Нейротоксины - инструменты исследования мембран нервной системы тема диссертации и автореферата по ВАК РФ 02.00.10, доктор химических наук Гришин, Евгений Васильевич

  • Гришин, Евгений Васильевич
  • доктор химических наукдоктор химических наук
  • 1985, Москва
  • Специальность ВАК РФ02.00.10
  • Количество страниц 257
Гришин, Евгений Васильевич. Нейротоксины - инструменты исследования мембран нервной системы: дис. доктор химических наук: 02.00.10 - Биоорганическая химия. Москва. 1985. 257 с.

Оглавление диссертации доктор химических наук Гришин, Евгений Васильевич

ВВЕДЕНИЕ.

ГЛАВА Г. ХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА НЕЙРОТОКСИ

НОВ АКСОЭДЛЬНОГО ДЕЙСТВШ (Литературный обзор).

I.I. Нейротоксины яда скорпионов

1,2* Полипептидные нейротоксины морских анемон

1.3. Механизм действия и рецепция токсинов скорпионов и анемон.

1.4. Токсины скорпиона - блокаторы калиевых каналов . . . . .3d

1.5. Токсичные полипептидда немертин

1*6. Алкалоидные нейротоксины

1.7. Механизм действия и рецепция алкалоидных нейротоксинов

I.8- Токсины, вызывающие деполяризацию аксональной мембраны.

1.9. Тетродотоксин и сакситоксин - блокаторы натриевых каналов.

1.10. Механизм действия и рецепция токсинов-блока-торов.

1.11. Другие природные нейротоксины аксонального действия.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ.

ГЛАВА П. ВЫДЕЛЕНИЕ И ХАРАКТЕРИСТИКА ПОЛИПЕПТИДНЫХ ТОКСИНОВ

ГЛАВА Ш. СТРУКТУРА ПОЛИПЕПТИДНЫХ ТОКСИНОВ.

ГЛАВА 1У.ВЗАИМ0ДЕЙСТВИЕ НЕЙРОТОКСИНОВ С МЕМБРАНОЙ НЕРВНОЙ КЛЕТКИ.

ГЛАВА У- ВЫДЕЛЕНИЕ И ХАРАКТЕРИСТИКА КОМПОНЕНТОВ НАТРИЕВОГО КАНАЛА.

ШВА У1. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

У1Л. Материалы.

У1.2. Выделение и характеристика полипептидных токсинов

УГ.З. Структурный анализ полипептидных токсинов . . 175 У1.4. Изучение взаимодействия аксональных нейротоксинов с электровозбудимыми мембранами . . 187 У1.5. Выделение и характеристика компонентов натриевого канала.

ВЫВОДЫ.

Рекомендованный список диссертаций по специальности «Биоорганическая химия», 02.00.10 шифр ВАК

Введение диссертации (часть автореферата) на тему «Нейротоксины - инструменты исследования мембран нервной системы»

В современной науке центральное место принадлежит выяснению молекулярных: основ функционирования нервной системы человека и животных и прежде всего расшифровке механизмов генерации и передачи нервного возбуждения. Особый интерес связан с исследованием ионных каналов мембраны нервной клетки, поскольку именно они играют определяющую роль в процессах проведения нервного импульса. Сходные в функциональном плане ионные каналы обусловливают сокращение мышщ. Проблема изучения общих принципов функционирования мембран нервного волокна еще недавно являлась предметом чисто фундаментальных исследований. В настоящее время ясен ее важнейший практический аспект - управление функцией нервной клетки и поиск принципиально новых лекарственных препаратов для лечения расстройств нервной системы.

В настоящее время достаточно подробно изучена функциональная организация нервной системы и выяснена определяющая роль клеточных мембран в проявлении многих ее функций. Различные ре-цепторные центры нервных клеток обычно имеют мембранную природу. Генерация нервного возбуждения осуществляется благодаря работе специализированных мембранных транспортных структур - ионных каналов. Многие функционально важные мембранные компоненты хорошо охарактеризованы электрофизиологическими методами, однако, их дальнейшее исследование невозможно без идентификации и выделения соответствующих клеточных элементов в индивидуальном виде» При этом надежная идентификация имеет важнейшее значение, так как ионные каналы и нейрорецепторы часто обладают функциональной активностью только при наличии "нативного" мембранного окружения, а практически все методы их выделения связаны с разрушением мембранной структуры различными детергентами.

Известно, что многие функционально важные системы нервной клетки являются мишенью действия природных нейротоксинов. Так, существуют целые семейства нейротоксинов, способных селективно воздействовать на пресинаптическую мембрану нервных окончаний или ионные каналы аксонального волокна» Есть все основания полагать г что эти токсины можно использовать в качестве своеобразных молекулярных инструментов исследования разнообразных компонентов нервных мембран* Такой подход продемонстрирован в настоящей работе на примере изучения молекулярной организации быстрых натриевых-каналов, ответственных за генерацию ж проведение нервного импульса.

Использование нейротоксинов в качестве инструментов исследования мембран нервной системы предусматривает прежде всего поиск новых токсинов, а также выяснение механизма действия и структурных особенностей этих уникальных природных биорегуляторов» Подобные задача имеют важное самостоятельное значение , поскольку способствуют разработке перспективных фармакологических средств и созданию на их основе принципиально новых лекарственных препаратов.

Многие природные нейротоксины несомненно могут успешно применяться для идентификации и дальнейшего исследования разнообразных структур мембраны нервной клетки. Такое использование нейротоксинов требует решения целого ряда проблем по их структурно-функциональному анализу, получению модифицированных производных и, естественно, разработке методов выделения из природных ядов^ В связи с этим представлялось важным осуществить комплексное изучение различных токсинов и разработать общие подходы для их выделения, характеристики и использования в качестве инструментов исследования наиболее значимых функциональных систем мембраны нервной клетки.

Постановка такой проблемы учитывает необходимость целенаправленного изучения как самих токсических компонентов яда разнообразных- животныхг так и возможности их применения как уникальных биорегуляторов, влияющих на функционирование живой клетки- Представлялось целесообразным выбрать в качестве непосредственного объекта исследования быстрые натриевые каналы - важнейшие представители семейства* электроуправляемых ионных каналовг непосредственно обусловливающих феномен возбудимости мембран нервной системы»

Таким образом, основной целью настоящего исследования явилась разработка общих принципов использования нейротоксинов для исследования функциональных систем мембран нервной клетки.

Для выполнения поставленной цели решались следующие основные задачи, несомненно имеющие важное самостоятельное значение:

- разработка методов выделения индивидуальных полипептид-ныхт токсинов, продуцируемых: различными ядовитыми животными;

- структурный анализ выделенных полипептидных токсинов и определение особенности их строения;

- получение разнообразных модифицированных производных нейротоксинов и исследование их взаимодействия с мембранами нервных клеток;

- идентификация, выделение и характеристика компонентов быстрого* натриевого канала мембран мозга крыс.

Автор выражает глубокую признательность академику Ю.А.Овчинникову за постоянное внимание к данной работе.

Похожие диссертационные работы по специальности «Биоорганическая химия», 02.00.10 шифр ВАК

Заключение диссертации по теме «Биоорганическая химия», Гришин, Евгений Васильевич

ВЫВОДЫ

I. Проведено комплексное исследование нейротоксинов, взаимодействующих с электровозбудимыми мембранами, на основе которого разработаны общие принципы использования этих природных биорегуляторов для изучения функционально важных систем нервной клетки.

2- Впервые осуществлено систематическое исследование всех основных групп нейротоксинов, взаимодействующих с мембраной' нервной: клетки. Предложены общие методы выделения полипептидных токсинов из яда различных животных. При помощи этих методов получено в индивидуальном виде и охарактеризовано 34: токсина, из которых 25: выделено впервые. Открыто существование нового типа инсектотоксинов яда скорпиона. Выделенные полипептидные токсины обладают аксональным, пресинаптическим, постсинаптическим и цитотоксическим действием, что позволяет их использовать для идентификации и изучения соответствующих мембранных рецепторных систем.

3. Определена структура 12 полипептидных токсинов. Установлены основные принципы строения нового типа инсектотоксинов яда скорпиона. Исследованы структурные закономерностиг характерные для нейротоксинов из яда среднеазиатских скорпионов, взаимодействующих: с быстрыми натриевыми каналами электровозбудимых мембран.

4. Разработаны методы получения модифицированных полипептидных- токсинов, сохраняющих биологическую активность. Получены аналоги нейротоксинов с высоким уровнем молярной радиоактивности, которые можно использовать для надежной идентификации натриевых каналов нервной клетки» Изучено взаимодействие ряда нейротоксинов с препаратами электровозбудимых мембран. Установлено, что у-токсин скорпиона и тетродотоксин являются наиболее эффективными инструментами исследования натриевого канала.

Впервые выделены и охарактеризованы все индивидуальные компоненты натриевого канала электровозбудимых мембран млекопитающих. Показано, что основные функциональные компоненты канала представляют собой эквимолярный комплекс гликопротеинов молекулярной массы 260, 39 и 37 кДа. Предложен препаративный метод получения индивидуальных субвединиц натриевого канала из мозга крысы; установлены их аминокислотные и углеводные составы, обнаружено отсутствие у них свободных Я-концевых аминокислотных остатков. Изучена аминокислотная последовательность ряда трип-тических пептидов Л-субъединицы канала. На основании полученной информации синтезирован нуклеотидный зонд и начаты эксперименты по идентификации структурного гена натриевого канала мозга крысы.

Список литературы диссертационного исследования доктор химических наук Гришин, Евгений Васильевич, 1985 год

1. Овчинников Ю.А. Природные токсины в изучении молекулярных основ нервной проводимости. - В кн.: Фундаментальные науки - медицине. М.: Наука, 1981, с. 60-69.

2. Пигулевский С.П. Ядовитые животные, Л.: Медицина, 1975, с.3-181.

3. Rochat С., Rochat H., Miranda F., Lissitzky S. Purification and some properties of the neurotoxins of Androctonus australis Hector. Biochemistry, 1967, v. 6, N 3,p. 578-585.

4. Martin M.F., Rochat H. Purification of thirteen toxing active on mice from the venom of the North African scorpion Buthus occitanus tunetanus. Toxicon, 1984, v. 22, N 2, p. 279-291 .

5. Zlotkin E., Miranda F., Kopeyan C., Lissitzky S. A new toxic protein in the venom of scorpion Androctonus australis Hector. Toxicon, 1971, v. 9, N 1, p. 9-13.

6. Martin M.F., Rochat H. Purification and amino acid sequence of toxin I" from the venom of the North African scorpion Androctonus australis Hector. Toxicon, 1984, v. 22, N 5, p. 695-703.

7. Zlotkin E., Rochat H., Koheyan C., Lissitzky S. Purification and properties of the "insect toxin" from the venom of the scorpion Androctonus australis Hector. Biochimie, 1971,v. 53, N 10, p. 1073-1078.

