Распознавание нуклеиновых кислот с использованием многокомпонентных ДНК наноконструкций / Recognition of nucleic acids using multicomponent DNA nanoconstructs тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Эльдиб Ахмед Абделкадер Мохамед Отман
- Специальность ВАК РФ00.00.00
- Количество страниц 148
Оглавление диссертации кандидат наук Эльдиб Ахмед Абделкадер Мохамед Отман
TABLE OF CONTENTS
INTRODUCTION
CHAPTER 1. LITERATURE REVIEW
1.1. Cancer
1.1.1. Cancer markers
1.1.1.1. RNA-based Cancer markers
1.2. RNA containing viruses
1.3. Corona viruses
1.4. Gene therapy
1.5. Polymerase chain reaction (PCR)
1.5.1. Real time-PCR
1.6. DNAzymes
1.6.1. DNAzyme as a gene therapy tool
1.6.2. Binary (split) DNAzyme for nucleic acid detection
1.6.3. Binary DNAzyme in molecular computation
1.6.4. Binary DNAzymes-based DNA-machines
1.6.5. Antisense oligonucleotides
1.6.6. RNase H
1.6.7. Modified Antisense oligonucleotides
CHAPTER 2. MATERIALS AND METHODS
2.1. Reagents and equipment used
2.1. Fluorescence Spectrophotometry Test
2.2. Binary Threshold DNAzyme fluorescence assay
2.4. DNA logic gates/ thresholding machines cleavage assay
2.5. Viral Diagnostics DNA-machine fluorescence assay
2.5.1. Titration assay
2.5.2. Limit of detection
2.6. Detection of viral RNA in clinical samples assay
2.7. Detection of extracted viral RNA from cell culture and selectivity assay
CHAPTER 3. RESULTS AND DISCUSSION
3.1. Molecular Computation
3.1.1. Selection of hsa-miR-17-5p (miR-17) microRNA as input for DNA thresholding gate
3.1.3. Selection of DAD-1 mRNA (RNA-46) as target and substrate for DNAzyme thresholding gates and DNA machines
3.1.4. Threshold Split DNAzyme gates
3.1.4.1. Design of the DNAzyme thresholding gates
3.1.4.2. Optimization and activity assessment of the thresholding split DNAzyme gates targeting F_sub
3.1.4.3. Selectivity assay of the thresholding split DNAzyme gates
3.1.4.4. Cleavage assessment of the thresholding split DNAzyme gates targeting RNA-46
3.1.5. Thresholding DNA nanomachines (Th-DNM)
3.1.5.1. Design of the thresholding DNA nanomachines
3.1.5.2. Assembly of the thresholding DNA nanomachines
3.1.5.3. Cleavage efficiency assessment and selectivity testing of the thresholding DNA nanomachines targeting F_sub
3.1.5.4. Cleavage efficiency assessment and comparison of the thresholding DNA nanomachines targeting DAD-1 mRNA (RNA-46)
3.1.6. Selection of miR-92 as a cancer marker and input for Threshold Binary DNazyme
3.1.7. Selection of GFP_RNA-60 mRNA as RNA target for thresholding split DNAzyme gates
3.1.8. Threshold split DNAzyme gates
3.1.8.1. Design of thresholding gates
3.1.8.2. Optimization and activity assessment of the thresholding split DNAzyme gates targeting F_sub
3.1.8.3. Cleavage efficiency assessment and comparison of the thresholding split
DNAzyme gates targeting GFP-RNA
3.1.9. Selection of cancer markers as inputs for the activation of designed DNA logic gates
3.1.9.1. Selection of hsa-miR-15a-5p (miR-15; 1st input) and hsa-miR-21-5p (miR-21; 3rd input) as activating input signals
3.1.9.2. Selection of hsa-miR-7d-5p (miR-7; 4th input) as an inhibitory input signal
3.1.10. DNA logic gates
3.1.10.1. Design of the YES gate
3.1.10.2. Cleavage efficiency assessment of YES gate
3.1.10.3. Design of 3iAND and interchangeable 2iAND gates
3.1.10.4. Efficiency assessment of 2iAND and 3iAND gates
3.1.10.5. Design of 2iINHIBIT and 3iINHIBIT gates
3.1.10.6. Efficiency assessment of 2iINHIBIT and 3iINHIBIT gates
3.1.10.7. Adaptation of DNA logic gates for the cleavage of a synthetic mRNA fragment (GFP-60)
3.1.11. ASO-based DNA thresholder agents
3.1.11.1. Design of ASO-based DNA thresholder agents
3.1.11.2. Optimization and cleavage efficiency assessment of ASO-based DNA thresholders targeting selected GFP-RNA
3.1.11.3. Selectivity assay of ASO-based DNA thresholders
3.2. Diagnostics
3.2.1. SARS-CoV-2 sample collection, cell culture and isolation of virus
3.2.2. The 4-Arm DNA machine
3.2.2.1. Design of the 4-Arm DNA machine (4DNM)
3.2.2.2. Assembly of the 4-Arm DNA machine (4DNM)
3.2.2.3. Fluorescent assay of the 4DNM and the Bi-Dz targeting a synthetic DNA fragment of SARS-CoV-2
3.2.2.4. Sensitivity and selectivity assessment between the 4DNM and the binary
DNAzyme in detecting the viral particles obtained from the Vero CCL-81 cell line
3.2.2.5. Detection of viral particles in clinical samples
3.2.3. The hook-equipped DNA nanomachine (HDNM)
3.2.3.1. Design of the hook-equipped DNA nanomachine
3.2.3.2. Assembly of the hook-equipped DNA nanomachine
3.2.3.3. Fluorescent assay detecting a synthetic DNA fragment of SARS-CoV-2 RNA (COV2-DNA1)
3.2.3.4. Detection of SARS-CoV-2 RNA in total RNA isolated from infected Vero cells
3.2.3.5. Selectivity assay of the hook-equipped DNA nanomachine
3.2.4. The multicore DNA nanomachine (MDNM)
3.2.4.1. Design of the multicore DNA nanomachine
3.2.4.2. Assembly of the multicore DNA nanomachine
3.2.4.3. Fluorescent assay detecting a synthetic DNA fragment of SARS-CoV-2 RNA (COV2-DNA190)
3.2.4.4. Detection of SARS-CoV-2 RNA in total RNA isolated from infected Vero cells
3.2.4.5. Assessment of cooperativity of all four cores in MDNM
CONCLUSION
LIST OF ABBREVIATIONS AND CONVENTIONS
REFERENCES
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Analysis of biological properties and improvement of molecular genetic methods for diagnosing the phytopathogen Xanthomonas euvesicatoria pv. allii/Анализ биологических свойств и совершенствование молекулярно-генетических методов диагностики фитопатогена Xanthomonas euvesicatora pv. allii2024 год, кандидат наук Кавиза Ньяша Джон
Development of vectors based on herpesvirus and poliovirus for oncolytic biotherapy/Разработка векторов на основе герпесвируса и полиовируса для онколитической биотерапии2023 год, кандидат наук Хамад Аззам Нассерович
Методы обработки, декодирования и интерпретации электрофизиологической активности головного мозга для задач диагностики, нейрореабилитации и терапии нейрокогнитивных расстройств2022 год, доктор наук Осадчий Алексей Евгеньевич
Введение диссертации (часть автореферата) на тему «Распознавание нуклеиновых кислот с использованием многокомпонентных ДНК наноконструкций / Recognition of nucleic acids using multicomponent DNA nanoconstructs»
INTRODUCTION
Actuality of the research topic. Hybridization of nucleic acid probes to RNA is used in diagnosis and therapy. This approach leverages the intrinsic properties of nucleic acids to recognize and bind to specific sequences, enabling the development of targeted therapeutic and specific and sensitive diagnostic tools. This work applies the approaches of DNA nanotechnology in the design of a new generation of hybridization probes for applications in the two key areas: treating and diagnosing human diseases.
