Протон-транслоцирующая активность митохондриального Комплекса I тема диссертации и автореферата по ВАК РФ 03.00.04, кандидат биологических наук Галкин, Александр Сергеевич
- Специальность ВАК РФ03.00.04
- Количество страниц 148
Оглавление диссертации кандидат биологических наук Галкин, Александр Сергеевич
ОГЛАВЛЕНИЕ.
СПИСОК СОКРАЩЕНИЙ.
ВВЕДЕНИЕ.
ОБЗОР ЛИТЕРАТУРЫ.
Комплекс I и организация дыхательной цепи.
Субъединичный состав и фрагменты Комплекса 1.
Полипептидный состав и редокс-компоненты Комплекса I.
Субъединицы, принадлежащие митохондриальному геному.
Субъединицы Комплекса I, принадлежащие ядерному геному.
Нуклеотид-связывающие субъединицы.
Флавинмононуклеотид-связывающие субъединицы.
Железо-серные кластеры.
Прочносвязанные семихиноны как интермедиаты переноса электронов.
Субъединицы ответственные за связывание хинона.
Ацилпереносящий белок.
Структурная модель организации Комплекса 1.
Реакции, катализируемые Комплексом 1.
Прямой перенос электронов.
КАЕ)Н-оксидазная реакция.
ЫА1)Н:хинон-редуктазная реакция.
Окисление ИАОН искусственными акцепторами электронов.
КАОН: фумарат-редуктазная реакция.
Трансгидрогеназная, а также другие МАХ)Р(Н)-зависимые реакции.
Обратный перенос электронов.
Гистерезисное поведение Комплекса 1.
Ингибиторы Комплекса 1.
Ингибиторы ЫАОН связывающего центра.
Дициклогексилкарбодиимид.
Ингибиторы хинон-связывающего центра.
Транслокация протонов ферментами дыхательной цепи и определение стехиометрического коэффициента п (Й+¡2ё) для КАБНгубихинонредуктазной реакции.
Модели протон-транслоцирукяцего механизма Комплекса 1.
МЕТОДЫ ИССЛЕДОВАНИЯ.
Препаративные методы.
Выделение митохондрий сердца быка.
Выделение СМЧ.
Получение деактивированного и активированного препарата
Комплекса I.
Выделение митохондрий сердца крысы.
Аналитические методы.
Регистрация переноса протонов и окисления МАЕ)Н СМЧ.
Регистрация переноса протонов с помощью рН-метра.
Определение концентрации белка.
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ.
Транслокация протонов Комплексом 1 в составе митохондрий.
Транслокация протонов Комплексом I в составе СМЧ.
Определение коэффициента Н+¡2ё для МАБН:убихинон-редуктазной реакции.
Влияние условий измерения на протон-транслоцирующую активность
Комплекса 1.
Измерение при различных концентрациях добавленного ЫАХ)Н.
Влияние количества СМЧ на регистрацию их протонтранслоцирующей активности.
Влияние разобщителей на величину коэффициента Й+¡2ё.
Влияние pH на величину стехиометрического коэффициента Н+¡2е для КАБН'.хинон-редуктазной реакции.
Влияние ротенона на транслокацию протонов.
Транслокация протонов деактивированной формой Комплекса 1.
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.
ВЫВОДЫ.
Рекомендованный список диссертаций по специальности «Биохимия», 03.00.04 шифр ВАК
Изучение реакций преобразования энергии в NADH: убихинон-оксидоредуктазах митохондрий и прокариот2003 год, кандидат биологических наук Ушакова, Александра Владимировна
Трансгидрогеназная активность митохондриального Комплекса I и его нуклеотид-связывающие центры2000 год, кандидат биологических наук Захарова, Наталья Владимировна
Структурные перестройки и кинетические свойства митохондриальной Н+ -АТФазы1984 год, кандидат биологических наук Гладышева, Татьяна Борисовна
Свойства митохондриальной NADH: убихинон оксидоредуктазы (комплекса I) в составе мембранных препаратов мозга2011 год, кандидат биологических наук Калашников, Денис Сергеевич
Реакции гидрофильных аналогов коэнзима Q в дыхательной цепи митохондрий2009 год, кандидат химических наук Мотовилов, Константин Александрович
Список литературы диссертационного исследования кандидат биологических наук Галкин, Александр Сергеевич, 2000 год
1.Лузиков В.Н. (1973) // Стабилизация системы окислительного фосфорилирования. В книге «Структура и механизм действия ферментов» выпуск 2, под ред. Северина С.Е., Издательство МГУ, стр. 21-62
2. Ahmed I., Krishnamoorthy G. (1992) // The non-equivalence of binding sites of coenzyme quinone and rotenone in mitochondrial NADH-CoQ reductase. FEBS Lett., 300, 275-278
3. Albracht S.P.J., Dooijewaard G., Leeuwerik F.J., Van Smol B. (1977) // EPR signals of NADH:ubiquinone oxidoreductase shape and intensity. Biochim. Biophys. Acta., 459, 300-317
4. Albracht S.P.J., Leeuwerik F.J., Van Swol B. (1979) // The stoichiometry of the iron-sulfur clusters la, lb and 2 of NADH:Q oxidoreductase as present in beef heart submitochondrial particles. FEBS Lett., 104, 197-200
5. Albracht S.P.J., de Jong M.A.Ph. (1997) // Bovine heart NADHrubiquinone oxidoreductase is a monomer with Fe-S clasters and 2 FMN groups. Biochim. Biophys. Acta., 1318,92-106
6. Albracht S.P.J., Mariette A., De Jong Ph. (1997) // Bovine heart NADHrubiquinone oxidoreductase is a monomer with Fe-S clasters and 2 FMN groups. Biochim. Biophys. Acta., 1318, 92-106
7. Alexandre A., Reynafarje В., Lehninger A.L. (1978) // Stoichiometry of vectorial ЕГ movements coupled to electron transport and to ATP synthesis in mitochondria. Proc. Natl. Acad. Sci. USA, 75, 5296-5300
8. Alexandre A., Galiazzo F., Lehninger A.L. (1980) // On the location of the H+-extruding steps in Site 2 of the mitochondrial electron transport chain. J. Biol. Chem.,255, 10721-10730
9. Anderson R.F. (1983) // Energetics of the one electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. Biochim. Biophys. Acta., 722, 158-162.