8. Zlotkin E., Martinez G., Rochat H., Miranda F. A protein toxic to crustacea from the venom of the scorpion Androctonus Australis Hector. Insect. Biochem., 1975, v. 5, N 3,p. 243-250.

9. Babin D.R., Watt D.D., Goos S.M., Mlejnek R.V. Amino acid sequence of neurotoxic protein variants from the venom of Centruroides sculpturatus Ewing. Arch. Biochem. and Biophys., 1974, v. 164, N 2, p. 694-706.

10. Stahnke H.L. The genus Centruroides (Buthidae) and its venom. In: Arthropod venoms, S. Bettini, ed., SpringerVerlag Berlin Heidelberg New York, 1978, p. 277-307.

11. Possani L.D., Dent M.A.R., Martin B.M., Maelicke A. The amino terminal sequence of several toxins from the venom of the mexican scorpion Centruroides noxius Hoffmann. -Carlsberg Res. Commun., 1981, v. 46, N 4, p. 207-214.

12. Possani L.D., Martin B.M., Mochca-Morales J., Svendsen I. Purification and chemical characterization of the major toxins from the venom of the brazilian scorpion Tityus serrulatus Lutz and Mello. Carlsberg Res. Commun., 1981, v. 46, N 4, p. 195-205.

13. Lazarovici P., Zlotkin E. A mammal toxin derived from the venom of a chactoid scorpion. Comp. Biochem. Physiol., 1982, v. 71C, N 2, p. 177-181.

14. Lester D., Lazarovici P., Pelhate M., Zlotkin E. Purification, characterization and action of two insect toxins fromthe venom of the scorpion Buthotus judaicus. Biochim. et biophys. acta, 1982, v. 701, N 3, p. 370-381.

15. Rochat H., Bernard P., Courand F. Scorpion toxins: chemistry and mode of action. Adv. Cytopharmacol., 1979, v. 3, p. 325-334.

16. Zlotkin E. Chemistry of animal venoms. Experientia, 1973, v. 9, N 7, p. 1453-1466.

17. Chhatwal G.S., Habermann E. Neurotoxins, protease inhibitors and histamine releasers in the venom of the indian scorpion (Buthus tamulus): isolation and partial characterization. Toxicon, 1981, v. 19, N 6, p. 807-823.

18. Griene L., Kopeyan C., Rochat H. Purification and characterization of neurotoxins of Buthacus arenicola and Mesobuthus gibbosus. Toxicon, 1982, v. 20, N 1, p. 68-69.

19. Possani L.D., Fletcher P.L., Alagon A.B.C., Alagon A.C., Julia J.Z. Purification and characterization of a mammalian toxin from venom of the Mexican scorpion Centruroides limpidus tecomanus Hoffman. Toxicon, 1980, v. 18, N 2,p. 175-183.

20. Grishin E.V. Structure and function of Buthus eupeus scorpion neurotoxins. Int. J. Quantum Chem., 1981, v. XIX, p. 291-298.

21. Cahalan M. Molecular properties of sodium channels in excitable membranes. In: The cell surface and neuronal function, C.W. Cotman, G. Poste, G.L. Nicolson, eds., Elsevier North-Holland Biomedical Press, 1980, p. 1-47.

22. Rochat H., Rochat C., Kopeyan C., Miranda F., Lissitzky S., Edman P. The amino acid sequence of neurotoxin I of

23. Androctonus australis Hector. FEBS Lett., 1970, v. 10, N 5, p. 349-351.

24. Rochat H., Rochat C., Sampleri F., Miranda F. The amino acid sequence of neurotoxin II of Androctonus australis Hector. Eur. J. Biochem., 1972, v. 28, N 3, p. 381-388.

25. Kopeyan C., Martinez G., Rochat H. Amino acid sequence of neurotoxin III of the scorpion Androctonus australis Hector. Eur. J. Biochem., 1979, v. 94, N 2, p. 609-615.

26. Vargas 0., Gregoire J., Martin M.F., Bechis G., Rochat H. Neurotoxin^from the venoms of two scorpions: Buthus occitanus tunetanus and Buthus occitanus mardochei. -Toxicon, 1982, v. 20, N 1, p. 79.

27. Kopeyan C., Martinez G., Rochat H. Primary structure of toxin IV of Leiurus quinquestriatus and characterization of a new group of scorpion neurotoxins. Toxicon, 1982, v. 20, N 1, p. 71.

28. Kopeyan C., Martinez G., Rochat H. Amino acid sequence of neurotoxin V from the scorpion Leiurus quinquestriatus quinquestriatus. FEBS Lett., 1978, v. 89, N 1, p. 54-58.

29. Dufton M.J., Rochat H. Classification of scorpion toxins according to amino acid composition and sequence. J. Mol. Evol., 1984, v. 20, N 1, p. 120-127.

30. Kopeyan C., Martinez G., Lissitzky S., Miranda F., Rochat H. Disulfide bonds of toxin II of the scorpion Androctonus australis Hector. Eur. J. Biochem., 1974, v. 47, N 3,p. 483-489.

31. Gregoire J., Rochat H. Covalent structure of toxin I and II from the scorpion Buthus occitanus tunetanus. Toxicon, 1983, v. 21, N 1, p. 153-162.

32. Bechis G., Sampieri F., Yuan P.-M., Brando T., Martin M.-F., Diniz C.R., Rochat H. Amino acid sequence of toxin VII, atoxin from the venom of the scorpion Tityus serrulatus. -Biochem. and Biophys. Res. Commun., 1984, v. 122, N 3, p. 1146-1153.

33. Babin D.R., Watt D.D., Goos S.M., Mlejnek R.V. Amino acid sequence of neurotoxin I from Centruroides sculpturatus Ewing. Arch. Biochem. and Biophys., 1975, v. 166, N 2, p. 125-134.

34. Fontecilla-Camps J.C., Almassy R.J., Suddath F.L., Watt D.D., Bugg C.E. Three-dimensional structure of a protein from scorpion venom: a new structural class of neurotoxins. -Proc. Nat. Acad. Sci. USA, 1980, v. 77, N 11, p. 6496-6500.

35. Sampieri E., Habersetzer-Rochat C.f Astier J.-P., Frey M., Haser R. Preliminary X-ray diffraction studies on a scorpion neurotoxin: toxin II of Androctonus australis Hector.

36. J. Mol. Biol., 1978, v. 126, N 2, p. 289-291.

37. Fontecilla-Camps J.C., Suddath F.L., Bugg C.E., Watt D.D. Crystals of a toxic protein from the venom of the scorpion Centruroides sculpturatus Ewing: preparation and preliminary X-ray investigation. J. Mol. Biol., 1978, v. 123,1. N 4, p. 703-705.

38. Almassy R.J., Fontecilla-Camps J.C., Suddath F.L., Bugg C.E. Structure of variant-3 scorpion neurotoxin from Centruoroides sculpturatus Ewing, refined at 1,8 A resolution. -J. Mol. Biol., 1983, v. 170, N 3, p. 497-527.

39. Possani L., Steinmetz W.E., Dent M.A.R., Alagon A.C., Wuthrich K. Preliminary spectroscopic characterization ofsix toxingfrom Latin American scorpions. Biochim. et biophys. acta, 1981, v. 669, N 2, p. 183-192.

40. Watters J.J., Possani L.D., Mochca-Morales J., Hess B. Determination of «/.-helix and $-sheet structures in toxins purified from the venom of Latin american scorpions. -Toxicon, 1982, v. 20, N 1, p. 81.

41. Chicheportiche R., Lazdunski M. The conformation of small proteins. The state-diagram of a neurotoxin of Androctonus australis Hector. Eur. J. Biochem., 1970, v. 14, N 3,p. 549-555.

42. Delori P., Van Rietschoten J., Rochat H. Scorpion venoms and neurotoxins: an immunological study. Toxicon, 1981, v. 19, N 3, p. 393-407.

43. El Ayeb M., Delori P., Rochat H. Immunochemistry of scorpion oL-toxins: antigenic homologies checked with radioimmunoassays. Toxicon, 1983, v. 21, N 5, p. 709-716.

44. Granier C., Bahraoui E., Van Rietschoten J., Rochat H.,

45. El Ayeb M. Synthesis and immunological characterization of two peptides which are models for two of the four major antigenic sites of a scorpion toxin. Int. J. Peptide Protein Res., 1984, v. 23, N 2, p. 187-197.

46. Habersetzer-Rochat C., Sampieri F. Structure-function relationships of scorpion neurotoxins. Biochemistry, 1976, v. 15, N 11, p. 2254-2261.

47. Sampieri F., Habersetzer-Rochat C. Structure-function relationships in scorpion neurotoxins. Identification of the superreactive lysine residue in toxin I of Androctonus australis Hector. Biochim. et biophys. acta, 1978,v. 535, N 1, p. 100-109.

48. Rochat C., Sampieri F., Rochat H., Miranda F., Lissitzky S. Iodination of neurotoxins I and II of the scorpion Androctonus australis Hector. Biochimie, 1972, v. 54, N 4, p. 445-449.

49. Rochat H., Tessier M., Miranda F., Lissitzky S. Radioiodi-nation of scorpion and snake toxins. Anal. Biochem., 1977, v. 82, N 2, p. 532-548.

50. Zlotkin E., Teitelbaum Z., Rochat H., Miranda F. The insect toxin from the venom of the scorpion Androctonus maureta-nicus mauretanicus: purification, characterization and specificity. Insect. Biochem., 1979, v. 9, N 3, p. 347-354.

51. Zlotkin E., Teitelbaum Z., Lester D., Lazarovici P. Toxins selective to insects derived from scorpion venoms. In: Natural toxins, D. Eaker, T. Wadstrom, eds., Pergamon Press Oxford and New York, 1980, p. 637-646.

52. Lazarovici P., Yanai P., Pelhate M., Zlotkin E. Insect toxic components from the venom of a chactoid scorpion Scorpio maurus palmatus (Scorpionidae). J. Biol. Chem., 1982, v. 257, N 14, p. 8397-8404.

53. Darbon E., Zlotkin E., Kopeyan C., Van Rietschoten J., Rochat H. Covalent structure of the insect toxin of the North African scorpion Androctonus australis Hector. Int. J. Peptide Protein Res., 1982, v. 20, N 4, p. 320-330.

54. Zlotkin E. Insect selective toxins derived from scorpion venoms: an approach to insect neuropharmacology. Insect Biochem., 1983, v. 13, N 3, p. 219-236.

55. Lazarovici P., Menashe M., Zlotkin E. Toxicity to crustacea due to polypeptide-phospholipase interaction in the venom of a chactoid scorpion. Arch. Biochem. and Biophys., 1984, v. 229, N 1, p. 270-286.

