Расчетно-теоретическое исследование аэродинамической устойчивости вертикально-осевой ветротурбины в условиях обледенения тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Ду Ян
- Специальность ВАК РФ00.00.00
- Количество страниц 149
Оглавление диссертации кандидат наук Ду Ян
Contents
List of Figures
List of Tables
Nomenclature
General description of the work
Chapter 1: Current Status of the Research Topic
1.1 Research background
1.2 Research progress of wind power generation
1.3 Research on wind turbine icing issues
1.3.1 Mechanism of wind turbine icing
1.3.2 Influence of icing on wind turbine aerodynamic performance
1.3.3 Influence of icing on wind turbine stability
1.3.4 Research on wind turbine ice detection and anti-/de-icing
1.4 Research content and technical route
1.4.1 Research content
1.4.2 Technical route
Chapter 2: Basic theory and research methods of vertical axis wind turbines under icing conditions
2.1 Operational principle of vertical axis wind turbines
2.2 Basic theory of icing on vertical axis wind turbines
2.3 Calculation method of aerodynamic stability of vertical axis wind turbine
under icing conditions
2.3.1 Airflow field calculation
2.3.2 Water droplet impact calculation
2.3.3 Icing calculation
2.3.4 Vibration calculation
2.4 Conclusion for chapter
Chapter 3: Aerodynamic performance of static airfoil of vertical axis wind turbines under icing conditions
3.1 Problem Description
3.2 Numerical method
3.2.1 Computational domain meshing
3.2.2 Mesh independence test
3.3 CFD Model Validation
3.3.1 Validation of the airflow field
3.3.2 Validation of droplet collection efficiency
3.3.3 Validation of ice accretion
3.4 Aerodynamic performance analysis of the clean and icing airfoils
3.4.1 Analysis of lift and drag coefficients for clean airfoils
3.4.2 Analysis of droplet collection efficiency
3.4.3 Analysis of ice shapes
3.4.4 Analysis of lift-to-drag coefficient ratios for ice airfoils
3.4.5 Analysis of pressure coefficients and flow fields before and after icing
3.5 Conclusion for chapter
Chapter 4: Aerodynamic performance of rotating vertical axis wind turbines under icing conditions
4.1 Problem Description
4.2 Numerical method
4.2.1 Computational domain meshing
4.2.2 Mesh independence test
4.3 CFD Model Validation
4.3.1 Validation of the airflow field
4.3.3 Validation of ice accretion
4.4 Aerodynamic performance analyses of the icing and clean VAWT
4.4.1 Power coefficient analysis for VAWT
4.4.2 Torque coefficient analysis for VAWT
4.4.5 Pressure coefficient and airflow field analysis for VAWT
4.5 Conclusion for chapter
Chapter 5: Dynamic performance analysis of rotating vertical axis wind turbines under icing conditions
5.1 Problem Description
5.2 Numerical method
5.2.1 Computational domain meshing
5.2.2 Mesh independence test
5.3 CFD Model Validation
5.3.1 Validation of the airflow field
5.3.2 Validation of ice accretion
5.4 Aerodynamic and dynamic performance analysis of the clean and icing VAWT
5.4.1 Power coefficient analysis
5.4.2 Analysis of ice shapes
5.4.3 Pressure contours analysis
5.4.4 Modal analysis
5.4.5 Harmonic response analysis
5.5 Conclusion for chapter
General Conclusion
Reference
List of Figures
Figure 1 Proportion of wind and renewable energies in the global energy [9]
Figure 2 Wind turbine schematic diagram
Figure 3 Examples of ice accretion on wind turbine blades [36-37]
Figure 4 The variation of wind turbine output power with icing time
Figure 5 The main technical route of this study
Figure 6 Aerodynamic forces of the airfoil
Figure 7 Vector diagram of airfoil motion
Figure 8 Variation of AoA (a) with azimuth angle (0) at various TSRs
Figure 9 Formation process of glaze ice and rime ice [127]
Figure 10 Wind turbine model and computational domain
Figure 11 Mesh structure of the computational domain
Figure 12 Lift-to-drag coefficient ratio at different number of cells
Figure 13 Comparison of the pressure coefficient of NACA0012 airfoil
Figure 14 Validations of droplet collection efficiency
Figure 15 Comparison of ice shapes
Figure 16 Variation of lift and drag coefficients of the clean airfoils with AoA
Figure 17 Variation in droplet collection efficiency at different AoA
Figure 18 Growth trend of the ice shapes on the airfoil surface
Figure 19 Comparison of the ice shapes at different AoA
Figure 20 Variation in the lift-to-drag coefficient ratio before and after icing
Figure 21 Pressure coefficient on the airfoil's surface
Figure 22 Velocity contour and streamline near the leading edge
Figure 23 Wind turbine model and computational domain
Figure 24 Ice accretion process for the rotating VAWT blade
Figure 25 Ice shapes at various azimuthal increments
Figure 26 Computational domain
Figure 27 Mesh structure of the computational domain
Figure 28 Power coefficient under different number of mesh
Figure 29 Comparison of power coefficient between CFD numerical simulation
and experimental value
Figure 30 Comparison of the ice accretion shapes on the VAWT blade surface
Figure 31 Comparison of power coefficients at different TSRs [71]
Figure 32 Variation of torque coefficients with azimuth angle (0) during one
complete rotation [71]
Figure 33 Pressure coefficient at the middle section of one blade during one
complete rotation
Figure 34 Instantaneous contours of vorticity magnitude at the middle section
during one rotation
Figure 35 Wind turbine model
Figure 36 Prediction process for the ice accretion shape on the VAWT blade
Figure 37 Computational domain
Figure 38 Mesh structure of the computational domain
Figure 39 Power coefficient under different number of mesh cells
Figure 40 Comparison of power coefficient between CFD numerical simulation
and experimental value
Figure 41 Comparison of ice shape on the blade surface
Figure 42 Comparison of power coefficients at various TSRs
Figure 43 Comparison of ice shapes on the VAWT blade surface under different
icing conditions
Figure 44 Pressure contours around the blade at different azimuth angles
Figure 45 The first six vibration frequencies of the VAWT blades under different
icing conditions
Figure 46 The first six mode shapes of the blade
Figure 47 Relationship curves between deformation and frequency at the trailing
edge of the blade
Figure 48 Blade vibration response under forced vibration
List of Tables
Table 1 Quantitative analysis results of droplet collection efficiency
Table 2 Description of the azimuthal increments
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Повышение эффективности работы ветроэнергетической установки путем использования комбинации интеллектуальных алгоритмов ориентации и отбора мощности2024 год, кандидат наук Ян Юйсун
Пленочная конденсация пара на поверхностях с различными формами и покрытиями2023 год, кандидат наук Бараховская Элла Викторовна
Разработка и оптимизация термоэлектрических генераторов и их интеграция с фотоэлектрической панелью для применения в отдаленных районах Республики Ирак2023 год, кандидат наук Касим Мухаммед Абдулхалик Касим
Исследование потенциала ветровой и солнечной энергии в Республике Гана и научное обоснование площадок для размещения ВЭУ и СЭС2022 год, кандидат наук Агьекум Эфраим Бонах
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF GAMMA-STIRLING ENGINE UTILIZING COMPOUND WORKING FLUID / ЭКСПЕРИМЕНТАЛЬНОЕ И ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДВИГАТЕЛЯ ГАММА-СТИРЛИНГА С ИСПОЛЬЗОВАНИЕМ СЛОЖНОГО РАБОЧЕГО ТЕЛА2024 год, кандидат наук Салих Саджад Абдулазим
Введение диссертации (часть автореферата) на тему «Расчетно-теоретическое исследование аэродинамической устойчивости вертикально-осевой ветротурбины в условиях обледенения»
General description of the work
The relevance of the research topic.
