Пластические реакции нейронов in vitro. Структурно-функциональные взаимодействия молекулярных комплексов в процессе формирования адаптивных реакций тема диссертации и автореферата по ВАК РФ 03.00.13, доктор биологических наук Запара, Татьяна Александровна

  • Запара, Татьяна Александровна
  • доктор биологических наукдоктор биологических наук
  • 2005, Новосибирск
  • Специальность ВАК РФ03.00.13
  • Количество страниц 197
Запара, Татьяна Александровна. Пластические реакции нейронов in vitro. Структурно-функциональные взаимодействия молекулярных комплексов в процессе формирования адаптивных реакций: дис. доктор биологических наук: 03.00.13 - Физиология. Новосибирск. 2005. 197 с.

Оглавление диссертации доктор биологических наук Запара, Татьяна Александровна

Сокращения ВВЕДЕНИЕ

ГЛАВА 1 ОБЗОР ЛИТЕРАТУРЫ

1.1. 1.

ГЛАВА

Субклеточные и молекулярные механизмы обучения

Роль цитоскелета в организации физического 32 взаимодействия между участниками процессов восприятия внешних воздействий, проведения сигналов и формирования ответов клетки.

Роль структурообразующих белков в организации 47 взаимодействий ионных каналов и рецепторов плазматической мембраны с цитоскелетом и внутриклеточными протеинами

Современная концепция структурной организации передачи 50 сигналов на клеточном уровне.

ГЛАВА 2 ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объект исследования

Методика получения и культивирования изолированных 68 нейронов

Методы исследования электрической активности 71 изолированных нейронов

Алгоритмы применения воздействий, вызывавших 76 кратковременные пластические перестройки ответов. Алгоритмы применения воздействий, вызывавших 79 долговременные пластические реакции сомы изолированных нейронов

Приготовление растворов используемых веществ и способы 80 их аппликации.

Статистический анализ данных.

РЕЗУЛЬТАТЫ ОБСУЖДЕНИЕ

ИССЛЕДОВАНИЯ

Кратковременные пластические реакции сомы 83 изолированных нейронов.

Пластические реакции нейронов, сформированные 83 локальными, одиночными электрическими воздействиями. Свойства пластических изменений ответов сомы 86 изолированных нейронов, вызванные локальными, одиночными электрическими воздействиями Пластические реакции, сформированные сочетанными 92 локальными и генерализованными электрическими воздействиями.

3.1.4 Свойства пластических изменений ответов сомы 93 изолированных нейронов вызванные сочетанными локальными и генерализованными электрическими воздействиями.

3.1.5 Реакции нейронов и функциональные изменения 98 электрогенных структур плазматической мембраны, вызванные локальной электрической стимуляцией по алгоритмам выработки привыкания и ассоциативного обучения.*

Рекомендованный список диссертаций по специальности «Физиология», 03.00.13 шифр ВАК

Введение диссертации (часть автореферата) на тему «Пластические реакции нейронов in vitro. Структурно-функциональные взаимодействия молекулярных комплексов в процессе формирования адаптивных реакций»

Одной из актуальных проблем современной нейробиологии являются исследования структурно-функциональной организации пластичности нейрональных реакций на: молекулярно-клеточном уровне. Сложные функции нервной, системы обеспечиваются способностью , нейронов к пластическим изменениям реактивности. Эта способность проявляется под ; действием • последовательных раздражений и выражается в изменении реакции; на воздействия; Выявлены общие; закономерности: организации базисных механизмов приспособительных реакций нервных клеток мозга, вызванных адекватными и экстремальными? воздействиями [Самойлов М.О., 1999]. В: работах, направленных на исследование молекулярных механизмов < пластических реакций: основное внимание, как правило,, уделяется^ обнаружению конкретных молекул, которые осуществляют метаболическое обеспечение этих реакций [Гринкевич JI.H. и др., 1996; Максимова O.A., Балабан; П.М., 1983; Никитин В.П., Козырев С.А., 2002; Никитин В.П., Козырев С.А, Шевелкин A.B., 2002; Степанов И.И1 и: др., 1987; Balaban P.M.,. Korshunova T.A., Bravarenko N.I., 2004; Zakharov I.S. et al. 1998]. Хотя в некоторых" случаях идентифицированы участники метаболического обеспечения передачи сигнала, остаются недостаточно исследованными процессы, обеспечивающие доставку необходимых молекул от мест синтеза к компартментам использования, физическое взаимодействие между ними, и образование надмолекулярных комплексов, которые:позволяют клетке, быстро, оптимально и адекватно реагировать на внешние воздействия.

В первоначальной концепции передачи сигналов [Orly J., Schramm M;, 1976] предполагалось, что все главные компоненты рецепции воздействий и генерации ионных токов и/или метаболического ответа нейронов - рецепторы; G протеины, протеинкиназы, протеазы, ионные каналы— могут быть свободно распределены в клетке. Процессы передачи; информации в клетке происходят во время случайных столкновений и взаимодействий отдельных партнеров процесса. Однако очень большое количество рецепторов различных медиаторов, гормонов и сенсорных стимулов взаимодействуют с системами вторичных посредников - кальциевой, фосфоинозитидной, циклических нуклеотидов. Тем не менее, несмотря на явную диспропорцию типов рецепторов плазматической мембраны и систем вторичных посредников, нейроны способны отличить один стимул от другого в пределах миллисекунд.

Благодаря исследованиям последних лет, в основном синаптической пластичности, происходит формирование новой концепции передачи сигналов. Она заключается в том, что специфика восприятия внешних воздействий и пластических изменений ответов клетки определена структурой организации и механизмами реорганизации взаимодействий между молекулами участниками этих процессов, цитоскелетом и моторными протеинами. Обнаружены белки, благодаря которым происходит сборка функциональных комплексов. Аминокислотная последовательность и третичная структура этих протеинов и домены белок-белкового распознавания (последовательности аминокислот) рецепторных, сигнальных, цитоскелетных и эффекторных протеинов позволяют осуществлять физическое взаимодействие и позиционирование молекул партнеров определенного процесса в надмолекулярные комплексы, получившие название микродомены [Tsunoda S. et al., 1997].

В некоторых случаях образование связей между протеинами-партнерами могут происходить на ранних стадиях биосинтеза еще в эндоплазматической сети и cis-Golgi сети [Kornau Н.С. et al., 1995; Niethammer М. et al., 1996; Passafaro M. et al., 2001]. Микродомены подвергаются транспортировке с помощью специфических моторных протеинов, которые используют тубулиновый цитоскелет как направляющие для перемещения микродоменов от компартментов синтеза к местам их встраивания в плазматическую мембрану.

По актиновым филаментам моторные протеины могут эксирессировать синаптические везикулы и рецепторные микродомены в плазматическую мембрану, а также осуществлять рециркуляцию микродоменов (регулируемую активностью нейронов) между этой мембраной и внутриклеточными компартментами.

Благодаря' исследованиям последних лет становятся доминирующими представления, что пластичность нейрональных реакций на клеточно-молекулярном уровне наряду с другими событиями обеспечивается: процессами: экспрессии и субклеточного динамического позиционирования функциональных микродоменов. Эти процессы инициируются внешними воздействиями и активностью нейронов (генерацией ионных токов, метаболическими реакциями), а контролируются и осуществляются структурой взаимодействий (прямых или опосредованных) с цитоскелетом.

Структурные изменения, обеспечивающие пластические реакции, могут затрагивать количество молекул, которые не всегда обнаруживаются аналитическими методами в частности конфокальной микроскопией [Kim С.Н., Lisman J.E., 1999]. Однако лиганды, модулирующие динамические перестройки цитоскелета, могут оказывать влияние на формирование пластических реакций, что позволяет исследовать механизмы организации микроструктурных перестроек в процессе формирования и сохранения нейрональной пластичности электрофизиологическими методами.

Исследования условий и механизмов формирования приспособительных реакций и роли цитоскелета в организации нейрональной пластичности могут привести к более глубокому пониманию процессов обработки информации на клеточном и субклеточном уровнях. Конкретные сведения о структурно-функциональных связях микродоменов соматической мембраны с цитоскелетом и временной и микроструктурной организации нейрональной пластичности ограничены. Этому направлению исследований и посвящена представленная работа.

Цель и основные задачи исследования

Цель исследования: Определить закономерности формирования пластических реакций изолированных нейронов и роль цитоскелета в организации локальных пластических изменений плазматической мембраны клетки;

Основные задачи исследования:

1. Найти приемы и создать экспериментальные условия, которые позволяют формировать кратковременные и долговременные пластические изменения; ответов изолированной сомы нейронов.

2. Экспериментально проверить предположения, что соматическая мембрана нейрона может реагировать на воздействия как функционально гетерогенная структура.

3. Экспериментально проверить предположение, что на клеточном уровне новые приспособительные реакции развиваются в ответ на экстремальные воздействия на фоне мобилизации эволюционно сформированных клеточных механизмов адаптации.

4. Исследовать влияние экспериментальной модификации реорганизации актинового и тубулинового цитоскелета на динамику формирования и сохранения пластических нейрональных реакций.

Научная новизна

Впервые описаны условия, позволяющие с помощью адекватных воздействий формировать локальную перестройки возбудимости на участке мембраны меньшем, чем 1/300 часть площади соматической мембраны клетки.

Процесс формирования пластических реакций на этапе появления нового типа ответов сопровождается максимальным изменением ионных токов на участке клетки, однако когда пластические изменения реакции нейронов уже сформированы, параметры ионных токов возвращаются к исходному уровню

Впервые получены данные о том, что сочетанное применение экстремальных воздействий направленных на; активацию защитных механизмов клетки и низких концентраций исследуемых веществ индуцируют формирование долговременных адаптивных реакций, которые проявляются в снижении ответов нейронов на физиологические концентрации этих веществ.

Впервые показано, что экспериментально вызванная модификация процессов реорганизации структуры актинового или тубулинового цитоскелета сомы, нейронов; оказывает влияние на развитие и сохранение нейрональной пластичности.

Теоретическая и практическая значимость результатов

Обнаружение локальных пластических изменений возбудимости соматической-мембраны нейронов имеет теоретическое значение для оценки информационной емкости нервной системы.

Полученные результаты о влиянии экспериментальной модификации реорганизации цитоскелета на динамику формирования и сохранения изменений нейрональных реакций позволяют составить более полное представление о функциональной гетерогенности соматической мембраны и о роли цитоскелета в структурной организации процессов нейрональной пластичности. Представления и концепции о структурной организации рецепции и передачи сигналов на клеточно-молекулярном уровне сформировались, в основном, в исследованиях синаптической пластичности возбуждающих синапсов млекопитающих. Данные, полученные на эволюционно более древнем объекте, чем млекопитающие, на соматическом компартменте нейронов моллюсков, имеют самостоятельную научную ценность. Эти данные придают универсальность представлениям о структурной организации передачи сигналов и роли цитоскелета в интеграции и организации физического взаимодействия молекул участников процессов, которые формируют пластические изменения ответов нейронов.

Экспериментальный прием сочетанного применения экстремальных стимулов и низких концентраций веществ позволил обнаружить, что экстремальные стимулы могут индуцировать клеточные процессы, направленные на усиление биологической значимости слабых воздействий' (низких концентраций веществ) и снижать реакции нейронов на физиологические концентрации; этих веществ. Этот экспериментальный прием может найти клиническое применение и служить основой для исследований молекулярных механизмов действия; низких концентраций веществ; в? норме и: при различных патологических состояниях.

Основные положения, выносимые на защиту:

1. Сома нейрона может реагировать на локальные воздействия как функционально гетерогенная структура.

2. Воздействия на небольшие участки соматической мембраны по алгоритмам: ассоциативной; и не ассоциативной стимуляции, могут вызывать кратковременные изменения ответов нейронов, которые имеют ряд типичных характеристик, обнаруженных на более высоком организменном уровне: дифференцировка воздействий (пространственная и по интенсивности), сокращение при повторных сессиях количества воздействий, необходимых для выработки пластических реакций.

3. Экстремальные воздействия могут индуцировать клеточные процессы, направленные на формирование новых приспособительных реакций и усиление биологической значимости слабых воздействий.

4. Изменения ионной проницаемости мембраны сопровождают пластические перестройки ответов нейронов. Для поддержания процессов формирования и сохранения пластических изменений ответов нейронов необходима активация структурных перестроек молекулярной морфологии с участием актинового и тубулинового цитоскелета нейронов.

5. Структурная реорганизация цитоскелета нейронов является одним из механизмов пластических изменений реакций нейронов.

Апробация работы

Результаты работы докладывались на всесоюзных и международных симпозиумах, конференциях, съездах. В том числе на: Vllth international Neurobiological Symposium,

Magdeburg, 1985; VI Пражский междунар. симп. Соц. стран, ЧССР, Прага. 1988; Second

Intern. Conf. "Molecular electronics and biocomputers", Moscow. 1989; Всес. симп.