56. Beress L., Beress R., Wunderer G. Isolation and characterization of the three polypeptides with neurotoxic activity from Anemonia sulcata. FEBS Lett., 1975, v. 50, N 3,p. 311-314.

57. Beress L., Beress R., Wunderer G. Purification of three polypeptides with neuro- and cardiotoxic activity from the sea anemone Anemonia sulcata. Toxicon, 1975, v. 13, N 5, p. 359-367.

58. Beress R., Beress L., Wunderer G. Neurotoxins from sea anemones. Purification and characterisation of four polypeptides with neurotoxic activity from Condylactis auran-tiaca. Hoppe-Seyler1s Z. Physiol. Chem., 1976, v. 357, N 3, p. 409-414.

59. Yost G.A., O'Brien R.D. Isolation of the two components of Condylactis toxin. Arch. Biochem. and Biophys., 1978,v. 185, N 2, p. 483-487.

60. Beress L. Isolation and characterization of biologically active polypeptides of marine origin. In: Chemistry of Peptides and Proteins, W. Voelter, E. Wiinsch, Yu. Ovchin-nikov, V. Ivanov, eds., V7.de Gruyter, Berlin-NY, 1982,v. 1, p. 121-126.

61. Ishikawa Y., Onodera K., Takeuchi A. Purification and effect of the neurotoxin from the sea anemone Parasicyonis actinostoloides. J. Neurochem., 1979, v. 33, N 2, p. 69-73.

62. Aldeen S.I., Elliott R.C., Sheardown M. The partial purification and bioassay of a toxin present in extracts of the sea anemone Tealia felina (L.). Brit. J. Pharmacol.,1981, v. 72, N 2, p. 211-220.

63. Wunderer G., Eulitz M. Amino acid sequence of toxin I from Anemonia sulcata. Eur. J. Biochem., 1978, v. 89, N 1,p. 11-17.

64. Wunderer G., Fritz H., Wachter E., Machleidt W. Amino acid sequence of a coelenterate toxin: toxin II from Anemonia sulcata. Eur. J. Biochem., 1976, v. 68, N 2, p. 193-198.

65. Scheffler J.-J., Tsugita A., Linden G., Schweitz H., Lazdunski M. The amino acid sequence of toxin V from Anemonia sulcata. Biochem. and Biophys. Res. Commun.,1982, v. 107, N 1, p. 272-278.

66. Martinez G., Kopeyan С., Schweitz H., Lazdunski M. Toxin III from Anemonia sulcata: Primary structure. FEBS Lett., 1977, v. 84, N 2, p. 247-252.

67. Tanaka M., Haniu M., Yasunobu K.T., Norton T.R. Amino acid sequence of the Anthopleura xanthogrammica heart stimulant, anthopleurin A. Biochemistry, 1977, v. 16, N 2, p. 204-208.

68. Norton T.R. Cardiotonic polypeptides from Anthopleura xanthogrammica (Brandt) and A.elegantissima (Brandt). -Fed. Proc., 1981, v. 40, N 1, p. 21-25.

69. Wunderer G. Die Disulfidbrucken von Toxin II aus Anemonia sulcata. Hoppe-Seyler's Z. Physiol. Chem., 1978, v. 359, N 9, p. 1 193-1201 .1 3

70. Norton R.S., Zwick J., Beress L. Natural-abundance С nuclear-magnetic-resonance study of toxin II from Ahemonia sulcata. Eur. J. Biochem., 1980, v. 113, N 1, p. 75-83.

71. Gooley P.R., Beress L., Norton R.S. ^H Nuclear magnetic resonance spectroscopic study of the polypeptide toxin I from Anemonia sulcata. Biochemistry, 1984, v. 23, N 10, p. 2144-2152.

72. Nabiullin A.A., Odinokov S.E., Kozlovskaya E.P., Elyakov G.B. Secondary structure of sea anemone toxins. Circular dichroism, infrared spectroscopy and Chou-Fasman calculations. FEBS Lett., 1982, v. 141, N 1, p. 124-127.

73. Набиуллин А.А., Одиноков C.E., Вожзгова Е.И., Козловская Э.П., Еляков Г.Б. Исследование конформационной стабильности токсина I ИЗ актинии Radianthus macro-dactyius. Биоорган, химия, 1982, т. 8, Л 12,с. 1644-1648.

74. Smith C.D., DeLucas L., Ealick S.E., Schweitz H., Laz-dunski M., Bugg C.E. Crystallization and preliminary X-ray investigation of a protein neurotoxin from the sea anemone Anthopleura xanthogrammica. J. Biol. Chem., 1984, v. 259, N 12, p. 8010-801 1 .

75. Barhanin J., Hugues M., Schweitz H., Vincent J.P., Laz-dunski M. Structure-function relationships of sea anemone toxin II from Anemonia sulcata. J. Biol. Chem., 1981, v. 256, N 11, p. 5764-5769.

76. Tazieff-Depierre F., Choucavy M., Coudou D., Metezeau P. Action of purified toxins isolated from scorpion and the Anemonia sulcata venoms on neuro-transmitter release. -Period. Biologorum., 1978, v. 80, suppl. N 1, p. 107-117.

77. Alsen C., Beress L., Fisher K., Proppe D., Reinberg T., Sattler R.W. The action of a toxin from the sea anemone Anemonia sulcata upon mammalian heart muscles. Naunyn-Schmiedeberg's Arch. Pharmacol., 1976, v. 295, N 1, p. 55-62.

78. Romey G., Chicheportiche R., Lazdunski M., Rochat H.,

79. Miranda F., Lissitzky S. Scorpion neurotoxin a presy+naptic toxin which affects both Na and K channels in axons. Biochem. and Biophys. Res. Commun., 1975, v. 64, N 1, p. 115-121.

80. Okamoto H., Takahashi K., Yamashita N. One-to-one binding of a purified scorpion toxin to Na channels. Nature, 1977, v. 266, N 5601, p. 465-468.

81. Bergman C., Dubois J.M., Rojas E., Rathmayer W. Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. -Biochim. et biophys. acta, 1976, v. 455, N 1, p. 173-184.

82. Narahashi Т., Shapiro В., Deguchi Т., Scuca М., Wang С. Effects of scorpion venom in squid giant axon membranes. -J. Physiol., 1972, v. 237, N 3, p. 850-857.

83. Warashina A., Fujita S. Effect of sea anemone toxins on the sodium inactivation process in crayfish axons. J. Gen. Physiol., 1983, v. 81, N 3, p. 305-323.

84. Frelin C., Vigne P., Schweitz H., Lazdunski M. The interaction of sea anemone and scorpion neurotoxins with tetrodotoxin-resistant Na+ channels in rat myoblasts. -Mol. Pharmacol., 1984, v. 26, N 1, p. 70-74.

85. Крышталь O.A., Осипчук Ю.В., Еляков Г.Б., Козловская Э.П. Действие токсина актинии Homostichantus duerdemi На натриевый входящий ток в нейронах млекопитающих. Нейрофизиология, 1982, т. 14, № 4, с. 402-409.

86. Baran M., Bernard P. Effect des neurotoxines alpha de venin de scorpion sur le courant sodium des cellules de neuro-blastome. J. Biophys. Med. Nucl., 1984, v. 8, N 1, p. 3-8.

87. Vijverberg H.P.M., Pauron D., Lazdunski M. The effect of Tityus serrulatus scorpion toxin ^ on Na channels in neuroblastoma cells. Pflugers Arch., 1984, v. 401, N 3, p. 297-303.

88. Meves H., Simard J.M., Watt D.D. Biochemical and electrophysiological characteristics of toxins isolated from the venom of the scorpion Centruroides sculpturatus. J. Physiol. (Paris), 1984, v. 79, N 2, p. 185-191.

89. Jower E., Martin-Moutot N., Couraud F. , Rochat H. Scorpion toxin: specific binding to rat synaptosomes. Biochem. and Biophys. Res. Commun., 1978, v. 85, N 1, p. 377-382.

90. Jower E., Martin-Moutot N., Couraud F., Rochat H. Binding of scorpion toxins to rat brain synaptosomal fraction. Effects of membrane potential, ions, and other neurotoxins. Biochemistry, 1980, v. 19, N 3, p. 463-467.

91. Dellmann H.-D., Boudier J.-A., Couraud F., Cau P., Boudier J.-L. Voltage-sensitive Na+ channels in the neuro1 25hypophysis of the rat as demonstrated by I-labelled scorpion toxin. Neurosci. Lett., 1983, v. 31, N 1, p. 71-77.

92. Ray R., Catterall W.A. Membrane potential dependent bindingof scorpion toxin to the action potential sodium ionophore.125

93. Studies with 3-(4-hydroxy 3- I iodophenyl) propionyl derivative. J. Neurochem., 1978, v. 31, N 2, p. 397-407.

94. Catterall W.A., Beress L. Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential sodium ionophore. J. Biol. Chem., 1978, v. 253, N 20, p. 7393-7396.

95. Tamkun M.M., Catterall W.A. Ion flux studies of voltage-sensitive sodium channels in synaptic nerve-ending particles. Mol. Pharmacol., 1981, v. 19, N 1, p. 78-86.

96. Catterall W.A., Morrow C.S., Hartshorne R. P. Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed, and detergent-solubilized brain membranes. J. Biol. Chem., 1979, v. 254, N 22,p. 11379-11387.

97. Hucho F., Stengelin S., Bandini G. Effector binding sites and ion channels in excitable membranes. In: Recent advances in receptor chemistry. F. Gualtieri, M. Giannella,

98. C. Melchiorre, eds., Elsevier/North-Holland Biomed. Press, Amsterdam, 1979, p. 37-58.

99. Catterall W.A., Beneski D.A. Interaction of polypeptide neurotoxins with a receptor site associated with voltage-sensitive sodium channels. J. Supramol. Structure, 1980, v. 14, N 3, p. 295-303.

100. Darbon H., Jover E., Couraud F., Rochat H. Photoaffinity labeling of dl- and ^-scorpion toxin receptor$ associated with rat brain sodium channel. Biochem. and Biophys. Res. Commun., 1983, v. 115, N 2, p. 415-422.

101. Jover E., Couraud F., Rochat H. Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem. and Biophys. Res. Commun., 1980, v. 95, N 4, p. 1607-1614.

102. Wheeler K.P., Barhanin J., Lazdunski M. Specific binding of toxin II from Centruroides suffusus suffusus to the sodium channel in electroplaque membranes. Biochemistry,1982, v. 21, N 22, p. 5628-5634.

103. Гришин Е.В., Кияткин Н.И., Коваленко В. А., Пашков В.Н., Шамотиенко О.Г. Идентификация и выделение компонентов натриевого канала. Ш Советско-швейцарский симпозиум. "Биологические мембраны. Структура и функция". Ташкент, 1983, с. 27.