DNA hybridization probes have emerged as powerful tools for both diagnostics and therapy, leveraging their ability to selectively bind to specific nucleic acid sequences [88]. These probes offer high specificity and can be designed to recognize genetic disease markers, making them invaluable in analysis and therapy of human diseases [168]. It was demonstrated earlier that using multiple hybridization probes (elements) can improve selectivity, sensitivity and multiplexing capability of hybridization-based approaches [83]. These functional elements can be combined in a single nanostructure called 'DNA Constructs', with improved cooperativity in recognition of DNA and RNA [105]. It was hypothesized that hybridization probes and DNA Constructs are evolving in DNA nanorobots, possessing the following four functions: (i) sensing for recognition of disease markers, (ii) computation for analysis multiple markers, (iii) actuation that can accomplish therapeutic treatment, and (iv) auto delivery [68]. This study is devoted to advancing sensing and computation functions of the DNA nanorobot.
The study takes advantage of the earlier developed hybridization sensor based on RNA-cleaving DNAzyme (Dz). The sensor, named 'binary Dz' or biDz can bind specific nucleic sequences followed by activation of RNA cleaving function, which can be translated in a fluorescent signal for sensing. The biDz sensor can be equipped with multiple recognition sites for binding several different nucleic acid analytes. The analyte is a disease marker that will activate the DNA construct once it is detected. In this work, DNA Constructs based on biDz was adopted to (i) differentiation low from high concentrations of cancer marker RNA sequences; (ii) recognition of multiple biomarker sequences; (iii) detecting low concentrations of viral RNA in amplification free format.
Degree of development of the research topic. Research in the development of DNA nanorobots with integrated sensing and computational modules aimed at disease diagnostics and therapy is currently in an active stage of advancement. In recent years, significant attention has been directed toward the creation of DNA structures capable of performing complex logical operations at the molecular level, opening new horizons for the application of DNA nanotechnology in biomedicine. Research in DNA nanotechnology is also focused on the development of oligonucleotides that, once they bind to the target, trigger RNA cleavage, such as antisense oligonucleotides (ASOs) [55] or RNA-cleaving DNAzymes. However, techniques that lack input activation-based control and target selection, since they mainly target oncogenes and do not kill the cancer cell directly, still face the problem of being activated in healthy cells, which can lead to deadly side effects.
DNA nanomachines capable of simultaneously performing multiple tasks, including detection and RNA cleavage, such as those developed by [158], address the activation control problem and suggest targeting housekeeping gbaenes to cause toxicity in unhealthy cells. However, the detection of biomarkers, especially folded RNA molecules, can be a significant challenge. Moreover, detecting one input may be useful in the case of viral diseases, but in other complex diseases, such as cancer, multiple markers are needed to determine whether a cell is healthy. Thus, a critical task is the development and optimization of algorithms for signal recognition and processing.
DNA logic gates proposed by Khanum et al. (2020), including YES, 2I AND, and 3I AND gates based on DNAzymes, lack the ability to connect the logic gate elements within one structure, which remains an obstacle in developing a DNA processor to analyze the algorithms. Furthermore, there is a need to design DNA logic gates that activate or inhibit based on cancer-related markers.
Despite significant progress in this area, questions remain regarding the integration of various modules into a single system, the sensitivity of constructs, and the minimization of side effects associated with their use in the body. Active research is also ongoing on the development of new mechanisms for the regulation and activation of DNA
nanorobots, including the use of antisense and DNAzyme strategies and new types of logic elements.
Aim and Objectives of defense:
This study aims to create a foundation for using sophisticated DNA Constructs in diagnostic and therapy of human diseases. To achieve these aims, the following tasks were pursued:
1. Develop DNA constructs based on binary DNAzymes (biDz) and antisense oligonucleotides (ASO) to achieve in vitro cleavage of RNA targets in the presence of low and high concentrations of oncogenic microRNAs.
2. Develop DNA constructs based on biDz, operating on the principle of logic gates and incorporating a universal DNA scaffold that unites all functional components of the DNA constructs into a single complex, to achieve inhibition or activation of substrate cleavage in the presence of various combinations of oncogenic or tumor-suppressive microRNAs.
3. Develop DNA constructs based on biDz to achieve a reduction in the limit of detection (LOD) of analytes by adding to the DNA constructs: a) additional analyte-binding sites; b) a fluorogenic substrate delivery function; c) an increased number of catalytic centers.
Scientific novelty of the work. For the first time, cleavage of specific RNA target was achieved in the presence of high but not low concentrations of as miR-17 and miR-92. The threshold concentration that triggers construct activating can be fine-tuned by changing the number of recognition modules in DNA Constructs. For the first time, DNA logic gates with YES, 2AND, 3AND, 2iINHIBIT, and 3iINHIBIT Boolean logic functions were integrated to a single DNA scaffold. These gates enabled RNA cleavage through different combinations of miR-15, miR-17, and miR-21, with specific signal-to-background ratios. For the 1st time it was demonstrated that addition of RNA binding arms, Substrate delivery and additional substrate cleaving functions to DNA Construct significantly reduces LOD of viral RNA extracted from infected cells.
Value of scientific work. The results advance the field of DNA nanotechnology toward application in diagnosis and treatment of human diseases. The developed DNA -constructs recognize concentrations and patterns of nucleic acid analytes autonomously without involvement of a human operator, which create a basis for development of DNA nanorobot by analysis for distinguishing healthy from non-healthy cells. The PCR-free detection of low RNA concentration creates a bases for the development of highly sensitive sensing modules of DNA nanorobots and could be used in PCR-free diagnostics of human infectious diseases.