The rapid development of the wind energy sector has revealed several problems related to the operation of wind turbines. Particular attention should be paid to the phenomenon of wind turbine blade icing, which cannot be ignored. Most countries with developed wind energy, located in cold regions of the Northern Hemisphere, experience a period of low temperatures. Icing on wind turbine blades leads to significant changes in the geometry of the aerodynamic airfoil geometry, negatively affecting the aerodynamic performance of the unit. Moreover, icing influences the load distribution along the blade, which, in turn, affects the structural integrity and fatigue life of the wind turbine, significantly increasing safety risks. Therefore, the study of wind turbines under icing conditions is a relevant research topic.
The degree of the research development on the topic:
Currently, there is a significant amount of literature studying the operational characteristics of wind turbines operating under special conditions. Primarily, the contributions of N. E. Zhukovsky in the field of aerodynamics have had a profound influence on the design and optimization of wind turbines. In the 1930s, the Soviet Union commissioned the world's largest wind turbines. In the first half of the 20th century, the Soviet Union was one of the leaders in wind energy. N. E. Zhukovsky, together with V. P. Vetchinkin and Albert Betz, laid the theoretical foundations of wind energy, explaining the basic principles and operating modes of wind power stations. In 1914, V. P. Vetchinkin first developed the theory of the ideal wind turbine. The Zhukovsky-Betz limit demonstrates that the maximum theoretical efficiency of a wind turbine in converting wind energy is 0.593. Later, Soviet scientists G. Kh. Sabinin and Academician G. F. Proskura continued developing similar theories and showed that the maximum wind energy utilization factor for an ideal rotor reaches 0.687. In Russia, many leading scientists have contributed to the field of wind energy, including: P. P. Bezrukikh, S. M. Voronin, S. V. Gribkov, V. V. Elistratov, S. I. Los', V. Ya. Modorskii, G. V. Nikitenko, E. V. Nikolaev, E. V. Solomin, E. M. Fateev, V. P. Kharitonov, and
many others. Among foreign scholars, various approaches to optimizing wind turbine performance have been studied by Henrik Stiesdal (Technical University of Denmark, Denmark), Rebecca Barthelmie (Cornell University, USA), Athanasios J. Kolios (University of Strathclyde, UK), Joachim Peinke (University of Oldenburg, Germany), Arindam Banerjee (Lehigh University, USA), Zhang Minmin (Harbin Institute of Technology, China), Huang Diangui (Shanghai University of Science and Technology, China), and others. However, most of these studies primarily focus on improving wind energy utilization efficiency, particularly in the fields of aerodynamics, energy conversion, etc.
The existing literature has relatively few studies on the aerodynamic stability of vertical axis wind turbines (VAWTs) under icing conditions. Therefore, this research focuses on investigating the effects of icing climatic conditions on VAWTs.
The purpose of the research:
Develop a research methodology for assessing the aerodynamic stability of VAWTs operating under icing conditions.
To achieve this purpose, the following tasks were set:
1. Develop a geometric model of symmetric blades for use in VAWTs.
2. Analyze the patterns of changes in aerodynamic characteristics of static blades under icing conditions at different angles of attack.
3. Construct a geometric model of H-type VAWTs based on symmetric blades. Study the patterns of changes in aerodynamic characteristics of VAWTs before and after icing, considering their rotational motion.
4. Analyze the effect of icing on the dynamic stability of VAWT blades under rotational motion.
The object of the research:
Vertical axis wind turbines operating under icing conditions.
The subject of the research:
Aerodynamic characteristics and internal airflow states of VAWTs under icing conditions, as well as the assessment of structural stability of iced blades.
The methodology and methods of the research:
In solving the research tasks, the fundamentals of aerodynamic theory, wind energy, ice physics, and mathematical statistics were applied. For numerical calculations, the widely recognized international ANSYS software suite was used, including the Fluent, ICEM CFD, CFD-Post, FENSAP-ICE, and Workbench modules.
The main provisions of the dissertation submitted for defense:
1. Calculation results of changes in aerodynamic parameters of a symmetrical blade for VAWTs under icing conditions and at various angles of attack (AoA), including the lift coefficient ( Ct), drag coefficient ( Q), droplet collection efficiency, ice accretion shape, pressure coefficient, and velocity contour.
2. Calculation results of changes in aerodynamic parameters of VAWT blades before and after icing at the optimal tip speed ratio (TSR), accounting for rotational motion, including the power coefficient ( Cp), torque coefficient ( CT), ice accretion shape, pressure coefficient, and instantaneous vorticity contour.
3. Calculation results of changes in the dynamic stability of VAWT blades under various icing conditions, accounting for rotational motion, including the pressure contour, vibration frequency, mode shape, deformation response, and stress response.
The scientific novelty of the dissertation research:
1. For the first time, a method is proposed to compare the impact zones of water droplets and icing areas on the upper and lower surfaces of a blade during numerical simulation of static airfoil of blade icing for VAWTs in the ANSYS software package.
2. For the first time, the quasi-steady approximation method is applied, and a numerical simulation scheme with varying azimuthal angle increments is developed to model the icing process on rotating blades of VAWTs.
3. For the first time, various icing modes of blade surfaces are studied under different icing conditions to compare the vibration characteristics of VAWTs.
4. A method is proposed to determine the maximum displacement of an iced blade based on a comparative analysis of its displacements along three degrees of freedom.
The theoretical and practical significance of the research:
The aerodynamic stability of VAWTs under icing conditions is theoretically
investigated.
A practical study of icing patterns contributes to the modernization of VAWTs installed in cold climate zones and provides recommendations for organizing anti-icing measures for wind turbines.
The validity and reliability of the research results:
1. The scientific findings of the research are based on classical principles of renewable energy theory and ideal wind turbine theory.
2. The reliability of the numerical simulation method was verified by comparing the results of multiple numerical calculations with previously published experimental data from other researchers, obtained in a wind tunnel.
The personal contribution of the author:
1. The author developed a geometric model for symmetrical aerodynamic blades, applicable to VAWTs. A comparison was made of ice accretion features on static blades under different icing conditions and various angles of attack. The change law of aerodynamic parameters of static blades before and after icing at the optimal angle of attack was determined.
2. A geometric model of an H-type VAWT was constructed. An analysis of blade surface icing characteristics during rotation was performed based on a theoretical model. The changes in aerodynamic parameters of a rotating VAWT before and after icing at the optimal tip speed ratio were determined.