Одиночные ионные каналы в биологических мембранах"", Пущино. 1989; Ш Всесоюз. конф. по нейронаукам. Киев, 1990; Всесоюз. симп. "Ионные каналы в биологических мембранах", Кара-даг, 1990; Второе совещ. "Физические основы построения устройств обработки информации на молекулярном уровне", Москва, 1990; Fourth conference on the neurobiology of learning and memory. Irvine, USA, 1990; International workshop "Gangliosides: the pharmacology of neuronal plasticity", Italy, 1991; Всесоюз. школа-семенар по биомолекулярному компьютингу. Москва, 1991; Конф. "Простые нервные системы", Минск, 1991; Symposium Russian Neural Net-works Society and the Institute of Electrical and Electronics Engineers, "Neuroinformatics and Neurocomputers", Rostov-on-Don, 1992; Междунар. конф. Проблемы нейрокибернетики. Ростов-на-Дону, 1992; International Symposium Simple nervous systems. 1S1N Pushchino, 1994; International Symposium Physiological and biochemical basis of brain activity. St.-Petersburg, 1994; Всероссийский семинар "Нейроинформатика и ее приложения", Красноярск, 1995; П ХХХ1П International Congress of Physiological Sciences IUPS, St.-Petersburg, Russia, 1997; 5th East European Conference of the international society for invertebrate neurobiology. Moscow, 1997; II International symposia Modern problems of laser physics (MPLP-97), Novosibirsk, 1997; III Съезд физиологов Сибири и Дальнего Востока. Новосибирск, 1997; ХУП съезда физиологов России, Ростов-на-Дону 1998; Международная конференция "Рецепция и внутриклеточная сигнализация", Пущино, 1998; П Съезд Биофизиков России, Москва, 1999; Int. Symp. dedicated to academician I. Pavlov's 150-anniversary, St.-Petersburg, 1999; International conference "Conceptual advances in the studies of associative learning and memory" Moscow, 1999; III Международный симпозиум "Механизмы действия сверхмалых доз". Москва, 2002; VII East European Conference of the International Society for Invertebrate Neurobiology "Simpler Nervous Systems" Kaliningrad, 2003; ID Съезд Биофизиков, России, Воронеж, 2004; XIX Съезд Физиологического Общества им. И.П. Павлова, Екатеринбург, Россия, 2004.

Публикации. По теме диссертации опубликовано 47 научных работ в отечественной и зарубежной печати.

Структура и объем работы. Диссертация состоит из введения, обзора литературы, описания материалов и методов, результатов исследований и их обсуждения, заключения, выводов и списка литературы. Работа изложена на 197 страницах, содержит 28 рисунков. Список литературы включает 404 источника, из них 34 отечественных.

Похожие диссертационные работы по специальности «Физиология», 03.00.13 шифр ВАК

Заключение диссертации по теме «Физиология», Запара, Татьяна Александровна

выводы

Локальная электрическая стимуляция сомы изолированных нейронов по алгоритмам выработки привыкания и ассоциативного обучения вызывает пластические изменения ответов, которые имеют ряд особенностей, характерных для этих форм научения на уровне организма.

Пластические изменения ответов сомы нейронов, вызванные локальными воздействиями, не требуют генерализованной модификации структур; клетки: обусловливающих изменение потенциала покоя или порога генерации потенциалов действия. Пластические изменения ответов нейронов могут сопровождаться локальными изменениями возбудимости сомы нервных клеток. Реакция нейрона на внешнее воздействие может быть обусловлена состоянием ионной проницаемости небольших участков соматической мембраны. Экспериментальная модификация состояния кальций зависимых калиевых каналов и/или проницаемости для ионов кальция небольших участков соматической мембраны может вызвать перестройку реакции нейрона на стимуляцию. Изменения пластических реакций нейрона, вызванные локальной фармакологической модификацией мембраны, проявляются только при воздействиях на модифицированный участок мембраны.

Процесс формирования пластических реакций может сопровождаться локальным изменением ионных токов только на том участке клетки, где происходят воздействия. Максимальное изменение ионных токов наблюдаются на= этапе появления нового типа ответов, однако когда пластические изменения реакции нейронов сформированы, параметры ионных токов на участке мембраны возвращаются к исходному уровню. Формирование разнонаправленных пластических изменений нейрональных реакций сопровождается локальным однотипным изменением ионных токов плазматической мембраны.

Прекондиционирование нейронов низкими концентрациями веществ одновременно с экстремальными воздействиями (неспецифическим повреждением клеток) или адекватными, воздействиями, активирующими эволюционно сформированные защитные механизмы (переход от аэробиоза к анаэробиозу), позволяет формировать приспособительные реакции клеток, которые проявляются в снижении нейрональных реакций на физиологические концентрации тестируемых; веществ.

Нарушение образования; новых актиновых филаментов или микротрубочек, вызванное экзогенными лигандами актина или тубулина, либо полностью блокирует формирование пластических изменений ответов, либо эффект проявляется в том, что появление нового ответа не сопровождается стабильной пластической перестройкой ответов.

Взаимодействие фаллоидина с микрофиламентами и нарушение их деполимеризации блокирует формирование пластических перестроек ответов. Эти; данные свидетельствуют о том, что стабилизация актинового цитоскелета может быть одним из механизмов сохранения структуры взаимодействий между молекулами, обуславливающими определенный тип ответов, и выполняет функцию памяти на клеточном уровне.

Взаимодействие таксола с микротрубочками и нарушение их деполимеризации проявлялись в увеличении количества воздействий необходимых для формирования изменений ответов при повторении сессий выработки < пластических реакций. В контрольных условиях наблюдалось сокращение числа воздействий, необходимых для повторного формирования пластических реакций.

Использование набора экзогенных лигандов, модулирующих динамические перестройки актинового и тубулинового цитоскелета, позволило экспериментально показать, что цитоскелет принимает участие, а возможно, и контролирует процессы формирования и сохранения локальных пластических изменений возбудимости соматической мембраны нейронов.

ЗАКЛЮЧЕНИЕ

Современные методы клеточной и молекулярной биологии позволили показать, что преобразования нейрональной активности, вызванные процедурами обучения, охватывают различные отрезки времени и затрагивают многие структурно-функциональные участки и пространственные области нейронов (рис.1). Однако большинство развивающихся во время обучения биохимических, биофизических и ультраструктурных изменений регистрируемых параметров нервных клеток спустя некоторое время возвращаются к базовому уровню. Это свидетельствует об отражении в них промежуточных процессов, которые важны для определенного периода и необходимы для инициирования других преобразований в нейронах, ответственных за обучение [Котляр, 1986]. Невозможно выделить какой-либо наиболее значимый процесс биофизических, биохимических или ультраструктурных преобразований, который является специфическим для; феноменов обучения и адаптации. Основные данные о механизмах обучения были получены в процессе исследований синаптической. пластичности. Сложились представления, что обучение и память основаны исключительно на синаптической пластичности. Исследования роли нейрональной пластичности в организации работы мозга становятся актуальными в связи с тем, что за последнее время накопилось достаточное количество фактов, указывающих, что синаптические токи могут контролироваться пластическими изменениями биофизических свойств внесинаптической мембраны [Семьянов, 2002]. Благодаря изменениям биофизических свойств внесинаптической мембраны (проводимости, возбудимости, длительности токов) синаптические токи могут быть подавлены или усилены. Результаты проведенных нами исследований показали, что изменения биофизических свойств соматической мембраны могут быть вызваны локальными электрическими воздействиями по алгоритмам выработки привыкания и ассоциативного обучения. Изменения ответов сомы нейронов имели ряд особенностей, характерных для привыкания и ассоциативного обучения. Необходимо подчеркнуть, что пластические изменения ответов, вызванные

Рис. 1 Упрощенное схематическое представление взаимодействия вторичных мессенджеров, ионных каналов и цитоскелета в зонах локальной пластичности клетки.

Подрисуночный текст на следующей странице.

Рис. 1 Упрощенное схематическое представление взаимодействия вторичных мессенджеров, ионных каналов и цитоскелета в зонах локальной пластичности клетки tl - миллисекунды, секунды. Нейрон деполяризуется в результате активации мегабогропных каналов (связанных с рецепторами медиаторов и взаимодействующих с G-белками). Мембранная деполяризация активирует ионотропные каналы, вызывая приток ионов в клетку, в том числе Са2\ Диацилглицерол, арахидоновая кислота и инозитолтрифосфат активируются фосфолипазами. Са2^ активизирует РКС, которая после этого перемещается к плазматической мембране. Са2+ также активизирует Са2+ /кальмодулин-зависимые киназы (СаМ), которые подвергаются аутофосфорилированию, что поддерживает активность СаМ независимо от Са2\ РКС и СаМ киназа могут блокировать Са+, К+ и другие каналы прямым фосфорилированием. Трансмембранные ионные сигналы в tl период контролирует генерацию ионных токов, метаболические реакции, а также образование связей мембранных белков с цитоскелетом и перестройки цитоскелета. Перестройки цитоскелета происходит благодаря активации различных типов актин-ассоциированных белков: кэппирующих белков типа CapZ и тропомодулин; разъединяющих протеинов типа гельзолин; мономер связывающих протеинов типа профилин. tl - секунды, минуты. Повышение концентрации Са2* активирует Са-связывающие белки (например калекситин). Фосфорилирование СЕ РКС вызывает его транслокацию к мембране, где он блокирует К-каналы, делая мембрану более легковозбудимый к дальнейшим деполяризующим стимулам. Также СЕ, вызывает выход Ca2f через каналы связанные с RyR на мембране ЕР и возможно на синаптической, что приводит к усилению Ca2f сигналов. IP3 также вызывает выход Са через активацию IP3 рецепторов ЕР. Состояние цитоскелета также регулируется Са:+зависимыми протеинами.

РМ - плазматическая мембрана; R - рецепторы; G - G-белки; АС - аденилатциклаза; сАМР -циклический аденозинмонофосфат; РКА - протеинкиназа-А; PIP2 - фосфатидилинозитол-4,5дифосфат; PDE - фосфодиэстераза; DG - диацилглицерол; IP3 - инозитол1,4,5трифосфата; РКС - протеинкиназа-С;. С - кальпаин; ЕР - эндоплазматический ретикулум; RyR - рианодиновые рецепторы; СЕ - Са2'связывающий белок калекситин. Т - тубулин; А - актин; МАР2 -ассоциированный с микротрубочками белок; Ad - аддисин; S - спектрин; Са - ионы кальция; Н ионы водорода; Na - натриевый канал; К - калиевый канал; Са* - кальциевый канал; К2 - кальций зависимый К канал; М митохондрии; "+" положительная связь; "-" отрицательная связь; tl-t3 временные этапы развития реакции. воздействиями на небольшие участки мембраны, не сопровождались генерализованной * модификацией свойств плазматической мембраны сомы нейрона. Не были выявлены, изменения МП клетки и порога генерации ПД при внутриклеточном нанесении стимулов. Были обнаружены локальные изменения' возбудимости сомы нейрона, которые на определенных; этапах формирования реакции сопровождались изменением ионной проводимости мембраны. Фармакологическая модификация калиевой; или кальциевой- проводимости небольших участков; мембраны изменяли пластические свойства нейрона, и изменения реакции нейрона проявлялись только при воздействиях на модифицированные участки мембраны [Ратушняк, Запара, 1989].

Полученные нами данные [Запара Т.А., Ратушняк A.C., Штарк М.Б., 1988] являются одними из первых экспериментальных доказательств наличия субклеточных механизмов, которые1 позволяют соматическому компартменту нейронов локально регулировать характеристики электрогенных структур. Локальная модификация, электрогенных структур позволяет нейрону дифференцированно оценивать биологическое значение; нескольких воздействий. Проявлением локальных механизмов регуляции нейрональной пластичности является изменение возбудимости и ионной проводимости отдельных участков соматической мембраны, вызванное локальной электрической стимуляцией по алгоритмам^ выработки привыкания, и ассоциативного < обучения. Локальные изменения биофизических характеристик плазматической мембраны, вероятно, позволяют нейрону избирательно регулировать синаптические токи и таким образом определять приоритеты информационных потоков нейрональной сети, в состав которой он входит.

Последовательные электрические раздражения участка сомы изолированного нейрона вызывали пластические изменения ответов, для которых был характерен ряд закономерностей, обнаруженных и описанных при использовании аналогичных алгоритмов воздействия (форм обучения) на менее редуцированных препаратах нервной системы и целом организме. Локальные пластические изменения ответов имели следующие свойства: вероятность и динамика уменьшения эффективности вызова спайковых ответов находилась в зависимости от интенсивности воздействия; обратимость реакции (при прекращении стимуляции наблюдалось самопроизвольное восстановление исходного вида ответов); повторение процедуры стимуляции вызывало перестройку ответов после нанесения меньшего числа стимулов; дифференцировка стимулов по интенсивности и месту нанесения воздействий (при изменении параметров стимула или места нанесения раздражения регистрировался исходный вид ответа). Эти данные об особенностях локальных пластических изменений возбудимости электрогенной мембраны сомы нейрона поддерживают представления о преемственности принципов организации взаимоотношений со средой на всех выделяемых уровнях организации живых систем. Однако необходимо отдавать отчет, что известные феномены обучения - это функция всего мозга, а избирательное изменение возбудимости плазматической мембраны — только вклад нейрона в процессы обучения.

Пластические изменения ответов нейронов сопровождались локальными изменениями проницаемости участков мембраны для ионов. Было обнаружено, что разнонаправленные перестройки ответов сопровождались однотипными изменениями суммарных токов. Локальное увеличение входящих токов наблюдалось в нормальной и безнатриевой среде. Эти данные свидетельствуют об увеличении кальциевой проводимости при разнонаправленных перестройках ответов. Разное направление перестройки ответов при увеличении вхождения кальция может свидетельствовать об участии в этих процессах нескольких механизмов, определяющих направление изменения клеточного ответа. Можно предположить, что в перестройке ответов решающую роль играет не ионизированный кальций, переносимый этим током, а определенные биохимические и структурные процессы, в регуляции которых принимают участие эти ионы. Необходимо особо отметить, что период наибольшего увеличения амплитуды ионных токов совпадал с появлением нового вида ответов и чередования двух типов реакции нейронов на стимул. А по мере формирования стабильной перестройки ответов наблюдалось возвращение пиковой амплитуды токов к базовому уровню. Эти данные подтверждают закономерности развития процессов, обусловливающих различные формы обучения. Вероятно, зарегистрированное увеличение вхождения в клетку ионов кальция может инициировать ультраструктурные перестройки межмолекулярных связей и цитоскелета нейрона. Увеличение вхождения в клетку ионов кальция контролирует генерацию ионных токов, метаболические реакции, а также образование связей мембранных белков и цитоскелета и перестройки цитоскелета. Известно, что такие перестройки цитоскелета могут, не изменяя характеристик одиночных ионных каналов, приводить к уменьшению трансмембранных ионных токов соматической мембраны [Rosenmund С., Westbrook G.L., 1993]. Ионы кальция могут усиливать деполимеризацию ряда цитоскелетных белков (в частности, актина), активируя кальций-зависимые протеазы (кальпаины) [Чистякова Ю.В., Парфенова Е.В., 1989; Perlmutter L.S. et al. 1990; Vanderklish Р. et al., 1995]. Состояние цитоскелета регулируется также протеинкиназами [Aoki С., Siekevitz Р., 1985; Bennet V., Gardner К., Steiner J., 1988; Prekeris R. et al., 1996].