10. O.Anderson S., De Bruijn M.H.L., Coulson A., Eperon I.C., Sanger F.,Young I.G. (1982) // Complete sequence of bovine mitochondrial DNA. J. Mol. Biol., 156, 683-717
11. Archbold G.P., Farrington C.L., Lappin S., McKay A.M., Malpress F.H. (1979) // Oxygen-pulse curves in rat liver mitochondrial suspensions. Some observations and deductions. Biochem. J., 180, 161-174
12. Arizmendi J.M., Runswick M.J., Skehel J.M., Walker J.E. (1992) // NADHrubiquinone oxidoreductase from bovine heart mitochondria: a fourth nuclear coded subunit with a homologue encoded in chloroplast genomes. FEBS Lett., 301, 237-242
13. Bakker P.T.A., Albracht S.PJ. (1986) // Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. Pre steady state kinetics with NADH. Biochim. Biophys. Acta., 850, 413-422
14. Beales K.J., Cooper W.D., Eley D.D. (1978) // Protein quinone complexe. Bovine plasma albumin and halogenated p-quinones. J. Bioenerg. Biomembr., 10, 101-104
15. Beinert H., Sands R.H. (1959) // On the function of iron in DPNH cytochrome c reductase. Biochem. Biophys. Res. Commun., 1, 171-174
16. Beinert H., Palmer G. (1965) // Kinetic studies on reduced diphosphopyridine nucleotide dehydrogenase by EPR spectroscopy. J. Biol. Chem., 240, 475-480
17. Beinert H., Albracht S.PJ. (1982) // New insights, ideas and unanswered questions concerning iron-sulfur clusters in mitochondria. Biochem. Biophys. Acta., 683, 245-277
18. Belogrudov G.I., Hatefi Y. (1996) // Intersubunite interaction in the bovine mitochondrial Complex I as revealed by ligand blotting. Biochem. Biophys.Res. Commun., 227, 135-139
19. Boekema E.J., Van Breemen J.F.L., Keegstra W., Van Bruggen E.J.E., Albracht S.P.J. (1982) // Structure of NADH:Q oxidoreductase from bovine heart mitochondria studies by electron microscopy. Biochim. Biophys. Acta., 679, 7-11
20. Boumans H., Grivell L.A., Berden J.A. (1998) // The respiratory chain in yeast behaves as a single functional unit. J. Biol. Chem., 273, 4872-4877
21. Brand M.D., Reinafarje B., Lehninger A.L. (1976) // Re-evaluation of if/Site ratio of mitochondrial electron transport with the oxigen pulse technique. J. Biol. Chem., 251, 5670-5679
22. Brand M.D., Harper W.G., Nicholls D.G., Ingledew WJ. (1978) // Unequal charge separation by different coupling spans of the mitochondrial electron transport chain. FEBS Lett., 95, 125-129
23. Brandt U. (1999) // Proton translocation in the respiratory chain involving ubiquinone a hypothetical semiquinone switch mechanism for Complex I. BioFactor, 9, 95-101
24. Brown G.C., Brand M.D. (1988) // Proton/electron stoichiometry of mitochondrial Complex I estimated from the equilibrium thermodynamic force ratio. Biochem. J., 252,473-479
25. Burbaev D.Sh., Moroz I.A., Kotlyar A.B., Sled V.D., Vinogradov A.D. (1989) // Ubisemiquinone in the NADH:ubiquinone reductase region of the mitochondrial respiratory chain. FEBS Letter., 254, 47-51
26. Burgos J., Redfearn E. (1965) // The inhibition of mitochondrial reduced nicotinamidadenine dinucleotide oxidation by rotenoids. Biochem.Biophys.Acta., 110,475-486
27. Capaldi R.A. (1982) // Arrangement of proteins in the mitochondrial inner membrane. Biochim. Biophys. Acta., 694, 291-306
28. Castresana J., Alonso A., Arrondo J.L., Goni F.M., Casal H. (1992) // The physical state of ubiquinone-10, in pure form and incorporated into phospholipid bilayers. A. Fourier-transform infrared spectroscopic study. Eur. J. Biochem., 204, 1125-1130
29. Chance B., Hollunger G. (1960) // Energy linked reduction of mitochndrial pyridine nucleotide. Nature, 185, 666-672
30. Chance B., Mela L. (1966) // Intramitochondrial pH changes in cation accumulation. Biochemiatry, 55, 1243-1250
31. Chance B., Erecinska M. (1975) // 12-(9-Anthroyl)stearic acid, a fluorescent probe for the ubiquinone region of the mitochondrial membrane. Eur. J. Biochem., 54, 521-529
32. Chance B. (1977) // Electron transfer: pathways, mechanisms, and controls. Ann. Rev. Biochem., 46, 981-995
33. Chen Sh., Guillory R.J. (1979) // Interaction of arylazido-p-alanyl NAD+, a photoaffinity analogue of NAD+, with mitochondrial NADH-ubiquinone reductase. J. Biol. Chem., 254, 7220-7227
34. Chen Sh., Guillory R.J. (1981) // Studies on the interaction of arylazido-p-alanyl NAD+ with the mitochondrial NADH dehydrogenase. J. Biol. Chem., 256, 8318-8323
35. Chen Sh., Guillory RJ. (1984) // Identification of the NADH-NAD+ transhydrogenase peptide of the mitochondrial NADH: ubiquinone reductase (Complex I). J. Biol. Chem., 259, 5124-5131
36. Chenas N.K. (1989) // Reaction of complex I of the mitochondrial electron transport chain with artificial oxidizers. Ukr. Biokhim. Zh., 61, 23-29
37. Chomyn A., Cleeter M., Ragan I.C., Riley M., Doolittle R.F., Attardi G. (1986) // URF6, last identified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science, 234, 614-618
