Обоснование применения мезенхимальных стволовых клеток, полученных in vitro у детей с гематологическими и онкологическими заболеваниями тема диссертации и автореферата по ВАК РФ 14.01.21, кандидат медицинских наук Устюгов, Андрей Юрьевич

  • Устюгов, Андрей Юрьевич
  • кандидат медицинских науккандидат медицинских наук
  • 2010, Москва
  • Специальность ВАК РФ14.01.21
  • Количество страниц 98
Устюгов, Андрей Юрьевич. Обоснование применения мезенхимальных стволовых клеток, полученных in vitro у детей с гематологическими и онкологическими заболеваниями: дис. кандидат медицинских наук: 14.01.21 - Гематология и переливание крови. Москва. 2010. 98 с.

Оглавление диссертации кандидат медицинских наук Устюгов, Андрей Юрьевич

ВВЕДЕНИЕ.

Глава 1. ОБЗОР ЛИТЕРАТУРЫ.

1.1 Мезенхимальные клетки и стромальное микроокружение.

1.2 Роль мезенхимальных клеток в гомопоэзе.

1.3 Иммунофенотипическая идентификация МСК.

1.4 Методы выделения МСК.

1.5 Свойства МСК.

1.6 Иммуномодулирующие свойства МСК.

1.7 Применения МСК in vivo:.

1.7.1 Применение МСК у животных

1.7.2 Применение МСК у людей

1.8 Безопасность применения.

1.9 Иммуногенетика.

1.10 Физиологическая роль МСК.

Глава 2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1 Образцы КМ для культивирования МСК.

2.2Дети, получавшие МСК для ко-трансплантаций.

Дети, получавшие МСК для контроля РТПХ

2.3 Образцы КМ для оценки химеризма МСК.

2.4 Клоногенное культивирование стромальных фибробластов костного мозга

2.5 Индукция дифференцировки мезенхимальных предшественников.

2.6 Иммунофенотипирование методом проточной цитофлюорометрии.

2.7 Изучение динамики роста МСК при длительном культивировании.

2.8 Определение зависимости содержания стромальных клеток в культуре от времени доставки образца костного мозга в лабораторию.

2.9 Приготовление цитогенетических препаратов.

2.10 Кариотипирование.

2.11 Анализ частоты анеуплоидии.

2.12 Клоногенное культивирование стромальных фибробластов костного мозга для изучения химеризма.

2.13 Методика определения химеризма (метод типирования БТЯ-локусов).

2.14 Бактериологическое исследование МСК.

2.15 Определение ДНК цитомегаловируса человека (СМУ).

2.16 Статистическая обработка данных.

Глава 3. Результаты и их обсуждение.

ЗЛМорфологическое подтверждение используемой нами методики выделения и культивирования МСК.

3.2Дифференцировочные потенции клеток получаемой нами культуры МСК костного мозга.

З.ЗСветооптические характеристики МСК при длительном культивировании.

3.4 Влияние сроков культивирования на фенотипический состав монослойной культуры.

3.5Интенсивность экспрессии, характерных для МСК антигенов при культивировании.

З.бДинамика роста клеточной популяции.

3.7Определение зависимости содержания стромальных клеток в культуре от времени доставки костного мозга в лабораторию.

3.8Кариотипирование мононослойной культуры костного мозга.

3.9Частота анеуплоидии МСК.

3.10 Бактериологическое исследование МСК.

3.11 Определение ДНК цитомегаловируса человека (СМУ).

3.12 Клиническое применение культивируемых МСК у детей.

ЗЛЗИсследование химеризма МСК костного мозга у пациентов, перенесших аллогенную трансплантацию КМ.

3.14 Результаты линейного химеризма.

Выводы.

Рекомендованный список диссертаций по специальности «Гематология и переливание крови», 14.01.21 шифр ВАК

Заключение диссертации по теме «Гематология и переливание крови», Устюгов, Андрей Юрьевич

Выводы

1. Полученные при помощи усовершенствованной методики культивирования in vitro МСК КМ показали возможность приживления при трансплантациях у детей с гематологическими и онкологическими заболеваниями.

2. МСК, полученные в результате усовершенствованной методики культивирования in vitro, сохраняют полноценную функциональную активность, способность к дифференцировке в адипоциты и остеоциты.