Перестройки цитоскелета могут происходить под влиянием внешних воздействий и оказывать влияние на формирование и сохранение пластических реакций [Hatada Y. et al., 2000]. Высокоспецифические лиганды (фаллоидин, таксол, колхицин, цитохалазин В), которые взаимодействуют с мономерными или полимерными формами актина и тубулина, нарушают изменения перестройки цитоскелета, которые в норме контролируются вторичными посредниками. Поэтому экспериментальные нарушения перестроек цитоскелета, вызванные экзогенными лигандами, могут вносить существенные коррекции в процессы формирования, сохранения и повторной выработки пластических реакций [Ratushnyak A.S. et al., 1997]. Известно, что цитоскелет участвует во многих клеточных процессах, поэтому обычно возникают трудности в интерпретации действий цитостатиков на клетку. В используемых нами моделях пластические изменения реакций, обусловленные действием цитостатиков, происходили на небольших участках соматической мембраны, и модификации цитоскелета тоже, вероятно, происходили локально, о чем свидетельствует динамика формирования и время сохранения пластических реакций на других участках сомы нейрона.

Было обнаружено, что нарушение процессов образования полимерных форм актина и тубулина в ряде случаев не препятствует появлению нового типа ответов, но блокирует развитие стадии стабильной перестройки ответов [Запара Т.А. и др., 1996; Ratushnyak A.S. et al., 1998; Zapara Т.А. et al., 1999]. Эти данные позволяют предположить, что микроструктурные перестройки, в которых участвуют актиновый и тубулиновый цитоскелет, выполняют определенную роль на этапе закрепления, сохранения "принятого нейроном решения" изменить ответ на внешнее воздействие.

Изменение состояния актинового цитоскелета - блокада деполимеризации микрофиламентов с помощью фаллоидина может — изменять пластические свойства, не оказывая прямого воздействия на электрические характеристики соматической мембраны. Обработка цитоскелета клетки перед стимуляцией, которая вызывает кратковременные пластические изменения ответов, может приводить к появлению устойчивости нейрона (исходной реакции) к такой стимуляции. Обработка цитоскелета клетки фаллоидином после изменений ответа, вызванных стимуляцией, увеличивает время сохранения сформированного ответа, и переводит кратковременные изменения ответов в долговременные [Запара Т.А., Ратушняк А.С., 1991; Запара Т.А. и др., 1996; Ratushnyak A.S. et al., 1998; Zapara Т.А. et al., 1999].

Изменение состояния тубулинового цитоскелета, вызванное взаимодействием таксола с микротрубочками (блокада их деполимеризации), приводила к сокращению времени сохранения нового ответа и возникновению зависимости динамики формирования пластической реакции от серии стимуляции. Во второй и последующих сериях количество стимулов, необходимое для изменения ответов, увеличивалось [Запара

Т.А. и др., 1996; Ratushnyak A.S. et al., 1998; Zapara Т.А. et al., 1999]. Эффекты взаимодействия таксола с микротрубочками, которые проявлялись в увеличении количества воздействий (времени), необходимых для формирования пластических нейрональных реакций, при повторных сериях, вероятно, свидетельствуют о необходимости поставки в зону пластических перестроек ответов новых молекул.

Данные, полученные на нейронах моллюсков и срезах гиппокампа, поддерживают предположения о том, что пластические изменения ответов нейронов, наряду с другими субклеточными процессами, могут быть обусловлены микроструктурными-: перестройками, вызванными динамическими переходами полимерная-мономерная форма белков цитоскелета. В наших экспериментах [Ratushnyak A.S. et al., 1998; Zapara.Т.A. et al., 1999] показано, что структурные перестройки, необходимые для формирования пластических нейрональных изменений реакций, могут происходить в небольшом объеме клетки. В экспериментах на срезах гиппокампа показано, что структурные перестройки могут, не изменяя базовую: активность нейронов: обусловливать синаптическую пластичность. При этом небольшое количество молекул определяющих такие структурные изменения не обнаруживаются аналитически [Kim С.Н., Lisman J.E., 1999]. Для исследования роли микроструктурных перестроек, обусловливающих пластические свойства нейронов, достаточно эффективно могут быть использованы электрофизиологические методы.

Известно, что микроструктурные перестройки цитоскелета контролируются многочисленными эндогенными лигандами (минорными белками цитоскелета) [Curlier М. et al. 1997; Moon A., Drubin D.G., 1995; Wu С., 1995]. Активность минорных белков цитоскелета регулируется сигнальными системами и зависит от внутриклеточных процессов и взаимодействия клетки с внешней средой.

Известны механизмы (кальций связывающие белки, депо) благодаря, которым ионы кальция локально управляют активностью своих мишеней. Вероятно, возможна структурная организация локальной регуляции активности одноименных молекул (рецепторов, каналов, ферментов) клетки. Системы вторичных посредников опосредованно через регуляцию активности минорных белков могут вызывать перестройку цитоскелета в небольших компартментах клетки и таким образом, локально управляя реорганизацией структуры взаимодействий между молекулами, изменять рецепцию воздействий.

Вероятно, внешние воздействия на клетку трансформируются в микроструктурные перестройки, которые позволяют сохранять некоторое время взаимодействие между молекулами,, которые участвовали в генерации нового типа ответов и выполняют функцию кратковременной клеточной памяти.

Локальные экспериментальные электрические воздействия вызывали кратковременные пластические изменения ответов сомы изолированных нейронов; В естественных условиях несинаптическая мембрана нейронов мозга, наиболее вероятно, может испытывать локальные воздействия в процессе взаимодействия внесинаптических рецепторов с лигандами "объемной" передачи информации, во время патологических процессов и фармакологических воздействий на мозг. Известно, что одним из условий формирования долговременных адаптивных реакций является применение каких-либо достаточно сильных (экстремальных) воздействий. Механическая дезагрегация нейронов в растворах низких концентраций веществ моделирует такие компоненты патологических состояний, как воздействие на нейроны неспецифических повреждающих факторов и появление в межклеточном пространстве некоторых биологически активных веществ в ультранизких концентрация. Полученные данные показывают, что одновременное воздействие на сому изолированных нейронов неспецифических повреждающих факторов и низких концентраций веществ способствует формированию долговременных приспособительных реакций нейронов и повышает биологическую значимость низких концентраций этих веществ.

Использование в качестве сильных воздействий гиноксического стресса позволило обнаружить, что одновременная мобилизация эволюционно сформированных заложенных адаптивных механизмов перехода к анаэробиозу и воздействие низких концентраций веществ способствует формированию новых приспособительных реакций нейронов и повышает биологическую значимость низких концентраций веществ, что проявляется в снижении реакции нейронов на физиологические концентрации тестируемых веществ.

Инкубация нейронов в растворах низких концентраций без экстремальных воздействий не вызывала формирования адаптивных реакций. Такие различия реакций нейронов на изолированные и сочетанные воздействия можно объяснить следующим образом. Экстремальные воздействия, которые испытывают нейроны, индуцируют базисные или специфические по отношению к воздействию внутриклеточные механизмы, направленные на возвращение основных характеристик клетки - ионного гомеостаза, рН, уровня АТФ - к норме. Экспрессируются функциональные микродомены регуляторных, эффекторных и других типов протеинов, которые участвуют в эволюционно сформированных процессах адаптации к изменениям среды. Одновременная экспрессия таких специализированных микродоменов и активация небольшого числа рецепторов тестируемых лигандов может вызвать образование между ними взаимодействий, возможно, структурных. Такая интерпретация полученных результатов соответствует современной концепции о возможности долговременного физического взаимодействия между молекулами-участниками передачи сигналов и образовании функционально упорядоченных микродоменов. Возможно, после образования связей, вызванных сочетанными слабыми и экстремальными воздействиями, активация рецепторов тестируемых веществ будет инициировать активацию микродоменов, контролирующих ионный гомеостаз. Активация этих микродоменов может уменьшить величину изменения мембранного потенциала, вызванную аппликацией тестируемых веществ. Однако предположение о формировании структурных взаимодействий между микродоменами, которые участвуют в рецепции нескольких воздействий, как физической основы образования временных связей, требует дальнейшей экспериментальной проверки.

Список литературы диссертационного исследования доктор биологических наук Запара, Татьяна Александровна, 2005 год

1. Analogue of the conditioned reflex of Helix pomatia. // In: "Cellular and molecular neurobiology" 1982, v. 2, P. 71-80. (соавт. Shtark M.B., Tretyakov V.P., Deny B.N.).

2. The plasticity of a simple nervous system // In. "Neuronal plastisity and memory formation", (Eds. A. Marsan, H. Matties). Raven press, N-York, 1982, P. 271-283. (соавт. Shtark M.B., Grinkevich L.N., Tretyakov V.P., Deny B.N.)

3. Закономерности миграции изолированных нейронов моллюсков при регенерации "in vitro" // Сб. науч. трудов. "Гомеостатические процессы в изолированных системах и организме" Красноярск, ИБФ СО АН СССР, 1984, С. 211-216. (соавт. Ратушняк A.C.).

4. Локальные изменения ионных токов при пластических изменениях электрогенеза нейрона // Тез. Всесоюз. конф. "Простые нервные системы и их значение для теории и практики" — Казань, 1985, С. 76-78. (соавт. Ратушняк A.C.).

5. Локальные изменения трансмембранных ионных токов при пластических перестройках электрогенеза изолированных нейронов прудовика // Журн. высш. нервн. деят. 1988, т. 38, вып. 1, С. 140-145. (соавт. Ратушняк A.C., Штарк М.Б.)

6. Моделирование на изоизолированных нейронах пластических перестроек функциональной активности // Материалы П Всесоюз. конф. "Простые нервные системы и их значение для теории и практики" Л; Наука, 1988, С. 120-123. (соавт. Ратушняк A.C.).

7. Межклеточные взаимодействия в диссоциированной культуре нейронов при реагрегации // Материалы Всесоюз. конф. "Интегративная деятельность нейрона: молекулярные основы" М., Наука, 1988, С.102-103. (соавт. Ратушняк A.C.).

8. Моделирование нескольких зон пластичности в пределах одного нейрона // В сб. "Имитация систем в биологии и медицине" (Материалы шестого Пражского междунар. симп. Соц. стран). ЧССР, Прага, 1988, С. 76-80. (соавт. Ратушняк A.C.).

9. Перестройка реакции нейрона при локальной модификации мембраны // Докл. АН СССР 1989, т. 309, № 4, С. 1012-1014. (соавт. Ратушняк А.С.).

10. Experimental analysis of mechanism recording information by the molecular neuroprocessor // abs. In: Second Intern. Conf. "Molecular electronics and biocomputers." Moscow, 1989, P. 108-109. (соавт. Ratushnyak A.S.)

11. Local changes of transmembrane currents at plastic reorganizations of electrogenesis of isolated neurons of the snail; // Neurosci. Behav. Physiol. 1989, v. 19, № 3, P. 140-145. (соавт. Ratushnyak A.S., Shtark M.B.).

12. Влияние на локальную пластичность соматической мембраны изолированных нейронов стабилизации цитоскелетных структур // Материалы П' Всес. симп. "Возбудимые клетки в культуре ткани", Пущино. 1990. ОНТИНЦБИ АН СССР, С. 152-155. (соавт. Ратушняк А.С.).

13. Influences on plastic properties of the isolated neurons by gangliosides // In: "VIII intemetional neurobiological symposium". Magdeburg, GDR, 1990 P. 292-296. (соавт. Ratushnyak A.S.).

14. Локальное увеличение кальциевой проводимости при пластических реакциях изолированных нейронов //В сб. "Ш Всесоюз. конф. по нейронаукам", Киев, 1990 С. 22-23. (соавт. Ратушняк А.С.).

15. Механизмы обработки и записи информации в молекулярных нейропроцессорных системах // В сб. Второго совещ. "Физические основы построения устройств обработки информации на молекулярном уровне" М., 1990, С. 18-19. (соавт. Ратушняк А.С.).

16. Experimental analysis of mechanisms of information fixation by means of molecular neuroprocessor // In: "Molecular Electronics", ed. P.I. Lazarev, Kluwer Acadmic Publishers. 1991, P. 219-225. (соавт. Ratushnyak A.S.).

17. Влияние на перестройку реакции нейрона стабилизации микрофиламентов // Докл. АН СССР 1991, т. 318, № 2, С. 492-495. (соавт. Ратушняк А.С.).

18. Экспериментальный анализ механизмов обработки и фиксации информации в молекулярных нейропроцессорах // Тез.: "Всесоюзная школа-семинар по биомолекулярному компьютингу" М., 1991, С. 72. (соавт. Ратушняк А.С.).

19. Symposium Russian Neural Net-works Society and the Institute of Electrical and Electronics Engineers, "Neuroinformatics and Neurocomputers"

20. Экспериментальная модуляция синаптической пластичности // В сб.: "Проблемы нейрокибернетики" Ростов-на-Дону, 1992, С. 210-211. (соавт. Егорушкина Н.В., Ратушняк А.С.)