3. A comparison was made of ice layer patterns on the blade surface of a rotating VAWT under different icing conditions. The vibration characteristics of blades with different ice shapes were analyzed using modal analysis and harmonic response analysis methods.
4. A method for determining the maximum displacement of an iced blade was proposed, based on a comparative analysis of its displacements along three degrees of freedom.
The approbation of the work:
The research results were presented and discussed at the following international scientific conferences:
1. All-Russian Conference, "International Youth Danilovsky Energy Forum: All-Russian Student Olympiad with International Participation (Final Stage) in Energy and Resource Efficiency, Non-Conventional and Renewable Energy Sources. Nuclear Power", Ural Federal University, Yekaterinburg, Russia, 12-16 December 2022.
2. International Conference, "The XIX International Scientific Technical Conference", Ural Federal University, Yekaterinburg, Russia, 23-25 May 2023.
3. All-Russian Conference, "International Youth Danilovsky Energy Forum: All-Russian Student Olympiad with International Participation (Final Stage) in Energy and Resource Efficiency, Non-Conventional and Renewable Energy Sources. Nuclear Power", Ural Federal University, Yekaterinburg, Russia, 2-6 December 2024.
4. International Conference, "The 10th International Symposium on Safety and Economics of Hydrogen Transport - WCAEE-IFSSEHT-2025", Budva, Montenegro (hybrid format with Zoom participation), 2-4 July 2025.
5. International Seminar, "Innovation-Driven China-Central Asia and South Asia High-Quality Investment and Financing Cooperation in Renewable Energy", GHub, CCETP, CAREC, WRI, Beijing, China, 22 July 2025.
Publications:
On the topic of the dissertation, 15 scientific papers have been published, including 5 published in peer-reviewed scientific journals determined by the Higher Attestation Commission of the Russian Federation and the Ural Federal University Attestation Council, 4 of which in publications indexed in the international citation databases WoS and Scopus.
The structure and scope of the dissertation:
The dissertation consists of an introduction, 5 chapters, a conclusion, a reference of 203 sources. In total, the dissertation comprises 149 pages, 48 figures, and 2 tables.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Разработка и экспериментальное исследование способов повышения эффективности фотоэлектрических электростанций, работающих в условиях высоких температур окружающей среды (на примере Республики Индия)2023 год, кандидат наук Сипана Правинкумар
Магнитная анизотропия оксидных наноархитектур2022 год, кандидат наук Омельянчик Александр Сергеевич
Model of thermomechanical stresses in thermoelectric systems/ Модель термомеханических напряжений в термоэлектрических системах2022 год, кандидат наук Саттар Шехак
Система управления электроснабжением кранов-штабелеров на основе Микрогрид2025 год, кандидат наук Джассим Хайдер Майтам Джассим
Оптические сенсоры для анализа жидких сред на основе комбинации фотонных интегральных схем и микрофлюидных устройств (Optical sensors for liquid analysis based on a combination of photonic integrated circuits and microfluidic devices)2025 год, кандидат наук Кузин Алексей Юрьевич
Заключение диссертации по теме «Другие cпециальности», Ду Ян
General Conclusion
The present works investigate the aerodynamic stability of vertical axis wind turbines (VAWTs) under icing conditions.
Based on the results obtained from the theoretical analysis, experimental validation, and numerical simulation calculation, the following conclusions can be drawn:
1. For vertical axis wind turbines (VAWTs), static blades are mainly affected by droplets and ice accretion near the leading edge. As the angle of attack (AoA) increases from 3° to 15°, the range of ice accretion on the upper surface remains limited to no more than 6.4% of the chord length, while on the lower surface, it is limited to 18.3% of the chord length.
2. After 30 minutes of icing at a liquid water content (LWC) of 2.32 g/m3, the lift-to-drag ratio of the iced blade decreases by more than 30% compared to the clean blade, reducing the efficiency of the VAWT.
3. The difference in pressure coefficients between the clean and iced blades is mostly concentrated near the leading edge. The concave geometry caused by ice accretion creates a low-velocity zone, leading to oscillations in the pressure coefficient curve and a decrease in VAWT efficiency.
4. At the tip speed ratio (TSR) of 1, the power coefficient of the iced VAWT decreases by more than 38% compared to the clean VAWT, indicating the need for anti-icing measures.
5. The thickness of ice layer on the VAWT blade surface is positively correlated with both icing time and LWC. Additionally, as the thickness of ice layer increases, the maximum pressure experienced by the blade surface also rises, further necessitating anti-icing measures.
6. Ice accretion has the most significant impact on the blade's first-mode vibration frequency, reducing it by 13.37%. For higher modes, the vibration frequency reduction does not exceed 10%.
7. The maximum blade deformation due to icing occurs in the direction
perpendicular to the chord and is calculated in ANSYS as 0.1832 mm. The largest stress occurs at the connection between the blade and the support arm, reaching a maximum value of 71.05 MPa, which is significantly below the yield limit of the composite material of the blade.
Prospects for further research and recommendations
1. In cold climates, wind turbine blades inevitably experience ice accretion. Therefore, future research should focus on developing effective solutions to remove or reduce ice accretion on VAWT blades. Potential strategies include spraying superhydrophobic coatings to the blade surface, installing heating elements within the blades, and utilizing ultrasonic guided waves to remove ice accretion.
2. Future research should investigate changes in the aerodynamic performance of VAWT blades before and after icing under different conditions, such as varying flow velocities, ambient temperatures, and median volume droplet diameter (MVD).
Список литературы диссертационного исследования кандидат наук Ду Ян, 2025 год
Reference
[1]. Shrestha A. et al. Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy // Renewable energy. Elsevier, 2022. Vol. 199. P. 419-432.
[2]. Thellufsen J.Z. et al. Smart energy cities in a 100% renewable energy context // Renewable and Sustainable Energy Reviews. Elsevier, 2020. Vol. 129. P. 109922.
[3]. Bartolini A. et al. Energy storage and multi energy systems in local energy communities with high renewable energy penetration // Renewable Energy. Elsevier, 2020. Vol. 159. P. 595-609.
[4]. Guerri O., Sakout A., Bouhadef K. Simulations of the Fluid Flow around a Rotating Vertical Axis Wind Turbine // Wind Engineering. 2007. Vol. 31, № 3. P. 149-163.
[5]. Rao A., Lucey B., Kumar S. Climate risk and carbon emissions: Examining their impact on key energy markets through asymmetric spillovers // Energy Economics. Elsevier, 2023. Vol. 126. P. 106970.
[6]. Kumar R., Raahemifar K., Fung A.S. A critical review of vertical axis wind turbines for urban applications // Renewable and Sustainable Energy Reviews. Elsevier, 2018. Vol. 89. P. 281-291.
[7]. Nugraha A.D. et al. Comparison of "Rose, Aeroleaf, and Tulip" vertical axis wind turbines (VAWTs) and their characteristics for alternative electricity generation in urban and rural areas // Results in Engineering. Elsevier, 2025. Vol. 25. P. 103885.
[8]. Pulles T. Will the world meet the climate change challenge? // Carbon Management. 2015. Vol. 6, № 1-2. P. 1-5.