Research methodology and methods. The chosen RNA targets included fragments of GFP RNA (RNA-60) and DAD-1 RNA (RNA-46), for the convent monitoring of gene suppression in cell culture experiments, and viral RNA SARS-CoV-2, due to its significant global health threat posed by high mutation rates of RNA viruses. Specific miRNAs, such as miR-15-5p, miR-17-5p, miR-21-5p, miR-7d-let, miR-92a-1 (miR-15, miR-17, miR-21, miR-7, miR-92), were selected as cancer markers because of their elevated expression levels in various cancers, providing a relevant and challenging target for DNA-based probes. The main research methods included polyacrylamide gel electrophoresis (PAGE) and fluorescence-based quantitative analysis of RNA cleavage products and statistical analysis of the results.
Statements of defense:
1. In vitro RNA cleavage can be achieved only at high but not low concentrations of cancer markers by adding more marker binding sites to the biDz-based DNA Constructs.
2. In vitro RNA cleavage can be achieved only at high but not low concentrations of cancer markers by adding more marker binding sites to the ASO-based DNA Constructs.
3. Logic gate DNA Constructs containing all functional elements as part of a single DNA association can cleave target RNA only in the presence of a selected set of microRNA cancer markers that corresponds to behaviour of AND and INHIBIT Boolean logic operations.
4. The addition of RNA binding arms to biDz-based DNA Constructs decreases limit of detection (LOD) for detection of viral DNA and RNA analytes folded in stable secondary structures.
5. Addition fluorogenic substrate delivery function to biDz-based DNA Constructs decreases the limit of detection (LOD) for detection of viral DNA and RNA analytes.
6. BiDz-based DNA Construct equipped with multiple RNA cleaving cores demonstrates less LOD for detection of viral DNA and RNA analytes in comparison with biDz sensor having single catalytic core.
Credibility of scientific achievements. To ensure and confirm the high degree of reliability in the work used a set of modern experimental methods of research, statistics. Scientific provisions, conclusions and recommendations are based on the analysis of a huge amount of scientific literature and confirmed by experimental data.
Research approbation. The results of the work are presented in 18 publications (articles, abstracts) - 7 of articles are included in the Scopus and Web of Science citation bases, 11 theses presented at 9 All-Russian and international conferences.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Заключение диссертации по теме «Другие cпециальности», Эльдиб Ахмед Абделкадер Мохамед Отман
CONCLUSION
This work demonstrated that complex multicomponent DNA Constructs can effectively recognize biologically significant RNA, laying the groundwork for applying DNA nanotechnology and molecular DNA nanorobots in disease detection and therapy.
1. 21 DNA constructs based on binary DNAzymes (biDz) and 3 DNA constructs based on antisense oligonucleotides (ASO) were developed. The DNA constructs BiRDz, 2i-DTh, 3i-DTh, 4i-DTh, and 5i-DTh activated RNA target cleavage at miR-92 concentrations of 0.25, 20, 80, 90, and 190 nM, respectively. DNA constructs containing DNA scaffold, such as DNM, Th-DNM-2i-46, and Th-DNM-3i-46, were activated at 2, 25, and 55 nM miR-17, respectively. The DNA constructs BiASO, 2i-A Th, and 3i-A Th were activated at miR-17 concentrations of 2.6, 7.5, and 39.5 nM, respectively. The threshold concentration of oncogenic microRNAs for DNA construct activation depended on the number of microRNA-binding sites in the DNA constructs.
2. 12 DNA constructs based on biDz were developed, containing all functional oligonucleotides attached to a single scaffold and operating on the principle of logic gates. The DNA constructs YES, 2iAND-A, and 2iAND-B demonstrated RNA target cleavage with signal-to-background ratios of 80.4, 10.3, and 39.2, respectively, after 7 hours of incubation. The DNA constructs 3iAND, 2iINHIBIT, and 3iINHIBIT demonstrated RNA target cleavage with signal-to-background ratios of 18.3, 4.3, 3.9, and 26, respectively, after 24 hours of incubation. The DNA constructs 2iINHIBIT and 3iINHIBIT showed complete inhibition of RNA target cleavage after the addition of the tumor suppressor miR-7 at a concentration 1 and 2 times higher than that of the DNA construct itself, respectively.
3. 3 DNA constructs were developed for the detection of DNA and RNA analytes of SARS-CoV-2. The 4DNM DNA construct, equipped with two additional RNA-binding sites, demonstrated a limit of detection (LOD) of 1 pM for the synthetic DNA analyte. The LOD for the RNA analyte was 26 pM after 3 hours of incubation, whereas biDz was unable to detect RNA. The HDNM DNA construct, with a substrate delivery function, showed an LOD of 0.063 pM and 0.025 pM after 1 and 3 hours,
respectively. The LOD for the RNA analyte was 26 pM and 2 pM after 1 and 3 hours, respectively. The MDNM DNA construct, with four catalytic centers, demonstrated an LOD for the synthetic DNA analyte of 6.5, 2.6, and 0.3 pM after 0.5, 1, and 3 hours, respectively. The LOD for the RNA analyte was 28 pM and 5 pM after 1 and 3 hours, respectively, showing improved sensitivity, as 4DNM did not detect viral RNA after 1 hour of incubation.
Recommendations and Prospects for Further Development. The results of this dissertation research can be utilized in the development of diagnostic and therapeutic approaches for oncological and viral diseases, as well as in expanding the application of DNA probes in biomedicine. Further modifications of DNA constructs may be conducted to lower the sensitivity threshold and enhance the efficiency of RNA target cleavage. Additionally, investigating the effects of various chemical modifications on the stability and catalytic activity of the constructs remains an important direction. Another promising avenue is the study of the kinetics of interactions between logical DNA constructs and microRNAs to predict response times. Adapting these technologies to modern molecular diagnostic platforms, miniaturizing DNA constructs, and integrating them into portable devices for rapid analysis are also key areas for future development. Moreover, continued research on biocompatibility and the development of safe methods for introducing DNA constructs into the body for potential therapeutic applications are necessary.
Список литературы диссертационного исследования кандидат наук Эльдиб Ахмед Абделкадер Мохамед Отман, 2025 год
REFERENCES
1. Idikio H.A. Human Cancer Classification: A Systems Biology-Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics // Journal of Cancer. — 2011. — Vol. 2, № 1. — P. 107—115.
2. Hassanpour S.H. Review of cancer from the perspective of molecular biology / Dehghani M. // Journal of Cancer Research and Practice. — 2017. — Vol. 4, №2 4. — P. 127—129.
3. Zhang P.-W. Classifying Ten Types of Major Cancers Based on Reverse Phase Protein Array Profiles / Chen L., Huang T., et al. // PLoS ONE. — 2015. — Vol. 10, № 3. — P. e0118432.
4. Lichtman M.A. Battling the hematological malignancies: the 200 years' war // The Oncologist. — 2008. — Vol. 13, № 2. — P. 126—138.
5. Strimbu K. What are biomarkers? / Tavel J.A. // Current Opinion in HIV and AIDS. — 2010. — Vol. 5, № 6. — P. 463—466.
6. Parker J.S. Supervised risk predictor of breast cancer based on intrinsic subtypes / Mullins M., Cheang M.C.U., et al. // Journal of Clinical Oncology. — 2009. -
— Vol. 27, № 8. — P. 1160—1167.