21. Молекулярная динамика пластичности модельного входа нейрона // В сб. "Проблемы нейрокибернетики" Ростов-на-Дону, 1992, С. 216-218. (соавт. Ратушняк А.С.).

22. Experimental analysis of principles of information processing1 by neuron // In: "Optoelectronics, Instrumentation and Data Processing" Allepton press, N-York, 1993 no 2, P. 61-65. (соавт. Ratushnyak A.S.).

23. Влияние изменения динамического равновесия в системах микротрубочек и микрофиламентов на пластические реакции нейрона // Журн. высш. нервн. деят. -1996, т.46, вып. 2, С. 355-362. (соавт. Ратушняк А.С., Жарких А.А., Ратушняк О.А.)

24. Взаимосвязь молекулярной динамики нитоскелета и нейрональной пластичности // В сб.: "III Съезд физиологов Сибири и Дальнего Востока" Новосибирск,. Изд. СО РАМН. 1997, С. 187-188. (соавт. Ратушняк А.С., Жарких А.А.).

25. Effect of change in dynamic equilibrium in systems of microtubules and microfilaments on the plastical responses of neurons // Neurosci. behav. physiol. 1997. vol. 27, no. 4, P. 353-359. (соавт. Ratushnyak A.S., Zharkikh A.A., Ratushnyak O.A.).

26. Влияние динамических перестроек цитоскелета на формирование и сохранение нейрональных пластических реакций // Сб. тр.: "XVII съезда физиологов России" -Ростов-на-Дону, 1998, С. 149-150. (соавт. Ратушняк А.С., Симонова О.Г.).

27. Влияние динамического состояния цитоскелета на нейрональную пластичность // Рос. физиол. журн. им. И.М. Сеченова 1999,т. 85, № 1,С. 128-138. (соавт. Симонова О.Г., Жарких А.А., Ратушняк А.С.).

28. Влияние "потенцированного" морфина на электрические параметры изолированных нейронов // Бюл. СО РАМН 1999, № 1, С. 91-93. (соавт. Симонова О.Г., Ратушняк А.С., Эпштейн О.И.).

29. Влияние морфина и биологически активного вещества (БАВ-С) на электрические параметры изолированных нейронов // Бюл. экспер. биол. и мед. 1999, № 10, С. 392-398. (соавт. Симонова О.Г., Ратушняк А.С., Эпштейн О.И.).

30. The effect of the cytoskeleton dynamic condition on neuronal plasticity. Formerly I.M. Sechenov Physiol. J. 1999, v. 85, P. 128-138. (соавт. Simonova O.G., Ratushnyak A.S.)

31. Influence of proteins controlling reorganization of cytoskeleton and modifiers of their activity on neuronal plasticity // In: "VI East European Conference the International

32. Society for Invertebrate Neurobiology ISIN" Moscow-Pushino, 2000, P. 137-138. (соавт. Simonova O.G., Ratushnyak A.S.).

33. Mechanisms of behavioral effects of potentiated forms of morphine // Biull. Eksp. Biol. Med. 2000, v. 128, S upp 112, P. 619-622. (соавт. Epshtein O.I., Pavlov I.F., Simonova O.G.).

34. The effects of the dynamic state of the cytoskeleton on neuronal plasticity // Neurosci. Behav. Physiol. 2000, no. 3, P. 347-355. (соавт. Simonova O.G., Zharkikh A.A., Ratushnyak A.S.).

35. Роль структурно-функциональных элементов внутриклеточных сигналыю-управляющих систем // В сб. материалов "ХУШ Съезда физиологического общества им. И.П. Павлова" Казань, 2001; С. 157-159. (соавт. Симонова О.Г.,, Ратушняк А.С.).

36. Reaction of neurons to alkaloid agonists of opioid receptors during modulation of phosphodiesterase // Bull. Exp. Biol. Med. 2003; Suppl. 1, P. 17-19. (соавт. Ratushnyak A.S., Simonova O.G., Epshtein O.L, Shtark M.B.).

37. Структурно-функциональные механизмы пластичности нейронов in vitro // Рос. физиол. журн. им. И.М.Сеченова 2004, т. 90, № 8, ч. 1, С. 207. (соавт. Симонова О.Г., Ратушняк А.С., Штарк М.Б., Эпштейн О.И.)

38. Клеточные механизмы реакций нейронов на гипоксию // Рос. физиол. журн. им. И.М. Сеченова 2004, т. 90, № 8, ч. 1, С. 42-43. (соавт. Жарких A.A., Симонова О.Г., Ратушняк A.C.).

39. Внутриклеточные структурно-функциональные механизмы нейрональной пластичности // Тез. докл. "Ш Съезд биофизиков России" 2004, том 1, С. 214-215. (соавт. Симонова О.Г., Ратушняк A.C., Штарк М.Б., Эпштейн О.И.)

40. Plasticity of neuronal responses induced by low concentrations of exogenous ligands affecting cellular calcium stores // Frontiers Biosci. 2004, v. 9, P. 809-815. (соавт. Epstein O.I., Simonova O.G., Ratushnyak A.S., Shtark M.B.)

41. Seasonal differences and protection by creatine or arginine pretreatment in ischemia of mammalian and molluscan neurons in vitro // Brain Res. 2004, v.1050, P. 41-49. (соавт Simonova O.G., Zharkikh A.A., Balestrino M., Ratushnyak A.S.).

42. СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

43. Анохин II.К. Биология и нейрофизиология условного рефлекса. М., 1968, с. 547.

44. Греченко Т.Н., Зинц Р. Формирование условного ответа на изолированных нейронах винофадной улитки. Журн. высш. нерв, деят., 1983, № 5, с. 957-959.

45. Гринкевич Л.Н., Топоркова Л.Н., Лисачев П.Д., Изварина H.JI. Роль G-белков и системы вторичных посредников в пластичности оборонительного рефлекса у винофадной улитки. Журн. высш. нервн. деят., 1996, т. 46, № 5, с.886-891.

46. Дорошенко П.А., Костюк А.Г., Циндренко АЛ. Исследование ТЭА-устойчивого выходящего тока в соматической мембране перфузируемых нервных клеток. Нейрофизиология, 1979, т. 11, № 5, с. 460-468.

47. Дьяконова Т.Л. Пластичность электровозбудимой мембраны нейрона: возможная роль ионов кальция. Докл. АН СССР, 1983, т.271, с. 1261-1265.

48. Дьяконова TJI. Пластичность электровозбудимой мембраны: блокирование хинином привыкания нейрона к ритмической внутриклеточной стимуляции. Докл. АН СССР, 1984, т. 277, № 1, с. 240-243.

49. Дьяконова Т.Л. Два типа нейронов, различающихся по пластическим свойствам: изучение ионных механизмов. Журн. высш. нервн. деят., 1985а, т. 35, № 3, с. 552560.

50. Дьяконова Т.Л. Регуляция пластических свойств электровозбудимой мембраны нейрона серотонином. Журн. высш. нерв, деят., 19856, № 5, с. 753-759.

51. Дьяконова Т. Л., Вепринцев Б. Н. Особенности структурной и функциональной организации метаболической активности нейронов прудовика. ВИНИТИ, 1969, № 816, с. 69.

52. Запара Т.А., Ратушняк A.C. Закономерности мшрации изолированных нейронов моллюсков при регенерации in vitro. -В со: Механизмы гомеостаза в изолированных системах и организме, 1984, с. 211 -216.

53. Запара Т. А., Ратушняк A.C., Штарк М. Б. Локальные изменения трансмембранных ионных токов при пластических перестройках электрогенеза изолированных нейронов прудовика. Журн. высш. нервн. деят. 1988, т. XXX УТЛ, вып. I с. 140-145

54. Запара Т.А. Ратушняк A.C. Влияние на перестройку реакции нейрона стабилизации микрофиламентов. Докл. АН СССР, 1991, т. 318, N2, с. 492-495

55. Запара Т.А. и др. Влияние изменения динамического равновесия в системах микротрубочек и микрофиламентов на пластические реакции нейрона. Журнал высш. нервн. деят. 1996, т.46 вып.2 с. 355-362

56. Запара Т.А. и др. Влияние динамического состояния цитоскелета на нейрональную пластичность. Российский физиол. журн., 1999, т. 85, № 1, с. 128-138

57. Корей Д., Стивене Ч. Научные и технологические аспекты изготовления электродов для регистрации токов от мембранных фрагментов. В кн.: Регистрация одиночных каналов. 1987, с. 436.

58. Костенко М.А. Выделение одиночных нервных клеток из мозга моллюска Limnaea stagnalis для дальнейшего культивирования их in vitro. Цитология, 1972, т. 14, № 10, с. 1274-1278.

59. Косткж П.Г., Крышталь O.A. Механизмы электрической возбудимости нервной клетки. М., 1981, 204с.

60. Котляр Б.И. Нейробиологические основы обучения. М., 19S9, 238с.

61. Кэндел Е. Клеточные основы поведения. М., 19S0, 598 с

62. Максимова O.A., Балабан Г1.М. Нейронные механизмы пластичности поведения. М. Наука, 1983, 126 с.

63. Мошков Д.А. Адаптация и ультраструктура нейрона. М., 1985, 200 с.

64. Никитин В.П., Козырев С.А. Избирательное влияние ингибитора протеинкиназы С на синаптическую пластичность командных нейронов оборонительного поведения при выработке сенситизации у улиток. Российский физиол. журн., 2002, т. 88, N11, с. 1401-1411.

65. Ратушняк A.C., Запара Т.А., Перестройка реакции нейрона при локальной модификации мембраны. Докл. АН СССР, 1989, т. 309, N 4, с. 1012-1014

66. Ратушняк A.C., Запара Т.А. и др. Влияние изменения динамического равновесия в системах микротрубочек и микрофиламентов на пластические реакции нейрона. Журн. высш. нервн. деят., 1996, т.46, N 2, с. 355-362.

67. Саганелидзе Г.Н., Пивоваров A.C. Привыкание нейрона ППаЗ виноградной улитки к локальным аппликациям ацетилхолина на разные зоны соматической мембраны. Известия акад. наук ГССР, 1987, т. 13, №. 6, с. 372-379.

68. Самойлов М.О. Мозг и адаптация. Молекулярно-клеточные механизмы. С-П., 1999, 271с.

69. Сахаров Д.А. Гениалогия нейронов. М., 1974, 123с.

70. Семьянов A.B. ГАМК-эргическое торможение в ЦНС: типы ГАМК-рецепторов и механизмы тонического ГАМК-опосредованного тормозного действия. Нейрофизиология, 2002, т. 34, № 1, с. 82-92.

71. Скибо Г.Г., Березовская O.JI. Цитоскелет нервных клеток в процессе их дифференцировки. Нейрофизиология, 1987, т. 19, N 4, с. 558-567.

72. Сорокина З.А., Холодова Ю.Д. Ионный состав нервных, ганглиев брюхоногих моллюсков. В кн.: Физиология и биохимия беспозвоночных. Л., 1968 с. 76-84.

73. Степанов И.И. и др. Гуморальное звено в механизме формирования условного рефлекса отказа от пищи у виноградной улитки. Журн. высш. нервн. деят., 1987, т.37, хМ 5, с. 935-945.

74. Холодова Ю.Д., Качан А.Ф. Свободные аминокислоты в гемолимфе и ганглиях моллюсков виноградной улитки Helix pomatia и пресноводной катушки Planorbarius comeus. -В кн.: Физиология и биохимия беспозвоночных. Л., 1968, с. 70-75.

75. Хочачка П., Сомеро Д. Стратегия биохимической адаптации. М., Мир, 1977.

76. Чистякова Ю.В., Парфенова Е.В. Са-протеаза фермент метаболизма белков цитоскелета обонятельной выстилки позвоночных. Цитология. 1989, т. 11, с. 13451352.

77. Acharya J.K. et al. InsP3 rcccptor is essential for growth a differentiation but not for vision in Drosophila. Neuron, 1997, v. IS, p. 881-887.

78. Adams D.J., Smith S.J., Thompson S.H. Ionic current in molluscan soma. Annu. Rev. ft: Neurosci., 1980, v. 3, p. 141 -167.

79. Adamski F.M. et al. Interaction of eye protein kinase C and INAD in Drosophila. Localization of binding domains and electrophysiological characterization of a loss of association in transgenic flies. J. Biol. Chem, 1998, v. 273, p. 17713-17719.

80. Alkon D.L. Associative training of Hermissenda. J. Gen. Physiol., 1974, vol. 64, no. 1, p. 70-84.

81. Alkon D.L. Voltage-dependent calcium and potassium ion conductance: a contingency mechanism for an associative learning model. Science, 1979, vol. 205, no. 4408, p. 810816.

82. Alkon D.L. A biophysical basis for molluscan associative leaning. In: Conditioning: Representation of involved neural functions. Ed. Ch. D. Woody. N.-Y., Plenum Press,1982, p.147-170.

83. Alkon D.L., Ledephendler L., Shoikimas J.J. Primary changes of membrane currents during retention of associative learning. Science, 1982, v. 215, p. 693-695.

84. Alkon D.L., Shoukiman J.J., Heldman E. Calcium-mediated decrease of a voltage-dependent potassium current. Biophys. J., 1982, v. 40, no. 3, p. 245-250.

85. Alkon D.L. Calcium-mediated reduction of ionic currents: a biophysical memory trace. Science, 1984a, v. 226, no. 4673, p. 1037-1045.

86. Alkon D.L. Changes of membrane currents during learning. J. Exp. Biol., 1984b, v. 112, p. 95-112.

87. Alkon D.L., Sakakibara M. Calcium activates and inactivates photoreceptor somapotassium current. Biophys. J., 1985, v. 48, no. 6, p. 983-995.

88. Alkon D.L. et al. Reduction of two voltage-dependent K currents mediates retention of a learned association. Behavioral Neural Biology. 1985, v. 44, p. 278-300.