[9]. Thé J., Yu H. A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods // Energy. Elsevier, 2017. Vol. 138. P. 257-289.
[10]. Грибков С.В. Ветро-солнечно-дизельные комплексы электроснабжения
малых мощностей как основа развития ВИЭ в России // Возобновляемая энергетика XXI век: Энергетическая и экономическая эффективность, 2016. 2016. P. 124-128.
[11]. Безруких П.П. Ветроэнергетика. Справочное и методическое пособие. Энергия, 2010.
[12]. Безруких П.П. Ветроэнергетика: Справочно-методическое издание СВ Грибков. 2014.
[13]. Holstead K.L., Galán-Díaz C., Sutherland L.-A. Discourses of on-farm wind energy generation in the UK farming press // Journal of Environmental Policy & Planning. 2017. Vol. 19, № 4. P. 391-407.
[14]. Николаев В.Г., Ганага С.В., Перминов Э.М. Состояние и перспективы развития мировой и отечественной ветроэнергетики Часть 1 Мировая ветроэнергетика // Библиотечка электротехника. Акционерное общество" Научно-техническая фирма" Энергопрогресс", 2012. № 8. P. 01-124.
[15]. Arshad M., O'Kelly B. Global status of wind power generation: theory, practice, and challenges // International Journal of Green Energy. 2019. Vol. 16, № 14. P. 1073-1090.
[16]. Liu S. et al. Advances in urban wind resource development and wind energy harvesters // Renewable and Sustainable Energy Reviews. Elsevier, 2025. Vol. 207. P. 114943.
[17]. Toja-Silva F., Colmenar-Santos A., Castro-Gil M. Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions— Opportunities and challenges // Renewable and Sustainable Energy Reviews. Elsevier, 2013. Vol. 24. P. 364-378.
[18]. Велькин В.И., Щелоков Я.М., Щеклеин С.Е. Возобновляемая энергетика и энергосбережение: учебник. Издательство Уральского университета, 2020.
[19]. Breton S.-P., Moe G. Status, plans and technologies for offshore wind turbines in Europe and North America // Renewable energy. Elsevier, 2009. Vol. 34, № 3. P. 646-654.
[20]. Eriksson S., Bernhoff H., Leijon M. Evaluation of different turbine concepts
for wind power // renewable and sustainable energy reviews. Elsevier, 2008. Vol. 12, № 5. P. 1419-1434.
[21]. McKenna R., vd Leye P.O., Fichtner W. Key challenges and prospects for large wind turbines // Renewable and Sustainable Energy Reviews. Elsevier, 2016. Vol. 53. P. 1212-1221.
[22]. Solomin E.V. Centrifugal controller of rotation frequency for vertical axis wind turbines // Journal of King Saud University-Engineering Sciences. Elsevier, 2023. Vol. 35, № 8. P. 549-556.
[23]. Islam M., Ting D.S.-K., Fartaj A. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines // Renewable and sustainable energy reviews. Elsevier, 2008. Vol. 12, № 4. P. 1087-1109.
[24]. Gribkov S.V., Chizhma S.N. Vertical-axis wind turbines. Design technique // IOP conference series: Earth and Environmental Science. IOP Publishing, 2021. Vol. 689, № 1. P. 012020.
[25]. Pope K., Dincer I., Naterer G.F. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines // Renewable energy. Elsevier, 2010. Vol. 35, № 9. P. 2102-2113.
[26]. Stoyanov D.B., Nixon J.D., Sarlak H. Analysis of derating and anti-icing strategies for wind turbines in cold climates // Applied Energy. Elsevier, 2021. Vol. 288. P. 116610.
[27]. Wallenius T., Lehtomäki V. Overview of cold climate wind energy: challenges, solutions, and future needs // WIREs Energy & Environment. 2016. Vol. 5, № 2. P. 128-135.
[28]. Ville L. Available technologies of wind energy in cold climates // IEA Wind Task. 2016. Vol. 19.
[29]. Parent O., Ilinca A. Anti-icing and de-icing techniques for wind turbines: Critical review // Cold regions science and technology. Elsevier, 2011. Vol. 65, № 1. P. 88-96.
[30]. Lee S., Bragg M.B. Investigation of Factors Affecting Iced-Airfoil Aerodynamics // Journal of Aircraft. 2003. Vol. 40, № 3. P. 499-508.
[31]. Gao L. et al. An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process // Renewable energy. Elsevier, 2019. Vol. 133. P. 663-675.
[32]. Chen C. et al. Stress and modal analysis of rotating wind turbine blades under icing conditions // Fiber Reinforced Plastics/Composites, 2018. № 7. P. 26-30. (in Chinese)
[33]. Alsabagh A.S.Y. et al. Atmospheric Ice Loading and its Impact on Natural Frequencies of Wind Turbines // Wind Engineering. 2015. Vol. 39, № 1. P. 8396.
[34]. Tan H. et al. The finite element analysis on the influence of icing on the dynamic performance of wind turbine // Renewable Energy Resource, 2010. № 4. P. 33-38. (in Chinese)
[35]. Xue H., Khawaja H.A. Review of the phenomenon of ice shedding from wind turbine blades // The International Society of Multiphysics, 2016. Vol. 10, № 3. P. 265-276.
[36]. Fakorede O. et al. Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis // Renewable and Sustainable Energy Reviews. Elsevier, 2016. Vol. 65. P. 662-675.
[37]. Li Y et al. Characteristics of ice accretions on blade of the straight-bladed vertical axis wind turbine rotating at low tip speed ratio // Cold Regions Science and Technology. Elsevier, 2018. Vol. 145. P. 1-13.
[38]. Gao L., Hu H. Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines // Proc. Natl. Acad. Sci. U.S.A. 2021. Vol. 118, № 42. P. e2111461118.
[39]. Klaus G. Perceived Risk and Response to the Wind Turbine Ice Throw Hazard: Comparing Community Stakeholders and Operations and Maintenance Personnel in Two Regions of Texas. USA: Texas State University, 2017.
[40]. Sun Z.G., Zhu C.C., Fu B. Numerical research of ice accretion on two-dimensional airfoils // Journal of Aerospace Power. 2010. Vol. 25, № 7. P. 1485-1490.
[41]. Du Y. et al. Effect of Angle of Attack on Icing of Vertical Axis Wind Turbine Blades // 2023 XIX International Scientific Technical Conference Alternating Current Electric Drives (ACED). IEEE. 2023. P. 1-5.
[42]. Hudecz A. Icing problems of wind turbine blades in cold climates. Denmark: Technical University of Denmark, 2014.
[43]. Han Y. Theoretical and experimental study of scaling methods for rotor blade ice accretion testing. Pennsylvania State: Pennsylvania State University, 2011.
[44]. Cheng X. et al. A Novel Deep Class-Imbalanced Semisupervised Model for Wind Turbine Blade Icing Detection. // IEEE Trans. Neural Netw. Learning Syst. 2022. Vol. 33, № 6. P. 2558-2570.
[45]. Sagol E. Three Dimensional Numerical Prediction of Icing Related Power and Energy Losses on a Wind Turbine. Montreal: Montreal University, 2014.