104. Norman R.I., Schmid A., Lombet A., Barhanin J., Laz-dunski M. Purification of binding protein for Tityus у toxin identified with the gating component of the voltage-sensitive Na+ channel. Proc. Nat. Acad. Sci. USA, 1983, v. 80, N 13, p. 4164-4168.

105. Lombet A., Lazdunski M. Characterization, solubilization, affinity labeling and purification of the cardiac Na+ channel using Tityus toxin ^ . Eur. J. Biochem., 1984, v. 141, N 3, p. 651-660.

106. Pelhate M., Zlotkin E. Voltage dependent slowing of the turn of Na+ current in the cockroach giant axon induced by the scorpion venom "insect toxin". J. Physiol. (London), 1981, v. 319, N 1, p. 30-31.

107. Gordon D., Jover E., Couraud F., Zlotkin E. The binding of the insect selective neurotoxin (Aa IT) from scorpion venom to locust synaptosomal membranes. Biochim. et biophys. acta, 1984, v. 778, N 2, p. 349-358.

108. Carbone E., Wanke E., Prestipino G., Possani L.D., Maelike A. Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin. Nature, 1982, v. 296, N 5852, p. 90-91.

109. Possani L.D., Martin B.M., Svendsen I. The primary structure of noxiustoxin: a K+ channel blocking peptide,purified from the venom of the scorpion Centruroides noxius Hoffmann. Carlsberg Res. Commun., 1982, v. 47, N 5, p. 285-289.

110. Carbone E., Prestipino G., Wanke E., Possani L.D., Mae-licke A. Selective action of scorpion neurotoxins on the ionic currents of the squid giant axon. Toxicon, 1983, v. 21, suppl. 3, p. 57-60.

111. Kem W.R. Purification and characterization of a new family of polypeptide neurotoxins from the heteronemertine Cerebratulus lacteus (Leidy). J. Biol. Chem., 1976,v. 251, N 14, p. 4184-4192.

112. Blumenthal K.M., Kem W.R. Structure and action of heteronemertine polypeptide toxins. Primary structure of Cerebratulus lacteus toxin B-IV. J. Biol. Chem., 1976,v. 251, N 19, p. 6025-6029.

113. Kem W.R., Blumenthal K.M. Secondary structure of a nemer-tine neurotoxin. Toxicon, 1979, v. 17, suppl. N 1, p. 87.

114. Blumenthal K.M., Kem W.R. Structure and action of heteronemertine polypeptide toxins: Inactivation of Cerebratulus lacteus toxin B-IV by tyrosine nitration. Arch. Biochem. and Biophys., 1980, v. 203, N 2, p. 816-821.

115. Blumenthal K.M. Structure and action of heteronemertine polypeptide toxins: Inactivation of Cerebratulus lacteustoxin B-IV concominant with tryptophan alkylation. Arch. Biochem. and Biophys., 1980, v. 203, N 2, p. 822-826.

116. Toth G.P., Blumenthal K.M. Structure and action of hetero-nemertine polypeptide toxins. Binding of Cerebratulus lacteus toxin B-IV to axon membrane vesicles. Biochim. et biophys. acta, 1983, v. 732, N 1, p. 160-169.

117. Marki F., Witkop B. The venom of the Colombian arrow poison frog Phyllobates bicolor. Experientia, 1963, v. 19, N 7, p. 329-338.

118. Daly J.W., Witkop B. Chemistry and pharmacology of frog venoms. In: Venomous animals and their venoms.

119. W. Biicherl, E. Buckley, eds. , Academic Press, N.Y.-London, 1971 , p. 497-519.

120. Albuquerque E.X., Daly J.W., Witkop B. Batrachotoxin: chemistry and pharmacology. Science, 1971, v. 172, N 3987, p. 995-1002.

121. Tokuyama T., Daly J.W., Witkop B., Karle I.L., Karle J. The structure of batrachotoxinin A, a novel steroidal alkaloid from the Colombian arrow poison frog Phyllobates aurotaenia. J. Am Chem. Soc., 1968, v. 90, N 7, p. 1917-1918.

122. Karle I.L., Karle J. The structural formula and crystal structure of the O-p-brombenzoate derivative of bat- • rachotoxinin A, C^H^gNOgBr, a frog venom and steroidal alkaloid. Acta Cryst., 1969, B.25, N 3, p. 428-434.

123. Witkop B. New directions in the chemistry of natural products: The organic chemist as a pathfinder for biochemistry and medicine. Experientia, 1971, v. 27, N 10, p. 1121-1138.

124. Warnick J.-E., Albuquerque E.X., Onur R. , Jansson S.-E., Daly J., Tokuyama Т., Witkop B. The pharmacology of bat-rachotoxin. VII. Structure-activity relationships and the effects of pH. J. Pharmacol. Exp. Ther., 1975, v. 193, N 1, p. 232-245.

125. Brown G.B., Tieszen S.C., Daly J.W., Warnick J.E., Albuquerque E.X. Batraxotoxinin A 20oC-benzoate: a new radioactive ligand for voltage sensitive sodium channels. -Cell. Mol. Neurobiol., 1981, v. 1, N 1, p. 19-40.

126. Imhof R., Gossinger E., Graf W., Berner-Fenz L., Berner H., Schaufelberger R., Wehrli H. Steroide und Sexualhormone. Die Partialsynthese von Batrachotoxinin A. Helv. chim. acta, 1973, v. 56, N 5-6, p. 139-162.

127. Daly J.W. Biologically active alkaloids from poison frog (Dendrobatidae). J. Toxicol., 1982, v. 1, N 1, p. 33-86.

128. Hikino H., Konno C., Watanabe H., Ishikawa 0. Determination of aconitine alkaloids by high-performance liquid chromatography. J. Chromatogr., 1981, v. 211, N 1, p. 123-128.

129. Закусов B.B. Рефлексы на дыхание при действии ядов на различные сосудистые области. Фармакология и токсикология, 1939, т. 2, с. 55-63.

130. Bachelor F.W., Brown R.F.C., Buchi G. The constitution of ring A in aconitine. Tetrahedron Lett., 1960, N 10, p. 1-9.

131. Pelletier S.W., Djarmati Z. Carbon-13 nuclear magnetic resonance: aconitine-type diterpenoid alkaloids from Aconitum and Delphinium species. J. Am. Chem. Soc., 1976, v. 98, N 9, p. 2626-2636.140,. Туляганов H., Джазангиров Ф.Н., Садритдинов Ф.С.,

132. Хамдамов Н. К фармакологии некоторых аконитовых алкалоидов. В об: Фармакология растительных веществ, ФАН, Ташкент, 1976, с. 76-91.

133. Dong Y.L., Chen W.Z., Ding G.S. Comparison of arrythmic effect of aconitine and its 5 analogs. Chung-kuo Yao Li. Hsuch Pao, 1981, v. 2, N 3, p. 173-176.

134. Sato H., Yamada C., Konno C., Ohizumi Y., Endo К., Hikino H. Pharmacological actions of aconitine alkaloides. Tohoku

135. J. Exp. Med., 1979, v. 128, N 2, p. 175-187.

136. Hardikar S.W. On rhododendron poisoning. J. Pharmacol. Exptl. Therap., 1923, v. 20, N 1, p. 17.44.

137. Kinghorn A.D., Jawad F.H., Doorenbos N.J. Thin-layer chromatographic and spectroscopic characterization ofsome diterpenes of the grayanotoxin type. J. Chromatogr., 1978, v. 147, N 2, p. 299-308.

138. Takemoto T., Nishimoto Y., Meguri H., Katayama K. On the identity of rhodotoxin, andromedotoxin, and grayanotoxin I. J. Pharm. Soc. Japan, 1955, v. 75, N 11, p. 1441-1442.

139. Yasue M., Sakakibara J., Kato T. Studies on the constituents of Lyonia ovalifolia Drude var. elliptica Hand.-Mazz. XIII. Structure of diterpenoid, lyonil-A(lyoniatoxin) (2).- Yakugaku Zasshi, 1971, v. 91, N 3, p. 358-362.

140. Kato T., Sakakibara J., Yasue M. Stidues on the constituents of Lyonia ovalifolia Drude var elliptica Hand.

141. Mazz. XIV. Structure of diterpenoid, lyoniol-A(lyonia-toxin) (3). Yakugaku Zasshi, 1971, v. 91, N 11, p. 11941199.

142. Wood H.B., Stroberg V.L., Keresztesy J.C., Horning E.C. Andromedotoxin. A potent hypotensive agent from Rhododendron maximum. J. Am. Chem. Soc., 1954, v. 76, N 12, p. 5689-5692.

143. Kakisawa H., Kurono M., Tarahashi S., Hirata Y. Structure of grayanotoxin I and III. Tetrahedron Lett., 1961, N 2, p. 59-67.

144. Von Kürten S., Pachaly P., Zymalkowski F., Snatzke G. Neue Grayanotoxine in Blattextrakten von Rhododendron ponticum. Ein Beitray zur Stereochemie der Grayanotoxine. Liebigs Ann. Chem., 1970, B.74, N 11, p. 142-152.

145. Terai T., Katai M., Hamanaka N., Matsumoto T., Meguri H. Conversion of grayanotoxin III to grayanotoxin V, rho-dojaponin III and rhodojaponin IV. Chem. Pharm. Bull., 1978, v. 26, N 5, p. 1615-1619.

146. Gasa S., Hamanaka N., Matsunaga S., Okuno T., Takeda N., Matsumoto T. Relay total synthesis of grayanotoxin II. -Tetrahedron Lett., 1976, N 7, p. 553-556.

147. Hikino H., Ohta T., Ogura M., Ohizumi Y., Konno C., Takemoto T. Structure-activity relationship of ericaceous toxins on acute toxicity in mice. Toxicol. Appl. Pharmacol., 1967, N 35, N 2, p. 303-310.

148. Hotta Y., Takeya K., Kobayashi S., Harada N., Sakakibara J., Shirai N. Relationship between structure, positive inotropic potency and lethal dose of grayanotoxins in guinea pig. Arch. Toxicol., 1980, v. 44, N 4, p.259-267.

149. Mager P.P., Seese A., Takeya K. Structure-toxicity relationships applied to grayanotoxins. Pharmazie, 1981, v. 36, N 5, p. 381-382.

150. Narahashi T. Modulation of nerve membrane sodium channels by neurotoxins. Adv. Cytopharmacol., 1979, v. 3 , p. 293-303.

151. Scott P.M., Coldwell B.B., Wiberg G.S. Grayanotoxins. Occurence and analysis in honey and a comparison to toxicities in mice. Food Cosmet. Toxicol., 1971, v. 9, N 2, p. 179-184.

152. Masutani T., Seyama I., Narahashi T., Iwasa J. Structure-activity relationship for grayanotoxin derivatives in frog skeletal muscle. J. Pharmacol. Exp. Ther., 1981, v. 217, N 3, p. 812-819.