89. Alkon D.L., Kubota M. et al. C-kinase activation prolongs Ca-dependent inactivation of K currents. Biochem. Biophys. Res. Communs., 1986, v. 134, no. 3, p. 1245-1253.

90. Alkon D.L., Naito S. Biochemical mechanisms of memory storage. J. Physiol. (Paris), 1986, v. 81, no. 4, p. 252-260.

91. Alkon D.L., Rasmussen H. A spatial-temporal model of cell activation. Science, 1988, v. 239, p. 998-1005.

92. Allen R.D.et al. Fast axonal transport in squid giant axon. Science, 1982. v. 218, p. 11279 1129.

93. Allison D.W. et al. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci., 1998, v. 18, p. 2423-2436.

94. Alloway P.G., Dolph P.J. A role for the light-dependent phosphorylation of visual arresting Proc. Natl. Acad. Sci. U. S. A., 1999 v. 96, p. 6072-6077.

95. Al-Haddad A. et al. Myosin Va bound to phagosomes binds to F-actin and delays microtubule-dependent motility. Mol. Biol. Cell, 2001, v. 12, p. 2742-2755.

96. Angelides KJ. et al. Distribution and lateral mobility of voltage-dependent sodium channels in neurons. Cell Biology, 1988, v. 106, p. 1911-1925.

97. Aoki C. et al. Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats. J. Neurosci., 1994, v. 14, p.5202-5222.

98. Apel E.D., Merlie J.P. Assembly of the postsynaptic apparatus. Curr. Opin. Neurobiol., 1995, v. 5, p. 62-67.

99. Apel E.D. et al. Rapsin may function as a link between the acetylcholine receptor and the agrin-binding dystrophin-associated glycoprotein complex. Neuron, 19995, v. 15; p. 115-126.

100. Archibald J.M. et al. Surface expression and metabolic half-life of AMPA receptors in cultured rat cerebellar granule cells. Neuropharmacology, 1998, v. 37, p. 1345-1353.

101. Bahadoran P. et al. Rab27a: a key to melanosome transport in human: melanocytes. J. Cell Biol., 2001, v. 152, p. 843-850.

102. Balaban P.M., Korshunova T.A., Bravarenko N.I. Postsynaptic calcium: contributes to reinforcement in a. three-neuron network exhibiting associative plasticity. Eur J Neurosci., 2004, v. 19, p. 227-233.

103. Bailey C.H., Chen M. Morphological basis of long-term habituation and sensitization in Aplysia. Science, 1983, v. 220, p. 91-93.

104. Bailey C.H. et al. Serotonin-mediated endocytosis of apCAM: an early step of learning-related synaptic growth in Aplysia. Science, 1992, v. 256, p. 645-649.

105. Bailey C.H., Kandel E.R. Structural changes accompanying memory storage. Annu. Rev. Physiol,. 1993, v. 55, p. 397-426.

106. Banks, Mi I., and Pearce, R; A. Kinetic differences between synaptic and extrasynaptic GABA (A) receptors in CA1 pyramidal cells. J. Neurosci, 2000, v. 20, no. 3, p. 937-948.

107. Banno Y. et al. Differential Translocation; of Phospholipase C Isozymes to Integrin-mediated; Cytoskeletal Complexes in Thrombin-stimulated Human Platelets J. Biol. Chem., 1996, v. 271, no. 25, p. 14989-14994

108. Barinaga M. New clues to how neurons strengthen their connections. Science, 1999, v. 284, p.~l755-1757.

109. Barzilai A. et al. 5-HT modulates protein synthesis and the expression of specific proteins during long-term facilitation in Aplysia sensory neurons. Neuron, 1989, v. 2, p. 15771586.

110. Bear M.F., Malenka R.C.). Synaptic plasticity: LTP'and LTD; Curr. Opin. Neurobiol., 1994, v. 4, p. 389-399.

111. Beattie E.C. et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat. Neurosci., 2000, v. 3, p. 1291-1300.

112. Bcrcgovoy N.A. ct al. Study of a neuronal plasticity. Biological membranes, 1992, vol. 5, no. 11, p. 1736

113. Berg J.S. et al. A millennial myosin census. Mol. Biol. Cell, 2001, v. 12, p. 780-794.

114. Bernier L. et al. Facilitatory transmitter causes a selective and prolonged increase in adenosine 3, 5-monophosphate in sensory neurons mediating the gill and siphon withdrawal reflex in Aplysia. J. Neurosci., 1982, v. 2, no. 12, p. 1682-1691.

115. Bernstein B.W., Bamburg J.R. Cycling of actin assembly in synaptosomes and neurotransmitter release. Neuron, 1989, v. 3, p. 257-265

116. Bi X. et al. Characterization of calpain-mediated proteolysis of GluRl subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in rat brain. J. Neurochem., 1997, v. 68, p. 1484-1494.

117. Biddlecome G.H. et al. Regulation of phospholipase C-bl by Gg and ml muscarinic cholinergic receptor. Steady-state balance of receptor-mediated activation and GTPase-activating protein-promoted deactivation. J. Biol. Clicm., 1996, v. 271, p. 7999-8007.

118. Bloom G. S. Goldstein L. S. Cruising along microtubule highways: how membranes move through the secretory pathway. J. Cell Biol, 1998, v. 140, p. 1277-1280.

119. Bloom G.S. GTP gamma S inhibits organelle transport along axonal microtubules. J. Cell Biol., 1993, v. 120, p: 467-476.

120. Bowman A.B. et al. Kinesin-dependent naxonal transport is mediated by the Sunday driver (SYD) protein. Cell, 2000, v. 103, p. 583-594.

121. Brady S.T. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature, 1985, v. 317, p. 73-75.

122. Brand T., BeamsteinB., Mchlman E. Studies on the anaerobic metabolism and aerobic carbohydrate consumption of some fresh-water snails. Biol. Bull., 1950, v. 98, p. 266276.

123. Brenman J.E. et al. Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1 A. J. Neurosci., 1998, v. 18, p. 88058813.

124. Bridgman P.C. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J. Cell Biol., 1999, v. 146, p. 1045-1060.

125. Brown D.A. M-currents. Ion Channels, 1988, v. 1, p. 55-94.

126. Brown D.A. et al. Coupling of muscarinic acetylcholine receptors to neural ion channels: closure of K channels. In Molecular Mechanisms of Muscarinic Acetylcholine Receptor Function, 1995, p. 165-182.

127. Brunelli M., Castellucci V., Kandel E.R. Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science, 1976, v. 194, no. 4270, p. 1178-1181.

128. Buchs P.-A., Muller, D. Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA 1996, v. 93, p. 8040-8045.

129. Buss F. et al. Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J., 2001, v. 20, p. 3676- 3684.

130. Calakos N., Scheller R.H. Synaptic vesicle biogenesis, docking, and fusion: a molecular description. Physiol. Rev., 1996, v. 76, p. 1-29

131. Castellucci V.F., Nairn A. et al. Inhibitor of adenosine 3,5-monophosphate-dependent protein kinase blocks presynaptic facilitation in Aplysia. J. Neurosci., 1982, v. 2, no. 12, p. 1673-1681.

132. Collins R.O., Thomas R.C. The effect of calcium pump inhibitors on the response of intracellular calcium to caffeine in snail neurones. Cell Calcium., 2001, no.l, p. 41-48

133. Curlier M. Pantaloni D. Control of actin dynamics in cell motility. J. Mol. Biol., 1997, v. 269, p. 459-467.

134. Carroll R.C. et al. Rapid redistribution of glutamate receptors contributes to long-term, depression in hippocampal cultures. Nat. Neurosci., 1999a, v. 2, p. 454-460.

135. Carroll R. C., Beattie E. C., von Zastrow M. et al. Nat. Rev. Role of AMP A receptor endocytosis in synaptic plasticity. Neurosci., 2001, v. 2, p. 315-324.

136. Castellucci V.F. et al. Inhibitor of adenosine 3,5-monophosphate-dependent protein kinase blocks presynaptic facilitation in Aplysia. J. Neurosci., 1982, v. 2, no. 12, p. 16731681.

137. Castcllucci V.F., Frost N., et al. Cell and molecular analysis of long-term sensitization in Aplysia. J. Physiol., Paris, 1986 v. 81, p. 349-357.

138. Chen L., Huang L-Y. M. Protein kinase C reduces Mg++ block of NMDA-receptor channels as a mechanism of modulation. Nature, 1992, no. 356, p. 521-523.

139. Cheney R.E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell, 1993a., v. 75 p. 13-23

140. Cheney R^E., Riley M.A., Mooseker M.S. Phylogenic analysis of the myosin superfamily. Cell Motil. Cytoskeleton:, 1993b., v. 24, p. 215-223

141. Chevesich J. et al. Requirement for the PDZ domain protein, CMAD, for localization of the TRP store-operated channel to a signaling complex. Neuron, 1997 v. 18, p. 95-105.

142. Cho K.O., Hunt C.A., Kennedy M.B. The rat brain postsynaptic density fraction; contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron, 1992, no. 9, p. 929-942.

143. Chyb S. et al. Polyunsaturated fatty acids activate the. Drosophila light-sensitive channels TRP and TRPL. Nature, 1999, v. 397, p. 255-259.

144. Cohen N.A. et al. Binding of the inward rectifier K+ channel Kir2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron, 1996, v. 17, no. 4, p. 759-767.

145. Cole D.G., Scholey J.M. Structural; variations among^^ the kinesins. Trends Cell Biol., 1995, v. 5, p. 259-262.

146. Connor J.A., Alkon D.L. Light- and voltage-dependent increases of calcium ion concentration in molluscan photoreceptors. J. Neurophysiol., 1984, v. 51, no. I, p. 745752.

147. Cooper E.C. et al. Colocalization and coassembly of two human brain; M-type potassium channel subunits that are mutated in epilepsy. Proc. Natl. Acad. Sci; U. S. A., 2000, v. 97, p. 4914-4919.

148. Cordonnicr M. N., ct al. Actin filaments and myosin I alpha cooperate with microtubules for the movement of lysosomes. Mol. Biol. Cell, (2001), v. 12, p. 40134029.

149. Costa M.R.C., Catterall W.A. Phosphorylation of the -subunit of the sodium channel by protein kinase C. Cell Molec. Neurobiol., 1984, v. 4, no. 3, p. 291-297.

150. Craig H et al. Mutation in the phosphorylation sites of MAP kinase blocks learning-related internalization of apCAM in Aplysia sensory neurons. Neuron, 1997, no. 18, p. 913-924.

151. Craven S.E., Husseini A.E., Bredt, D.S. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron, 1999,. v. 22, p. 497-509.

152. Craven S.E., Bredt D.S. PDZ proteins organize synaptic signaling pathways. Cell, 1998,v. 93, p. 495-498.

153. Criswcll P.S., Asai D.J. Evidence for four cytoplasmic dynein heavy chain isoforms in rat testis. Mol. Biol. Cell, 1998, v. 9, p. 237-247.

154. Crow T.J., Alkon D.L. Associative behavioral modification in hermissenda: cellular correlates. Science, 1980, v. 209, no. 4454, p. 412-414.

155. Crow T.J., Bridge M.S. Serotonin modulates photoresponses in Hermissenda type-B photoreceptoes. Neurosci. Lett., 1985, v. 60, p. 83-88.

156. Crow T.J., Forrester J.F. Light paired With serotonin mimics the effect of conditioning on phototactic behavior of Hermissenda. Proc. Natl. Acad. Sci. USA, 1986, v. 83, p. 7975-7978.

157. Cruzblanca H. et al. Bradykinin inhibits M current via phospholipase C and Ca2io release from IP3-sensitive Ca2 stores in rat sympathetic neurons. Proc. Natl. Acad. Sci. U. S. A., 1998, v. 95, p. 7151-7156.

158. Delmas P. et al. Signaling microdomains define the specificity of receptor-mediated InsP3 pathways in neurons. Neuron, 2002, v. 34, p. 209-220.

159. Delmas P., Crest M., Brown D.A. Functional organization of PLC signaling microdomains in neurons. Trends Neurosci., 2004, Vol. 27, no. 1, p 41-47

160. Deriemer S.A. et al. Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature. 1985, v. 313, no. 600, p. 313-316.

161. De Waard M., Pragnell M., Campbell K.P: Ca2^ channel regulation by a conserved subunit domain. Neuron, 1994, no. 13, p. 495-503.

162. Dodge K., Scott J.D. AKAP79 and the evolution of the AKAP model. FEBS Lett., 2000, v. 476, p. 58-61.

163. Donovan F.M. et al. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J. Neurosci., 1997, v. 17, p. 5316-5326.

164. Donovan F., Dennis M., Cunningham D. Signaling pathways involved in thrombin-induced cell protection. Biol. Chem., 1998, v. 273, p. 12746-12752.

165. Dosemeci, A., Reese, T.S. Effect of calpain on the composition and structure of postsynaptic densities. Synapse, 1995, v. 20, p. 91-97.

166. Durand G, Kovalchuk Y, Konnerth A. Long term potentiation and functional synapse induction in developing hippocampus. Nature, 1996, v. 381, p. 71-75.

167. Edwards F.A. LTP: a structural model to explain the inconsistencies. Trends Neurosci. 1995, v. IS, p. 250-255.

168. El-Husseini A.E. et al. Dual palmitoylation of PSD-95 mediates its m vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J. Cell Biol.,2000a, v. 148, p. 159-172.

169. Epstein O.I. et al. Membrane and synaptic effects of ANTI-S-100 are prevented by the same antibodies in low concentrations. Frontiers Bioscie., 2003, v. 8, p. 79-84

170. Epstein O.I., Zapara T.A., et al. Plasticity of neuronal responses induced by low concentrations of exogenous ligands affecting cellular calcium stores. Frontiers Biosci., 2004, v. 9, p. 809-815.