3. Для стандартной оценки МСК в трансплантационном материале предложена следующая иммунофенотипическая панель: CD105, CD166, CD44, CD73, CD13, CD29, CD90.

4. При длительном культивировании in vitro МСК КМ человека 3-4 пассажа обладают высокой пролиферативной активностью, которая снижается при дальнейшем культивировании и становится минимальной к 10-12 пассажу.

5. После 3 пассажа в клеточной популяции отсутствовали клетки с гемопоэтическим и эндотелиальном фенотипом (CD45, CD34, CD 133, CD3, CD 19, CD25, CD38, CD45, CD106, CD31). Наблюдалась высокая экспрессия маркеров МСК KM (CD90, CD 105, CD 166, CD44, CD73, промежуточная CD 13 и СТ)29.).При увеличении срока культивирования МСК до 10-12 пассажа снижается количество клеток, экспрессирующих CD90, CD 105 и CD166. Наблюдается тенденция к снижению CD29, CD13, а также исчезают примеси гемопоэтических клеток (CD45+), эндотелиальных клеток (CD31+) и моноцитов (CD 14+)

6. В результате длительного культивирования у МСК КМ на ранних и поздних пассажах хромосомный набор не менялся (46,XY или 46,XX) и отсутствовали анеуплоидии.

7. Полученные нами данные оценки трансфузионной безопасности у детей позволяют предположить, об отсутствии ранних трансфузионных осложнений при применении приготовленных in vitro МСК у детей.

8. Используемый метод ПЦР определения химеризма МСК КМ продемонстрировал достаточную информативность и может применяться для оценки приживления МСК у детей с гематологическими и онкологическими заболеваниями.

Практические рекомендации

1. Метод может быть рекомендован для экспансии ex vivo МСК КМ в клинических целях

2. Для культивирования МСК in vitro рекомендованы образцы костного мозга, время у которых от момента забора костного мозга донора до начала выделения и культивирования прошло не более 6 часов.

3. Для оценки иммунофенотипа МСК в трансплантационном материале рекомендуется использовать панель, состоящую из характерных для МСК маркеров (CD90, CD105, CD166, CD44, CD73, CD13, CD29), так и маркеров, специфичных для гемопоэтических клеток (CD3, CD14, CD 19, CD25, CD29, CD31, CD34, CD38, CD45, CD 106, HLA-DR).

4. Для клинических целей рекомендовано применять МСК 3-4 пассажа.

5. В случае необходимости использования в терапевтических целях МСК более поздних сроков культивирования необходим строгий контроль поверхностного фенотипа и генетической стабильности клеточных трансплантатов.

Список литературы диссертационного исследования кандидат медицинских наук Устюгов, Андрей Юрьевич, 2010 год

1. Владимирская Е.Б., Майорова О.А. Румянцев С.А, Румянцев А.Г. Биологические основы и перспективы терапии стволовыми клетками. 2005; стр. 74-82.

2. Kojima Н et al .Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc. Natl.Acad.Sci. USA 2004;101(8):2458-63.

3. Willenbring H et al. Myelomonocytic cells are sufficient for therapeutic cell fusioniin liver. Nat .Med.2004;10;7:744-8'.

4. DelFAgnola С et al.Hematopoietic stem celltransplantation does not restore dystrophin expression alter engraftment into cardiac and skeletal muscle.J Clin.Invest.2004; 114:1577-85.

5. Lapidos K.A. et al. Transplanted hematopoieticstem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle.J.Clin.Invest. 2004;114:1577-85.

6. Terade N et al. Bone marrow cells adopt the phenotypeb of other cells by spontaneous cell fusion. Nature 2002;416(6880):542-5.

7. Ogle B.M. et al. Biological implications of cell fusion .Nat. Rev.Mol. Cell Biol. 2005;6(7);567-75.

8. Olge B.M et al. Spontaneous fusion of cells between species yields transdifferentiation and retroviral in vivo. FASEB J.2004; 18:548-50.