38. Clark W.M. (1960) // Oxidation reduction potentials of organic systems. Williams&Wilkins, Baltimor
39. Cleeter M.W.J., Banister S.H., Ragan C.I. (1985) // Chemical cross-linking of mitochondrial NADH dehidrogenase from bovine heart. Biochem. J., 227, 467-474
40. Clejan L., Bosch C.G., Beattie D.S. (1984) // Inhibition by dicyclohexylcarbodiimide of proton ejection but not electron transfer in rat liver mitochondria. J. Biol. Chem., 259, 13017-13020
41. Cornell B.A., Keniry M.A., Post A., Robertson R.N., Weir L.E., Westermann P.W. (1987) // Location and activity of ubiquinone 10 and ubiquinone analogues in model and biological membranes. Biochemistry, 26, 7702-7707
42. Costa L.E., Reynafarje B., Lehninger A.L. (1984) // Stoichiometry of mitochondrial H* translocation couplrd to succinate oxidation at level flow. J. Biol. Chem., 259, 4802-4811
43. Crane F.L., Glenn J.L., Green D. (1956) // Studies on the electron transfer system. IV. The electron transfer particles. Biochim. Biophys. Acta., 22, 475487
44. Crane F.L., Hatefi Y., Lester R.L., Widmer C. (1957) // Isolation of a quinone from beef heart mitochondria. Biochim. Biophys. Acta., 25, 220-221
45. De Jong A.M., Albracht S.P. (1994a) // Ubisemiquinones as obligatory intermediates in electron transfer from NADH to ubiquinone. Eur. J. Biochem., 222, 975-982
46. De Jong A.M., Kotlyar A.B., Albracht S.P. (1994b) // Energy-induced sructural changes in NADH:Q oxidoreductase of the mitochondrial respiratory chain. Biochim. Biophys. Acta., 1186, 163-171
47. Deng P., Hatefi Y, Chen Sh. (1990) // N-arylazido-ß-alanyl NAD+ photoaffinity analogue. Synthesis and labelling of mitochondrial NADH dehydrogenase. Biochemistry, 29, 1094-1098
48. Di Bernardo S., Fato R., Casadio R., Fariselli P., Lenaz G. (1998) // A high diffusion coefficient for coenzyme Q10 might be relatedd to folded structure. FEBS Lett., 426, 77-80
49. Di Virgilio F., Azzone G.F. (1982) // Activation of site I redox-driven H+ pump by exogenous quinones in intact mitochondria. J. Biol. Chem., 257, 4106-4113
50. Djavadi-Ohaniance L., Hatefi Y. (1975) // Oxidation of NADPH by submitochondrial particles from beef hert in complete absence of transhydrogenase activity from NADPH to NAD+. J. Biol. Chem., 250, 93979403
51. Dooijewaard G., Slater E.C. (1976) // Steady-state kinetics of high molecular weight (Type I) NADH dehydrogenase. Biochim. Biophys. Acta., 440, 1-15
52. Dupius A., Skehel J.M., Walker J.E. (1991b) // NADHrubiquinone reductase from bovine mitochondria: complementary DNA sequence of a 19 kDa cysteine rich subunite. Biochem. J., 277, 11-15
53. Dupius A., Skehel J.M., Walker J.E. (1991a) // Plant chloroplast genomes encode a homologue of a nuklear coded iron-sulfur protein subunit of bovine mitochondrial Complex I. Biochemistry, 30, 2954-2960
54. Dutton P.L., Moser C.C., Sled V.D, Daldal F., Ohnishi T. (1998) // A reductant-induced oxidation mechanism for Complex I. Biochim. Biophys. Acta., 1364, 245-257
55. Earley F.G.P., Ragan C.I. (1980) // Identification of the subunits of bovine heart mitochondrial NADH dehydrogenase that are exposed to the phospholipid bilayer by photolabelling with 5-iodonaphth-l-yl azide. Biochem. J., 191, 429-436
56. Earley F.G.P., Ragan C.I. (1984) // Photoaffinity labelling of mitochondrial NADH dehydrogenase with arylazidomorphigenin, an analogue of rotenone. Biochem. J., 224, 525-534
57. Earley F.G., Patel S.D., Ragan C.I., Attardi G. (1987) // Photolabelling of a mitochondrial encoded subunits of NADH dehydrogenase with 3H. dihydro-rotenone. FEBS Lett., 219, 108-113
58. Ernster L., Dallner G., Azzone G.F. (1963) // Differential effects of rotenone and amytal on mitochondrial electron and energy transfer. J. Biol. Chem., 238, 1124-1131
59. Esposti D.M., Ghelli A., Crimi M., Estornell E., Fato R., Lenaz G. (1993) // Complex I and complex III of mitochondria have common inhibitors acting as ubiquinone antagonists. Biochem. Biophys. Res. Commun., 190, 1090-1096
60. Esposti D.M., Ghelli A., Ratta M., Cortes D., Estornell E. (1994) // Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehidrogenase (Complex I). Biochem. J., 301, 161167
61. Esposti D.M., Ngo A., McMullen GL., Ghelli A., Sparla F., Benelli B., Ratta M., Linnane A.W. (1996b) // The specificity of mitochondrial complex I for ubiquinones. Biochem. J., 313, 327-334
62. Esposti D.M. (1996) // Aspects of Complex I interaction with ubiquinone and its antagonists. Biochim. Biophys. Acta., EBEC short reports, 9, 143
63. Esposti M.D. (1998) // Inhibitors of NADH-ubiquinone reductase: an overview. Biochim. Biophys. Acta., 1364, 222-235
64. Esposti M.D. (1999) // Ubiquinone and inhibitors sites in Complex I: one, twothor three? Biochem. Soc. Trans. 668 Meeting, Glasgow, 27, A83
65. Fato R., Castelluccio C., Palmer G., Lenaz G. (1988) // A simple method for determination of kinetic constants of membrane enzymes utilizing hydrophobic substrates: ubiquinol cytochrom c reductase. Biochim. Biophys. Acta., 932, 216-222