[46]. Virk M. et al. Multiphysics Based Numerical Study of Atmospheric Ice Accretion on a Full Scale Horizontal Axis Wind Turbine Blade // IJM. 2016. Vol. 10, № 3.
[47]. Brahimi M., Chocron D., Paraschivoiu I. Prediction of ice accretion and performance degradation of HAWT in cold climates. American Institute of Aeronautics Astronautics, 1998.
[48]. Pedersen M.C., S0rensen H. Towards a CFD Model for Prediction of Wind Turbine Power Losses due to Icing in Cold Climate: 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. 2016.
[49]. Pedersen M.C. et al. Case Study of an Ice Sensor using Computational Fluid Dynamics, Measurements and Pictures - Boundary displacement: 16th International Workshop on Atmospheric Icing on Structures (IWAIS 2015). 2015.
[50]. Pedersen M.C., Yin C. Preliminary Modelling Study of Ice Accretion on Wind Turbines // Energy Procedia. 2014. Vol. 61. P. 258-261.
[51]. Pedersen M.C., Martinez B., Yin C. Development of CFD-based icing model for wind turbines: 33rd Wind Energy Symposium // Proceedings of the 33rd
Wind Energy Symposium. American Institute of Aeronautics and Astronautics, 2015. P. 1-8.
[52]. Pedersen M.C. et al. Measurements from a cold climate site in Canada: Boundary conditions and verification methods for CFD icing models for wind turbines // Cold Regions Science and Technology. 2018. Vol. 147. P. 11-21.
[53]. Ma Q. et al. Numerical Simulation of Ice Accretion on Wind Turbine Blades // Journal of Engineering Thermophysics. 2014. Vol. 35, № 4. P. 770-773. (in Chinese)
[54]. Liu G. Study on the Icing Forecast of Wind Turbine Blade and the Influence of Icing on the Output of Power Generation. China: South China University of Technology, 2014. (in Chinese)
[55]. Villalpando F., Reggio M., Ilinca A. Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software // Energy. 2016. Vol. 114. P. 1041-1052.
[56]. Wang Z, Zhu C. Study of the effect of centrifugal force on rotor blade icing process // International Journal of Aerospace Engineering. 2017. Vol. 2017, № 1. P. 8695170.
[57]. Wang Z, Zhu C. Numerical simulation for in-cloud icing of three-dimensional wind turbine blades // Simulation. 2018. Vol. 94, № 1. P. 31-41.
[58]. Liang J. et al. 3-D Numerical Simulations and Experiments on Glaze Ice Accretion of Wind Turbine Blades // Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering. 2017. Vol. 37, № 15. P. 4430-4436. (in Chinese)
[59]. Davis N. Icing impacts on wind energy production. Denmark: Technical University of Denmark, 2014.
[60]. Gantasala S, Luneno J C, Aidanpää J O. Influence of icing on the modal behavior of wind turbine blades // Energies. 2016. Vol. 9, № 11. P. 862.
[61]. Davis N. et al. Available Technologies for Wind Energy in Cold Climates-Report // IEA Wind Task: Paris, France. 2018. Vol. 19. P. 38-62.
[62]. Jha P, Brillembourg D, Schmitz S. Wind turbines under atmospheric icing
conditions-ice accretion modeling, aerodynamics, and control strategies for mitigating performance degradation // 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012. P. 1287.
[63]. Wright W. User's manual for LEWICE version 3.2 // NASA Technical Report. 2008. №. E. 15537.
[64]. Beaugendre H, Morency F, Habashi W G. FENSAP-ICE's three-dimensional in-flight ice accretion module: ICE3D // Journal of aircraft. 2003. Vol. 40, № 2. P. 239-247.
[65]. Marmytova S. Wind turbine operation in cold climate. Finland: Lappeenranta University of Technology, 2011.
[66]. Jiang J. et al. An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation // Nature Communications. 2024. Vol. 15. № 1 P. 777.
[67]. Stoyanov D.B., Nixon J.D. Alternative operational strategies for wind turbines in cold climates // Renewable Energy. 2020. Vol. 145. P. 2694-2706.
[68]. Rong J. Icing effects on a horizontal axis wind turbine. Newfoundland: Memorial University of Newfoundland, 1991.
[69]. Hochart C. et al. Icing simulation of wind turbine blades //45th AIAA aerospace sciences meeting and exhibit. 2007. P. 1373.
[70]. Hochart C. et al. Wind turbine performance under icing conditions // Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology. 2008. Vol. 11, № 4. P. 319-333.
[71]. Li Y et al. Wind tunnel test and numerical simulation on blade icing of small-scaled vertical axis wind turbine // Acta Aerodynamic Sinica. 2016. Vol. 34, № 5. P. 568-572. (in Chinese)
[72]. Wang X, Bibeau E L, Naterer G F. Experimental investigation of energy losses due to icing of a wind turbine // Challenges of Power Engineering and Environment: Proceedings of the International Conference on Power Engineering 2007. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P.
1143-1147.
[73]. Wang X. Convective heat transfer and experimental icing aerodynamics of wind turbine blades. Manitoba: University of Manitoba, 2008.
[74]. Gillenwater D, Masson C, Perron J. Wind turbine performance during icing events // 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008. P. 1344.
[75]. Rene C., Markus R., Gabriela R. Four years of monitoring a wind turbine under icing conditions //13 th International Workshop on Atmospheric Icing of Structures (IWAIS XIII). 2009. P. 6-10.
[76]. Cattin R. et al. Two Years of Monitoring of a Wind Turbine under Icing Conditions // proceedings of the DEWEK. 2008.
[77]. Barber S. et al. The Impact of Ice Formation on Wind Turbine Performance and Aerodynamics // Journal of Solar Energy Engineering. 2011. Vol. 133, № 1. P. 311-328.
[78]. Han Y., Palacios J., Schmitz S. Scaled ice accretion experiments on a rotating wind turbine blade // Journal of Wind Engineering and Industrial Aerodynamics. 2012. Vol. 109. P. 55-67.
[79]. Han Y. Aerodynamics and thermal physics of helicopter ice accretion. Pennsylvania State: Pennsylvania State University, 2016.
[80]. Jin Z., Dong Q., Yang Z. A stereoscopic PIV study of the effect of rime ice on the vortex structures in the wake of a wind turbine // Journal of Wind Engineering and Industrial Aerodynamics. 2014. Vol. 134. P. 139-148.
[81]. Jin Z Y, Dong Q T, Yang Z G. The effect of single-horn glaze ice on the vortex structures in the wake of a horizontal axis wind turbine // Acta Mechanica Sinica. 2015. Vol. 31, № 1. P. 62-72.
[82]. Blasco P, Palacios J, Schmitz S. Effect of icing roughness on wind turbine power production // Wind Energy. 2017. Vol. 20, № 4. P. 601-617.
[83]. Blasco P, Palacios J, Schmitz S. Investigation of wind turbine power generation during atmospheric icing by multi-disciplinary experimentation // 33rd Wind Energy Symposium. 2015. P. 0496.
[84]. Blasco P M. An experimental and computational approach to iced wind turbine aerodynamics. Pennsylvania State: Pennsylvania State University. 2015.