153. Benforado J.M. Veratrum.alkaloids. In: Physiological pharmacology, W.S. Root, F.G. Hofmann, eds., Academic Press, New York, 1967, v. 4, p. 331-398.

154. Kupchan S.M., By A.W. Steroid alkaloids: the Veratrum group. In: Alkaloids, R.H.F. Manske, ed., Academic Press, New York, v. 10, p. 193-285.

155. Büch H.P. Beziehungen zwischen den physiko-chemischen und paririakologischen Eigenschaften von Veratrum Alkaloiden und ihren Estern. Ann. Univ. Sarav., 1976, v. 23, N 1, p. 1-76.

156. Honerjäger P., Freiin C., Lazdunski M. Actions, interactions, and apparent affinites of various ceveratrum alkaloids at sodium channels of cultured neuroblastoma and cardiac cells. Naunyn-Schmiedeberg1s Arch. Pharmacol., 1982,v. 321, N 1, p. 123-129.

157. Codding P.W. Structural studies of sodium channel neurotoxins. 2. Crystal structure and absolute configuration of veratridine perchlorate. J. Am. Chem. Soc., 1983, v. 105, N 10, p. 3172-3176.

158. Flacke W. Pharmacological activity of some esters of germine with acetic acid. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmak., 1961, v. 240, N 3, p. 369-381.

159. Kupchan S.M., Weaver L.C., Hensler R.H., Ayres C.I. Veratrum alkaloids. XLV. Structure-activity relationshipsin a series of protoveratrine derivatives. J. Pharm. Sci., 1961, v. 50, N 1, p. 52-55.

160. Honerjager P. Electrophysiological effects of various ceveratrum alkaloids on single axons. Naunyn-Schmiede-berg's Arch. Pharmacol., 1973, v. 280, N 4, p. 391-416.

161. Ohta M., Narahashi Т., Keeler R.F. Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J. Pharm. Exp. Ther., 1973, v. 184, N 1, p. 143-154.

162. Ходоров Б.И. Воротные токи в мембране нервного волокна. Фармакологический анализ. Успехи физиологических наук, 1983, т. 14, JJ& 3, с. 68-97.

163. Huang L.-Y.M., Moran N., Ehrenstein G. Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements. -Biophys. J., 1984, v. 45, N 1, p. 313-312.

164. Wellhoner H.H. Effect of aconitine on the slowly adapting stretch receptor neuron of the crayfish. Piliig. Arch., 1968, v. 304, N 1, p. 104-117.

165. Catterall W.A., Nirenberg M. Sodium uptake associated with activation of action potential ionophores of cultured neuroblastoma and muscle cells. Proc. Nat. Acad. Sci. USA, 1973, v. 70, N 12, p. 3759-3763.

166. Ghiasuddin S.M., Soderlund D.M. Mouse brain synaptosomal sodium channels: Activation by aconitine, batrachotoxin, and veratridine, and inhibition by tetrodotoxin. Сотр. Biochem. Physiol., 1984, v. 77C, N 2, p. 267-271.

167. Ходоров Б.И. Фармакологический анализ инактивации натриевых токов в мембране нервного волокна. Нейрофизиология, 1980, т. 12, № 3, с. 317-331.

168. Можаева Г.Н., Наумов А.П., Носырева Е.Д. Влияние аконитина на некоторые свойства натриевых каналов мембраны перехвата Ранвье. Нейрофизиология, 1976, т. 8, №2, с. 152-160.

169. Ревенко С.В., Ходоров Б.И. Влияние батрахотоксина на селективность натриевых каналов в мембране миелинизи-рованного нервного волокна. Нейрофизиология, 1977, т. 9, J6 2, с. 313-316.

170. Khodorov В. Inactivation of the sodium gating current. -Neuroscience, 1979, v. 4, N 7, p. 865-876.

171. Ochs S., Worth R. Batrachotoxin block of fast axoplasmic transport in mammalian nerve fibers. Science, 1975,v. 187, N 4181, p. 1087-1089.

172. Hudson C.S., Deshpande S.S., Albuquerque E.X. Consequences of Axonal Transporte Blockade by Batrachotoxin on Mammalian Neuromuscular Junction. III. An Ultrastructural Study. Brain Research, 1984, v. 296, N 2,p. 319-332.

173. Shimizu H. , Greveling C.R., Daly J.W. Cyclic adenosine31,5'-monophosphate formation in brain slices: stimulation by batrachotoxin, ouabain, veratridine, and potassium ions. Mol. Pharmacol., 1970, v. 6, N 1, p. 184-188.

174. Pant H.C., Pollard H.B., Pappas C.D., Gainer H. Phosphorylation of specific, distinct proteins in synaptosomes and axons from squid nervous system. Proc. Nat. Acad. Sci. USA, 1979, v. 76, N 12, p. 6071-6075.

175. Dandrifosse G., Schoffeniels E. Effect of various compounds on the phosphorylation of nerve proteins. Neurochem. Int. , 1980, N 2, p. 95-100.

176. Abita J.-P., Chicheportiche R., Schweitz H., Lazdunski M. Effects of neurotoxins (veratridine, sea anemone toxin, tetrodotoxin) on transmitter accumulation and release by nerve terminals in vitro. Biochemistry, 1977, v. 16,1. N 9, p. 1838-1844.

177. Можаева Г.Н., Наумов А.П., Ходоров Б.И. Потенциалозависимые изменения ионной селективности модифицированных батрахотоксином натриевых каналов нервного волокна лягушки, Нейрофизиология, 1983, т. 15, JS 5, с. 485-494.

178. Khodorov В., Revenko S. Further analysis of the mechanisms of action of batrachotoxin on membrane of myelinated nerve. Neuroscience, 1979, v. 4, N 9, p. 1315-1330.

179. Matthews J.C., Warnick J.E., Albuquerque E.X., Eldefrawi M.E. Characterization of the electrogenic sodiumchann^L from rat brain membranes using neurotoxin-dependent 22

180. Na uptake. Membrane Biochem., 1981, v. 4, N 2, p. 71-104.

181. Catterall W.A. Activation of the action potential Na+ ionophore by neurotoxins. An allesteric model. J. Biol. Chem., 1977, v. 252, N 23, p. 8669-8676.

182. Catterall W.A. Cooperative activation of action potential Na+ ionophore by neurotoxins. Proc. Nat. Acad. Sci. USA, 1975, v. 72, N 5, p. 1782-1786.

183. Huang LrY.M., Ehrenstein G., Catterall W.A. Interaction between batrachotoxin and yohimbine. Biophys. J., 1978, v. 23, N 2, p. 219-231.

184. Catteral W.A. Activation of the action potential Na+ ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin. J. Biol. Chem., 1975, v. 250, N 11, p. 4053-4059.

185. Romey G., Lazdunski M. Lipid-soluble toxins thought to be2 + specific for Na channels block Ca channels in neuronalcells. Nature, 1982, v. 297, N 5861, p. 79-80.

186. Balerna M., Fosset M., Chicheportiche R., Romey G., Lazdunski M. Constitution and properties of axonal membranes of crustacean nerves. Biochemistry, 1975, v. 14, N 25, p. 5500-5511.

187. Tripathi H.L., Yost G.A. Synthesis of tritium labelled veratridine with high specific activity. J. Labelled Comp. Radiopharm., 1978, v. 15, N 3, p. 619-624.

188. Soeda Y. Preparation of tritium-labelled ¿-dihydro-grayanotoxin II. J. Labelled Comp. Radiopharm., 1974, v. 10, N 1, p. 165-169.

189. Soeda Y., O'Brein R.D., Yeh J.Z., Narahashi T. Evidence that «¿-dihydrograyanotoxin II does not bind to thesodium gate. J. Membrane Biol., 1975, v. 23, N 1, p. 91-101.

190. Brown G.B., Tieszen S.C., Daly J.W., Warnick J.E., Albuquerque E.X. Batrachotoxinin-A 20sL-benzoate: a new radioactive ligand for voltage sensitive sodium channels. Cell. Mol. Neurobiol., 1981, v. 1, N 1, p. 19-40.

191. Catterall W.A., Morrow C.S., Daly J.W., Brown G.B. Binding of batrachotoxinin A 20-Jt-benzoate to receptor site associated with sodium channels in synaptic nerve ending particles. J. Biol. Chem., 1981, v. 256, N 17, p. 89228927.

192. Catterall W.A. Inhibition of voltage-sensitive sodium channels in neuroblastoma cells by antiarrhytmic drugs. -Mol. Pharmacol., 1981, v. 20, N 2, p. 356-362.

193. Taylor R.F. Isolation and purification of a veratridine binding proteoglycolipid from rat gastrochemius tissue. -J. Neurochem., 1978, v. 31, N 5, p. 1199-1207.

194. Kosower E.M. A hypothesis for the mechanism of sodium channel opening by batrachotoxin and related toxins. -FEBS Lett., 1983, v. 163, N 2, p. 161-164.

195. Daly J.W., Myers C.W., Warnick J.E., Albuquerque E.X. Levels of batrachotoxin and lack of sensitivity to its action in poisondart frog (Phyllobates). Science, 1980, v. 208, N 4450, p. 1383-1385.

196. Parmentier J.L. , Narahashi T. , Wilson VI.h., Trieff N.M., Sadagopa R.V.M., Risk M., Ray S.M. Electrophysiological and biochemical characteristics of Gymnodinium breve toxins. Toxicon, 1978, v. 16, N 3, p. 235-244.

197. Risk M., Lin Y.Y., Sadagope R.V.M., Smith L.L., Ray S.M., Triefft Norman M. High pressure liquid chromatographic separation of two major toxic compounds from Gymnodinium breve Davis. J. Chromatogr. Sci., 1979, v. 17, N 7,p. 400-405.

198. Lin Y.Y., Risk M. Isolation and structure of brevetoxin B from the "red tide" dinoflagellate Ptychodiscus brevis (Gymnodinium breve). J. Amer. Chem. Soc., 1981, v. 103, N 22, p. 6773-6775.

199. Baden D.G., Mende T.J., Lichter W., Wellham L. Crystallization and toxicology of T34: a major toxin from Florida's red tide organism (Ptychodiscus brevis). Toxicon, 1981, v. 19, N 4, p. 455-462.

200. Westerfield M., Kim Y., Padilla G., Moore J.W. Means by which Gymnodinium breve red tide toxin produces repetitive firing in squid axons. Biophys. J., 1976, v. 16, N 2,p. 188.

201. Baden D.G., Bikhazi G., Decker S.J., Foldes F.F., Leung I. Neuromuscular blocking action of two brevetoxins from the florida red tide organism Ptychodiscus brevis. Toxicon, 1984, v. 22, N 1, p. 75-84.

202. Shinnick-Gallagher P. Possible mechanisms of action of Gymnodinium breve toxin at the mammalian neuromuscular junction. Brit. J. Pharmacol., 1980, v. 69, N 3,p. 373-378.