171. Espreafico E.M. et al. Primary structure and cellular localization of chicken brain myosin-V (pi90), an unconventional myosin with calmodulin light chains. J. Cell Biol., 1992, v. 119, p. 1541-1557.

172. Estacion M. ct al. Regulation of Drosophila transient rcccptor potential-like It (TrpL) channels by phospholipase C-dependent mechanisms. J. Physiol., 2001, v. 530, p.1.19.

173. Evans L.L., Bridgman P.C. Particles move along actin filament bundles in nerve growth cones. Proc. Natl. Acad. Sci. USA., 1995, v. 92, p. 10954-10958

174. Evvald D.A., Willams A., Levitan I.B. Modulation of single Ca-dependent K-channel activity by protein phosphorylation. Nature. 1985, v. 315, no. 6019, p. 503-505.

175. Ezumi Y., Takayama H., Okuma M. Differential Regulation of Protein-tyrosine Phosphatases by Integrin through Cytoskeletal Reorganization and Tyrosine Phosphorylation in Human Platelets J. Biol. Chcm., 1995, v. 270, no. 20. p. 1192711934.

176. Fan J.S. et al. Protein inhibitor of neuronal nitric-oxide syntheses, PIN, binds to a17.amino acid residue fragment of the enzyme. J. Biol. Chem., 1998, v. 273, p. 3347233481

177. Farley J., Richards W.G. Membrane changes in a single photoreceptor cause associative learning in Hermissenda. Science, 1983, v. 221. no. 4616, p. 1202-1203.

178. Farley J., Auerbach S. Protein kinase C activation induced conductance changes in Hermissenda photoreceptors like those seen in associative learning. Nature, 1986, v. 319, no. 6050, p. 220-223.

179. Farley J., Alkon D.L. In vitro associative conditioning of Hermissenda: cumulative derolarization of type B photoreceptors and short-term associative behavioral changes. J. Neurophysiol. 1987, v. 57, p. 1639-1669.

180. Fath K.R. et al. Molecular motors and a spectrin matrix associate with Golgimembranes in vitro. J. Cell Biol., 1997, v. 139, p. 1169-1181.

181. Fitzjohn S.M. et al. An electrophysiological characterization of long-term potentiation in cultured dissociated hippocampal neurones. Neuropharmacology, 2001, v. 41, p. 693-699.

182. Ford C.P. et al. Experiments to test the role of phosphatidylinositol 4,5-bisphosphate in neurotransmitter-induced M-channel closure in bullfrog sympathetic neurons. J. Neurosci., 2003, v. 23, p. 4931-4941.

183. Froehner S.C. Regulation of ion channel distribution at synapses. Annu. Rev. Neurosci., 1993, v. 16, p. 347-368.9182

184. Furukawa K. ct al. The actin-scvcring protein gclsolin modulates calcium channcl and NMDA receptor activities and vulnerability to citotoxity in hippocampal neurons. J. neurosci., 1997, v. 17, no. 21, p. 421 432.

185. Gautam M. et al. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deiicient mice. Nature, 1995,v. 377, p. 232-236.

186. Geinisman Y. Perforated axospinous synapses with multiple, completely partitioned transmission zones: probable structural intermediates in synaptic plasticity. Hippocampus, 1993, no. 3, p. 417-434.

187. Gellerman D.M., Bi; X., Baudry M. NMDA receptor-mediated regulation of AMPA receptor properties in organotypic hippocampal slice cultures. J. Neurochem., 1997, v. 69, p, 131-136.

188. Gill S.R. et al. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol.,1991, v. 115, p. 1639-1650.

189. Goldstein L.S., Gunawardena,. S. Flying through the Drosophila cytoskeletal genome. J. Cell Biol., 2000, v. 50, p. 63-68.

190. Goldstein L.S.B. Molecular motors from one motor many tails to one motor many tales. Trends Cell Biol., 2001, v. 11, p. 477-182.

191. Goldstein L.S.B., Yang Z. Microtubule based transport systems in neurons: the roles ofkinesins and dyneins. Annu. Rev. Neurosci., 2000, v. 23, p. 39-71.

192. Gomperts S.N. Clustering membrane proteins: it's all coming togetherwith the PSD-95/SAP90 protein family. Cell, 1996, no. 84, p. 659-662.

193. Greengard P. et al. C.F. Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neurons. Science, 1991, v. 253, p.l 135-1138.

194. Gumett C.A, De Waard M., Campbell K.P. Dual function of the voltage-dependent Ca"^ channel 2 subunit in current stimulation and subunit interaction. Neuron, 1996, no 16, p. 431-440.

195. Haas H.L., Selbach O. Functions of neuronal: adenosine receptors. Naunyn Schmiedeberg Arch. Pharmacol:, 2000, v. 362, p. 375-381.

196. Halpain S, Hipolito A, Saffer L: Regulation ofF-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci, 1998, v. 18, p. 9835-9844.

197. Hanada T. et al. GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J. Biol. Chem., 2000. v. 275, p. 28774-28784.

198. Hardie R.C. et al. Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron, 2001, v. 30,p. 149- 159.

199. Hardie R.C., Raghu P. Visual transduction in Drosophila. Nature, 2001, v. 413, p. 186-193.

200. Physiol., 2003, v. 65, p. 735-759.

201. Harris B.Z., Lim,W.A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci.,2001 v. 114, p. 3219-3231.

202. Hawkins R.D. Intemeurons involved in mediation and modulation of gill-withdrawal reflex in Aplysia. III. Identified facilitating neurons increase Ca current in sensory neurons. J. Neurophysiol., 1981, v. 45, no. 2, p. 327-339.

203. Hawkins R.D. et al. A cellular mechanism of classical conditioning in Aplysia: activity-dependent amplification of presynaptic facilitation. Science, 1983, v. 219, no. 4583, p. 400-405.

204. Hawkins R.D. A cellular mechanism of classical conditioning in Aplysia. J. Exp. Biol., 1984, v. 112, p. 113-128.

205. Hayashi Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluRl and PDZ domain interaction. Science. 2000,v. 287, p. 2262-2267.

206. Hell J.W. et al. N-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons. Proc. Natl. Acad. Sci. USA, 1996, v. 93, p. 3362-3367.

207. Henkel A.W. et al. Synaptic vesicle movements monitored by fluorescence recovery after photobleaching in nerve terminals stained with FM1-43. J. Neurosci.,1996, v. 16, p. 3960-3967

208. Henley J.M. Use of the two-hybrid system to find novel proteins that interact with AMPA receptor subunits. Biochem. Soc., 1997, v. 25,p. 838-841.

209. Hermann A., Hartugg K. Properties of a Ca activated K conductance in Helix neurones investigated by intracellular Ca ionophoresis. Pfugers Arch., 1982, v. 393, p. 248-253.

210. Hernandez M.A., Wandosell F., Avila J. Localization of phosphorylation sites for different kinases in microtubule associated protein MAP2. J. Neurochem., 1987, v. 48, no. 1, p. 84-93.

211. Hirokawa N. The mechanisms of fast and slow transport in neurons: identification and characterization of the new kinesin superfamily motors. Curr. Opin. Neurobiol.,1997, v. 7, p. 605-614.

212. Hirokawa N. et al. The cytoskeletal architecture of the presynaptic terminal and ♦ molecular structure of synapsin 1. J. Cell Biol., 1989, v. 108, p. 111-126

213. Hirokawa N., Noda Y., Okada Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol., 1998, v. 10, p. 60-73.

214. Hoshi N. et al. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat. Neurosci., 2003, v. 6, p. 564-571.

215. Hsueh Y.P., Kin E., Sheng M.M. Disulfide-linked head-to-head multimerization in the mechanism of ion channel clustering by PSD-95. Neuron, 1997, v. 18, p. 803-814.

216. Hu Y. et al. 5-HT and cAMP induce the formation of coated pits and vesicles and increase the expression of clathrin light chains in sensory neurons of Aplysia. Neuron, 1993, v. 10, p. 921-929.

217. Huang J.D. et al. Dircct interaction of microtubule- and actin-bascd transport motors. Nature, 1999, v. 397, p. 267-270.

218. Huang H., Farley J. PPI inhibitors depolarize Hermissenda photoreceptors and reduce K+ currents. Neurosci., 2001, v. 86, no. 3, p. 1297-1311.

219. Huber A. et al. The transient receptor potential protein (Trp), a putative store operated Ca2 channel essential for phosphoinositide mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J., 1996, v. 15, p. 7036-7045.

220. Huber A. et al. The TRP Ca2 channel assembled in a signaling complex by the PDZ domain protein INAD is phosphorylated through the interaction with protein kinase C (ePKC). FEBS Lett., 1998, v. 425, p. 317-322.

221. Huh K.H., Wenthold R.J. Turnover time and regulation of ionotropic glutamate receptors in cultured cerebellar granule cells. Soc. Neurosci., 1997, v. 23, p. 371-/373.

222. Hume A.N. et al. Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J. Cell Biol., 2001, v. 152, p. 795-808.

223. Hunt C.A., Schenker L.J., Kennedy M.B. PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain: synapses. J. Neurosci., 1996, no. 16, p; 1380-1388.

224. Inoue T. et: al. Hypoxia-Induced respiratory patterned activity in Lymnaea originates at the periphery. J. Neurophysiol., 2001, v. 86, no. 1, p. 156-163.

225. Isaac JT, Nicoll RA, Malenka RC. Evidence for silent synapses: implications for' the expression of LTP. Neuron, 1995; v. 15: p. 427-434.

226. Isom L.L., De Jongh K.S., Catterall W.A. Auxilary subunits of voltage-gated ion channels. Neuron, 1994, v. 12, p. 1183-1194.

227. Jaffrcy S. R., Snyder S. H. PIN: an associated protein inhibitor of neuronal nitric oxide syntheses. Science, 1996, v. 274, p. 774-777

228. Janmey P: A. The cytoskeleton and cell signaling: component localization and i mechanical coupling Physiol: rev., 1998, v. 78, no. 3, p. 763-781.

229. Jan L.Y., Jan Y.N. How might the diversity of potassium channels be generated? Trends Neurosci., 1990, no. 13, p. 415-418.

230. Johnson B.D., Byerly L. Ca channel Ca(2+)-dependent inactivation in a mammalian central neuron involves the cytoskeleton. Pflugers Arch. 1994, v. 429, no. 1, p. 14-21.

231. Kaether Ch., Skehel P., Carlos G.D. Axonal Membrane Proteins Are Transported in Distinct Carriers: A Two-Color Video Microscopy Study in Cultured Hippocampal Neurons. 2000, Vol. 11, no. 4, p. 1213-1224.

232. Kamal A. et al. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron, 2000, v. 28, p. 449459:

233. Kandel E.R., Schwartz J.H. Molecular biology of leaning: modulation of transmitter release. Science, 1982, v. 218, no. 4571, p. 433-442.

234. Karcher R. L. et al. Motor— cargo interactions: the key to transport specificity. Trends Cell Biology, 2002,Vol. 12 no.l, p. 21-27

235. Kelly R.B: Secretory granule and synaptic vesicle formation. Curr. Opin. Cell Biol., 1991, v. 3, p. 654-660

236. Kelso S.R., Nelson Т.Е., Leonard J.P. Protein kinase C-mcdiatcd enhancement of NMDA currents by metabotropic glutamate reccptors in Xcnopus oocytes. J. Physiol., 1992, no. 449, p. 705-718.

237. Kim C.H., Lisman J.E. A role of actin filament in synaptic transmission and long-term potentiation. J. neurosci. 1999, v. 19, no 11, p.4314-4324.

238. Kim C.H., Lisman J.E. A labile component of AMPA receptor-mediated synaptic transmission is dependent on microtubule motors, actin, and N-ethylmaleimide-sensitive factor. J. Neurosci., 2001, v. 21, p. 4188-/4194.

239. Kim E. et al. Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature, 1995, no. 378, p. 85-88.

240. Kim E. et al. Heteromultimerization and NMDA receptor clustering activity of chapsyn-110, a novel member of the PSD-95 family of synaptic proteins. Neuron, 1996, v. 17, p. 103-113.

241. Kim E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol, 1997, v. 136, p. 669-678.

242. Kirsch et al. Gephyrin antisense oligonucleotides prevent glycin receptor clustering in spinal neurons. Nature, 1993,v. 366, p. 745-748.

243. Kirsch J. Assembly of signaling machinery at the postsynaptic membrane. Current Opinion in Neurobiology, 1999, v. 9, p. 329-335.

244. Kirsch J., Betz H. The postsynaptic localization of the glycine receptor associated protein gephyrin in regulated by the cytoskeleton. J. Neurosci., 1995,v. 15, p. 4148-4156.

245. Kirsch J., Kuhse J., Betz H„ Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Molecular and Cellular Neuroscience, 1995 v. 6, p. 450-461.

246. Kirsch J., Betz H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature, 1998, v. 392, p. 717-720.

247. Kistner U. SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dig-A. J. Biol. Chem., 1993, no. 268, p. 4580-4583.

248. Kittler J.T. The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol. Cell Neurosci., 2001, v. 18, p. 13-25.

249. Klein M., Shapiro E., Kandel E.R. Synaptic plasticity and the modulation of Ca current. J. Exp. Biol., 1980, v. 89, p. 117-157.

250. Kneussel M., Betz H. Receptors, gephyrin and gephyrin-associated proteins: novel insights into the assembly of inhibitory postsynaptic membrane specializations. J. Physiol. 2000, v. 525, no 1, p. 1-9

251. Kneussel M., Betz H. The gamma -aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. PNAS, 2000, v. 97, no. 15, p. 8594-8599.

252. Komau H.C. et al., Domain interaction between NDMA receptor subunits and the postsynaptic density protein PSD-95. Science, 1995, no. 269, p. 1737-1740.