66. Fearnley I.M., Finel M., Skehel J.M., Walker J.E. (1991) // NADH:ubiquinone oxidoreductase from bovine heart mitochondria; cDNA secuences of the import precursors of the nuclear coded 39-kDa and 42-kDa subunits. Biochem. J., 278, 821-829
67. Fearnley I. M., Walker J. E. (1992) // Conservation of sequences of subunits of mitochondrial Complex I and their relationships with other proteins. Biochim. Biophys. Acta., 1140, 105-134
68. Festenstein G.N., Heaton F.W., Lowe J.S., Morton R.A. (1955) // A constituent of the unsaponifiable portion of animal tissue lipids (Xmax 272 mp). J. Biol. Chem., 59, 558-566
69. Finel M. (1993) // The proton-translocating NADH:ubiquinone oxidoreductase: discussion of selected topics. J. Bioenerg. Biomemr., 25, 347355
70. Fontaine E., Bernardi P. (1999) // Progress on the mitochondrial permeability transition pore: regulation by Complex I and ubiquinone analogs. J. Bioenerg. Biomemr., 31, 335-345
71. Frenkin M.V., Kotlyar A.B. (1999) // Arylazido-p-alanine ADP-ribose, a novel irreversible competitive inhibitor of mitochondrial NADH-ubiquinone oxidoreductase. Biochim. Biophys. Acta., 1413, 139-146
72. Friedrich T., Strohdeicher M., Hofhaus G., Weiss H. (1990) // The same motif for ubiquinone reduction in mitochondrial or chloroplast NADH dehydrogenase and bacterial glucose dehydrogenase. FEBS Lett., 265, 37-40
73. Fukushima T., Decker R.V, Anderson W.M., Spivey H.O. (1989) // Substrate channaling of NADH and binding of dehydrogenases to Complex I. J. Biol. Chem., 264, 16483-16488
74. Galante Y.M., Hatefy Y. (1979) // Purification and molecular properties of mitochondrial NADH dehydrogenase. Arch. Biochem. Biophys., 192, 559-568
75. Gavrikova E.V., Grivennikova V.G., Sled V.D., Ohnishi T., Vinogradov A.D. (1995) // Kinetics of the mitochondrial three-subutit NADH dehydrogenase interaction with hexammineruthenium(III). Biochim. Biophys. Acta., 1230, 23-30
76. Gavricova E.V., Vinogradov A.D. (1999) // Active/de-active state transition of the mitochondrial Complex I as revealed by specific sulfhydryl group labeling. FEBS Lett., 455, 36-40
77. Gibb G.M., Ragan C.I. (1990) // Identification of the subunits of bovine NADH dehydrogenasewhich are encoded in the mitochondrial genom. Biochem. J., 265, 903-906
78. Glinn M.A., Lee C.P., Ernster L. (1997) // Pro- and anti-oxidant activities of the mitochondrial respirotory chain: factors influencing NAD(P)H-induced lipid peroxidation. Biochim. Biophys. Acta., 1318, 246-254
79. Gondal J. A., Anderson W. M. (1985) // The molecular morfology of bovine heart mitochondrial NADH:Ubiquinone reductase, J. Biol. Chem., 260, 1269012694
80. Gornal A.G., Bardawill C.J., David M.M. (1949) // Detemination of serum proteins by means of the biuret reaction. J. Biol. Chem., 177, 751-766
81. Green D.E., Hatefi Y., Fechner W.F. (1959) // On the role of coenzyme Q in electron transport. Biochem. Biophys. Res. Commun., 1, 45-48
82. Grigorieff N. (1998) // Three-dimentional structure of bovine NADH:ubiquinone oxidoreductase (Complex I) at 22 A in ice. J. Mol. Biol., 277, 1033-1046
83. Criddle R.S., Bock R.M., Green D.E., Tisdale H. (1962) // Physical characteristics of the electron transfer system and interpritations of the structure of mitochondria. Biochemistry, 1, 827-851
84. Grivennikova V.G., Gavrikova E.V., Timoshin A.A. (1993) // Fumarate reductase activity of bovine heartsuccinate-ubiquinone reductase. New assay sistem and overall properties of the reaction. Biochim. Biophys. Acta., 1140, 282-292
85. Grivennikova V.G., Maklashina E.O., Gavricova E.V., Vinogradov A.D (1997) // Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the active/inactive transition. Biochim. Biophys. Acta., 1319,223-232
86. Gutman M., Singer T., Beinert H., Casida J. (1970a) // Reaction site of rotenone, piericidin A and amital in relation to the non-heme iron components of NADH dehydrogenase, Proc.Natl.Acad.Sci. USA, 65, 763-770
87. Gutman M, Singer T, Casida J. (1970b) // Studies on the respiratory chain-linked NADH dehydrogenase, reaction sites of piericidin A and rotenone. J. Biol. Chem, 245, 1992-1997
88. Gutman M, Singer T.P. (1971) // EPR studies on the iron-sulfur centers of DPNH dehydrogenase during the redox cycle of the enzyme, Biochem. Biophys. Res. Commun, 44, 1572-1578
89. Gutman M. (1980) // Electron flux through the mitochondrial ubiquinone. Biochim. Biophys. Acta, 594, 53-84
90. Han A.L, Yagi T, Hatefi Y. (1988) // Studies on the structure of NADH:ubiquinone oxidoreductase complex: topography of subunits of the iron-sulfur flavoprotein component. Arch.Biochem.Biophys, 267, 490-496135
91. Han A.L., Yagi T., Hatefi Y. (1989) // Studies on the structure of NADH:ubiquinone oxidoreductase complex: topography of subunits of the iron-sulfur protein component. Arch.Biochem.Biophys., 275, 166-173