9. Shi D. et al.Myogenic fusion of human bone marrow stromal cells, but not hematopoietic cells. Blood 2004;104:290-4.

10. Clark BR, Kealing A. Biology of bone marrow stroma. //Ann NY Acad Sci. -1995. -N770. -P.70-78.

11. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. //Exp Hematol. -2000. -N28. -P.875-884

12. Colter DC, Class R, Digirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. //Proc. Nati. Acad. Sci USA.-2000. -N97. -P.3213-3218.

13. Javazon E.N., Colter D.C., Schwarz E.J., Prockop D.J. Rat marrow stromal cells aremore sensitive to plating density and expand more rapidly from single-cell-derivedicolonies than human marrow stromal cells. //Stem cells. -2001. -N19. -P.219-225.

14. Martin D.R., CoxN.R., Hathcock T.L., Niemeyer G.P., Baker H.J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. //Exp. Hematol. -2002. -N30. -P.879-886.

15. Pittenger M., Mackay A., Beck S., et al. Multilineage potential of adult human mesenchymal stem cells. //Science. -1999. -N84. -P. 143-147.

16. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. //J Cell Physiol. -1999. -N181. -P.67-73.

17. Clark E, Wognum AW, Marciniak R et al. Mesenchymal cell precursors from human bone marrow have a phenotype that is direct from cultured mesenchymal cells and are exclusively present in a small subset of CD451ow SH2+ cells. //Blood. -2001. -N98. -P.85a.

18. Haynesworth SE, Baber MA, Caplan AL. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal anibodies. //Bone. -1992. — N13. -P.69-80.

19. Gronthos S, Simmons PJ. The growth factor requirements of STRO-1 -positive human marrow stromal precursors under-deprived conditions in vitro. //Blood. -1995. -N85. -P.929-940.

20. Oyajobi BO, Lomri A, Hott M et al. Isolation and characterization of human clonogenic osteoblast progenitors immunoselected from fetal bone marrow stroma using STRO-1 monoclonal antibody. //J Bone Miner Res. -1999. -N14. -P.351-361.

21. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. //Blood. -1991. -N78. -P.55-62.

22. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, et al. Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. //Nature 2002. -N418. -P.41-49.

23. Lee OK, Kuo TK, Chen W-M et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. //Blood. -2004. -N103. -P. 1669 -1675.

24. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. //J Cell Sci. -2003. -N116. -P. 1827-1835.

25. Gronthos S., Simmons PJ. The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. //Blood. -1995. -N85. -P.4

26. Majumdar MK, Banks V, Peluso DP, Morris EA. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. //J Cell Physiol. -2000. -N185. -P.198-106

27. Mitchell JB, Mcintosh K, Zvonic S, Garrett S, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. //Stem Cells. -2006. -Vol.24, N2. -P.376-385.

28. Rochon C, Frouin V, Bortoli S, Giraud-Triboult K, et al. Comparison of gene expression pattern in SP cell populations from four tissues to define common "sternness functions". //Exp Cell Res. -2006. -Vol.312, N11. -P.2074-2082.

29. Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). //Circulation. -2002. -N106. -P.3009-3017.

30. Barry F.P. Mesenchymal stem cell therapy in joint disease. //Novartis Found Syrnp. -2005. -N249. -P.86-96

31. Kovacic JC, Graham RM. Stem-cell therapy for myocardial diseases. //Lancet. -2004. -N363. -P.1735-1736

32. Noort W., Kruisselbrink A., de Paus R., et al. Co-transplantation of MSC and UCB CD34+ cells results in enhanced hemopoietic engrafment. //Exp.Hematol.-2002. -N30. -P.870-878

33. Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. //Nature 2002. -N418. -P.41-49.

34. Jiang Y, Vaessen B, Lenvik T et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. //Exp Hematol 2002. -N30. -P.896-904.

35. Reyes M, Dudek A, Jahagirdar B et al. Origin of endothelial progenitors in human postnatal bone marrow. //J Clin Invest. -2002. -N109. -P.337-346.

36. Reyes M, Lund T, Lenvik T et al. Purification and ex-vivo expansion of postnatal human marrow mesodermal progenitor cells. //Blood. -2001. -N98. -P.2615-2625.

37. Reyes M., Verfaillie C.M. Charakterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. //Ann NY Acad Sei. -2001. -N938. -P.231-235.