[85]. Gao L, Liu Y, Hu H. An experimental investigation on the dynamic ice accretion process over the surface of a wind turbine blade model // 9th AIAA atmospheric and space environments conference. 2017. P. 3582.
[86]. Kr0genes J. Aerodynamic performance of the NREL S826 airfoil in icing conditions. Norway: Norwegian University of Science and Technology. 2017.
[87]. Shu L. et al. Study on small wind turbine icing and its performance // Cold Regions Science and Technology. 2017. Vol. 134. P. 11-19.
[88]. Shu L. et al. Study of ice accretion feature and power characteristics of wind turbines at natural icing environment // Cold Regions Science and Technology. 2018. Vol. 147. P. 45-54.
[89]. Jasinski W J. et al. Wind turbine performance under icing conditions // ASME Journal of Solar Energy Engineering. 1998. Vol. 120, № 1. P. 319-333.
[90]. Frohboese P, Anders A. Effects of icing on wind turbine fatigue loads // Journal of Physics: Conference Series. IOP Publishing. 2007. Vol. 75, № 1. P. 012061.
[91]. Fu P., Farzaneh M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine // Journal of Wind Engineering and Industrial Aerodynamics. 2010. Vol. 98, № 4. P. 181-188.
[92]. Deng X. et al. Numerical Simulation of Airfoil Ice Accretion Process on Horizontal-axis Wind Turbine Blade // Energy Technology. 2010. Vol. 31, № 05. P. 266-270. (in Chinese)
[93]. Homola M.C. et al. Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades // Journal of Wind Engineering and Industrial Aerodynamics. 2010. Vol. 98, № 12. P. 724-729.
[94]. Homola M.C. et al. The relationship between chord length and rime icing on wind turbines // Wind Energy. 2010. Vol. 13, № 7. P. 627-632.
[95]. Virk M. S, Homola M C, Nicklasson P J. Effect of rime ice accretion on aerodynamic characteristics of wind turbine blade profiles// Wind Engineering. 2010. Vol. 34, № 2. P. 207-218.
[96]. Virk M. S., Homola M. C., Nicklasson P. J. Atmospheric Icing on Large Wind Turbine Blades // International Journal of Energy & Environment. 2012. Vol. 3,
№ 1. P. 1-8.
[97]. Virk M. S., Homola M. C., Nicklasson P. J. Relation between angle of attack and atmospheric ice accretion on large wind turbine's blade // Wind Engineering. 2010. Vol. 34, № 6. P. 607-613.
[98]. Homola M. C. et al. Performance losses due to ice accretion for a 5 MW wind turbine // Wind Energy. 2012. Vol. 15, № 3. P. 379-389.
[99]. Homola M. C. et al. Modelling of ice induced power losses and comparison with observations // Proceedings of the Winterwind. 2011. P. 1-12.
[100]. Virk M. S. Numerical study of super cooled water droplet splashing and distribution spectrum on atmospheric ice accretion of wind turbine blade // AIP Conference Proceedings. American Institute of Physics. 2013. Vol. 1570, № 1. P. 163-171.
[101]. Dimitrova M., Ramdenee D., Ilinca A. Evaluation and mitigation of ice accretion effects on wind turbine blades // World Renewable Energy Congress. 2011.
[102]. Dimitrova M. et al. Software tool to predict the wind energy production losses due to icing // 2011 IEEE Electrical Power and Energy Conference. IEEE, 2011. P. 462-467.
[103]. Etemaddar M., Hansen M.O.L., Moan T. Wind turbine aerodynamic response under atmospheric icing conditions // Wind Energy. 2014. Vol. 17, № 2. P. 241265.
[104]. Biswas S., Taylor P., Salmon J. A model of ice throw trajectories from wind turbine // Wind Energy. 2012. Vol. 15, № 7. P. 889-901.
[105]. Etemaddar M., Hansen M. O. L., Moan T. Response analysis of a spar-type floating offshore wind turbine under atmospheric icing conditions // Journal of Ocean and Wind Energy. 2014. Vol. 1, № 4. P. 193-201.
[106]. Turkia V., Huttunen S., Wallenius T. Method for estimating wind turbine production losses due to icing. Espoo: VTT Technical Research Centre of Finland, 2013. Vol. 44, № 114.
[107]. Lehtomäki V., Freudenreich K., Steininger M. Preliminary Results from Project
IcedBlades: Input to New IEC 61400-1 ed4 // Winterwind Conference, Östersund, Sweden, 2013.
[108]. Reid T. et al. FENSAP-ICE simulation of icing on wind turbine blades, part 1 : performance degradation // 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 2013. P. 750.
[109]. Reid T. et al. FENSAP-ICE simulation of icing on wind turbine blades, part 2: ice protection system design // 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. P. 751.
[110]. Myong R. S. Atmospheric icing effects on aerodynamics of wind turbine blade // ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers. 2013. Vol. 56321. P. V07BT08A072.
[111]. Lehtomäki V. et al. IcedBlades-Modelling of Ice Accretion on Rotor Blades in a Coupled Wind Turbine Tool // Winter Wind, International Wind Energy Conference, Skelleftea, Sweden. 2012.
[112]. Lamraoui F. et al. Atmospheric icing impact on wind turbine production // Cold Regions Science and Technology. 2014. Vol. 100. P. 36-49.
[113]. Switchenko D. et al. Fensap-ice simulation of complex wind turbine icing events, and comparison to observed performance data // 32nd ASME Wind Energy Symposium. 2014. P. 1399.
[114]. Hwang B. et al. Aeroacoustic analysis of a wind turbine airfoil and blade on icing state condition // Journal of Renewable and Sustainable Energy. 2014. Vol. 6, № 4. P. 45-14.
[115]. Sankar L N, Ali M. In-cloud ice accretion modeling on wind turbine blades using an extended messinger model // 13th International Energy Conversion Engineering Conference. 2015. P. 3715.
[116]. Sarlak H., S0rensen J. N. Analysis of throw distances of detached objects from horizontal-axis wind turbines // Wind Energy. 2016. Vol. 19, № 1. P. 151-166.
[117]. Alsabagh A. S. Effect of Atmospheric Ice Accretion on the Dynamic Performance of Wind Turbine Blades. Hertfordshire: University of
Hertfordshire, 2016.
[118]. Alsabagh A. S. Y et al. Atmospheric ice loading and its impact on natural frequencies of wind turbines // Wind Engineering. 2015. Vol. 39, № 1. P. 83-96.
[119]. Yirtici O., Tuncer I. H., Ozgen S. Ice accretion prediction on wind turbines and consequent power losses // Journal of Physics: Conference Series. IOP Publishing. 2016. Vol. 753, № 2. P. 022022.
[120]. Szasz R.-Z., Ronnfors M., Revstedt J. Influence of ice accretion on the noise generated by an airfoil section // International Journal of Heat and Fluid Flow. 2016. Vol. 62. P. 83-92.
[121]. Zanon A., De Gennaro M., Kühnelt H. Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies // Renewable Energy. 2018. Vol. 115. P. 760-772.
