107-116. littpsjMni-uiiaJi0-HH6*,i. .■riflbTjiiiti^ m;i5 04 nn Bryant, L., Ferguson, A., & Spencer, £. (2016). Linguistic analysis of discourse in aphasia: A review of the literature. iJtnrical Linguistics & Phonetics, 30(7), 489-31S. .,.■■ LQ
109/02699206.2016.1J J 5740 Bryant, L., Spencer, E.. & Ferguson, A. (2017). Clinical use of linguistic discourse analysis for the assessment of language in
ЗфЬааа. Aphaiology, 3J(10), 1103-1126. ilMl»0:Mi7ti3S.2Q] 6.1239013 Caldwell. J. Л. (20(Ш. The impact of fatigue in air medical and other types of operations: A review of fatigue facts and potential counterineasures. Ajr jVfeiiical Journal, . [X i) 25-32. hrtpi:fMoLofym.lHl6MU67.'*91xH)117№ri-.-i Carroll, I R (1966). Problems of measuring speech rate, Paper presented at a Conference on Speech Compression, University of Louisville, Lousiville, Kentucky', October 3 9, 1966. Retrieved from hitps://fjles.enc.ed.govJlulliextj ED01133S.pdtl
Covington, M. А., й McFall, J.D. (2010). Cutting the Gordian knot: The Moving-Average Type-Taken Ratio (MATTR). journal of Quantitative Linguistics, J 7(2), 94-100. hups:// doi.ore/i0.10BQ№92%17ifinwraWB Doskin, V.A., Lavrent'eva, N.A., Mimduiikuv, M P. & Sha-rai, V. B. (1973). Test differentsirovannoi samootsenki funkl-sionalnogo sostoyaniya [Test of differentiated self-appraisal of functional stated Voprosy Psikhologii tissues of Psychology!. ISJ(6), 141-145. (In Russian). Fergadiotis, G.. Wright, H.H.. & Capilouto, G.J. (2011). Produc-::v- vocabulary across discourse types. Apfrtasioib^y, 25(10), 1261-1278. ;iri|-~:<.'dci-.4i:JH>. ЮМШ26НГ03К.2Ц! 1 .M6971 Goodglass, H., Kaplan, E , & Barresi, В f2001). ВШ£-3: Bralon Dwgimfj,. Aphasia Fxturjniitiim Philadelphia, PA: l.ippin-cott Williams & Wilkins. Gordon,К (2006). A quantitative production analysis of picture description. Afba&iology,20(2-4), ES8 - 204. n"jt 1 n I ПЯПЛИММЧП 50047J777 Gordon, J, 1С, & Clongh, S. (2020). How fluent? Part B. Underlying contributors to continuous measures of fluency in aphasia. Aphasiology, 34(5), 643 -663. https^doi.ore/lO.1W№J02 6*7038.2020.1712jit6 Gorno-Tenipini, M. L.. HillLS,A_E„ Weintraub, S., Kertesz. A., Mendei, M., Cappa, S. F., Ogar, J M., Rohrer, J.Dl, Black. S, Boeve.B. F., Manes, F.H Llronkets, N.F.. Vandetiberghe, It, Rascovsky, K., Patterson, K., Miller, B.L., Knopman,D.S.,
The Russian Journal o! Cognitive Science
Vol 7. Issue 3, Septmber2020
www.cogjoumal .org
Hodges, JL R., MesuJam. M.M., & Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 2006-1014. hltps://doLiirfi/10-1212/ wnl.0b013e31B2i 103e6 Greeley, H.P., Friets, E., Wilson, J. P., Raghavan, S., Pic one, J., & Berg, ]. (2006). Detecting fatigue from voice using speech recognition. In 2006 IEEE International Symposium oh signal processing and information technology (pp. 567- 571). IEEE. bapii^Qi.Qrg/ipj Hansen, J. H. L., & Patil, S. (2007). Speech under stress: Analysis, modeling and recognition. In C. Müller {Ed.), Speaker Classification I. Lecture notes in computer science (Vol 4343. pp. 108-137). Berlin* Heidelberg: Springer Berlin Heidel-
berg. hUE^Z/doLi^ Heaton, K.J., Williamson, |. R., Lammert, A.C., Finkelstein, K.R., Haven, C C., Sturim, D., Smalt, C. J., & Quatieri, T. R (2020). Predicting changes in performance due to cognitive fatigue: A multimodal approach based on speech motor coordination and electrodermal activity. The Clinical Neuropsychologist, 34(6), 1190-1214. https://d.u.org/10. L'J-Si >/13854' 146.2U 20.1787522
Ivanova, M, Dragoy, O.. Akinina. Y., Soloukhina, O.. Iskra, E., Khudyakova, ML, Stupina, E., Buivolova, O., & Akhutina, T. (2019). Standardizing the Russian Aphasia Test Normative data of healthy controls and stroke patients. Frontiers in Human Neuroscience, 13 hups://Joi,cug/ 10.35S9/a !;r. fnhum.2019.01.00088 Kertesz, A. (2007). Western Aphasia Battery (Revised). San Antonio, TX: PsychCorp. Kibrik, A.A., Litvinenko, A.Q., & Podlesskaya, V.l. (2009). Dru-gie diskursivnye yavleniya [Other discourse phenomena]. In A.A. Kibrik, 8c V.l. Podlesskava (Eds.), Rasskazy o snot1» ideniyakh: Korpusnoe issledovanie ustnogo russkogo diskursa [Nightdream stories: A corpus-based study of Russian spoken discourse] (pp. 333-388). Moscow: LRC Publishers. (In Russian).