38. Schwartz RE, Reyes M, Koodie L et al . Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. //J Clin Invest. -2002. -N109. -P.1291-1302.

39. Herzog E., Chai. Li., Krause S. Plasticity of marrow-derived stem cells. //Blood. -2003. -N102. -P.3483-3493

40. Aldhous P, Reich ES. Flawed stem cell data withdrawn. //New Scientist. -2007, -Vol.15; N2591.-P. 12

41. Hardeman EC, Chiu CP, Minty A, Blau HM. The pattern of actin expression in human fibroblast X mouse muscle heterokaryons suggests that human muscle regulatory factors are produced. //Cell. -1986. -N47. -P. 123-130

42. Honma T,Honmou O, Iihoshi S, et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. //Exp Neurol. -2006. -N199. -P.56-66.

43. Sugaya K, Alvarez A, Marutle A, Kwak YD, et al. Stem cell strategies for Alzheimer's disease therapy.

44. Zhang I I Huang Z, Xu Y, Zhang S. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage.Neurol Res. 2006, 28, 104-112

45. Couri C, Foss M, Voltarelli C. Secondary prevention of type 1 diabetes mellitus, stopping immune destruction and promoting B-cell regeneration. //Braz J Med Biol Res. -2006.-N39.-P. 1271-1280.

46. Rabb H. Paracrine and differentiation mechanisms underlying stem cell therapy for the damaged kidney. //Am J Physiol Renal Physiol. -2005. -N289. -P.29-30.

47. Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005, 328, 258264

48. Minguell JJ. Mesenchymal stem cells. //Exp Biol Med. -2001. -N226. -P.507-520.

49. Conget P, Minguel JJ. Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. //Exp Hematol. —2000. -N28. -P.3 82-390.

50. Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype, implications for osteopenic disorders. Hi Bone Miner Res. -1998. -N13. -P.371-382

51. Owen M. Marrow stromal stem cells. //J Cell Sci. -1988. -N10. -P.63-76.

52. Tontonoz P, Hu E. Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. //Cell. -1994. -N79. -P.l 1471156

53. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. //J Cell Biochem. -1997. -N64. -P.278-294.

54. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfal, A transcriptional activator of osteoblast differentiation. //Cell 1997. -N89. -P.743-754.

55. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. //Exp Hematol. -1976. -N4. -P.267-274

56. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. //J Cell Sci. -2000. -N113. -P. 1161-1166.

57. Liu B, Buckley SM, Lewis ID, et al. Homing defect of cultured human hematopoietic cells in the NOD/SCID mouse is mediated by Fas/CD95. //Exp Hematol. -2003. -N31. -P.824-832.

58. Miura M, Miura Y, Padilla-Nash H. et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. //Stem Cells. -2006. -Vol.24, N4. -P. 1095-1103.

59. Rubio D., Garcia-Castro J., Martin M. et al. Spontaneous human adult stem cell transformation. //Cancer Res. -2005. -Vol.65, N8. -P.3035-3039.

60. Tolar J., Nauta A., Osborn M. et al. Sarcoma Derived from Cultured Mesenchymal Stem Cells. //Stem cells. -2007. -Vol.25, N2. -P.371-379.

61. Wang Y., Huso D., Harrington J. et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. //Cytotherapy. -2005. — Vol.7, N6. -P.509-519.

62. Sale GE, Stoib R. Bilateral diffuse pulmonary ectopic ossification after marrow allograft in a dog. Evidence for allotransplantation of hemopoietic and mesenchymal stem cells. //Exp Hematol. -1983. -Vol.11, N10. -P.961-966.

63. Young-Sup Yoon, et al. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction //Circ 2004. -N109. -P.3154-3157.

64. El-Seisi S, et al. Renal pathology at autopsy in patients who died after hematopoietic stem cell transplantation. //Biol Blood Marrow Transplant. -2003. -Vol9, N11. -P.683-688.

65. Di Nicola M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood.2002;99:3838-3843.

66. Le Blanc K et al. Mesenchymal stem cell inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11-20.

67. Potian JA et al. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigenes and recall antigens. J lmmunol.2003:171: 3426-3434.

68. Tse WT et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cell .-implication in transplantation .Transplantation .2003 ;75: 389-397.