[122]. Ibrahim G.M., Pope K., Muzychka YS. Effects of blade design on ice accretion for horizontal axis wind turbines // Journal of Wind Engineering and Industrial Aerodynamics. 2018. Vol. 173. P. 39-52.
[123]. Xu Z. et al. Effects of ambient temperature and wind speed on icing characteristics and anti-icing energy demand of a blade airfoil for wind turbine // Renewable Energy. 2023. Vol. 217. P. 119135.
[124]. Cao H. et al. Numerical simulation of icing on nrel 5-MW reference offshore wind turbine blades under different icing conditions // China Ocean Engineering. 2022. Vol. 36, № 5. P. 767-780.
[125]. Han W, Kim J, Kim B. Study on correlation between wind turbine performance and ice accretion along a blade tip airfoil using CFD // Journal of Renewable and Sustainable Energy. 2018. Vol. 10, № 2.
[126]. Manatbayev R. et al. Numerical simulations on static Vertical Axis Wind Turbine blade icing // Renewable Energy. 2021. Vol. 170. P. 997-1007.
[127]. Yang X., Bai X., Cao H. Influence analysis of rime icing on aerodynamic performance and output power of offshore floating wind turbine // Ocean Engineering. 2022. Vol. 258. P. 111725.
[128]. Chuang Z. et al. Numerical analysis of blade icing influence on the dynamic
response of an integrated offshore wind turbine // Ocean Engineering. 2022. Vol. 257. P. 111593.
[129]. Wang Q. et al. Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model // Renewable Energy. 2020. Vol. 162. P. 1854-1873.
[130]. Wang Q. et al. Numerical investigation of dynamic icing of wind turbine blades under wind shear conditions // Renewable Energy. 2024. Vol. 227. P. 120495.
[131]. Baizhuma Z., Kim T., Son C. Numerical method to predict ice accretion shapes and performance penalties for rotating vertical axis wind turbines under icing conditions // Journal of Wind Engineering and Industrial Aerodynamics. 2021. Vol. 216. P. 104708.
[132]. Ou Y. et al. Vibration-based monitoring of a small-scale wind turbine blade under varying climate conditions. Part I: An experimental benchmark // Structural Control and Health Monitoring. 2021. Vol. 28, № 6. P. e2660.
[133]. Turunen A.W. et al. Symptoms intuitively associated with wind turbine infrasound // Environmental Research. 2021. Vol. 192. P. 110360.
[134]. Tan H. H. et al. The finite element analysis on the influence of icing on the dynamic performance of wind turbine blades // Renewable Energy Resources. 2010. Vol. 28, № 4. P. 33-38. (in Chinese)
[135]. Li F. et al. Icing condition prediction of wind turbine blade by using artificial neural network based on modal frequency // Cold Regions Science and Technology. 2022. Vol. 194. P. 103467.
[136]. Lagdani O. et al. Modal analysis of an iced offshore composite wind turbine blade // Wind Engineering. 2022. Vol. 46, № 1. P. 134-149.
[137]. Gantasala S, Luneno J C, Aidanpää J O. Influence of icing on the modal behavior of wind turbine blades // Energies. 2016. Vol. 9, № 11. P. 862.
[138]. Gantasala S. et al. Numerical investigation of the aeroelastic behavior of a wind turbine with iced blades // Energies. 2019. Vol. 12, № 12. P. 2422.
[139]. Dong Y. et al. Analysis of blade vibration characteristics and influencing factors of rotating wind turbine under icing conditions // Science Technology
and Engineering. 2020. Vol. 20, № 6. P. 2179-2185. (in Chinese)
[140]. Feng F. et al. Static Mechanical Properties and Modal Analysis of a Kind of Lift-Drag Combined-Type Vertical Axis Wind Turbine // International Journal of Rotating Machinery. 2018. Vol. 2008, № 1. P. 1840914.
[141]. Dai Y. et al. Effect of blade tips ice on vibration performance of wind turbines // Energy Reports. 2023. Vol. 9. P. 622-629.
[142]. Weijtjens W. et al. Large scale test of vibration based icing detection for wind turbines //Journal of Physics: Conference Series. IOP Publishing. 2024. Vol. 2647, № 19. P. 192008.
[143]. Cattin, R, Heikkilä, U. Evaluation of Ice Detection Systems for Wind Turbines // VGB Research Project No. 392. 2016.
[144]. Wei K. et al. A review on ice detection technology and ice elimination technology for wind turbine // Wind Energy. 2020. Vol. 23, № 3. P. 433-457.
[145]. Wang F. et al. Research on dynamics of icing wind turbine blade based on geometrically exact beam theory // Journal of Sound and Vibration. 2025. Vol. 601. P. 118927.
[146]. Wickman H. Evaluation of Field Tests of Different Ice Measurement Methods for Wind Power. Uppsala: Uppsala University, 2013.
[147]. Homola M.C., Nicklasson P. J., Sundsb0 P.A. Ice sensors for wind turbines // Cold Regions Science and Technology. 2006. Vol. 46, № 2. P. 125-131.
[148]. Haciefendioglu K. et al. Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method // Renewable Energy. 2022. Vol. 182. P. 1-16.
[149]. Parent O., Ilinca A. Anti-icing and de-icing techniques for wind turbines: Critical review // Cold Regions Science and Technology. 2011. Vol. 65, № 1. P. 88-96.
[150]. Andersen E. et al. Wind Power in Cold Climate // WSP Environmental. 2011.
[151]. Zhang H. et al. Efficient Anti-Icing of a Stable PFA Coating for Wind Power Turbine Blades // Langmuir. 2024. Vol. 40, № 28. P. 14724-14737.
[152]. Zhang Z. et al. A review of icing and anti-icing technology for transmission
lines // Energies. 2023. Vol. 16, № 2. P. 601.
[153]. Kraj A. G., Bibeau E.L. Measurement method and results of ice adhesion force on the curved surface of a wind turbine blade // Renewable Energy. 2010. Vol. 35, № 4. P. 741-746.
[154]. Kraj A. G., Bibeau E.L. Phases of icing on wind turbine blades characterized by ice accumulation // Renewable Energy. 2010. Vol. 35, № 5. P. 966-972.
[155]. Kraj A. G. Icing Characteristics and Mitigation Strategies for Wind Turbines in Cold Climates. Manitoba: University of Manitoba, 2007.
[156]. Li C. L. et al. A method of eliminating ice on wind turbine blade by using carbon fiber composites //Advanced Materials Research. 2013. Vol. 774. P. 1322-1325.
[157]. Zhao Y. et al. Numerical study of lightning protection of wind turbine blade with De-Icing electrical heating system //Energies. 2020. Vol. 13. № 3. P. 691.
[158]. Li L. et al. Enabling renewable energy technologies in harsh climates with ultra-efficient electro-thermal desnowing, defrosting, and deicing //Advanced Functional Materials. 2022. Vol. 32. № 31. P. 2201521.
[159]. Shu L. et al. Experimental study on de-icing and layout of resistance wire by electrical heating for wind turbine blades // Proceedings of the CSEE. 2017. Vol. 37, № 13. P. 3816-3822. (in Chinese)
[160]. Sollen S. et al. Experimental investigation of an infrared deicing system for wind power application in a cold climate //Journal of Cold Regions Engineering. 2022. Vol. 36. № 4. P. 04022008.