203. Golik J., James J.C. , Nakanishi K. , Lin Y. The structure of brevetoxin C. Tetrahedron Lett., 1982, v. 23, N 25, p. 2535-2538.

204. Baden D.G. Marine food-borne dinoflagellate toxin. Int. Rev. Cytology, 1983, v. 82, p. 99-150.

205. Huang J.M.C., Wu C.H., Baden D.G. Depolarizing action of a red-tide dinoflagellate brevetoxin on axonal membranes. J. Pharmacol. Exp. Ther., 1984, v. 229, N 2, p. 615-621.

206. Catterall W.A., Risk M. Toxin from Ptychodiscus brevis (formely Gymnodinium breve) enhences activation of voltage-sensitive sodium channels by veratridine. Mol. Pharmacol., 1981, v. 19, N 2, p. 345-348.

207. Lewis R.J., Endean R. Mode of action of ciguatoxin from the spanish mackerel, Scomberomorus commersoni, on the guinea-pig ileum and vas deferens. J. Pharmacol. Exp. Ther., 1984, v. 228, N 3, p. 756-760.

208. Bidard J.-N., Vijverberg H.P.M., Frelin C., Chungue E., Legrand A.-M., Bagnis R., Lazdunski M. Ciguatoxin is a novel type of Na+ channel toxin. J. Biol. Chem., 1984, v. 259, N 13, p. 8353-8357.

209. Narahashi T. Nerve membrane as a target of pyrethroids. -Pestic Sci., 1976, v. 7, N 3, p. 267-272.

210. Jacques Y., Romey G., Cavey M.T., Kartalovski B., Lazdunski M. Interaction of pyrethroids with the Na+ channel in mammalian neuronal cells in culture. Biochim. et biophys. acta, 1980, v. 600, N 3, p. 882-897.

211. Lund A.E. Pyrethroid modification of sodium channel: Current concepts. Pestic. Biochem. Physiol., 1984, N 2, p. 161-168.

212. Laure C.J. Die Primärstruktur des Crotamins. Hoppe-Seyler1s Z. Physiol. Chem., 1975, B. 356, N 2, S. 213-215.

213. Chang C.C., Tseng K.H. Effect of crotamine, a toxin of South American rattlesnake venom, on the sodium channelof murine skeletal muscle. Brit. J. Pharm., 1978, v. 63, N 3, p. 551-559.

214. Hong S.J., Chang C.C. Potentiation by crotamine of the depolarizing effects of batrachotoxin, protoveratrine A and grayanotoxin I on the rat diaphragm. Toxicon, 1983, v. 21, N 4, p. 503-514.

215. Chang C.C., Hong S.J., Su M.J. A study on the membrane depolarization of skeletal muscles caused by a scorpion toxin, sea anemone toxin II and crotamine and the interaction between toxins. Brit. J. Pharm., 1983, v. 79,1. N 3, p. 673-680.

216. Fujiwara M., Muramatsu I., Hidaka H., Ikushima S., Ashida K. Effects of Goniopora toxin, a polypeptide isolated from coral, on electro-mechanical properties of rabbit myocardium. J. Pharmacol. Exp. Ther., 1979, v. 210, N 2, p. 153-157.

217. Ikushima S., Muramatsu I., Fujiwara M., Ashida K. Relationship between the effects of Goniopora toxin on action potential and on contractile force in guinea-pig papillary muscle. Japan J. Pharmacol., 1981, v. 31, N 6, p. 10511060.

218. Nöda M., Muramatsu I., Fujiwara M. Effect of Goniopora to bullfrog atrial muscle. Naunyn-Schmiedeberg's Arch. Pharmacol., 1984, v. 327, N 1, p. 75-80.

219. Hahin R., Wang G.K., Strichartz G.R., Schmidt J., Shapiro B.J. Modification of sodium conductance kinetics by venom of the marine mollusc Conus striatus. Biophys. J. , 1981 , v. 33, N 2, p. 124a.

220. Kobayashi J., Nakamura H., Hirata Y., Ohizumi Y. Isolation of a cardiotonic glycoprotein, striatoxin, from the venom of the marine snail Conus striatus. Biochem. and Biophys. Res. Commun., 1982, v. 105, N 4, p. 1389-1395.

221. Tsuda K. Uber Tetrodotoxin, Giftstoff der Bowlfische. -Naturwissenschaften, 1966, B.53, N 2, S. 171-176.

222. Mosher H.S., Fuhrman F.A. , Buchwald H.D., Fisher H.G. Tarichatoxin-Tetrodotoxin: A potent neurotoxin. Science, 1964, v. 144, N 3622, p. 1100-1110.

223. Kim Y.H., Brown G.B., Mosher H.S., Fuhrman F.A. Tetrodotoxin: occurrence in atelopid frogs of Costa Rica. -Science, 1975, v. 189, N 4197, p. 151-152.

224. Elam K.S., Fuhrman F.A., Kim Y.H., Mosher H.S. Neurotoxins from three species of California goby: Clevelandia ios, Acanthogobius flavimanus and Gillichthys mirabilis. -Toxicon, 1977, v. 15, N 1, p. 45-49.

225. Noguchi T., Narita H., Maruyama J., Hashimoto K. Tetrodotoxin in the starfish Astropecten polyacanthus in association with toxification of a trumpet shell, "boshubora" Charonia sauliae. Nippon Suisan Gakkaishi, 1982, v. 48, N 8, p. 1173-1177.

226. Sheumack D.D., Howden M.E.H., Spence I. Occurrence of a tetrodotoxin-like compound in the eggs of the venomous blue-ringed octopus (Hapalochlaena maculosa). Toxicon, 1984, v. 22, N 5, p. 811-812.

227. Kodama M., Noguchi T., Maruyama J., Ogata T., Hashimoto K. Release of tetrodotoxin and paralytic shellfish poison from puffer liver by RNAse. J. Biochem., 1983, v. 93,1. N 1, p. 243-247.

228. Goto T., Kishi Y., Takahashi S., Hirata Y. Tetrodotoxin. Tetrahedron, 1965, v. 21, N 8, p. 2059-2088.

229. Woodward R.B. Structure of tetrodotoxin. Pure Appl. Chem., 1964, v. 9, N 1, p. 49-74.

230. Narahashi T., Moore J.M., Poston R.N. Tetrodotoxin derivatives : Chemical structure and blockage of nerve membrane conductance. Science, 1967, v. 156, N 3777, p. 976-979.

231. Kao C.Y. Tetrodotoxin, saxitoxin and their significancein the study of excitation phenomena. Pharm. Rev., 1966, v. 18, N 2, p. 997-1049.

232. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol. Rev., 1974, v. 54, N 4, p. 813-889.

233. Kao C.Y., Walker S.E. Active groups of saxitoxin and tetrodotoxin as deduced from actions of saxitoxin analogues on frog muscle and squid axon. J. Physiol. (London), 1982, v. 323, p. 619-637.

234. Kao C.Y. Actions of nortetrodotoxin on frog muscle and squid axon. Toxicon, 1982, v. 20, N 6, p. 1043-1050.

235. Benzer T.I., Raftery M.A. Partial characterization of a tetrodotoxin-binding component from nerve membrane. -Proc. Nat. Acad. Sci. USA, 1972, v. 69, N 12, p. 36343637.

236. Griinhagen H.H., Rack M. , Stampfli R. , Fasold H. , Reiter P. Chemically tritiated tetrodotoxin: physiological activityand binding to Na-channels. Arch. Biochem. and Biophys., 1981, v. 206, N 1, p. 198-204.

237. Chicheportiche R., Balerna M., Lombet A., Romey G., Laz-dunski M. Synthesis of new, highly radioactive tetrodo-toxin derivatives and their binding properties to the sodium channel. Eur. J. Biochem., 1980, v. 104, N 2, p. 617-625.

238. Bontemps J., Cantineau R., Gradfils C., Leprince P., Dandrifosse G., Schoffeniels E. High-yield synthesis of ^h.Ethylenediamine ditetrodotoxin derivative. Anal. Biochem., 1984, v. 139, N 1, p. 149-157.

239. Guillory R.J., Rayner M.D., D'Arrigo J.S. Covalent labelling of the tetrodotoxin receptor in exitable membranes. -Science, 1977, v. 196, N 4292, p. 883-885.

240. Chicheportiche R., Balerna M., Lombet A., Romey G., Laz-dunski M. Synthesis and mode of action on axonal membranes of photoactivable derivatives of tetrodotoxin. J. Biol. Chem., 1979, v. 254, N 5, p. 1552-1557.

241. Angelides K.J. Fluorescent and photoactivatable fluorescent derivatives of tetrodotoxin to probe the sodium channel of excitable membranes. Biochemistry, 1981, v. 20, N 14, p. 4107-4118.

242. Balerna M., Lombet A., Chicheportiche R., Romey G., Laz-dunski M. Synthesis and properties of new photoactivable derivatives of tetrodotoxin. Biochim. et biophys. acta, 1981, v. 644, N 2, p. 219-225.

243. Schantz E.J., Lynch J.M., Vayvada G., Matsumoto K., Rapoport H. The purification and characterization of the poison produced by Gonyaulax catenella in axenic culture. -Biochemistry, 1966, v. 5, N 4, p. 1191-1195.

244. Steidinger K.A. A re-evaluation of toxic dinoflagellate biology and ecology. In: Progress in Phycological Fesearch, Round, Chapman, eds., Elsevier Science Publishers B.V., 1983, v. 2, p. 147-188.

245. Onoue Y., Noguchi T., Maruyama J., Hashimoto K., Seto H. Properties of two toxins newly isolated from oysters. -J. Arg. Food. Chem., 1983, v. 31, N 2, p. 420-423.

246. Yasumoto T., Oshima Y., Tajiri M., Kotaki Y. Paralytic shellfish toxins in previously unrecorded species of coral reef crabs. Bull. Jap. Soc. Sci. Fish, 1983, v. 49, N 4, p. 633-636.

247. Nakamura M., Oshima Y., Yasumoto T. Occurrence of saxitoxin in puffer fish. Toxicon, 1984, v. 22, N 3, p. 381-385.

248. Ikawa M., Wegener K., Foxall T.L., Sasner J.J. Comparison of the toxins of the blue-green alga Aphanizomenon flos-aquae with the Gonyaulax toxins. Toxicon, 1982,v. 20, N 4, p. 747-752.

249. Kodama M., Ogata T., Takahashi Y., Niwa T., Matsuura F. Gonyautoxin associated with RNA-containing fraction in the toxic scallop digestive gland. J. Biochem., 1982, v. 92, N 1, p. 105-109.

250. Schantz E.J., Ghazarossian V.E., Schnoes H.K., Strong F.M., Springer J.P., Pezzanite J.O., Clardy J. The structure of saxitoxin. J. Am. Chem. Soc., 1975, v. 97, N 5, p. 12381239.