69. Bartholomew A et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol.2002;30: 42-48.

70. Djouad F et al. Immunosuppressive effect of mesenchymal stem cell favors tumor growth in allogeneic animals .Blood.2003.102:3837-3844.

71. Krampera M et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen -specific T cells to their cognate peptide .Blood .2003;101:3722-3729.

72. Augello A. et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol.2005;35: 1482-1490.

73. Le Blance K et al. Mesenchymal stem cells inhibit the expression of CD 25(interleukin -2 receptor) and CD 38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol. 2004;60:307-315.

74. Rasmusson I et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogenes and alloantigens by different mechanisms. Exp Cell Res.2005;305:33-41.

75. Meisel R et al. Human Bone marrow stromal cell inhibit allogeneic T-cell responses by indolamine 2,3-dioxygenase -mediatad tryptophan degradation .Blood.2004:103 ;4619-4621.

76. Aggarvval S et al. Human Mesenchymal stem cells modulate allogeneic immune cell responses.Blood.2005; 105:1815-1822.

77. Plumas let al. Mesenchymal stem cells induce apoptosis of activated-T cells.Leukemia.2005; 19:1597-1604'.

78. Rasmusson I et al. Immune modulation by mesenchymal stem cells .Exp Cell Res.2006;312:2169-2179.91Giennie S et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood.2005;105:2821-2827.

79. Maccario R et al.Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4 + subsets expressing a regulatory/suppressive phenotype.Haemotologica.2005;90:516-525.

80. Rutella S et al. Tolerogenic dendritic cells ¡cytokine modulation comes of age.Blood. 2006;108:1435-1440.

81. Jiang XX et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells.Blood.2005; 105:4120-4126.

82. Nauta AJ et al. Mesenchymal stem cells inhibit generation and function of both CD 34+ derived and monocyte-derived dendritic cells. J Immunol.2006;177:2080-2087.

83. Zhang W et al. Effects of mesenchymal stem cells on differentiation ,maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004;13:263-271.

84. Beyth S et al. Human mesenchymal stem cells alter antigen -presenting cell maturation and induce T-cell unresponsiveness .Blood.2005;105:2214-2219.

85. Corcione A. et al. Human mesenchymal stem cells modulate B-cell functions.Blood.2006; 107:367-372.

86. Krampera M et al. Role for interferon- gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24:386-398.

87. Smuth MJ et al. New aspects of natural -killer-cell surveillance and therapy of cancer .Nat Rev Cancer. 2002;2 :850-861.

88. Sotiropoulou PA et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74-85.

89. Spaggiari GM et al. Mesenchymal stem cells-natural killer cell interactions : evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation .Blood.2006; 107:1484-1490.

90. Nauta AJ et al.Donor-derived mesenchymal stem cells are immunogenic in an allogenec host and stimulate donor graft rejection in a nonmyeloblative setting. Blood.2006;108 :2114-2120.

91. Yanez R et al. Adipose tissue-derived mesenchymal stem cells (AD-MSC) have in vivo immunosuppressive properties applicable for the control of graft -versus-host disease (GVHD). Stem Cells.2006; 24:2582-2591.

92. Sudres M et al. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vivo but fail to prevent grafit-versus-host disease in mice. J Immunol. 2006;176:7761-7767.

93. Zappia E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106:1755-1761.

94. Zhang J et al. Human bone marrow stromal cell treatment improves neurological function recovery in EAE mice .Exp Neurol.2005; 195:16-26.

95. Djouad F et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen -induced arthritis . Arthritis Rheum .2005;52:1595-1603.

96. Studney M et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2006;62:3603-3608.

97. Koc ON et al. Rapid hematopoietic recovery after coinfusion of autologous -blood stem cells and culture -expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy .J Clin Oncol. 2000; 18:307-316.

98. Lazarus HM et al. Contransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patiets.Biol Blood Marrow Transplantat. 2005; 11:389-398.

99. Ball LM et al. Cotransplantation of haploidentical bone marrow derived mesenchymal stem cells overcomes graft dysfunction and improves hematological and lymphocyte recovery in haploidentical stem cells transplantation. Blood.2006; 108: Abstract 3118.