[161]. Habibi H. et al. A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations // Renewable Energy. 2015. Vol. 83. P. 859-870.
[162]. Zeng J., Song B. Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades // Renewable Energy. 2017. Vol. 113. P. 706-712.
[163]. Carriveau R. et al. Ice adhesion issues in renewable energy infrastructure // Journal of adhesion science and technology. 2012. Vol. 26, № 4-5. P. 447-461.
[164]. Orlandi A. et al. 3D URANS analysis of a vertical axis wind turbine in skewed flows // Journal of Wind Engineering and Industrial Aerodynamics. 2015. Vol. 147. P. 77-84.
[165]. Sheldahl R. E., Klimas P. C. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), 1981. № SAND-80-2114.
[166]. Homola M. C. et al. Turbine size and temperature dependence of icing on wind turbine blades // Wind Engineering. 2010. Vol. 34, № 6. P. 615-627.
[167]. Makkonen L. Models for the growth of rime, glaze, icicles and wet snow on structures // Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 2000. Vol. 358, № 1776. P. 2913-2939.
[168]. Heinrich A. et al. Aircraft icing handbook. Volume 3. 1991. № DOTFAACT8883.
[169]. Zhang P, Yang T, Lu X. Influence of icing pattern on aerodynamic performance of wind turbine airfoils // Journal of Chinese Society of Power Engineering. 2011. Vol. 31, № 12. P. 955-959. (in Chinese)
[170]. Makkonen L., Lozowski E. P. Numerical modelling of icing on power network equipment // Atmospheric icing of power networks. Dordrecht: Springer Netherlands, 2008. P. 83-117.
[171]. Solomin E. V., Ryavkin G. N. Horizontal Axis Wind Turbine Weather Vane Aerodynamic Characteristics: Delayed Detached Eddy Simulation and Experimental Approach // Mathematics. 2023. Vol. 11, № 8. P. 1834.
[172]. Shih T. H. et al. A new k-e eddy viscosity model for high reynolds number turbulent flows // Computers & fluids. 1995. Vol. 24, № 3. P. 227-238.
[173]. Barzegar Gerdroodbary M. et al. Optimizing aerodynamic stability in compressible flow around a vibrating cylinder with deep reinforcement learning // Physics of Fluids. 2024. Vol. 36, № 12.
[174]. Reid T., Baruzzi G. S., Habashi W. G. FENSAP-ICE: Unsteady conjugate heat
transfer simulation of electrothermal de-icing // Journal of Aircraft. 2012. Vol. 49, № 4. P. 1101-1109.
[175]. Yang Q., Cheng S., Yuan X. Study on numerical method for determining the droplet trajectories // Acta Aeronautica et Astronautica Sinica. 2002. Vol. 23, № 2. P. 173-176.
[176]. Kim J. et al. Ice accretion modeling using an Eulerian approach for droplet impingement // 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. P. 246.
[177]. Tong X., Luke E. Eulerian simulations of icing collection efficiency using a singularity diffusion model // 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. P. 1246.
[178]. Bourgault Y. et al. An Eulerian approach to supercooled droplets impingement calculations // 35th Aerospace Sciences Meeting and Exhibit. 1997. P. 176.
[179]. Wirogo S., Srirambhatla S. An Eulerian method to calculate the collection efficiency on two and three dimensional bodies // 41st Aerospace sciences meeting and exhibit. 2003. P. 1073.
[180]. Croce G. et al. FENSAP-ICE: Analytical model for spatial and temporal evolution of in-flight icing roughness // Journal of Aircraft. 2010. Vol. 47, № 4. P. 1283-1289.
[181]. Beaugendre H., Morency F., Habashi W. G. Development of a second generation in-flight icing simulation code // Journal of fluids engineering. -2006. Vol. 128, № 2. P. 378-387.
[182]. Beaugendre H. et al. Roughness implementation in FENSAP-ICE: Model calibration and influence on ice shapes // Journal of aircraft. 2003. Vol. 40, № 6. P. 1212-1215.
[183]. Owens, B. C. Theoretical Developments and Practical Aspects of Dynamic Systems in Wind Energy Applications. Texas A&M University, 2013.
[184]. Hwang I. S. et al. Efficiency improvement of a new vertical axis wind turbine by individual active control of blade motion // Smart structures and materials 2006: Smart structures and integrated systems. SPIE. 2006. Vol. 6173. P. 316-
[185]. Tabrizi A.B. et al. Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions // Renewable Energy. 2014. Vol. 67. P. 242-251.
[186]. Hamada K. et al. Unsteady flow simulation and dynamic stall around vertical axis wind turbine blades // 46th AIAA aerospace sciences meeting and exhibit. 2008. P. 1319.
[187]. Du Y. et al. Numerical simulation of aerodynamic performance of static airfoil of vertical axis wind turbines under icing conditions // Energy. 2025. Vol. 328. P. 136590.
[188]. Rezaeiha A., Kalkman I., Blocken B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine // Applied energy. 2017. Vol. 197. P. 132-150.
[189]. Ladson C. L., Hill S. A. High Reynolds number transonic tests on a NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel. 1987. № NASA-TM-100527.
[190]. Wright W. B. Users Manual for the NASA Lewis Ice Accretion Code LEWICE 2.0 // NASA CR. 1999. Vol. 209409.
[191]. Shin J., Bond T. H. Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil // California State Univ., The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows. 1992.
[192]. FLUENT, 2017. Ansys fluent theory guide. ANSYS FLUENT. Theory Guide.
[193]. FENSAP-ICE, 2017. ANSYS FENSAP-ICE User Manual.
[194]. Su J. et al. Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines // Applied Energy. 2020. Vol. 260. P. 114326.
[195]. Fatahian E. et al. Optimization and analysis of self-starting capabilities of vertical axis wind turbine pairs: A CFD-Taguchi approach // Ocean Engineering. 2024. Vol. 302. P. 117614.
[196]. Du Y. et al. Effect of blade width on ultra-low specific speed axial turbines // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.
2022. Vol. 44, № 3. P. 6063-6077.
[197]. Wang Z., Zhuang M. Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios // Applied Energy. 2017. Vol. 208. P. 1184-1197.
[198]. Lei H. et al. Three-dimensional Improved Delayed Detached Eddy Simulation of a two-bladed vertical axis wind turbine // Energy conversion and management. 2017. Vol. 133. P. 235-248.
[199]. Li Q. et al. Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test // Renewable Energy. 2016. Vol. 90. P. 291-300.
[200]. Li Q. et al. The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine // Energy. 2016. Vol. 111. P. 260-271.
[201]. Lei H. et al. The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine // Energy. 2017. Vol. 119. P. 369-383.
[202]. Belabes B., Paraschivoiu M. Numerical study of the effect of turbulence intensity on VAWT performance // Energy. 2021. Vol. 233. P. 121139.
[203]. Guo W. et al. Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine // Renewable Energy. 2021. Vol. 179. P. 116132.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.