7. Pellegrini K.L. RNA biomarkers to facilitate the identification of aggressive prostate cancer / Sanda M.G., Moreno C.S. // Molecular Aspects of Medicine. — 2015.
— Vol. 45. — P. 37—46.
8. Mayeux R. Biomarkers: potential uses and limitations // NeuroRx: The Journal of the American Society for Experimental NeuroTherapeutics. — 2004. — Vol. 1, № 2. — P. 182—188.
9. Mehta S. Predictive and prognostic molecular markers for cancer medicine / Shelling A., Muthukaruppan A., et al. // Therapeutic Advances in Medical Oncology. — 2010. — Vol. 2, № 2. — P. 125—148.
10. Bhattacharya S. Array of hope: expression profiling identifies disease biomarkers and mechanisms / Mariani T.J. // Biochemical Society Transactions. — 2009.
— Vol. 37, № 4. — P. 855—862.
11. Xi X. RNA Biomarkers: Frontier of Precision Medicine for Cancer / Li T., Huang Y., et al. // Non-Coding RNA. — 2017. — Vol. 3, № 1. — P. 9.
12. Delaunay S. RNA modifications regulating cell fate in cancer / Frye M. // Nature Cell Biology. — 2019. — Vol. 21, № 5. — P. 552—559.
13. Vo J.N. The Landscape of Circular RNA in Cancer / Cieslik M., Zhang Y., et al. // Cell. — 2019. — Vol. 176, № 4. — P. 869—881.e13.
14. Barbieri I. Role of RNA modifications in cancer / Kouzarides T. // Nature Reviews Cancer. — 2020. — Vol. 20, № 6. — P. 303—322.
15. Zhang Z. Circular RNA: new star, new hope in cancer / Xie Q., He D., et al. // BMC Cancer. — 2018. — Vol. 18, № 1. — P. 834.
16. Goodall G.J. RNA in cancer / Wickramasinghe V.O. // Nature Reviews Cancer. — 2021. — Vol. 21, № 1. — P. 22—36.
17. Ala U. Competing endogenous RNAs and cancer: How coding and non-coding molecules cross-talk can impinge on disease // International Journal of Biochemistry and Cell Biology. — 2021. — Vol. 130. — P. 105874.
18. Anastasiadou E. Non-coding RNA networks in cancer / Jacob L.S., Slack F.J. // Nature Reviews Cancer. — 2018. — Vol. 18, № 1. — P. 5—18.
19. Frangoul H. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and ß-Thalassemia / Altshuler D., Cappellini M.D., et al. // New England Journal of Medicine.
— 2021. — Vol. 384, № 3. — P. 252—260.
20. Mateo J. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial / Porta N., Bianchini D., et al. // The Lancet Oncology. — 2020.
— Vol. 21, № 1. — P. 162—174.
21. Pardi N. mRNA vaccines — a new era in vaccinology / Hogan M.J., Porter
F.W., et al. // Nature Reviews Drug Discovery. — 2018. — Vol. 17, № 4. — P. 261— 279.
22. Whitfield M.L. Common markers of proliferation / George L.K., Grant
G.D., et al. // Nature Reviews Cancer. — 2006. — Vol. 6, № 2. — P. 99—106.
23. Xu T. CircRNAs in anticancer drug resistance: recent advances and future potential / Wang M., Jiang L., et al. // Molecular Cancer. - 2020. - Vol. 19, № 1. - P. 127.
24. Wu P. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA / Mo Y., Peng M., et al. // Molecular Cancer. — 2020. — Vol. 19, № 1. — P. 22.
25. O'Carroll I.P. Viral Nucleic Acids / Rein A. // Encyclopedia of Cell Biology.
— 2016. — P. 517—524.
26. Ahlquist P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses // Nature Reviews Microbiology.
— 2006. — Vol. 4, № 5. — P. 371—382.
27. Sato Y. Three-Layered Complex Interactions among Capsidless (+)ssRNA Yadokariviruses, dsRNA Viruses, and a Fungus / Hisano S., Lopez-Herrera C.J., et al. // mBio. — 2022. — Vol. 13, № 5. — P. e0168522.
28. Lohmann V. Hepatitis C virus RNA replication // Current Topics in Microbiology and Immunology. — 2013. — Vol. 369. — P. 167—198.
29. Baltimore D. Evolution of RNA viruses // Annals of the New York Academy of Sciences. — 1980. — Vol. 354. — P. 492—497.
30. Markiewicz L. Tricks and threats of RNA viruses - towards understanding the fate of viral RNA / Drazkowska K., Sikorski P.J. // RNA Biology. — 2021. — Vol. 18, № 5. — P. 669—687.
31. Weber F. Double-Stranded RNA Is Produced by Positive-Strand RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA Viruses / Wagner V., Rasmussen S.B., et al. // Journal of Virology. — 2006. — Vol. 80, № 10. -- P. 5059--5064.
32. Hu L. Reoviruses (Reoviridae) and Their Structural Relatives / Estes M.K., Prasad B.V.V. // Encyclopedia of Virology. — 2021. — P. 303—317.
33. Chen Y.G. Cellular origins of dsRNA, their recognition and consequences / Hur S. // Nature Reviews Molecular Cell Biology. - 2022. - Vol. 23, № 4. - P. 286-301.
34. Payne S. Introduction to RNA Viruses // Viruses. — 2017. — P. 97—105.
35. Harapan H. Coronavirus disease 2019 (COVID-19): A literature review / Itoh N., Yufika A. // Journal of Infection and Public Health. — 2020. — Vol. 13, № 5. -- P. 667—673.
36. Gorbalenya A.E. Severe acute respiratory syndrome-related coronavirus: The species and its viruses - a statement of the Coronavirus Study Group / Baker S., Baric R., et al. // bioRxiv. — 2020. — P. 2020.02.07.937862.
37. Hu B. Characteristics of SARS-CoV-2 and COVID-19 / Guo H., Zhou P., et al. // Nature Reviews Microbiology. — 2021. — Vol. 19, № 3. — P. 141—154.
38. Kay M.A. Gene therapy / Liu D., Hoogerbrugge P.M. // Proceedings of the National Academy of Sciences. — 1997. — Vol. 94, № 24. — P. 12744—12746.
39. Gonfalves G.A.R. Gene therapy: advances, challenges and perspectives / Paiva R.M.A. // Einstein. — 2017. — Vol. 15, № 3. — P. 369—375.
40. Ramamoorth M. Non-Viral Vectors in Gene Therapy - An Overview / Narvekar A. // Journal of Clinical and Diagnostic Research. — 2015. — Vol. 9, № 1. — P. GE01—GE06.
41. Wirth T. Gene Therapy Used in Cancer Treatment / Ylä-Herttuala S. // Biomedicines. — 2014. — Vol. 2, № 2. — P. 149—162.