251. Kao P.N., James-Kracke M.R., Kao C.Y. The active quani-dinium group of saxitoxin and neosaxitoxin indentified by the effects of pH on their activities on squid axon. -Pfliigers Arch., 1983, v. 398, N 2, p. 199-203.

252. Strichartz G. Structural determinants of the affinity of saxitoxin for neuronal sodium channels. Electrophysiological studies on frog peripheral nerve. J. Gen. Physiol., 1984, v. 84, N 2, p. 281-305.

253. Jamex-Kracke M.R., Kao P.N., Kao C.Y., Wichtman C.F., Schnoes H.K. Action of gonyautoxins II and III on squid axon. Fed. Proc., 1982, v. 41, N 5, p. 1643.

254. Shimizu Y., Hsu C.-P.,Genenah A. Structure of saxitoxin in solutions and stereochemistry of dihydrosaxitoxin. -J. Am. Chem. Soc., 1981, v. 103, N 3, p. 605-609.

255. Koehn F.E., Schnoes H.K., Kao C.Y. On the structure and biological properties of decarbamoylsaxitoxin. Biochim. et biophys. acta, 1983, v. 734, N 2, p. 129-132.

256. Sullivan J.J., Iwaoka W.T., Liston J. Enzymatic transformation of PSP Toxins in the littleneck clam (Protothaca staminea). -Biochem. and Biophys. Res. Commun., 1983, v. 114, N 2, p. 465-472.

257. Kishi Y. Total synthesis of d,l-saxitoxin. Heterocycles, 1980, v. 14, N 10, p. 1477-1495.

258. Hannick S.M., Kishi Y. Improved procedure for the Blaise reaction: A short, practical route to the key intermediates of the saxitoxin synthesis. J. Org. Chem., 1983, v. 48,1. N 21, p. 3833-3835.

259. Hille B., Pharmacological modification of the sodium channels of frog nerve. J. Gen. Physiol., 1968, v. 51, N 2, p. 199-219.

260. Kao C.Y., Nishiyama A. Actions of saxitoxin on peripheral neuromuscular systems. J. Physiol. (London), 1965, v. 180, N 1, p. 50-66.

261. Ulbricht W. Kinetics of tetrodotoxin and saxitoxin action at the node of Ranvier. Adv. Cytopharmacol., 1979, v. 3,p. 363-371.

262. Ritchie J.M., Rogat R.B., Strichartz G.R. A new method for labelling saxitoxin and its binding to non-myelinated fibres of the rabbit vagus, lobster walking leg, and garfish olfactory nerves. J. Physiol. (London), 1976,v. 261, N 2, p. 477-494.

263. Hansen B.C.M., Strichartz G.R. Saxitoxin binding to sodium channels of rat skeletal muscle. J. Physiol., (London), 1980, v. 300, N 1, p. 89-103.

264. Hille B. Ionic channels in nerve membranes. Progr. Biophys. Mol. Biol., 1970, v. 21, N 1, p. 1-32.

265. Lombet A., Frelin C., Renaud J.-F., Lazdunski M. Na+ channels with binding sites of high and low affinity for tetrodotoxin in different excitable and non-excitable cells. Eur. J. Biochem., 1982, v. 124, N 1, p. 199-203.

266. Catterall W.A., Morrow C.S. Binding of saxitoxin to electrically excitable neuroblastoma cells. Proc. Nat. Acad. Sci. USA, 1978, v. 75, N 1, p. 218-222.

267. Barnola F.V., Villegas R., Camejo G. Tetrodotoxin receptors in plasma membranes isolated from lobster nerve fibers. Biochim. et biophys. acta, 1973, v. 298, N 1, p. 84-94.

268. Reed J.K., Raftery M.A. Properties of the tetrodotoxin binding component in plasma membranes isolated from Electrophorus electricus. Biochemistry, 1976, v. 15, N 5, p. 944-953.

269. Weigele J.B., Barchi R.L. Analysis of saxitoxin binding in isolated rat synaptosomes using a rapid filtration assay. FEBS Lett., 1978, v. 91, N 2, p. 310-314.

270. Gitschier J., Strichartz G.R., Hall L.M. Saxitoxin binding to sodium channels in head extracts from wild-type and tetrodotoxin-sensitive strains of Drosophila melano-gaster. Biochim. et biophys. acta, 1980, v. 595, N 2,p. 291-303.

271. Keynes R.D., Rojas E., Taylor R.E. Saxitoxin, tetrodotoxin barriers,and binding sites in squid giant axon. J. Gen. Physiol., 1973, v. 61, N 2, p. 267.

272. Strichartz G.R., Rogart R.B., Ritchie J.M. Binding of radioactively labeled saxitoxin to the squid giant axon. J. Membrane. Biol., 1979, v. 48, N 4, p. 357-364.

273. Cuerto L.A., Adelman W.J. Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J. Gen. Physiol., 1970, v. 55, N 3, p. 309-335.

274. Schwartz J.R., Ulbricht W., Wagner H.-H. The rate of action of tetrodotoxin on myelinated nerve fibres of Xenopus laevis and Rana esculenta. J. Physiol. (London), 1973, v. 233, N 1, p. 167-194.

275. Campbell D.T., Hille B. Kinetic and pharmacological properties of the frog skeletal muscle. J. Gen. Physiol., 1976, v. 67, N 3, p. 309-323.

276. Neumcke В., Stampfli R. Sodium currents and sodium current fluctuations in rat myelinated nerve fibers. J. Physiol. (London), 1982, v. 329, N 1, p. 163-184.

277. Aimers W., Levinson S.R. Tetrodotoxin binding to normal and depolarized frog muscle and the conductance of a single sodium channel. J. Physiol. (London), 1975,v. 247, N 2, p. 483-509.

278. Barchi R.L., Weigele J.B. Characteristics of saxitoxin binding to the sodium channel of sarcolemma isolated from rat skeletal muscle. J. Physiol. (London), 1979„ v. 295, N 2, p. 383-396.

279. Sherman S.J., Lawrence J.C., Catterall W.A. The effect of denervation on the development of the high affinity saxitoxin receptor in rat skeletal muscle. Fed. Proc., 1982, v. 41, N 5, p. 1707.

280. Frelin C., Vigne P., Lazdunski M. Na+ channels with high and low affinity tetrodotoxin binding sites in the mammalian skeletal muscle cell. J. Biol. Chem., 1983,v. 258, N 12, p. 7256-7259.

281. Doyle D.D., Brink P.R., Barr L. A TTX-binding protein from frog heart cell membrane. Biophys. J., 1976, v. 16, N 2, p. 30a.

282. Barr L., Tanaka J., Doyle D.D. Saxitoxin (STX) binding sites in vertebrate myocardia. Fed. Proc., 1982, v. 41, N 5, p. 1612.

283. Lombet A., Renaud J.-F., Chicheportiche R., Lazdunski M. A cardiac tetrodotoxin binding component: biochemical identification, characterization, and properties. -Biochemistry, 1981, v. 20, N 5, p. 1279-1284.

284. Weigele J.B., Barchi R.L. Saxitoxin binding to the mammalian sodium channel. FEBS Lett., 1978, v. 95, N 1, p. 49-53.

285. French R.J., Worley J.F., Krueger B.K. Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers. Biophys. J., 1984, v. 45, N 1, p. 301-310.

286. Renaud J.-F., Kazazoglou T., Lombet A., Chicheportiche R., Jaimovich E., Romey G., Lazdunski M. The Na+ channel in mammalian cardiac cells. Two kinds of tetrodotoxin receptors in rat heart membranes. J. Biol. Chem., 1983, v. 258, N 14, p. 8799-8805.

287. Tanaka J., Doyle D.D., Barr L. Sodium channels in vertebrate hearts. Three types of saxitoxin binding sitesin heart. Biochim. et biophys. acta, 1984, v. 775, N 2, p. 203-214.

288. Levinson S.R., Ellory J.C. Molecular size of the tetro-dotoxin binding site estimated by irradiation inactiva-tion. Nature, 1973, v. 245, N 143, p. 122-123.

289. Lazdunski M., Balerna M., Chicheportiche R. , Fosset M., Jacques Y., Lombet A., Romey G., Schweitz H. Interaction of neurotoxins with the selectivity filter and the gating system of the sodium channel. Adv. Cytopharmacol., 1979, v. 3, p. 353-361.

290. Lombet A., Norman R.I., Lazdunski M. Affinity labelling of the tetrodotoxin-binding component of the Na+ channel. Biochem. and Biophys. Res. Commun., 1983, v. 114, N 1 , p. 126-130.

291. Miller J.A., Agnew W.S., Levinson S.R. Principal glyco-peptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: Isolation and partial chemical and physical characterization. Biochemistry, 1983, v. 22, N 2, p. 462-470.

292. Agnew W.S. Voltage-regulated sodium channel molecules. -Ann. Rev. Physiol., 1984, v. 46, p. 517-530.

293. Barchi R.L. Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J. Neu-rochem., 1983, v. 40, N 5, p. 1377-1385.

294. Barchi R.L. Voltage-sensitive Na+ ion channels: molecular properties and functional reconstitution. Trends. Biochem. Sci., 1984, v. 9, N 8, p. 358-361.

295. Hartshorne R.P., Catterall W.A. The sodium channel from rat brain. Purification and subunit composition. J. Biol. Chem., 1984, v. 259, N 3, p. 1667-1675.

296. Hanke W., Bohein G., Barhanin J., Pauron D., Lazdunski M. Reconstitution of highly purified saxitoxin-sensitive Na+-channels into planar lipid bilayers. EMBO J., 1984, v. 3, N 3, p. 509-515.

297. Tamkum M.M., Talvenheimo J.A., Catterall W.A. The sodium channel from rat brain. Reconstitution of neurotoxin-activated ion flux and scorpion toxin binding from purified components. J. Biol. Chem., 1984, v. 259, N 3, p. 16761688.

298. Rosenberg R.L., Tomiko S.A., Agnew W.S. Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of Electrophorus electricus. Proc. Nat. Acad. Sci. USA, 1984, v. 81, N 17, p. 5594-5598.

299. Angelides K.J., Nutter T.J. Molecular and cellular mapping of the voltage-dependent Na+ channel. Biophys. J., 1984, v. 45, N 1, p. 31-34.

300. Kao C.Y. Tetrodotoxin, saxitoxin, chiriquitoxin: new perspectives on ionic channels. Fed. Proc., 1981, v. 40, N 1, p. 30-35.

301. Kao C.Y., Yeon P.N., Goldfinger M.D., Fuhrman F.A., Mosher H.S. Chiriquitoxin, a new tool for mapping ionic channels. J. Pharmacol. Exp. Ther., 1981, v. 217, N 2, p. 416-429.

302. Lees G.V., Pichon Y. Effects of ervatamine and some ofits derivatives on excitability of giant axons of cockroach and squid. J. Physiol. (London), 1980, v. 305, N 1, p. 85-86P.