253. Kostenko M.A., Trctjak N.N., Musicnko V.S. The effect of elevated potassium on the adult mollusk giant neuron survival and neuritis formation in culture. Brain Res., 1982, v. 236, no. l,p. 183-192.

254. Koushika S.P., Nonet M.L. Sorting and transport in C. elegans: a model system with a sequenced genome. Curr. Opin. Cell Biol., 2000, v. 12, p. 517-523.

255. Kreis T.E. et al. Secretory granules and endosomes show salvatory movement biased to the anterograde and retrograde directions, respectively, along microtubules in AtT20 cells. Eur. J. Cell Biol., 1989, v. 49, p. 128-139.

256. Krupp J.J. et al., Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca24" -dependent inactivation of NMDA receptors. J. Neurosci, 1999, no.19, p. 1165-1178.

257. Kurschen H.G. et al. A 240 kDa protein represents the complete subunit of the cyclic nucleotide gated channel from rod photoreceptor. Neuron, 1995, no 15, p. 627636.

258. Kuznetsov S. A., Langford G. M., Weiss D. G. Actin-dependent organelle movement in squid axoplasm. Nature, 1992, v. 356, p. 722-725.

259. Landis D.M.D. et al. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron, 1988, v. 1, p. 201-209

260. Langford G.M. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr. Opin. Cell Biol., 1995, v. 7, p. 82-88

261. Lee S.J. et al. Light adaptation through phosphoinositide regulated translocation of Drosophila visual arrestin. Neuron, 2003, v. 39, p. 121-132.

262. Levi S., Vannier C. Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. Journal of Cell Science, 1998, v. 111, p. 335-345.

263. Leonard A. S. et al. SAP97 Is Associated with the <X-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptor GluRl Subunit J. Biol. Chem., 1998, v. 273, p. 19518-19524.

264. Liao D, Hessler N.A, Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature, 1995, no. 375, p. 400-404.

265. Liao D. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci., 1999, v. 2, p. 37-43.

266. Liao D., Scannevin R.H., Huganir R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMP A receptors. J. Neurosci., 2001, v. 21, p. 6008-6017.

267. Lin J.W. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat. Neurosci., 2000, v. 3, p. 1282-1290.

268. Lissin D.V. et al. Rapid, activation-induced redistribution of ionotropic glutamate receptors in cultured hippocampal neurons. J. Neurosci., 1999, v. 19, p. 1263-1272.

269. Llinas R. et al. ATP-dependent directional movement of rat synaptic vesicles injected into the presynaptic terminal of squid giant synapse. Proc. Natl. Acad. Sci. USA, 1989, v. 86 p. 5656-5660

270. Lochner J.E. et al. Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol. Biol. Cell, 1998, v. 9, p. 2463-2476.

271. Lue R.A. et al. Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc. Natl. Acad. Sci. USA, 1994, no. 91, p. 9818-9822.

272. Lu W., et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron, 2001, v. 29, p. 243-254.

273. Luscher C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron, 1999, v. 24, p. 649-658.

274. Luscher C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron, 1999, v. 24, p. 649-658.

275. Luthi A. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron, 1999, v. 24, p. 389-399.

276. Maimone M.M., Merlie J.P. Interaction of the 43 kd postsynaptic protein with all subunits of the muscle nicotinic acetylcholine receptor Neuron, 1993, v. 11, p. 53-66.

277. Malenka R.C., Nicoll R.A. Long-term potentiation-a decade of progress? Science,1999, v. 285, p. 1870-1874.

278. Malinow R., Mainen Z.F., Hayashi Y. LTP mechanisms: from silence to four-lane traffic. Cutt. Opin. Neurobiol., 2000, v. 10, p. 352-357.

279. Mammen A.L., Huganir R.L., O'Brien R.J., Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci., 1997, v. 17, p. 7351-7358.

280. Man H. Y. et al. Intracellular trafficking of AMPA receptors in synaptic plasticity. Cell. Mol. Life Sci., 2000, v. 57, p. 1526-1534.

281. Marom S., Dagan D. Calcium current in growth balls from isolated Helix aspersa neuronal growth cones. Pfugers Arch., 1987, v. 409, p. 578-581.

282. Marrion N.V. Control of M-current. Annu. Rev. Physiol., 1997, v. 59, p. 483-504.

283. Mackay D.J., Holl A. Rho GTPases. J. Biol. Chem., 1998, v. 273, no. 33, p. 20685-20688.

284. Mayer M.L, Westbrook G.L, Guthrie P.B. Voltage-dependent block by Mg:+ of NMDA responses in spinal cord neurons. Nature 1984, v. 309, p. 261—263.

285. Mayer B.J. Protein-protein interactions in signaling cascades. Mol. Biotechnol., 1999, v. 13,p.201-213.

286. Mayford M., et al. Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science, 1991, v. 256, p. 638-644.

287. Mehta A. K., Ticku M. K. An update on GABAA receptors. Brain Res Brain Res. Rev., 1999, v. 29, p. 196-217.

288. Meyer G. et al. Identification of a gephyrin binding motif on the glycine receptor subunit. Neuron, 1995, no. 15, p. 563-572.

289. Miki H. et al. All kinesin superfamily protein, KJF, genes in mouse and human. Proc. Natl. Acad. Sci. U.S.A., 2001, v. 98, p. 7004-7011.

290. Miller M. et al. Myosin II distribution in neurons is consistent with a role in growth cone motility but not synaptic vesicle mobilization. Neuron. 1992, v. 8 p. 25-44

291. Miller W.E., Lefkowitz RJ. Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell Biol., v. 2001, v. 13, p. 139145.

292. Minke B., Cook B. TRP channel proteins and signal transduction. Physiol. Rev., 2002 v. 82, p. 429-472.

293. Mironov S.L., Usachev J.M. Caffein affects Ca uptake and Ca release from intracellular stores: fura-2 measurements in isolated snail neurones. Neurosci. Lett., 1991, v. 123, no. 2, p. 200-202.

294. Mitchison T.J., Cramer L.P. Actin-based cell motility and cell locomotion. Cell, 1996, v. 84, no. 3, p. 371-379.

295. Mller B.M. et al. Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor suppressor protein. J. Neurosci., 1995, no. 15, p. 2354-2366.

296. Mller B.M. SAP 102, a novel postsynaptic protein that interacts with the cytoplasmic tail of the NMDA receptor subunit NR2B. Neuron, 1996, no. 17, p. 255265.

297. Mochida S. et al. Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron, 1994, v. 13 p. 1131-1142

298. Montell C. Visual transduction in Drosophila. Annu. Rev. Cell Dev. Biol., 1999, v. 15, p. 231-268.

299. Moon A., Drubin D.G. The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol., biol. cell, 1995, v. 6, p. 1423-1431.

300. Morales M., Goda Y. Nomadic AMPA Receptors and LTP. Neuron, 1999, v. 23, p. 431-434.

301. Moriyoshi K. et al. Molecular cloning and characterization of the rat NMDA receptor. Nature, 1991, no. 354, p. 31-37.

302. Moris J., Lasek R J. Stable polimers of the axonal cytoskeleton: the axoplasmis ghost. J. Cell Biol. 1982, v. 92, no. 2. p. 192-198.

303. Morris R. L., Hollenbeck P. J. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J. Cell Biol., 1995, v. 131, p. 13151326.

304. Moss S.J., Blackstone C.D., Huganir R.L. Phosphorylation of recombinant non-NMDA glutamate receptors on serine and tyrosine residues. Neurochem. Res., 1993, v. 18, p. 105-110.

305. Mullins R.D. et al. Arp2/3 complex from Acanthamoeba binds profilin and crosslinks actin filaments. Mol. Biol. Cell, 1998, v. 9, no. 4, p. 841-852.

306. Murakami N. et al. Phospholipid binding, phosphorylation by protein kinase C, and filament assembly of the COOH terminal heavy chain fragments of nonmusclc myosin II isoforms M1IA and MIIB. Biochemistry, 1995, v. 34, p. 16046-16055

307. Muresan V. et al. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids. Mol. Cell, 2001, v. 7,p. 173-183.

308. Naisbitt, S. et al. 1999. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor PSD-95/GKAP complex and cortactin. Neuron, v. 23, p. 569-582.

309. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science, 1992, no. 258, p. 597-603.

310. Nakata T., Terada S., Hirokawa N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol., 1998, v. 140, p. 659674.

311. Nascimento A.A.C. et al. Enzymatic characterization and functional domain mapping of brain myosin-V. J. Biol. Chem., 1996, v. 271 p. 17561-17569

312. Neary J.T., Alkon D.L. Protein phosphorylation-dephosphorylation and the transient, voltage-dependent potassium conductance in Hermissenda crassiconis. J. Biol. Chim., 1983, v. 258, no. 14. p. 8979-8983.

313. Niemeyer B.A. et al. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell, 1996, v. 85, p. 651-659.

314. Niethammer M., Kim E., Sheng M. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J., Neurosci., 1996, no 16, p. 2157-2163.

315. Niethammer et al., Interaction between the C terminus of NDMA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J., Neurosci., 1996, v. 16, p. 2157-2163.

316. Niggli V., Burger M.M. Interaction of the cytoskeleton. J. Meme. Biol., 1987, v. 100, p. 97-121.

317. Noda Y. et al. KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or K1F3A/B. J. Cell Biol., 1995, v. 129, p. 157-167.

318. Noel F. et al. Long-term changes in synthesis of intermediate filament protein actin and other proteins in pleural sensory neurons of Aplysia produced by an in vitro analogue of sensitization trainins. Mol. brain res. 1993, v. 19, no. 3, p.203-210.

319. Noel J. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron, 1999, v. 23, p. 365-376.

320. Norenbeerg W. et al. Rundown of somatodendritic N-methyl-D-aspartate (NMDA) receptor channels in rat hippocampal neurones: avidence for a role of the small GTP-ase Rho. Br. J. pharmacol., 1999, v. 127. no. 5, p. 1060-1063.

321. Nowak L. et al. Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 1984, v. 307, p. 462 465.

322. Niethammer M., Kim E., Sheng M. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J., Neurosci., 1996, no 16, p. 2157-2163.

323. Niggli V., Burger M.M. Intcrraction of the cytoskclcton. J. Mcmb. Biol., 1987, v. I00,p. 97-121.

324. Nishimune A. NSF binding to GluR2 regulates synaptic transmission. Neuron, 1998, v. 21, p. 87-97.

325. Ocorr K.A., Tabata M., Byrne J.H. Stimuli that produce sensitization lead to elevation of cyclic AMP levels in tail sensory neurons of Aplysia. Brain Res., 1986, v. 371, p. 190-192

326. Okada Y. et al. The neuron-specific kinesin superfamily protein KIF1A is a unique monomelic motor for anterograde axonal transport of synaptic vesicle precursors. Cell, 1995, v. 81, p. 769-780.

327. Olds J.L., Anderson M.L. et al. Imaging of memory-specific in the distribution of protein kinase C in the hippocampus. Science, 1989, v. 245, p. 867-869.

328. Ong L.L. et al. Kinectin-kinesin binding domains and their effects on organelle motility. J. Biol. Chem., 2000, v. 275, p. 32854-32860.

329. Orkand R.K. Thomas R.C. Effects of low doses of caffeine on Ca2+.i in voltage-clamped snail (Helix aspersa) neurones. Physiol., 1995, v.489, p. 19-28.

330. Orly J., Schramm M. Coupling of catecholamine receptor from one cell with adenylate cyclase from another cell by cell fusion. Proc. Natl. Acad. Sci. U. S. A., 1976, v. 73, p. 4410-4414.

331. Osten, P. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and a- and b-SNAPs. Neuron, 1998, v. 21, p. 99-110.

332. Passafaro M., Picch V., Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci., 2001, v. 4, p. 917926.

333. Perlmutter L.S. et al. Distribution of calcium-activated protease calpain in the rat brain. J. Comp. Neurol. 1990, v. 296, no. 2, p. 269-276.

334. Petralia R.S., Yokotani N., Wenthold R.J. Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selectiv antipeptide antibody. J. Neurosci., 1994, no. 14, p. 667-696.

335. Petralia R. S. et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat. Neurosci., 1999, v. 2, p. 31-36.

336. Phillips W.D. et al. ACh receptor-rich membrane domains organized in fibroblasts by recombinant 43-kilodalton protein. Science, 1991, v. 251, p. 568-570.

337. Pickard L. et al. Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology, 2001, v. 41, p. 700-713.

338. Prekeris R. et al. Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in regulation of synaptic function. J. Cell Biol., 1996, v. 132, no. 1-2, p. 77-90.

339. Prekeris R., Terrian D.M. Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca 2-dependent interaction with the synaptobrevin- synaptophysin complex. J. Cell Biol., 1997, v. 137, p. 1589-1601.

340. Purohit A. ct al. Dircct interaction of pericentrin with cytoplasmic dyncin light intermediate chain contributes to mitotic spindle organization. J. Cell Biol., 1999, v. 147, p. 481-492.

341. Puthalakath et al. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell, 1999, v. 3, p. 287296

342. Puthalakath H. et al. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. Science, 2001, v. 293, p. 18291832

343. Raghu P. et al. Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylglycerol kinase mutant, rdgA. Neuron, 2000, v. 26, p. 169-179.

344. Ranganathan R. et al. A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature, 1991, v. 354, p. 230-232.

345. Ratushnyak A.S., Zapara T.A. Local changes of transmembrane currents at plastic reorganizations of electrogenesis of isolated neurons of the snail. Neurosci. Behav. Physiol., 1989, v. 19, N3, p. 140-145.

346. Ratushnyak A.S., Zapara T.A. Experimental analysis of mechanisms of information fixation by means of molecular neuroprocessor. Molecular Electronics, ed. P.I. Lazarev, Kluwer Acadmic Publishers. 1991, p. 219-225

347. Ratushyak A.S., Zapara T.A. Information procession by neuron as processor of neurocomputer system "Neuroinformatics and Neurocomputers", RNNS/IEEE Services Center, New York, Rostov-On-Don, 1992, v. 1, p. 71-81.