Kibrik. A.A., & Podlesskaya, V.l. (Eds.). (2009). Rasskazy o rnov-ideniyakh- Korpusnoe issledov anie ustnogo russkogo diskursa [Nightdream stories: A corpus-based study of Russian spoken discourse]. Moscow: LRC Publishers. (In Russian). Krajewski, J., Trutschel,. U., Sommer, D., Golz, M., & Edwards, D. (2009). Estimating fatigue from predetermined speech samples transmitted by operator communication systems. In Proceedings of the 5th International driving symposium on human factors in driver assessment, training, and vehicle design: Driving assessment 2009 (pp. 468-473). University of Iowa. httpsMioi .pre/10.17077/driYUtfaasesaaeiit. 1359 Liu, F., Li, X., Lv, T., & Xu, F (2019). A review of driver fatigue detection: Progress and prospect. In 2019IEEE International conference on consumer electronics {ICCE). IEEE. h»p«i://doi. org/10.1109/icce.2019.8662098 Luria, A. R. (1947). Travmatkheskaya afaziya: klitiika, semiotika
i vosstanovitefnaya terapiya [Traumatic Aphasia: Its Syndromes, Psychology and Treatment], Publ. of USSR Academy of Medical Sciences. (In Russian). MacWhinney, B. (1992). The CHILDES project: Tools for analyzing talk. Child Language Teaching and Therapy, 5(2), 217-218. https://doi.org/10.1177/026565909200800211 MacWhinney, B., Fromm, D., Forbes. M., & Holland, A. (2011). AphasiaBank: Methods for studying discourse. Aphasiology, 25(11), 1286-1307. https://doixirg/10 . I 080/02687038.201 L 539893
Majid, A. (2012). Current emotion research in the language sciences. Emotion Review, 4(4), 432-443. hltps:7/doi. org/10. t I 77/1754073912445827 McCarthy, P. M., & Janas, S. (2010). MTLD. vocd-D, and HD-D: A validation study of sophisticated approaches to lexical diversity assessment. Behavior Research Methods, 42(2), 381-392. hn,P&://i3Qi.Qrg/10.3758/brni.42.:.3Bi Olness, G.S. (2006). Genre,, verb, and coherence in picture-elicited discourse of adults with aphasia. Aphasiology, 20(2-4), 175-187. h»ps://doi. uig/lü. 1080/Ii2687< i3t 15 [it 1472 7 L 0 Park, H., Rogalski. Y., Rodriguez, A.D., Zlatar, Z., Benjamin, M., Harnish, S., Bennett, J., Rosenbek, J.C., Crosson, B.,
& Re illy, j. (2011). Perceptual cues used by listeners to discriminate fluent from nonfluent narrative discourse. Aphasiology. 25(9), 998-1035. hltps;№i.ure/ltl.li^n/il26S7»3ji. 2011.570770
Prims, R., & Bastiaanse, R. (2004). Analysing the spontaneous speech ofaphasic speakers. Aphasiology, i8(12), 1075-1091. h»p5://doi.org/lCM080/026S7Q30444000534 Quatieri. T.F., Williamson, J.R., Smalt, C. J.. Patel.T, Perri-cone*1, Mehta, D.D., Heifer, B.S., Cjccarelli. G„ Ricke, D., Malyska, N., Palmer, J,, Heaton, K., Eddy, M., & Mo ran, J. (2015). Vocal bio markers [o discriminate cognitive load in a working memory task. In InterSpeech, September 6-10, 2015 (pp. 2684-2688). Dresden, Germany: Retrieved from https://www.isca-speech.Qrg/ardiive/interspeech 2015/ papere/i!5 2684.pdf. Rao, H.M., Smalt, C. J., Rodriguez, A., Wright, H.M., Mehta, D. D., Brattain, L.J., Edwards, H.M., Lammert, A., Heaton, K.J., Si Quatieri, T.F. (2020). Predicting cognitive load and operational performance in a simulated marksmanship task. Frontiers in Human Neuroscience, 14, 222. https://doi.org/10.33S9/fnhum.2020.QQ222 Rofinagel, C. (2000). Cognitive load and perspective-taking: Applying the automatic-controlled distinction to verbal communication. European Journal of Social Psychology, 30(3), 429-445.