303. Frelin C., Vigne P., Ponzio G., Romey G., Tourneur Y., Husson H.P., Lazdunski M. The interaction of ervatamine and epiervatamine with the action potential Na+ ionophore. Mol. Pharmacol., 1981, v. 20, N 1, p. 107-112.

304. Lipicky R.D., Gilbert D.L., Ehrenstein G. Effects of yohimbine on squid axons. Biophys. J., 1978, v. 24, N 2, p. 405-422.

305. Dubois J.M., Schneider M.F. Effect of oenanthotoxin on sodium current and intramembrane charge movement in frog node <pf Ranvier. Advances. Physiol. Sci., 1981, v. 4, p. 79-87.

306. Gauldie J., Hanson J.M., Shipolini R.A., Vernon C.A. The structures of some peptides from bee venom. Eur. J. Biochem., 1978, v. 83, N 2, p. 405-410.

307. Habermann E., Horvath E. Localization and effects of apamin after application to the central nervous system. -Toxicon, 1980, v. 18, N 3, p. 549-560.

308. Schmid-Antomarchi H., Hugues M., Norman R., Ellory C.,

309. Borsotto M., Lazdunski M. Molecular properties of the2 + + apamin-binding component of the Ca -dependent K channel.

310. Radiation-inactivation, affinity labelling and solubilization. Eur. J. Biochem., 1984, v. 142, N 1, p. 1-6.

311. Seagar M.J., Granier C., Couraud F. Interactions of the neurotoxin apamin with a Ca^+-activated K+ channel in primary neuronal cultures. J. Biol. Chem., 1984, v. 259, N 3, p. 1491-1495.

312. Vincent J.-P., Schweitz H., Lazdunski M. Structure-function relationships and site of action of apamin, a neurotoxic polypeptide of bee venom with an action on the central nervous system. Biochemistry, 1975, v. 14, N 11,p. 2521-2525.2 +

313. Takahashi M., Tatsumi M., Ohizumi Y., Yasumoto T. Ca Channel activating function of maitotoxin, the most potent marine toxin known, in clonal rat pheochromocytoma cells.- J. Biol. Chem., 1983, v. 258, N 18, p. 10944-10949.

314. Miyamoto T., Ohizumi Y., Washio H., Yasumoto Y. Potent excitatory effect of maitotoxin on Ca channels in the insect skeletal muscle. Pfliigers Arch., 1984, v. 400, N 3, p. 439-441 .

315. Kawai N., Abe T., Hori S., Niwa A. Effect of a neurotoxin in hornet venom on neuromuscular junction of lobster. -Comp. Biochem. and Biophys., 1980, v. 65C, N 2, p. 87-92.

316. Abe Т., Kawai N., Niwa A. Purification and properties of a presynaptically acting neurotoxin, mandaratoxin, from hornet (Vespa mandarinia). Biochemistry, 1982, v. 21, N 7, p. 1693-1697.

317. Туракулов Я.Х., Сорокин B.M., Нишанходжаева С.A.,

318. Юкельсон JI.Я. Токсины яда среднеазиатской кобры. -Биохимия, 1971, т. 36, В 6, с. 1282-1287.

319. Henderson R., Wang J.H. Solubilization of a specific tetrodotoxin-binding component from garfish olfactory nerve membrane. Biochemistry, 1972, v. 11, N 24,p. 4565-4569.

320. Agnew VI.S., Raftery M.A. Solubilized tetrodotoxin binding component from electroplax of Electrophorus electricus. Stability as a function of mixed lipid-detergent micelle composition. Biochemistry, 1979, v. 18, N 10, p. 19121919.

321. Catteral W.A. , Ray R., Morrow C.S. Membrane potential dependent binding of scorpion toxin to action potential Na+ ionophore. Proc. Nat. Acad. Sci. USA, 1976, v. 73, N 8, p. 2682-2686.

322. Beneski D.A., Catterall W.A. Covalent labeling of protein components of the sodium channel with a photo-activable derivative of scorpion toxin. Proc. Nat. Acad. Sci. USA, 1980, v. 77, N 1, p. 639-643.

323. Barchi R., Cohen S., Murphy L. Purification from rat sarcolemma of the saxitoxin binding component of the excitable membrane sodium channel. Proc. Nat. Acad. Sci. USA, 1980, v. 77, N 2, p. 1306-1310.

324. Hartshorne R.P., Messner D.J., Coppersmith J.C., Catterall W.A. The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidenticalji-subunits. J. Biol. Chem. , 1982, v. 257, N 23, p. 13888-13891.

325. Edman P., Begg G. A protein sequenator. Eur. J. Biochem., 1967, v. 1, N 1, p. 80-91.

326. Gray W.R. Sequential degradation plus dansylation. In: Methods in Enzymology, C.H.W. Hirs, ed., N.Y.-London, Acad. Press, 1967, v. XI, p. 469-475.

327. Singleton W.S., Gray M.S., Brown M.L., White J.L. Chro-matographically homogeneous lecithin from egg phospholipids. J. Amer. Oil Chem. Soc., 1965, v. 42, N 1,p. 53-56.

328. Bassett E.W. Large scale preparation of wheat germ agglutinin. Prep. Biochemistry, 1975, v. 5, N 5/6, p. 461-477.

329. March S.C., Parikh J., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal. Biochem., 1974, v. 60, N 1, p. 149-152.

330. Беленький М.Л. Элементы количественной оценки фармакологического эффекта. Л.: Гос. Изд-во мед. лит-ры, 1963, с. 81.

331. Reisfeld R.A., Lewis U.J., Williams D.E. Disk electrophoresis of basis protein and peptides on polyacrylamide gels. Nature (London), 1962, v. 195, N 4838, p. 281-283.

332. Gray W.R. Dansyl chloride procedure. In: Methods in Enzymology, C.H.W. Hirs, ed., N.Y.-London, Acad. Press, 1967, v. XI, p. 139-147.

333. Habeeb A.F.S.A. Reaction of protein sulphydryl groups with Ellmann's reagent. In: Methods in Enzymology, C.H.W. Hirs, S.N. Timasheff, eds., N.Y.-London, Acad. Press, 1972, v. XXV, part B, p. 457-464.

334. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry, 1967, v. 6, N 8, p. 1948-1954.

335. Andrews P. Estimation of the molecular weight of proteins by sephadex gel-filtration. Biochem. J., 1964, v. 91,1. N 2, p. 222-233.

336. Shapiro A.L., Vinuella E., Maizel J.V. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrilamide gels. Biochem. and Biophys. Res. Commun., 1967, v. 28, N 5, p. 815-820.

337. Mendez Е., Lai C.J. Reaction of peptides with fluorescamine on paper after chromatography or electrophoresis. Anal. Biochem., 1975, v. 65, N 2, p. 231-252.

338. Bruton C.J., Hartley B.S. Chemical studies on methionyl tRNA synthetase from Escherichia coli. J. Mol. Biol., 1970, v. 52, N 2, p. 165-178.

339. Беленышй Б.Г., Ганкина Э.С., Нестеров В.В. Экспрессный ультрачувствительный метод идентификации n -концевых аминокислот в белках и пептидах с помощью тонкослойной хроматографии. Докл. АН СССР, 1967, т. 172, вып. I, с. 91-93.

340. Briel G., Neyhoff V. Microanalysis of amino acids and their determination in biological material using dansyl chloride. Hopper-Seyler1s Z. Physiol. Chem., 1972,v. 353, N 3, p. 540-553.

341. Ambler R.P. Sequence determination. Carboxypeptidases A and B. In: Methods in Enzymology, C.H.W. Hirs,

342. S.N. Timasheff, eds., N.Y.- London, Acad. Press, 1972, v. XXV, part B, p. 262-272.

343. Tschesche H., Kupfer S. C-Terminal sequence determination by carboxypeptidase С from orange leaves. Eur. J. Biochem., 1972, v. 26, N 1, p. 33-36.

344. Hayashi R., Moore S., Stein W.H. Carboxypeptidase from yeast. Large scale preparation and the application to COOH-terminal analysis of peptides and proteins.

345. J. Biol. Chem., 1973, v. 248, N 5, p. 2296-2302.

346. Roseau G., Pantel P. Revelation coloree des spots de phenylthiohydantoine d'acides amines. J. Chromatogr., 1969, v. 44, N 2, p. 392-395.

347. Беленький Б.Г., Ганкина Э.С., Прянишникова С.А., Эрастов Д.П. Микротонкослойная хроматография динитро-фенильных и фенилтиогидантоиновых производных аминокислот. Молек. биология, 1967, т. I, вып. 2, с. 184-189.

348. Pisano J., Brouzert Т., Brewer J.H. Advances in the gas chromatographic analysis of amino acid phenyl- and methylthiohydantoins. Anal. Biochem., 1975, v. 45,1. N 1, p. 43-59.

349. Назимов Й.В., Левина Н.Б. Использование жидкостной хроматографии среднего давления для разделения фенил-тиогидантоинов аминокислот. Биоорган, химия, 1980, т. 6, № 3, с. 393-399.

350. Wilson D.F., Miyata Y., Erecinska M., Vanderkooi J.M.

351. An aryl azide sutable for photoaffinity labeling of amine groups in proteins. Arch. Biochem. and Biophys., 1975, v. 171, N 1, p. 104-107.

352. Levinson S.R., Curatalo C.J., Reed J., Raftery M.A. A rapid and precise assay for tetrodotoxin binding to detergent extracts of excitable tissues. Anal. Biochem., 1979, v. 99, N 1, p. 72-84.

353. Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. -J. Biol. Chem., 1951, v. 193, N 1, p. 265-275.

354. Laemmli U.K. Cleavage of structural protein during the assembly of the head bacteriophage T4. Nature, 1970, v. 727, N 5259, p. 680-685.

355. Kelly C., Totty N.F., Waterfield M.D., Crumpton M.J. Amino acid sequence of polypeptides eluted from 2D Polyacrylamide gels. Biochem. Int., 1983, v. 6, N 4,p. 535-544.

356. Poduslo J.F. Glycoprotein molecular-weight estimation using sodium dodecyl sulfate-pore gradient electrophoresis:

357. Comparison of Tris-glycine and Tris-borate-EDTA buffer systems. Anal. Biochem., 1981, v. 114, N 1, p. 131-139.

358. Morrissey J.H. Silver stain for proteins in Polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal. Biochem., 1981, v. 117, N 2, p. 307-310.

359. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal. Biochem., 1976, v. 70,1. N 1, p. 241-250.

360. Stawinski J., Hozumi T., Narang S.A., Bahl C.P., Wu R. Arylsulfonyltetrazoles, new coupling reagents and further improvements in the triester method for the synthesis of deoxyribonucleotides. Nucleic Acids Res., 1977, v. 4,1. N 2, p. 353-371.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.