Разнообразие генетических систем катаболизма нафталина штаммов флуоресцирующих псевдомонад тема диссертации и автореферата по ВАК РФ 03.00.03, кандидат биологических наук Измалкова, Татьяна Юрьевна

  • Измалкова, Татьяна Юрьевна
  • кандидат биологических науккандидат биологических наук
  • 2004, Пущино
  • Специальность ВАК РФ03.00.03
  • Количество страниц 129
Измалкова, Татьяна Юрьевна. Разнообразие генетических систем катаболизма нафталина штаммов флуоресцирующих псевдомонад: дис. кандидат биологических наук: 03.00.03 - Молекулярная биология. Пущино. 2004. 129 с.

Оглавление диссертации кандидат биологических наук Измалкова, Татьяна Юрьевна

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ.

ВВЕДЕНИЕ.

1. ОБЗОР ЛИТЕРАТУРЫ.

1.1. ОБЩАЯ ХАРАКТЕРИСТИКА ПОЛИЦИКЛИЧЕСКИХ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ.

1.2. БИОЛОГИЧЕСКАЯ ДЕСТРУКЦИЯ ПАУ.

1.3. БИОХИМИЧЕСКИЕ ПУТИ МЕТАБОЛИЗМА ПАУ БАКТЕРИЯМИ.

1.3.1. Биохимические пути биодеградации нафталина.

1.3.2. Биохимические пути деградации фенантрена.

1.4. РАЗНООБРАЗИЕ БАКТЕРИАЛЬНЫХ ГЕНЕТИЧЕСКИХ

СИСТЕМ ДЕГРАДАЦИИ ПАУ.

1.4.1. Гены катаболизма ПАУ грам - отрицательных бактерий.

1.4.1.1. Организация генов катаболизма нафталина плазмиды NAH7.

1.4.1.2. Регуляция генов катаболизма нафталина плазмиды NAH7.

1.4.1.3. Генетические системы катаболизма нафталина аналогичные nah-тенш плазмиды NAH7.

1.4.1.4. Генетические системы катаболизма нафталина, отличающиеся от архетипа плазмиды NAH7:. а) phd-гены Comamonas testosteroni. б) nag-гены Ralstonia sp. штамм U2. в) /г/ш-гены Burkholderia sp. RP г) гены катаболизма ПАУ бактерий рода Sphingomonas. д)phn-гены Cycloclasticus sp. А5.

1.4.2, Гены катаболизма ПАУ грам - положительных бактерий.

1.4.2.1. war-гены бактерий рода Rhodococcus.

1.4.2.2. Организация генов катаболизма фенантрена Nocardioides sp. КР7.

1.5. УЧАСТИЕ ПЛАЗМИД В БИОДЕГРАДАЦИИ ПАУ.

1.6. ПУТИ ЭВОЛЮЦИИ ГЕНЕТИЧЕСКИХ СИСТЕМ

КАТАБОЛИЗМА ПАУ.

2 МАТЕРИАЛЫ И МЕТОДЫ.

2.1. Бактериальные штаммы и плазмиды.

2.2. Питательные среды и условия роста.

2.3. Выделение бактериальных штаммов из почвенных образцов.

2.4 Выделение тотальной ДНКбактерий.

2.5. Выделение плазмидной ДНК.

2.6. Конъюгационный перенос плазмид.

2.7. Полимеразная цепная реакция.

2.8. Гидролиз ДНК эндонуклеазами рестрикции.

2.9. Электрофорез в агарозном геле.

2.10. Препаративное выделение фрагментов ДНК из агарозного геля.

2.11 Мечение ДНК методом рассеянной затравки.

2.12 Гибридизация ДНК на нейлоновых фильтрах.

2.13. .Цитирование ДНК.

2.14. Приготовление компетентных клеток E.coli.

2.15 Трансформация клеток E.coli плазмидной ДНК.

2.16 Определение нуклеотидной последовательности ДНК.

2.17 Определение удельных активностей ферментов.