92. Harry C.Au., Byoung B.S., Matsuno-Yagi A., Yagi T„ Scheffler I.E. (1999) // The NDUFA1 gene product (MWFE protein) is essential for activity of Complex I in mammalian mitochondria. Biochemistry, 96,4354-4359
93. Hatefi Y., Haavik A.G., Griffiths D.E. (1962) // Studies on the electron respiratory chain. XL. Preparation and properties of the mitochondrial DPNH-coenzyme Q reductase. J. Biol. Chem., 237, 1676-1680
94. Hatefi Y. (1963) // Coenzyme Q (Ubiquinone). Adv.in Enzymol., 25, 275328
95. Hatefi Y., Stempel K. (1969) // Isolation and enzymatic properties of the mitochondrial reduced diphosphopyridine nucleotide dehydrogenase. J. Biol. Chem., 244, 2350-2357
96. Hendler R.W., Setty O.H. (1988) // Direct measurement of the initial and early ratios of proton extrusion to oxygen uptake accompanying cytochrome c oxidation by rat liver mitoplasts. Bioph. J., 53,205-213
97. Heron C., Ragan C.I., Trumpower B.L. (1978) // The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Biochem. J., 174, 791-800
98. Heron C., Gore M.G., Ragan C.I. (1979a) // The effects of lipid phase transitions on the interaction of mitochondrial NADH-ubiquinone oxidoreductase with ubiquinole-cytochrom c oxidoreductase. Biochem. J., 178,415-426
99. Heron C., Smith S., Ragan C.I. (1979b) // An analysis of the polypeptide composition of bovine heart mitochondrial NADH:ubiquinone oxidoreductase by two-dimensional polyacrylamide-gel electrophoresis. Biochem. J., 181, 435-443
100. Hinkle P.C., Horstman L.L. (1971) // Respiration-driven proton transport in submitochondrial particles. J. Biol. Chem., 246, 6024-6028
101. H0 Y., Wang J.H. (1981) // Effect of pyridine homologues on respiratory control and H+/O ratio in mitochondria. J. Biol. Chem., 256, 2611-2614
102. Hofhaus G., Weis H., Leonard K. (1991) // Electron microscopic analysis of the peripheral and membrane parts of mitochondrial NADH dehydrogenase (Complex I). J. Mol. Biol., 221, 1027-1043
103. Hommes F.A. (1963a) // The succinate-linked nicotinamide-adeninedinucleotide reduction in submitochondrial particles. I. Kinetic studies of the reaction. Biochim. Biophys. Acta, 77, 173-182
104. Hommes F.A. (1963b) // The succinate-linked nicotinamide-adeninedinucleotide reduction in submitochondrial particles. I. Studies with inhibitors. Biochim. Biophys. Acta, 77, 183-190
105. Honkakoski P.J., Hassinen I.E. (1986) // Sensitivity to NN'-dicyclohexylcarbodi-imide of proton translocation by mitochondrial NADH:ubiquinone oxidoreductase. Biochem. J., 237, 927-930
106. Jeng M., Hall C., Crane F.L., Takahashi N., Tamura S., Folkers K. (1968) // Inhibition of mitochondrial electron transport by piericidin A and related compounds. Biochemistry, 7, 1311-1322
107. Junge W., Auslander W., McGeer A.J., Runge T. (1979) // The buffering capacity of the internal phase of thylakoids and the magnitude of the pH changes inside under flashing light. Biochim. Biophys. Acta., 546, 121-141
108. Kean E.A, Gutman M., Singer T.P. (1971) // Studies on the respiratory chain linked nicotinamide adenine dinucleotide dehydrogenase. XXII. Rhein, a competitive inhibitor of the dehydrogenase. J. Biol. Chem., 246, 2346-2353
109. Kikuno R., Miyata T. (1985) // Sequence homologies among mitochondrial DNA-coded URF-2, URF-4 and URF-5. FEBS Lett, 189, 85-88
110. Kotlyar A.B., Sled V.D., Burbaev D.Sh., Moroz I.A., Vinogradov A.D. (1990) // Coupling site I and rotenone sensitive ubisemiquinone in tightly coupled submitochondrial particles. FEBS Lett., 264, 17-20
111. Kotlyar A.B., Vinogradov A.D. (1990) // Slow active/inactive transition of the NADH:ubiqinone reductase. Biochim. Biophys. Acta., 1019, 151-158
112. Kotlyar A.B., Gutman M. (1992) // The effect of A|iHf on the interaction of rotenone with Complex I of submitochondrial particles. Biochim. Biophys. Acta., 1140, 169-174
113. Kotlyar A.B., Sled V.D., Vinogradov A.D. (1992) // Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH:ubiquinone reductase. Biochim. Biophys. Acta., 1098, 144-150
114. Kowal A.T., Morningstar J.E., Johnson M.K., Ramsay R.R., Singer T.P. (1986) // Spectroscopic characterization of the number and type of iron-sulfur clusters in NADH:ubiquinone oxidoreductase. J. Biol. Chem., 261, 92399245
115. Krishnamoorthy A.I.G., Hinkle P.C. (1988) // Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase. J. Biol. Chem., 263, 17566-15575
116. Kroger A., Klingenberg M. (1973a) // The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur. J. Biochem., Vol 34, 358-368
117. Kroger A., Klingenberg M. (1973b) // Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur. J. Biochem., 39, 313-323
118. Landi L., Pasquali P., Cabrini L., Lenaz G. (1979) // Effect of endogenous ubiquinone on the reduction and oxidation of short exogenous ubiquinone homologs in beef heart mitochondria. Boll. Soc. Ital. Biol. Sper., 55, 21422148