100. Le Blanc K et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004; 363:1439-1441.

101. Horwitz EM et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta : implications for cell therapy of bone. Proc Natl Acad Sei USA. 2002; 99:8932-8937.

102. Gao J et al. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells afterinfusion. Cells Tissues Organs.2001; 169:12-20.

103. Breitbach M et al. Potential risks of bone marrow cell transplantation into infracted hearts. Blood. 2007;110: 1362-1369.

104. Rubio D et al. Spontaneous human adult stem cell transformation .Cancer Res .2005;65:3035-3039.

105. Miura M et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24: 10951103.

106. Tolar J et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2006;25:371-379.

107. Bacigalupo A et al.T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp Hematol .2005;33: 819-827.

108. Del Papa N et al. Bone marrow endothelial progenitors are defective in systemic sclerosis .Arthritis Rheum. 2006;54:2605-2615.

109. In 4 Anker PS et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation . Blood. 2003;102:1548-1549.

110. In4 Anker PS et al. Mesenchymal stem cells in human second-trimester bone marrow , liver ,lung ,and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica.2003;88:845-852.

111. Bieback К et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22:625-634.

112. Kogler G et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004; 200:123-135.

113. Niederkoni JY. See no evil, hear no evil, do no evil: the lessons of immune privilege .Nat Immunol. 2006;7:354-359.

114. Barry FP et al. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev .2005; 14: 252-265.

115. Кос ON ct al. Allogeneic mesenchymal stem cells infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant.2002;30:215-222.

116. Stagg J et al. Interferon-gamma -stimulated marrow stromal cells:a new type of nonhematopoietic antigenpresenting cell. Blood. 2006:107:2570-2577.

117. Chan JL et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood.2006; 107:4817-4824.

118. Eliopoulos N et al. Allogeneic marrow stromal cells are immune rejected by MHC class I and II mismatched recipient mice. Blood.2005;106:4057-4065.

119. Grinnemo KH et al. Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infracted rat myocardium .J Thorac Cardiovasc Surg .2004;127:1293-1300.

120. Alma J et al. Immunomodulatory properties mesenchymal stromal cells. Blood.2007.110:3499-3506

121. Tai M.-H. et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis doi:10.1093.321.

122. Rubio D. et al. Spontaneous human adult stem cell transformation .Cancer Res.2005;65:3035-9.

123. Kassem M. et al. Adult stem cells and cancer. Cancer Res.2005;65:9601.

124. Miura M et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells to malignant transformation. Stem Cells. 2005

125. Stenderup К et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells.Bone 2003;33:26-919.

126. Фриденштеин А.Я., Чертков И.Л. Клеточные основы нммуннтета.М. :Медицина, 1969; 256.

127. Friedenstein A., Petrakova К., Kurolesova A., Frolova G/ Heterotopic transplants of bone marrow Analysis of precursors cells for osteogenic and hematopoietic tissues. Transplantation. 1968; 6; 230-247.

128. Baserga A. Le nicchie di mitosi hemopoietiche. Hematologica (Pavia). 1976. Vol.61. N1. 1-8.

129. Sotiropoulou PA, Perez SA, Gritzapis AP, et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24: 74-85.

130. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune responses. Blood. 2005;105:1815-1822.

131. Bottino С, Castriconi R, Moretta L, Moretta A. Cellular ligands of activating NIC receptors. Trends Immunol. 2005;26:221-226.

132. Brunning R, Bennett J, et al .Myelodysplasia syndromes .IARC Press;2001 p61-73

133. Schoch С et al. Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment :a study of 90 patients. Br J Haematol.2001; 112:118-126.

134. Schoch С et al. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML):an analysis of 93 patients t-AML in comparison to 1091 patients with de novo AML .Leukemia. 2004;18:120-125.

135. Patients -Br J Haematol. 2001;ll3;737-745.

136. J- ^lromal stem cells: marrow-derived osteogenic preciarsors

137. Found Symp. 1988; 136:42-60.

138. Al Marr0WStr0raal flbr°Wasts. Calcif Tissue Int.l995;56; (Sup^X 1).17

139. VisserPj"13 AH' Br°Ckbank KG' Ploemacher RE, van Vliet E, Brakel-van Peer ICM, jsser . Characterization of fibroblastic stromal cells from murine bone marrow. — Exp

140. Hematol.- 1985.- 13.-237-243.y rth SE, Babei MA, Caplan A I. Cell surface antigens on human marrow-derived mesenchymal cells in vitro: effects of dexamethasone and IL-1 alpha. -J Cell Physiol. 1996. - 166. - 585-592.