42. Jia H. China offers alternative gateway for experimental drugs / Kling J. // Nature Biotechnology. — 2006. — Vol. 24, № 2. — P. 117—118.
43. Urits I. Review of Patisiran (ONPATTRO®) for the Treatment of Polyneuropathy in People with Hereditary Transthyretin Amyloidosis / Swanson D., Swett M.C., et al. // Neurology and Therapy. — 2020. — Vol. 9, № 2. — P. 301—315.
44. Garibyan L. Research Techniques Made Simple: Polymerase Chain Reaction (PCR) / Avashia N. // Journal of Investigative Dermatology. — 2013. — Vol. 133, № 3. — P. e6.
45. Lorenz T.C. Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies // Journal of Visualized Experiments. -2012. — № 63. — P. e3998.
46. The polymerase chain reaction: An overview and development of diagnostic PCR protocols at the LCDC // Canadian Journal of Infectious Diseases. — 1991. — Vol. 2, № 2. — P. 89—91.
47. Freeman W.M. Quantitative RT-PCR: pitfalls and potential / Walker S.J., Vrana K.E. // BioTechniques. — 1999. — Vol. 26, № 1. — P. 112—125.
48. Bustin S. A to Z of quantitative PCR. — 2004.
49. Eischeid A.C. SYTO dyes and EvaGreen outperform SYBR Green in realtime PCR // BMC Research Notes. — 2011. — Vol. 4. — P. 263.
50. Fraga D. Real-Time PCR / Meulia T., Fenster S. // Current Protocols Essential Laboratory Techniques. — 2014. — Vol. 8, № 1. — P. 10.3.1—10.3.40.
51. Yang S. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings / Rothman R.E. // The Lancet Infectious Diseases. — 2004. — Vol. 4, № 6. — P. 337—348.
52. Liu H. Crystal structure of an RNA-cleaving DNAzyme / Yu X., Chen Y., et al. // Nature Communications. — 2017. — Vol. 8, № 1. — P. 2006.
53. Achenbach J.C. DNAzymes: from creation in vitro to application in vivo / Chiuman W., Cruz R.P.G., et al. // Current Pharmaceutical Biotechnology. — 2004. — Vol. 5, № 4. — P. 321—336.
54. Aranda J. An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases / Terrazas M., Gomez H., et al. // Nature Catalysis. — 2019. — Vol. 2, № 6. — P. 544—552.
55. Scheitl C.P.M. New Deoxyribozymes for the Native Ligation of RNA / Lange S., Höbartner C. // Molecules. — 2020. — Vol. 25, № 16. — P. 3650.
56. Gu H. Small, Highly Active DNAs That Hydrolyze DNA / Furukawa K., Weinberg Z., et al. // Journal of the American Chemical Society. — 2013. — Vol. 135, № 24. — P. 9121—9129.
57. Schubert S. RNA cleaving '10-23' DNAzymes with enhanced stability and activity / Gül D.C., Grunert H.-P., et al. // Nucleic Acids Research. — 2003. — Vol. 31, № 20. — P. 5982—5992.
58. Li Z. Conformational studies of 10-23 DNAzyme in solution through pyrenyl-labeled 2'-deoxyadenosine derivatives / Zhu J., He J. // Organic & Biomolecular Chemistry. — 2016. — Vol. 14, № 41. — P. 9846—9858.
59. Cairns M.J. Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites / King A., Sun L.-Q. // Nucleic Acids Research. — 2003. — Vol. 31, № 11. — P. 2883—2889.
60. Zaborowska Z. Sequence Requirements in the Catalytic Core of the "10-23" DNA Enzyme / Fürste J.P., Erdmann V.A., et al. // Journal of Biological Chemistry. — 2002. — Vol. 277, № 43. — P. 40617—40622.
61. Rosenbach H. Molecular Features and Metal Ions That Influence 10-23 DNAzyme Activity / Victor J., Etzkorn M., et al. // Molecules. — 2020. — Vol. 25, № 13. — P. 3010.
62. Santoro S.W. A general purpose RNA-cleaving DNA enzyme / Joyce G.F. // Proceedings of the National Academy of Sciences. — 1997. — Vol. 94, № 9. — P. 4262--4266.
63. Zhou W. Theranostic DNAzymes / Ding J., Liu J. // Theranostics. — 2017.
— Vol. 7, № 4. — P. 1010—1025.
64. Fu S. DNAzyme-based therapeutics for cancer treatment / Sun L.-Q. // Future Medicinal Chemistry. — 2015. — Vol. 7, № 13. — P. 1701—1707.
65. Baum D.A. Deoxyribozymes: useful DNA catalysts in vitro and in vivo / Silverman S.K. // Cellular and Molecular Life Sciences. — 2008. — Vol. 65, № 14. — P. 2156—2174.
66. Huo W. Recent advances of DNAzyme-based nanotherapeutic platform in cancer gene therapy / Li X., Wang B., et al. // Biophysical Reports. — 2020. — Vol. 6, № 6. — P. 256—265.
67. Li X. Targeted and direct intracellular delivery of native DNAzymes enables highly specific gene silencing / Yang F., Zhou W., et al. // Chemical Science. — 2020. -
- Vol. 11, № 33. — P. 8966—8972.
68. Wang Y. A biologically stable DNAzyme that efficiently silences gene expression in cells / Nguyen K., Spitale R.C., et al. // Nature Chemistry. — 2021. — Vol. 13, № 4. — P. 319—326.
69. Wiktorska M. DNAzyme as an efficient tool to modulate invasiveness of human carcinoma cells / Papiewska-Paj^k I., Okruszek A., et al. // Acta Biochimica Polonica. — 2010. — Vol. 57, № 3. — P. 269—275.
70. Yang L. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma / Liu L., Xu Z., et al. // Oncotarget. — 2015. — Vol. 6, № 8. — P. 5804—5817.
71. Zhang L. Angiogenic inhibition mediated by a DNAzyme that targets vascular endothelial growth factor receptor 2 / Gasper W.J., Stass S.A., et al. // Cancer Research. — 2002. — Vol. 62, № 19. — P. 5463—5469.
72. Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis // Genes & Cancer. — 2011. — Vol. 2, № 12. — P. 1097—1105.
73. Kabuli M. Targeting PML/RARalpha transcript with DNAzymes results in reduction of proliferation and induction of apoptosis in APL cells / Yin J.A.L., Tobal K. // Hematology Journal. — 2004. — Vol. 5, № 5. — P. 426—433.
74. Qu Y. Effects of DNAzymes targeting Aurora kinase A on the growth of human prostate cancer / Zhang L., Mao M., et al. // Cancer Gene Therapy. — 2010. — Vol. 17, № 9. — P. 655—663.
75. Wang Y. Ezrin mRNA target site selection for DNAzymes using secondary structure and hybridization thermodynamics / Shen J.N., Shang X.F., et al. // Tumor Biology. — 2011. — Vol. 32, № 4. — P. 809—817.