119. Lass A., Agarwall S., Sohal R.S. (1997) // Mitochondrial ubiquinone homologues, superoxide radical generation, and longevity in different mammalian species. J. Biol. Chem., 272, 19199-19204
120. Lawford H.G., Garland P.B. (1972) // Proton translocation coupled to quinone reduction by reduced nicotinamide-adenine dinucleotide in rat liver and ox heart mitochondria. Biochem. J., 130, 1029-1044
121. Lemasters J.J., (1984) // The ATP-to-oxygen stoichiometries of oxidative phosphorylation by rat liver mitochondria. J. Biol. Chem., 259, 13123-13130
122. Lenaz G. (1998) // Quinone specificity of Complex I. Biochim. Biophys. Acta., 1364, 207-221
123. Leonard K., Haiker H., Weiss H. (1987) // Tree dimentional stucture of NADH:ubiquinone reductase (Complex I) from Neurospora mitochondria determinet by electron microscopy of membrane crystals. J. Mol. Biol., 194, 277-286
124. Leung K.H., Hinkle P.C. (1975) // Reconstitution of ion transport and respiratory control in vesicles formed from reduced coenzyme Q-Cytochrome c reductase and phospholipids. J. Biol. Chem., 250, 8467-8471
125. Lindahl P.E., Oberg K.E. (1961) // The effect of rotenone on respiration and its point of attack. Exp. Cell Res., 23, 228-237
126. Low H., Yallin I. (1963a) // Succinat linked diphosphopyridine nucleotide reduction in submitochondrial particles. Biochim. Biophys. Acta., 69, 361374
127. L6w H., Vallin I., Aim B. (1963b) // Some aspects of oxidative phosphorilation and its reversal in submitochondrial particles. In "Energy -linked functions of mitochondria" ed. B. Chance, 5-25
128. Masui R., Wakabayashi S., Matsubara H., Hatefy Y. (1991b) // The amino acid sequence of the 9 kDa polypeptide and partial amino acid sequence of 20 kDa polypeptide of mitochondrial NADH:ubiquinone oxidoreductase. Biochem. J., 110, 575-582
129. Meng B., Matsubayashi T., Wakasugi T., Shinozaki K., Sugiura M., Hirai A., Mikami T., Kishima Y., Kinoshita T. (1986) // Ubiquity of the genes for components of a NADH dehydrogenase in higher plant chloroplast genomes. Plan. Sci., 47, 181-184
130. Meng R.I, Griffith M, Day D.A, Wiskich J.T. (1992) 11 Matrix NADH dehydrogenase of plant mitochondria and sites of quinone reduction by Complex I. Eur. J. Biochem, 208, 481-485
131. Minakami S, Schindler F.J, Estabrook R.W. (1964a) // Hydrogen transfer between reduced diphosphopyridine nucleotide dehydrogenase and the respiratory chain. I. Effect of sulfghydryl inhibitors and phospholipase. J. Biol. Chem, 239, 2042-2048
132. Mitchell P. (1961) // A chemiosmotic hypothesis for the mechanism of oxidative and photosynthetic phosphorilation. Nature, 191, 144-145
133. Mitchell P, Moyle J. (1965a) // Stoichiometry of proton translocationthrough the respiratory chain and adenosine triphosphatase system of rat liver mitochondria. Nature, 208, 147-151
134. Mitchell P, Moyle J. (1965b) // Evidence discriminating between the Chemical and the Chemiosmotic mechanisms of electron transport phosphorilation. Nature, 208, 1205-1206
135. Mitchell P. (1966) // Chemiosmotic coupling in oxidative and photosynthetic phosphorilation. Biol. Reviews, 41, 455-502
136. Mitchell P, Moyle J. (1967a) // Proton-transport phosphorilation: Some experimental tests. Biochemistry of mitochondria. Ed. By Slater E.C. et al. N.Y. Acad.Press, 53-74
137. Mitchell P, Moyle J. (1967b) // Respiration-driven proton translocation in rat liver mitochondria. Biochem. J, 105, 1147-1162
138. Mitchell P, Moyle J, Smith L. (1968) // Bromthymol blue as a pH indicator in mitochondrial suspension. Eur. J. Biochem, 4, 9-19
139. Mitchell P, Moyle J. (1969) // Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur. J. Biochem, 7, 471-484
140. Mitchell P, Moyle J. (1979) // Respiratory-chain protonmotive4 t iLstoicheiometry. Biochem. Soc. Trans. 583 meeting, Cambridge,, 7, 887-894
141. Moyle J, Mitchell P. (1973) // The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria. Biochem. J, 132, 571-585
142. Miyoshi H, Inoue M, Okamoto S, Ohshima M, Sakamoto K, Iwamura H. (1997) // Probing the ubiquinone reduction site of mitochondrial Complex I using novel cationic inhibitors. J. Biol. Chem, 272, 16176-16183
143. Miyoshi H., Iwata J., Sakamoto K., Furukawa H., Takada M., Iwamura H., Watanabe T., Kodama Y. (1998) // Specificy of pyridinium inhibitors of the ubiquinone reduction sites in mitochondrial Complex I. J. Biol. Chem., 273, 17368-17374
144. Moncelli M.R., Becucci L., Nelson A., Guidelli R. (1996) // Electrochemical modeling of electron and proton transfer to ubiquinone-10 in a self-assembled phospholipid monolayer. Biophys.J., 70, 2716-2726
145. Morton R.A. (1958) // Ubiquinone. Nature, 182, 1764-1767
146. Murphy M.P., Brand M.D. (1988) // Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. Eur. J. Biochem., 173, 637-644