09921200005/06)30:3 <429: aid -eisp3>3.0.co;2 -v Salome, F„ Boyer, P., & FayoL M. (2000). The effects of psy-choactive drugs and neuroleptics on language in normal subjects and schizophrenic patients: A review. European Psychiatry, f5{8), 461-469. https://doi.org/10.i0I6/
Shen, Z., Pan. G., & Van, Y. (2020). A high-precision fatigue detecting method for air traffic controllers based on revised fractal dimension feature. Mathematical Problems in Engineering 2020,1-13. https://Jai.oiL-10.1155/2020/4563962 Sidorov, K.V., & Filatova, N. N. (2012). Analiz priznakov emot-sionalno-okrashennot rechi [Analysis of signs of emotive speech]. Vestnik TvGTU. 180(20), 26-32. (In Russian). Sloboda, [., Lammert, A., Williamson, J., Smalt, C., Mehta, D.D., Curry, CO.L.1., Heaton. K., Palmer, J., & Quatieri. T.(2018). Vocal biomarkers for cognitive performance estimation in a working memory task. In Interspeech 201S (pp. 1756-1760). 1SCA, hups:/7doi.org/10.21437/iiiterapeech.201.8-2418 Steeneken, H.J.M, (1995). Speech under stress conditions in military operations. In Proceedings of the ESCA — NATO WorJt-shop on speech under stress, Lisbon, 14-15 September. Sukhikh,S.A. (2006). Yazykovaya reprezentatsiya izmenen-nykh sostoyanii soznaniya [Altered states of consciousness represented verbally]. /Language, Communication and Social Environment}, 4, 78-93. {in Russian). Retrieved from http://lse20I0.najod.ru/olderfiles/LSE2006pdl7 LSE2Q06Sukhikh.pdf. Svetozarova, N.D. (1982). Intonatsionnaya sistema russkogo yazyka {Intonation system of the Russian language}. Leningrad: Leningrad University Publishing. (In Russian). Swinburn, K.„ Porter, G., & Howard, D. (2004). Comprehensive
Aphasia Test. Hove, UK: Psychology Press. Tseplitis, L K. (1974). Analiz rechevoi intonatsii ¡Analysis of speech
intonation!. Riga: Znanie. (In Russian), Tsvetkova, L.S., Akhutina, T. V., & Pylaeva, N.M. (1981). Meto-dika otsenki rechi pri afazii [Methods of speech assessment in aphasia}. Moscow: Moscow State University Publishing. (In Russian).
Wilson, S.M., Eriksson, D. K., Schneck, S.M., & Lucanie, J.M. (2018). A quick aphasia battery for efficient, reliable, and multidimensional assessment of language function. PLOS ONE, 13(2), eOI92773:l-29. hltpj«://d>AiUi2/10-i371/ iournal.pone.0192773 Wlttenburg, P., Brugman, H., Russel, A., KJassmann, A., & Slo-etfes, H. (2006). ELAN: A professional framework for mul-timodality research. In Proceedings of LREC 2006, Fifth International Conference on Language Resources and Evaluation. Retrieved from I ittp://ww w.l i ec-c Lmf.org/proceediJigs/ lrec2006/pdf/l 53 pdf.pdf.
The Russian Journal ot Cognitive Science
Vol. 7, Issue 3, September 202Ü
www.cogioumal.org
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.