76. Zhang M. IGF-II inhibitory DNAzymes inhibit the invasion and migration of hepatocarcinoma cells / Zhao H., Luo F., et al. // Biotechnology Letters. — 2011. — Vol. 33, № 5. — P. 911—917.
77. Yang L. A Therapeutic Approach to Nasopharyngeal Carcinomas by DNAzymes Targeting EBV LMP-1 Gene / Lu Z., Ma X., et al. // Molecules. — 2010. — Vol. 15, № 9. — P. 6127—6139.
78. Zhang G. Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression / Luo X., Sumithran E., et al. // Oncogene. — 2006. — Vol. 25, № 55. — P. 7260—7266.
79. Liang Z. DNAzyme-mediated cleavage of survivin mRNA and inhibition of the growth of PANC-1 cells / Wei S., Guan J., et al. // Journal of Gastroenterology and Hepatology. — 2005. — Vol. 20, № 10. — P. 1595—1602.
80. Mitchell A. Inhibition of human breast carcinoma proliferation, migration, chemoinvasion and solid tumour growth by DNAzymes targeting the zinc finger transcription factor EGR-1 / Dass C.R., Sun L.-Q., et al. // Nucleic Acids Research. — 2004. — Vol. 32, № 10. — P. 3065—3074.
81. Yang L. Inhibition of cell proliferation, migration and invasion by DNAzyme targeting MMP-9 in A549 cells / Zeng W., Li D., et al. // Oncology Reports.
— 2009. — Vol. 22, № 1. — P. 121—126.
82. Yu S.-H. Specific repression of mutant K-RAS by 10-23 DNAzyme: sensitizing cancer cell to anti-cancer therapies / Wang T.-H., Au L.-C. // Biochemical and Biophysical Research Communications. — 2009. — Vol. 378, № 2. — P. 230—234.
83. Gerasimova Y.V. RNA-Cleaving Deoxyribozyme Sensor for Nucleic Acid Analysis: The Limit of Detection / Cornett E., Kolpashchikov D.M. // ChemBioChem. -
- 2010. — Vol. 11, № 6. — P. 811—817.
84. Cairns M.J. Target-site selection for the 10-23 DNAzyme / Sun L.-Q. // Methods in Molecular Biology. — 2004. — Vol. 252. — P. 267—277.
85. Kolpashchikov D.M. A binary deoxyribozyme for nucleic acid analysis // ChemBioChem. — 2007. — Vol. 8, № 17. — P. 2039—2042.
86. Mokany E. MNAzyme qPCR: a superior tool for multiplex qPCR / Todd A.V. // Methods in Molecular Biology. — 2013. — Vol. 1039. — P. 31—49.
87. Gerasimova Y.V. Expedited quantification of mutant ribosomal RNA by binary deoxyribozyme (BiDz) sensors / Yakovchuk P., Dedkova L.M., et al. // RNA. — 2015. — Vol. 21, № 10. — P. 1834—1843.
88. Kolpashchikov D.M. Evolution of Hybridization Probes to DNA Machines and Robots // Accounts of Chemical Research. — 2019. — Vol. 52, № 7. — P. 1949— 1956.
89. Farrell R.E. Quantitative PCR Techniques // RNA Methodologies. — 2010. _ P. 449—489.
90. Nguyen C. Molecular beacon-based tricomponent probe for SNP analysis in folded nucleic acids / Grimes J., Gerasimova Y.V., et al. // Chemistry. — 2011. — Vol. 17, № 46. — P. 13052—13058.
91. Kolpashchikov D.M. Binary Probes for Nucleic Acid Analysis // Chemical Reviews. — 2010. — Vol. 110, № 8. — P. 4709—4723.
92. Oliveira A.G.G. RNA cleaving DNA Thresholder Controlled by Concentrations of miRNA Cancer Marker / Dubovichenko M.V., ElDeeb A.A., et al. // Chem. Bio. Chem. — 2022. — Vol. 23, № 1. — P. e202100500.
93. Hehner E.C.R. A Practical Theory of Programming. — 1993.
94. Gries D. A Logical Approach to Discrete Math / Schneider F.B. — 1993.
95. Braulio777Follow. Basic Logic Gates [Electronic resource] // Instructables.
— 2021. — Access mode: https://www.instructables.com/Basic-Logic-Gates/ (accessed: 26.04.2021).
96. Wang W. Evaluation of intracellular telomerase activity through cascade DNA logic gates / Huang S., Li J., et al. // Chemical Science. — 2017. — Vol. 8, № 1. -
- P. 174—180.
97. Chen Y. A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs / Song Y., Wu F., et al. // Chemical Communications. — 2015. — Vol. 51, № 32. — P. 6980—6983.
98. Wu C. A Survey of Advancements in Nucleic Acid-based Logic Gates and Computing for Applications in Biotechnology and Biomedicine / Wan S., Hou W., et al. // Chemical Communications. — 2015. — Vol. 51, № 18. — P. 3723—3734.
99. Zhu J. Aptamer-Based Sensing Platform Using Three-Way DNA Junction-Driven Strand Displacement and Its Application in DNA Logic Circuit / Zhang L., Zhou Z., et al. // Analytical Chemistry. — 2014. — Vol. 86, № 1. — P. 312—316.
100. Liu Y. Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells / Liu L., Zhuang C., Fu X., et al. // Nature Communications. — 2014. — Vol. 5, № 1. — P. 5393.
101. Kahan-Hanum M. A library of programmable DNAzymes that operate in a cellular environment / Douek Y., Adar R., et al. // Scientific Reports. — 2013. — Vol. 3, № 1. — P. 1535.
102. Cox A.J. DNA nanotechnology for nucleic acid analysis: multifunctional molecular DNA machine for RNA detection / Bengtson H.N., Rohde K.H., et al. // Chemical Communications. — 2016. — Vol. 52, № 99. — P. 14318—14321.
103. Lyalina T.A. A DNA minimachine for selective and sensitive detection of DNA / Goncharova E.A., Prokofeva N.Y., et al. // Analyst. — 2019. — Vol. 144, № 2. -- P. 416—420.
104. Nedorezova D.D. Deoxyribozyme-Based DNA Machines for Cancer Therapy / Fakhardo A.F., Molden T.A., et al. // ChemBioChem. — 2020. — Vol. 21, № 5. — P. 607—611.
105. Nedorezova D.D. Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA / Fakhardo A.F., Nemirich D.V., et al. // Angewandte Chemie. — 2019. — Vol. 131, № 14. — P. 4702—4706.
106. Iversen P.L. Cellular uptake and subcellular distribution of phosphorothioate oligonucleotides into cultured cells / Zhu S., Meyer A., et al. // Antisense Research and Development. — 1992. — Vol. 2, № 3. — P. 211—222.