147. Mustafa M.G., Cowger M.L., Labbe R.F., King T.E. (1969) // General nature of «Wurster's Blue shunts» in the respiratory chain. J. Biol. Chem., 243, 1908-1918
148. Patel S.D., Cleeter M.W.J., Ragan C.I. (1988) // Transmembrane organization of mitochondrial NADH dehydrogenase as revealed by radiochemical labelling and cross-linking. Biochem. J., 256, 529-535
149. Pilkington S.J., Walker J.E. (1989) // Mitochondrial NADH-ubiquinone reductase: complementary DNA sequences of import precursors of the bovine and human 24 kDa subunit. Biochemistry, 28, 3257-3264
150. Pilgington S.J, Skehel J.M, Gennis R.B, Walker J.E. (1991) // Relationship between mitochondrial NADH-ubiquinone reductase and NAD+ reducing dehydrogenase. Biochemistry, 30, 2166-2175
151. Pozzan T, Miconi V, Di Virgilio F, Azonne G.F. (1979) // HVSite, charge/Site, and ATP/Site ratios at coupling Sites I and II mitochondrial e" transport. J. Biol. Chem, 254, 10200-10205
152. Preis D, Vandes Pas J, Nehls U, Rohlen D, Sackmann U, Jahnke U, Weiss H. (1990) // The 49 kDa subunite of NADH:ubiquinone reductase (Complex I) from Neurospora Crassa mitochondria: primary structure of the gene and protein. Curr. Genet, 18, 59-64
153. Ragan C.I., Hinkle P.C. (1975) // Ion transport and respirarory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids. J. Biol. Chem., 250, 8472-8476
154. Ragan C.I. (1976) // The structure and subunite composition of the particulate NADH- ubiquinone reductase on bovine heart mitochondria. Biochem. J., 154, 295-305
155. Ragan C.I., Galante Y.M., Hatefi Y. (1982b) // Purification of the three iron-sulfur proteins from the iron protein fragment of mitochondrial NADH:ubiquinone reductase. Biochemistry, 21, 2518-2524
156. Ragan C.I., Galante Y.M., Hatefy Y., Ohnishi T. (1982a) // Resolution of mitochondrial NADH dehydrogenase and the isolation of two iron-sulfur proteins. Biochemistry, 21, 590-594
157. Ragan C.I. (1987) // Structure of NADHrubiquinone reductase (Complex I). Curr. Top. Bioenergetics., 15, 1-36
158. Ramsay R., Salash J., Dadgar J., Singer T. (1986) // Inhibition on mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism. Biochem. Biophys. Res. Commun., 135, 269-275
159. Ramsay R.R., Krueger M., Yongster S., Gluck M., Casida J., Singer T. (1991) // Interaction of l-Methyl-4-Phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase. J. Neurochem., 56, 1184-1190
160. Rao N.A., Felton., Huennekens F.L., Mackler B. (1963) // Flavine mononucleotide: the coenzyme of reduced diphosphopyridine nucleotide dehydrogenase. J. Biol. Chem., 238, 449-455
161. Reynafarje B., Brand M.D., Lehninger A.L. (1976) // Evaluation of the HVsite ratio of the mitochondrial electron transport from rate measurements. J. Biol. Chem., 251, 7442-7451
162. Rich P.R., Harper R. (1990) // Partition coefficient of quinones and hydroquinones and their relation to biochemical reactivity. FEBS Lett., 269, 139-144
163. Robertson D.E., Daldal F., Dutton P.L. (1990) // Mutants of ubiquinol-cytochrome c2 reductase resistant to Qo site inhibitors: consequences for ubiquinone and ubiquinol affinity and catalysis. Biochemistry, 29, 1124911260
164. Runswich M.J., Cennis R.B., Fearnley I.M., Walker J.E. (1989) // Mitochondrial NADH:ubiquinone reductase: complementary DNA sequenceof the import precursor of the bovine 75 kDa subunit. Biochemistry, 28, 94529459
165. Runswick M.J, Fearnley I.M, Skehel J.M, Walker J.E. (1991) // Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Lett, 286,121-124
166. Ruzicka FJ, Crane F.L. (1970a) // Quinone interaction with the respiratory chain-linked NADH dehydrogenase of beef heart mitochondria. Biochim. Biophys. Acta, 223, 71-85
167. Ruzicka F.J, Crane F.L. (1970b) // Four quinonereduction sites in the NADH dehydrogenase complex. Biochem. Biophys. Res. Commun, 38, 249254
168. Ruzicka F.J, Crane F.L. (1971) //Quinone interaction with the respiratory chain-linked NADH dehydrogenase of beef heart mitochondria. II. Duroquinone reductase activity. Biochim. Biophys. Acta, 226, 221-233
169. Rydstrom J, Montelius J, Backstrom D, Ernster L. (1978) // The mechanism of oxidation of reduced dinucleotide phosphate by submitochondrial particles from beef heart. Biochim. Biophys. Acta, 501, 370-380
170. Sackmann U, Zensen R, Rohlen D, Jahnke U, Weiss H. (1991) // The acyl carrier protein in Neurospora crassa mitochondria is subunite of NADH:ubiquinone reductase (Complex I). Eur. J. Biochem, 200, 463-469
171. Salerno J.C, Ohnishi T, Lim J, Widger R, King T.E. (1977) // Spin coupling between electron carriers in the dehydrogenase segments of the respiratory chain. Biochem. Biophys. Res. Commun, 75, 618-624
172. Schneider H, Lemaster J.J, Hackenbrock C.R. (1982) // Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes. J. Biol. Chem, 257, 10789-10793
173. Scholes P, Mitchell P. (1970) // Respiration-driven proton translocation in Micrococcus denitrificans. Bioenergetics, 1, 309-323.