141. Goldberg VM, Caplan AI. The osteogenic potential of cuIture-ocparLded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks.

142. Orthop.-1991.-269.-298-311.

143. Flores-Figueroa E et al. In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplasia syndrome .Leuke Res .2002;26:677-686.

144. Borojevic R et al.Bone marrow stromal in childhood myelodysplastic syndrome xomposition ,ability to sustain hematopoiesis in vitro, and altered gene expression . Leuk Res. 2004;28: 831-844.

145. Narendran A et al. Characterization of bone marrow stromal abnormalities in a patients with constitutional trisomy 8 mosaicism and myelodysplastic syndromes (MDS) .Pediatr Hematol Oncol. 2004;21:209-221.

146. Flores-Figueroa E et al. Mesenchymal stem cells in myelodysplastic syndromes :phenotypic and cytogenetic characterization. Leuk Res.2005;29: 215-224.

147. Zhan W et al. Origin of stroma cells in long-term bone marrow cultures from patients with acute myeloid leukemia .Ann Hematol. 1999;78:305-324.

148. Bhatia R et al.Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia :role of malignant stromal macrophages .Blood .1995:85:687688.

149. Mayani H et al Composition and function of the hematopoietic microenvironment in human myeloid leukemia. Leukemia. 1996;10:1041-1047.

150. Awaya N et al. Marrow stromal cells are not derived from the malignant clone in myelodysplastic syndromes (MDS). Blood.2001;98(Ssppl l):1487a

151. Soenen V et al. Mesenchymal cells (MC) from patients with myelodysplastic syndrome(MDS) are devoid of cytogenetic abnormalities and support short and long-term hematopoiesis in vitro. Blood.2001;98(Suppl l):3041a.

152. Olga B et al. Chromosomal aberrations in bone marrow mesenchymal stem cells patients with myelodysplastic syndrome and acute myeloblasts leukemia. Experimental Hematology 35. 2007; 221-229.

153. Deeg HJ. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndromes. Leuk Lymphoma. 2000;37:405-414.

154. Friedenstein AJ, Latzinik NV, Gorskaya Yu F, Luria EA, Moskvina EL. Bone marrow stromal colony formation requires stimulation by haemopoietic cells. Bone Miner. - 1992. - 18. - 199-213.

155. Charbord P, Oostendorp R, Pang W, et al. Comparative study of stromal cell lines derived from embryonic, fetal, and postnatal mouse blood-forming tissues. Exp

156. Hematol. 2002. - 30. - 1202-1210.

157. Zhan W, Knieling G, Vohwinkel G, et al. Origin of stroma cells in AMI" long-term bone marrow cultures from patients with acute myeloid leukemia. Ann Iiematol. 1999;78:305-324.

158. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J cell Sci. 1992. - 102Pt.2. - 341-351.

159. Romanov YA, Svinsitskaya VA, Smirnov VN. Searching for alternative sources of" postnatal human mesenchymal stem cells: candidate SC-like cells from umbilical cord. — Stem cells.-2003.-21.- 105-110.

160. Huss R. Isolation of primary and immortalized CD34- hematopoietic and medenchymal stem cells from various sources. Stem Cells. - 2000. - 18. - 1-9.

161. Zhao LR, Duan WM, Reyes Keene CD, Verfaillie CM, Low WC, Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into ischemic brain of rats. Exp Neurol. - 2002. - 174. - 11-20.

162. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. - 2002. - 418. - 41-49. .

163. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functiona hepatocyte-like cells. J Clin Invest. - 2002. - 109- — 1291-1302.

164. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotent: progenitor cells can be isolated from postnatal murine bone marrow. J Clin Invest. — 2002.- 109.-337-346.

165. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of* endothelial progenitors in human postnatal bone marrow. J Clin Invest. - 2002. - 1 337-346.