107. Tamm I. Antisense therapy in oncology: new hope for an old idea? / Dorken B., Hartmann G. // The Lancet. — 2001. — Vol. 358, № 9280. — P. 489—497.
108. Hagedorn P.H. Managing the sequence-specificity of antisense oligonucleotides in drug discovery / Hansen B.R., Kochet T., et al. // Nucleic Acids Research. — 2017. — Vol. 45, № 5. — P. 2262—2274.
109. Stein H. Enzyme from calf thymus degrading the RNA moiety of DNA-RNA hybrids: effect on DNA-dependent RNA polymerase / Hausen P. // Science. — 1969. — Vol. 166, № 3903. — P. 393—395.
110. Frank P. Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII / Braunshofer-Reiter C., Wintersberger U., et al. // Proceedings of the National Academy of Sciences. — 1998. — Vol. 95, № 22. — P. 12872—12877.
111. Lai L. Crystal structure of archaeal RNase HII: a homologue of human major RNase H / Yokota H., Hung L.W., et al. // Structure. — 2000. — Vol. 8, № 8. — P. 897-904.
112. Ohtani N. Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families / Haruki M., Morikawa M., et al. // Biochemistry. — 1999. — Vol. 38, № 2. — P. 605—618.
113. Katayanagi K. Three-dimensional structure of ribonuclease H from E. coli / Miyagawa M., Matsushima M., et al. // Nature. — 1990. — Vol. 347, № 6290. — P. 306-309.
114. Yamasaki K. Structural stability and internal motions of Escherichia coli ribonuclease HI: 15N relaxation and hydrogen-deuterium exchange analyses / Akasako-Furukawa A., Kanaya S. // Journal of Molecular Biology. — 1998. — Vol. 277, № 3. — P. 707—722.
115. Kanaya S. Thermal stability of Escherichia coli ribonuclease HI and its active site mutants in the presence and absence of the Mg2+ ion. Proposal of a novel catalytic role for Glu48 / Oobatake M., Liu Y. // Journal of Biological Chemistry. — 1996. — Vol. 271, № 51. — P. 32729—32736.
116. Davies J.F. Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase / Hostomska Z., Hostomsky Z., et al. // Science. — 1991. — Vol. 252, № 5002. — P. 88—95.
117. Yang W. Structure of ribonuclease H phased at 2 Ä resolution by MAD analysis of the selenomethionyl protein / Hendrickson W.A., Crouch R.J., et al. // Science.
— 1990. — Vol. 249, № 4975. — P. 1398—1405.
118. Itaya M. Isolation and characterization of a second RNase H (RNase HII) of Escherichia coli K-12 encoded by the rnhB gene // Proceedings of the National Academy of Sciences. — 1990. — Vol. 87, № 21. — P. 8587—8591.
119. Frank P. Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII / Braunshofer-Reiter C., Wintersberger U. // FEBS Letters. — 1998. — Vol. 421, № 1. — P. 23—26.
120. Cerritelli S.M. Ribonuclease H: the enzymes in Eukaryotes / Crouch R.J. // FEBS Journal. — 2009. — Vol. 276, № 6. — P. 1494—1505.
121. Yb Z. The rnhB gene encoding RNase HII of Streptococcus pneumoniae and evidence of conserved motifs in eucaryotic genes / S A., Sa L. // Journal of Bacteriology.
— 1997. — Vol. 179, № 12. — P. 3919—3925.
122. Haruki M. Gene cloning and characterization of recombinant RNase HII from a hyperthermophilic archaeon / Hayashi K., Kochi T., et al. // Journal of Bacteriology. — 1998. — Vol. 180, № 23. — P. 6207—6214.
123. Bennett C.F. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform / Swayze E.E. // Annual Review of Pharmacology and Toxicology. — 2010. — Vol. 50. — P. 259—293.
124. Nowotny M. Structure of Human RNase H1 Complexed with an RNA/DNA Hybrid: Insight into HIV Reverse Transcription / Gaidamakov S.A., Ghirlando R., et al. // Molecular Cell. — 2007. — Vol. 28, № 2. — P. 264—276.
125. Molden T.A. Cut and Paste for Cancer Treatment: A DNA Nanodevice that Cuts Out an RNA Marker Sequence to Activate a Therapeutic Function / Niccum C.T.,
Kolpashchikov D.M. // Angewandte Chemie International Edition. — 2020. — Vol. 59, № 47. — P. 21190—21194.
126. Kolpashchikov D.M. Split DNA Enzyme for Visual Single Nucleotide Polymorphism Typing // Journal of the American Chemical Society. — 2008. — Vol. 130, № 10. — P. 2934—2935.
127. MacDougall D. Guidelines for data acquisition and data quality evaluation in environmental chemistry / Crummett W.B., Amore F.J., et al. // Analytical Chemistry. — 1980. — Vol. 52, № 14. — P. 2242—2249.
128. Cloonan N. The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition / Brown M.K., Steptoe A.L., et al. // Genome Biology. — 2008. — Vol. 9, № 8. — P. R127.
129. Fang L.-L. Expression, regulation and mechanism of action of the miR-17-92 cluster in tumor cells / Wang X.-H., Sun B.-F., et al. // International Journal of Molecular Medicine. — 2017. — Vol. 40, № 6. — P. 1624—1630.
130. Mestdagh P. The miR-17-92 microRNA cluster regulates multiple components of the TGF-ß pathway in neuroblastoma / Bostrom A., Impens F., et al. // Molecular Cell. — 2010. — Vol. 40, № 5. — P. 762—773.
131. Newman E.A. Update on neuroblastoma / Abdessalam S., Aldrink J.H., et al. // Journal of Pediatric Surgery. — 2019. — Vol. 54, № 3. — P. 383—389.
132. Concepcion C.P. The microRNA-17-92 family of microRNA clusters in development and disease / Bonetti C., Ventura A. // Cancer Journal. — 2012. — Vol. 18, № 3. — P. 262—267.
133. O'Donnell K.A. c-Myc-regulated microRNAs modulate E2F1 expression / Wentzel E.A., Zeller K.I., et al. // Nature. — 2005. — Vol. 435, № 7043. — P. 839— 843.
134. Schulte J.H. MYCN regulates oncogenic MicroRNAs in neuroblastoma / Horn S., Otto T., et al. // International Journal of Cancer. — 2008. — Vol. 122, № 3. — P. 699--704.
135. Mogilyansky E. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease / Rigoutsos I. // Cell Death & Differentiation. — 2013. — Vol. 20, № 12. — P. 1603—1614.
136. UNAFold [Electronic resource]. — Access mode: http://www.unafold.org/ (accessed: 19.05.2024).
137. Kelleher D.J. DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase / Gilmore R. // Proceedings of the National Academy of Sciences. — 1997. — Vol. 94, № 10. — P. 4994—4999.
138. Nakashima T. Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells / Sekiguchi T., Kuraoka A., et al. // Molecular and Cellular Biology. — 1993. — Vol. 13, № 10. — P. 6367—6374.