174. Schuler F, Yano T, Di Bernardo S, Yagi T, Yankovskaya V, Singer T.P, Casida J.E. (1999) // NADH-quinone oxidoreductase: PSST subunit coupleselectron transfer from iron-sulfur cluster N2 to quinone. Proc. Natl. Acad. Sei. USA, 96,4149-4153
175. Shimomura Y., Kawada T., Suzuki M. (1989) // Capsaicin and its analogs inhibit the activity of NADH-coenzyme Q oxidoreductase of the mitochondrial respiratory chain. Arch. Biochem. Biophys., 270, 573-577
176. Sigel E., Carafoli E. (1978) // The proton pump of cytochrome c oxidase and its stoichiometry. Eur. J. Biochem., 89, 119-123
177. Singer T.P., Ramsay R. (1992) // NADH:Ubiquinone oxidoreductase, in Molecular Mechanisms in Bioenergetics, ed. by L. Ernster, Elsevier Amsterdam, 145-162
178. Sled V.D., Vinogradov A.D. (1993a) // Kinetics of the mitochondrial NADH-ubiquinone oxidoreductase with hexammineruthenium(III). Biochim. Biophys. Acta., 1141, 262-268
179. Sled V.D., Vinogradov A.D. (1993b) // Reductive inactivation of the mitochondrial 3 subunite NADH dehydrogenase. Biochim. Biophys. Acta., 1143, 199-203
180. Smith S., Ragan C.I. (1980) // The organization of NADH dehydrogenase polypeptides in the inner mitochondrial membrane. Biochem. J., 185, 315-326
181. Srivastava D.K., Bernard S.A. (1986) // Metabolite transfer via enzymeenzyme complexes. Science, 234, 1081-1086
182. Sumegi B., Srere P.A. (1984) // Complex I binds several mitochondrial NAD-coupled dehydrogenases, J. Biol. Chem., 259, 15040-15045
183. Suzuki H., King T.E. (1983) // Evidence of an ubisemiquinone radical from the NADH:ubiquinone reductase of the mitochondrial respiratory chain. J. Biol. Chem., 258, 352-358
184. Thierbach G., Reichenbach H. (1981) // Myxothiazol, a new inhibitor of the cytochrom bei segment of the respiratory chain. Biochim. Biophys. Acta., 638, 282-289
185. Trumpower B.L. (1981) // New concept on the role of ubiquinone in the mitochondrial respiratory chain. J. Bioener. Biomem., 13, 1-24
186. Turrens J.F, Boveris A. (1980) // Generation of superoxide anion by the ANDH dehydrogenase of bovine heart mitochondria. Biochem. J, 191, 421427
187. Ulrich E.L, Girvin M.E, Cramer W.A, Markley J.L. (1985) // Location and mobility of ubiquinones of different chain lengths in artificial membrane vesicles. Biochemistry, 24, 2501-2508
188. Ushakova A.V, Grivennikova V.G, Ohnishi T, Vinogradov A.D. (1999) // Triton X-100 as a specific inhibitor of the mammalian NADH:ubiquinone oxidoreductase (Complex I). Biochim. Biophys. Acta, 1409, 143-153
189. Vallin I, Low H. (1964) // Succinat-linked nicotinamide-adenine dinucleotide reduction coupled with the aerobic oxidation of reduced tetramethyl-p-phenylendiamine in submitochondrial particles. Biochim. Biophys. Acta, 92, 446-457
190. Van Belzen R, Albracht S.P.J. (1989) // The pathway of -electron transfer in NADH:Q oxidoreductase. Biochim. Biophys. Acta, 974, 311-320
191. Van Belzen R, Van Gaalen M.C.M, Cuypers P.A, Albracht S.P.J. (1990) // New evidence for dimeric nature of NADH:ubiquinone oxidoreductase in bovine-heart submitochondrial particles. Biochim. Biophys. Acta, 1017, 152159
192. Van Belzen R, De Jong A, Albracht S.PJ. (1992) // On the stoichiometry of the iron sulfur clusters in of mitochondrial NADH:ubiquinone oxidoreductase. Eur. J. Biochem, 209, 1019-1022
193. Van Belzen R, Kotlyar A, Dunham W, Albracht S.P.J. (1996) // EPR-spectroscopic studies on the iron-sulfur cluster 2 of Complex I in coupled submitochondrial particles. Biochim. Biophys. Acta, EBEC short reports, 9, 150
194. Vinogradov A.D. (1993) // Kinetics control and mechanism of ubiquinone reduction by the mammalian respiratory chain linked NADH:Ubiquinone reductase, J. Bioenergetic. Biomemran, 25, 367-377
195. Vinogradov A.D. (1998) // Catalitic properties of the mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and pseudo-reversible active/inactive enzyme transition. Biochim. Biophys. Acta, 1364, 169-185
196. Vuokila P.T, Hassinen I.E. (1988) // DCCD-sensitivity of bovine heart mitochondrial NADH-ubiquinone reductase. Inhibition of activity and binding to subunits. Biochem. J, 249, 339-344
197. Vuokila P, Hassinen I.E. (1989) // DCCD-sensitivity of electron and proton transfer by NADH-ubiquinone reductase in bovine heart submitochondrial particles a thermodynamic approach. Biochim. Biophys. Acta, 974, 219222
198. Walker J.E. (1992) // The NADHrubiquinone oxidoreductase (complex I) of respiratory chain. Qurterly Reviews of Biophysics, 25, 253-324
199. Wikstrom M. (1977) // Proton pump coupled to cytochrome c oxidase in mitochondria. Nature, 266, 271-273
200. Wikstrom M. (1984) // Two protons are pumped from the mitochondrial matrix per electro transferred between NADH and ubiquinone. FEBS Lett, 169, 300-304
201. Yagi T. (1990) // Inhibition by capsaicin of NADH-quinone oxidoreductase is correlated with the presence of energy-coupling site I in various organisms. Arch. Biochem. Biophys, 281, 305-311
202. Yagi T. (1987) // Inhibition of NADH-ubiquinone reductase activity by N,N'-dicyclohexylcarbodiimide and correlation of this inhibition with the occurence of energy-coupling site I in various organisms. Biochemistry, 26, 2822-2828
203. Yagi T, Hatefi Y. (1988) // Identification of the dicyclohexylcarbodiimide binding subunit of NADH-ubiquinone oxidoreductase (Complex I). J. Biol. Chem.,263, 16150-16155
204. Yagi T, Dinh T.M. (1990) // Identification of the NADH-binding subunit of NADH:Ubiquinone oxidoreductase of Paracoccus denitrijicans. Biochemistry, 29, 5515-5520
205. Yagi T. (1991) // Bacterial NADH-Quinone oxidoreductases. Mini-review. J. Bioenerg. Biomembran, 23,211-225
206. Yamaguchi M, Belogrudov G.I, Hatefi Y. (1998) // Mitochochondrial NADH-Ubiquinone oxidoreductase (Complex I). Effect of substrates on the fragmentation of subunits by trypsin. J. Biol. Chem, 273, 8094-8098
207. Yu Ch, Yu L. (1981) // Ubiquinone-binding protein. Biochim. Biophys. Acta, 639, 99-128
208. Zakharova N, Zharova T.V, Vinogradov A.D. (1999) // Kinetics of transhydrogenase reaction catalyzed by the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) imply more than one catalytic nucleotide-binding sites. FEBS Lett, 444,211-216
209. Zensen R, Husmann H, Schneider R, Peine T, Weiss H. (1992) // De novo synthesis and desaturation of fatty acids at mitochondrial acyl-carrier protein, a subunit of NADH:Ubiquinone oxidoreductase in Neurospora crass a. FEBS Lett, 310, 179-181
210. Zharova T.V, Vinogradov A.D. (1998) // A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) by ADP-ribose. Biochim. Biophys. Acta, 1320, 256-264
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.