348. Ratushnyak A.S., Zapara T.A. et al. Effect of change in dynamic equilibrium in systems of microtubules and microfilaments on the plastical responses of neurons. Neurosci. behav. physiol., 1997. vol. 27, no. 4, p. 353-359

349. Ratushnyak A.S., Zapara T.A. et al. Reaction of Neurons to Alkaloid Agonists of Opioid Receptors during Modulation of Phosphodiesterases. Bull. Exp. Biol. Med., 2003, v. l,p. 17-19

350. Raymond L.A., Blackstone C.D., Huganir R.L. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature, 1993, v. 361, p. 637-641.

351. Reitdorf J. et al. Kinesin-dependent movement on microtubules precedes actin-base motility of Vaccinia virus. Nat. Cell Biol., 2001,v. 11, p. 992-1000

352. Reuss H. et al. In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron, 1997, v. 19, p. 1249-1259.

353. Rogers S. L., Gelfand V. I. Membrane trafficking, organelle transport and the cytoskeleton. Curr. Opin. Cell Biol., 2000, v. 12, p. 57-62.

354. Rosenmund C., Westbrook G.L. Rundown of N-methyl-D-aspartate channels during whole-cell recording in rat hippocampal neurons: role of Ca and ATP. J. Physiol. 1993a, v. 470, p. 705-729.

355. Rosenmund C., Westbrook G.L. Calcium-induced actin depolymeriztion reduces NMDA channel activity. Neuron, 1993b, v. 10, no. 5, p. 805-814.

356. Rosenmund C., Stevens. C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron. 1996. 16: 1197-1207.

357. Rossum D., Hanisch. U-K. Cytoskcletal dynamics in dendritic spines: direct modulation by glutamate receptor? Trends neurosci., 1999, v. 22, p. 290-295.

358. Ryan T.A., Smith. S.J. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron, 1995, v. 14 p. 983-989.

359. Ryan T.A. et al. The kinetics of synaptic vesiclc recycling measured at single presynaptic buttons. Neuron, 1993, v. 11, p. 713-724.

360. Saitoh T.,. Schwartz J.H. Serotonin alters the subcellular distribution of a Ca/calmodulin-binding protein in neuron of Aplysia. Proc. Natl. Acad. Sci. USA, 1983, v. 80, p. 6708-6721.

361. Saitoh T., Schwartz J.H. Phosphorylation-dependent subcellular translocation of a Ca/calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons. J. cell biol. 1985, v.100, no. 3, p. 835-842.

362. Sakakibara M. et al. Modulation of calcium mediated inactivation of ionic currents by Ca/calmodulin-dependent protein kinase II. Biophys. J., 1986, v. 50, no. 2, p. 319-327.

363. Sans N. et al. Synapse-Associated Protein 97 Selectively Associates with a Subset of AMPA Receptors Early in their Biosynthetic Pathway. J. Neurosci., 2001, v. 21, p. 7506-7516.

364. Scannevin R.H., Huganir R.L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci:, 2000, v. 1, p. 133-141.

365. Scott K., Zuker C.S. Lights out: deactivation of the phototransduction cascade. Trends Biochem. Sci., 1997, v. 22, p. 350-354.

366. Selyanko A.A. et al. Inhibition of KCNQl-4 potassium channels expressed im mammalian cells via Ml muscarinic acetylcholine receptors. J. Physiol., 2000, v. 522, p; 349-355.

367. Setou M. et al. Glutamate-receptor-interacting: proteinGRIPl directly steers kinesin to dendrites. Nature, 2002, v. 417, p. 83-87.

368. Setou M. et al. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science, 2000, v. 288, p. 1796-1802.

369. Sheng M. et al Presynaptic A-current based on. heteromultimeric K^ channels detected in vivo. Nature, 1993, v. 365, p. 72-75

370. Sheng M:, Sala C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci., 2001, v. 24, p. 1 29.

371. Shi S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science,. 1999, v. 284, p. 1811-1816.

372. Shi S. et al. Subunit-speeific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell, 2001, v. 105, p. 331-343.

373. Shimahara T., Taue L. Heterosynaptic facilitation in giant cell of Aplysia. J. Physiol., 1975, v. 247, no. 2, 110 p. 321-341.

374. Shimahara T., Taue L. Cyclic AMP induced by serotonin modulates the activity of identified synapses in Aplisia by facilitating the active permeability to calcium. Brain Res., 1977, v. 127, no. l,p. 168-172.

375. Shimahara T., Taue L. The role of cyclic AMP in the modulation of efficacy. J. Physiol. (Paris), 1978, v. 74, no. 5, p. 515-519.

376. Schulman H. Serine/threonine kinases in the nervous system. Curr. Opin. Neurobiol., 1991, v. 1, p. 43-52.

377. Shorte S.L. N-methyl-D-aspartate evokes rapid net depolymerization of filamentous actin in cultured rat cerebellar granule cells. J. Neurophysiol., 1997, no. 78, p. 1135-1143.

378. Smaili S.S. et al. Cyclosporin A inhibits inositol 1,4,5-trisphosphate-dependent Ca2f signals by enhancing Ca2f uptake into the endoplasmic rticulum and mitochondria. Biol. Chem., 2001, v. 276, no. 26, p. 23329-23340.

379. Smith D.P. et al. Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. Science, 1991, v. 254, p. 1478-1484.

380. Smith-Swintosky V. L. et al. Protease nexin-1 and thrombin modulate neuronal Ca2+ homeostasis and sensitivity to glucose deprivation-induced injury. J. Neuroscie., 1995, v. 15, p. 5840-5850.

381. Snyder S.H. et al. Neural actions of immunophilin ligands. Trends Pharmacol., Sei., 1998, v. 19, no. 1, p. 21-26.

382. Soderling T.R. CaM-kinases: modulators of synaptic plasticity. Curr. Opin. Neurobiol., 2000, v. 10, p. 375-380.

383. Song I. et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron, 1998, v. 21, p. 393-400.

384. Stemmer P., Klee C.B. Serine/threonine phosphatase in the nervous system. Curr. Opin. Neurobiol., 1991, no. 1, p. 53-64.

385. Steven H.Y., Poo M. Topographical rearrangement of acetylcholine receptors alters channel kinetics. Nature, 1991, v. 304, p. 161-163.

386. Stevens C.F., Tsujimoto T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc. Natl. Acad. Sei. USA, 1995, v. 92, p. 846-849.

387. Striggow F. et al. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc. Natl. Acad. Sei. USA., 2000, v. 97, p. 22642269

388. Sudhof T.C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature, 1995, v. 375, p. 645-653

389. Suh B., Hille B. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron, 2002, v. 35, p. 507520.

390. Sullivan K.M. et al. The ryanodine receptor is essential for larval development in Drosophila mclanogaster. Proc. Natl. Acad. Sei. U. S. A., 2000, v. 97, p. 5942-5947.

391. Tai A.W. et al. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell, 1999, v. 97, p. 877-887.

392. Takeuchi M. et al SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J. Biol. Chem.,1997, v. 272, p. 11943-11951.

393. Tingley W.G. et al. Regulation of NMD A receptor phosphorylation by alternative splicing of the C-terminal domain. Nature, 1993,.no. 364, p. 70-73.

394. Thompson S., Coombs J. Spatial distribution of Ca currents in molluscan neuron cell bodies and regional differences in the strength of inactivation. J. Neurosci., 1988, v. 8, no. 6, p. 1929-1939.

395. Tsunoda S. et al. A multivalent PDZ-domain protein assembles signaling complexes in a G-protein-coupled cascade. Nature, 1997, v. 388, p. 243-249.

396. Tynan S.H. et al. Light intermediate chain 1 defines a functional subtraction of cytoplasmic dynein which binds to pericentrin. J. Biol. Chem., 2000, v. 275, p. 3276332768.

397. Urushihara H., Tohda M., Nomura Y. Selective potentiation of N-methyl-D-aspartate-induced current by protein kinase C in Xenopus oocytes injected with rat brain mRNA. J. Biol. Chem., 1992, no. 267, p. 11697-11700.

398. Vale R.D., Reese T.S., Sheetz M.P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell, 1985a, v. 42, p. 39-50.

399. Vale R.D. et al. Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell, 1985b, v. 40, p. 449-454.

400. Valtschanoff J. G. et al. SAP97 concentrates at the postsynaptic density in cerebral cortex. Eur. J. Neurosci., 2000, v. 12, p. 3605-3614.

401. Vanderklish P et al. Proteolysis of spectrin by calpain accompanies theta-burst stimulation in cultured hippocampal slices. Brain Res. Mol Brain. 1995, v 32, p. 25-35.

402. Vaughan K.T., Vallee R.B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and pl50Glued. J. Cell Biol., 1995, v. 131, p. 1507-1516.

403. Verhey K.J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol., 2001, v. 152, p. 959-970.

404. Verkhovsky A.B., Svitkina T.M., Borisy G.G. Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. J. Cell Biol., 1995, v. 131, p. 989-1002

405. Xu X.Z. et al. TRP gamma, a Drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron, 2000, v. 26, p. 647-657.

406. Wagner K.R., Mei L., Huganir R.L. Protein tyrosine kinases and phosphatases in the nervous system. Curr. Opin. Neurobiol., 1991, no. 1, p. 65-73.

407. Wang W. et al. Structure of the Monomeric 8-kDa Dynein Light Chain and Mechanism of the Domain-swapped Dimer Assembly J. Biol. Chem., 2003, v. 278, no 42, p. 41491-41499.

408. Wang L-Y, Salter M.W., MacDonald J.F). Regulation of kainate rcceptors by cAMP-dependent protein kinase and phosphatases. Science, 1991, no. 253, p. 132-135.

409. Wang H. Heteromultimeric K.+ channels in terminal and juxtaparanodal regions of

410. V neurons. Nature, 1993, no. 365, p. 75-79.

411. Washboume P., Bennett J.E., McAllister A.K. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nat. Neurosci., 2002, v. 5, p. 751-759.

412. Wechsler A., Teichberg V.I. Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. EMBO J. 1998, v. 17, p. 39313939.

413. Weiler I.J. et al. Morphogenesis in memory formation: synaptic and cellular mechanisms. Behav. Brain Res., 1995, v. 66, p. 1-6.

414. Wells A.L. et al. 1999, Myosin VI is an actin-based motor that moves backwards. Nature, v. 401, p. 505-508.

415. Wen H., Lcvitan I.B. Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J. Neurosci., 2002,v. 22, p. 7991-8001.

416. Wes P.D. et al. Termination of phototransduction requires binding of the N1NAC myosin III and the PDZ protein INAD. Nat. Neurosci., 1999, v. 2, p. 447-453.

417. Wilson S.M. et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl. Acad. Sci. U. S. A. 2000, v. 97, p. 7933-7938.

418. Winckler B., Mellman I. Neuronal polarity: controlling the sorting and diffusion of membrane components (in process citation). Neuron, 1999, v. 23, p. 637-640.

419. Wolenski J.S. et al 1995. In vitro motility of immuno adsorbed brain myosin-V using a Limulus acrosomal process and optical tweezer-based assay. J. Cell Sci., v. 108,jfcV p. 1489-1496

420. Wu C. et al. Integrin activation and cytoskeletal interaction are critical steps in the assembly of a fibronectin matrix. Cell. 1995, v. 83, p. 715-724.

421. Wu H. Interaction of SAP97 with Minus-end-directed Actin Motor Myosin VI. J. Biol. Chem., 2002, v. 277, no. 34, p. 30928-30934.

422. Wu X. et al. Rab27a enables myosin Va-dependent melanosome capture by recruiting the myosin to the organelle. J. Cell Sci., 2001, v. 114, p. 1091-1100.

423. Wyszynski M. et al. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature, 1997, v. 385,p. 439-442.

424. Yamoah E.N., Crow T. Protein kinase and G-protein regulation of Ca2+ currents in Hermissenda photoreceptors by 5-HT and GABA. J Neurosci., 1996, Augif; 1;16(15): p. 4799-809.

425. Yang N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role Rac-mediated actin reorganization. Nature, 1998, v. 393, no. 6687, p.809-812.

426. Yonekawa Y. et al. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J. Cell Biol., 1998, v. 141, p. 431-441.

427. Yus-Najera E. et al. The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent K.CNQ potassium channels. J. Biol. Chem., 2002, v. 277, p. 28545-28553.

428. Zakharov I.S. et al. Postembryonic neurogenesis in the procerebrum of the terrestrial snail, Helix lucorum L. J Neurobiol. 1998, v. 35, no. 3, p. 271-276.

429. Zakharenko S., Popov S. Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol., 1998, v. 143, p. 10771086.

430. Zapara T.A. Ratushnyak A.S. Experimental analysis of principles of information processing by neuron. Optoelectronics, Instrumentation and Data Processing. Allepton press, N. Y., 1993, no 2, p. 61-65.

431. Zapara T.A., Simonova O.G., Ratushnyak A.S. The effect of the cytoskeleton dynamic condition on neuronal plasticity. Formerly I.M. Sechenov Physiol, j., 1999, v. 85, p 128-138

432. Zapara T.A. et al. The effects of the dynamic state of the cytoskeleton on neuronal plasticity. Neurosci Behav Physiol. 2000, no. 3, p. 347-355

433. Zhang S. et al. Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron, 1998, no. 21, p. 443-453.

434. Zhang H. et al. PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron, 2003 v. 37, p. 963-975.

435. Zilberter Yu.I. et al. Patch-voltage-clamp method for measuring fast inward current in single rat heart muscle cells. Pflugers Arch., 1982, v. 394, p. 150-155.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.