139. Sanjay A. DAD1 Is Required fordo the Function and the Structural Integrity of the Oligosaccharyltransferase Complex / Fu J., Kreibich G. // Journal of Biological Chemistry. — 1998. — Vol. 273, № 40. — P. 26094—26099.
140. Roboti P. The oligosaccharyltransferase subunits OST48, DAD1 and KCP2 function as ubiquitous and selective modulators of mammalian N-glycosylation / High S. // Journal of Cell Science. — 2012. — Vol. 125, № Pt 14. — P. 3474—3484.
141. Makishima T. A subunit of the mammalian oligosaccharyltransferase, DAD1, interacts with Mcl-1, one of the bcl-2 protein family / Yoshimi M., Komiyama S., et al. // Journal of Biochemistry. — 2000. — Vol. 128, № 3. — P. 399—405.
142. True L. A molecular correlate to the Gleason grading system for prostate adenocarcinoma / Coleman I., Hawley S., et al. // Proceedings of the National Academy of Sciences. — 2006. — Vol. 103, № 29. — P. 10991—10996.
143. O'Brien J. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation / Hayder H., Zayed Y., et al. // Frontiers in Endocrinology. — 2018. — Vol. 9. — P. 402.
144. Zhang D.Y. Dynamic DNA nanotechnology using strand-displacement reactions / Seelig G. // Nature Chemistry. — 2011. — Vol. 3, № 2. — P. 103—113.
145. Ha M. Regulation of microRNA biogenesis / Kim V.N. // Nature Reviews Molecular Cell Biology. — 2014. — Vol. 15, № 8. — P. 509—524.
146. Zhao W. The miR-17-92 cluster: Yin and Yang in human cancers / Gupta A., Krawczyk J., et al. // Cancer Treatment and Research Communications. — 2022. — Vol. 33. — P. 100647.
147. Zhang X. Biology of MiR-17-92 Cluster and Its Progress in Lung Cancer / Li Y., Qi P., et al. // International Journal of Medical Sciences. — 2018. — Vol. 15, № 13. — P. 1443—1448.
148. Green Fluorescent Protein: Its Development, Protein Engineering, and Applications in Protein Research [Electronic resource] // Journal of Young Investigators.
— 2022. — Access mode: https://www.jyi.org/2022-march/2022/2/28/green-fluorescent-protein-its-development-protein-engineering-and-applications-in-protein-research (accessed: 19.05.2024).
149. Phillips G.J. Green fluorescent protein--a bright idea for the study of bacterial protein localization // FEMS Microbiology Letters. — 2001. — Vol. 204, № 1.
— P. 9—18.
150. March J.C. Biotechnological applications of green fluorescent protein / Rao G., Bentley W.E. // Applied Microbiology and Biotechnology. — 2003. — Vol. 62, № 4.
— P. 303—315.
151. Tsien R.Y. The green fluorescent protein // Annual Review of Biochemistry.
— 1998. — Vol. 67. — P. 509—544.
152. Calin G.A. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia / Dumitru C.D., Shimizu M., et al. // Proceedings of the National Academy of Sciences. — 2002. — Vol. 99, № 24. — P. 15524—15529.
153. Huang E. miRNA-15a/16: as tumor suppressors and more / Liu R., Chu Y. // Future Oncology. — 2015. — Vol. 11, № 16. — P. 2351—2363.
154. Ramaiah J. Functions and epigenetic aspects of miR-15/16: Possible future cancer therapeutics // Gene Reports. — 2018. — Vol. 12. — P. 149—164.
155. Kumarswamy R. Regulation and function of miRNA-21 in health and disease / Volkmann I., Thum T. // RNA Biology. — 2011. — Vol. 8, № 5. — P. 706— 713.
156. Shang Y. MiR-7-5p/KLF4 signaling inhibits stemness and radioresistance in colorectal cancer / Zhu Z., Zhang Y., et al. // Cell Death Discovery. — 2023. — Vol. 9, № 1. — P. 42.
157. Lai J. MiR-7-5p-mediated downregulation of PARP1 impacts DNA homologous recombination repair and resistance to doxorubicin in small cell lung cancer / Yang H., Zhu Y., et al. // BMC Cancer. — 2019. — Vol. 19, № 1. — P. 602.
158. Drozd V.S. Binary Antisense Oligonucleotide Agent for Cancer Marker-Dependent Degradation of Targeted RNA / Eldeeb A.A., Kolpashchikov D.M., et al. // Nucleic Acid Therapeutics. — 2022. — Vol. 32, № 5. — P. 412—420.
159. Corman V.M. Detection of 2019 novel coronavirus (2019-nCoV) by realtime RT-PCR / Landt O., Kaiser M., et al. // Eurosurveillance. — 2020. — Vol. 25, № 3.
— P. 2000045.
160. Komissarov A.B. Genomic epidemiology of the early stages of the SARS-CoV-2 outbreak in Russia / Safina K.R., Garushyants S.K., et al. // Nature Communications. — 2021. — Vol. 12, № 1. — P. 649.
161. Rangan R. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look / Zheludev I.N., Hagey R.J., et al. // RNA.
— 2020. — Vol. 26, № 8. — P. 937—959.
162. Kiening M. Conserved Secondary Structures in Viral mRNAs / Ochsenreiter R., Hellinger H., et al. // Viruses. — 2019. — Vol. 11, № 5. — P. 401.
163. El-Deeb A.A. Toward a Home Test for COVID-19 Diagnosis: DNA Machine for Amplification-Free SARS-CoV-2 Detection in Clinical Samples / Zablotskaya S.S., Rubel M.S., et al. // ChemMedChem. — 2022. — Vol. 17, № 20. — P. e202200382.
164. Cox A.J. DNA Antenna Tile-Associated Deoxyribozyme Sensor with Improved Sensitivity / Bengtson H.N., Gerasimova Y.V., et al. // ChemBioChem. — 2016. — Vol. 17, № 21. — P. 2038—2041.
165. Ateiah M. DNA Nanomachine (DNM) Biplex Assay for Differentiating Bacillus cereus Species / Gandalipov E.R., Rubel A.A., et al. // International Journal of Molecular Sciences. — 2023. — Vol. 24, № 5. — P. 4473.
166. Akhmetova M.M. Barley haplotyping using biplex deoxyribozyme nanomachine / Rubel M.S., Afanasenko O., et al. // Sensors and Actuators Reports. — 2022. — Vol. 4. — P. 100132.
167. Kolpashchikov D.M. Binary malachite green aptamer for fluorescent detection of nucleic acids // Journal of the American Chemical Society. — 2005. — Vol. 127, № 36. — P. 12442—12443.
168. Gerasimova Y.V. Folding of 16S rRNA in a signal-producing structure for the detection of bacteria / Kolpashchikov D.M. // Angewandte Chemie International Edition. — 2013. — Vol. 52, № 40. — P. 10586—10588.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.