166. Clark BR, Kealing A. Biology of bone marrow stroma. Ann NY Acad Sci. - 15 --770.-70-78.

167. K. Le Blanc12 & 0. Ringden: Immunomodulation by mesenchymal stem cells and clinical experience Jornal of Internal Medicine.2007:262:509-525.

168. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood2005; 105:4 1 ^2-0.

169. Glennie S, Soeiro I, Dyson PJ, Lam EVV, Da/.zi F. Bone marrow mesei chymal slem cells induce division arrest anergy of activated T eel;. Blood 2005; 105:2821.

170. Le Naour F, I Iohenkirk L, Grolleau A, el al. Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomii s. / Biol Chem 2001; 276: 17920.

171. Ramasainy R, Fazekasova H, Lombard Dazzi F198Mesenchymal Stem Cells Inhibit Dendritic Cell Differentiation and Function by PreventingEntry Into the Cell Cycle/ Transplantation ,2007;Vol 83;71-76

172. Cheng M, Sexl V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinase and titration of p27Kipl regulated by mitogen-activated protein kinase (MEK1). ProcNatl AcadSciUSA\998; 95: 1091.

173. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-medialed tryptophan degradation. Blood 2004:103:4619.

174. Pi Nicola M, Carlo-Stella C, Magni M, el al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific milogenic stimuli. Blood 2002; 99: 3838*.

175. Cheng T, Shen H, Rodrigues N, Stier S, Scadden DT. Transforming growth factor beta 1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21 (Cip 1/Wafl) or p27( Kip 1). Blood 2001; 98: 3643.

176. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition ofTcell proliferation by macrophage tryptophan catah-olism./ Exp Med 1999; 189: 1363.

177. Han C, Wu T. Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through F.PI receptor-mediated activation of the epidermal growth factor receptor and'Akt. I Biol Chem 2005; 280: 24053.

178. Zhang B et al. Mesenchymal stem cells induce mature dendritic cells into a never Jagged-2-dependent regulatory dendritic cell population.Blood.;2009:l 13:46-56

179. Фриденштейн А.Я., Чайлахян Р.К., ЛалыкинаК.С. О фибробластоподобных клетках в культурах кроветворных тканей морских свинок. Цитология 1970; 12: 1147-1155.

180. L.G. Shaffer, N. Tommerup. International System for Human Cytogenetic Nomenclature. Published in collaboration with Cytogenetics and Genome Research under the title ISCN, 2005. Karger, 2005:130.

181. Muraglia A., Cancedda R., Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. Jornal of Cell Science 2000; 113: 1161-1168.

182. Pittenger M., Mackay A., Beck S., et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147.

183. Innis M.A., Gelfand D.H., Sninsky J J. et al. PCR protocols, a guide to methods and applications .1990. Academic Press. San Diego. California

184. Erlich H.A. et al.PCR tehnology. 1989. Stocton Press.New York.

185. Herrington C.S. McGee J.O D. In:In situ hybridization: application to developmental biology and medicine (ed. N. Harris, D.G. Wilkinson ).1990, pp.241-69. Cambridge University Press, Cambrige.

186. K. Le Blanc and O. Ringden. Immunomodulation by mesenchymal stem cells and clinical experience. Jornal of INTERNAL MEDECINE, 2007; 262: 509-525.

187. B. Delorme, J. Ringe, N. Gallay et al,. Specific plasma membrane protein phenotype of culture-amplified and native^human bone marrow mesenchymal stem cells. Blood, 2008; 111:2631-2635.

188. Kassem M. et al. Adult stem cells and cancer. Cancer Res., 2005; 65:9601-9607.

189. Назаренко С.А., Тимошевский В.А. Анализ частоты спонтанной анеуплоидии в соматических клетках человека с помощью технологии интерфазной цигогенетики. Генетика, 2004, том 40, № 2, с. 195-204.

190. Бочков Н.П., Никитина В.А. Цитогенетика стволовых клеток человека. Мол. Мед., 2008, № 3, с. 40-47.

191. Gatti R, Meuwissen Н,Allen Н, et al. Lancet. 1968;2:1366-1369.

192. Bach F, Albertini R, Joo P, et al.Lancet. 1968;2:1364-1366.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.