3. РЕЗУЛЬТАТЫ.

3.1. Изоляция и характеристика штаммов-деструкторов нафталина.

3.2. Генотипический анализ штаммов Р. fluorescens.

3.3. Участие плазмид в генетическом контроле деградации нафталина и фенантрена.

3.4. Анализ удельных активностей ферментов биодеградации нафталина, фенантрена и салицилата.

3.5. Амплификация и RFLP - анализ ключевых генов биодеградации нафталина.

3.6.Анализ генов nahAc штаммов-деструкторов нафталина.

3.7. Анализ генов nahG штаммов-деструкторов.

3.8. Салицилат 5-гидроксилаза в штамме Р. putida АК5.

3.9. Амплификация регуляторного гена nahR.

3.10. Амплификация генов орто- а мета- пути деградации катехола.

3.11. Анализ штаммов на наличие плазмид биодеградации нафталина 1псР-9 группы.

3.12. Геномный фингерпринт (rep-PCR) штаммов-деструкторов нафталина, содержащих Р-9 плазм иды.

3.13. RFLP - анализ плазмид р и 5 -подгрупп Р-9 группы несовместимости.

3.14. Анализ штаммов - деструкторов нафталина на наличие плазмид 1псР-7 группы.

3.15. Локализация генов биодеградации нафталина в штаммах - хозяевах 1псР-7 плазмид.

3.16. RFLP - анализ 1псР-7 плазмид.

4. ОБСУЖДЕНИЕ.

ВЫВОДЫ.

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Разнообразие генетических систем катаболизма нафталина штаммов флуоресцирующих псевдомонад»

Актуальность проблемы

Полициклические ароматические углеводороды (ПАУ) являются широко распространенными соединениями, загрязняющими окружающую среду. Развитие промышленности приводит к росту загрязнения окружающей среды отходами индустриального производства, в частности, ПАУ. Основную роль в деградации ПАУ в природных условиях играет микробная утилизация. Большим метаболическим потенциалом в отношении ароматических углеводородов обладают бактерии рода Pseudomonas, способные к полной минерализации или частичной трансформации таких соединений как нафталин, фенантрен, флуорен и других (Cerniglia, 1984). Наиболее изученными в настоящее время являются различные аспекты биодеградации нафталина (Sutherland et al., 1995). Генетический контроль деградации нафталина детально изучен на примере архетипической плазмиды NAH7, размером 83 т.п.н., которая является коньюгативной и содержит всю генетическую информацию, необходимую для конверсии нафталина в пируват и ацетальдегид (Dunn and Gunsalus, 1973). Катаболические гены плазмиды NAH7 организованы в два оперона: nah\ (nahAaAbAcAdBFCED) контролирует превращение нафталина в салицилат, nah! (nahGTHINLOMKJ) - утилизацию салицилата до интермедиатов цикла трикарбоновых кислот (Simon et.al., 1993; Eaton, 1994). Экспрессия обоих оперонов находится под позитивным контролем регуляторного гена rtahR (Schell, 1985). У штаммов флуоресцирующих псевдомонад гены утилизации нафталина и его производных могут иметь как плазмидную, так и хромосомную локализацию (Herrick et.al., 1997). Описано несколько групп «а/7-подобных генов обладающих консервативной организацией и высокой степенью гомологии с лай-генами архетипической плазмиды NAH 7: nah- и ndo- гены Pseudomonas putida (Eaton, 1994; Simon etal., 1993; Kurkela et.al., 1988); pah - гены штаммов P. putida, деградирующих фенантрен (Kiyohara et al., 1994; Takizawa et al., 1994), и dox - гены из штамма Pseudomonas sp., утилизирующего дибензотиофен (Denome et.al., 1993).

Адаптация микробных сообществ к условиям окружающей среды в большой степени определяется переносом и перегруппировкой генетического материала. Катаболизм нафталина бактериями рода Pseudomonas часто контролируется конъюгативными плазм идами большого размера, что обеспечивает распространение биодеградативных признаков среди микроорганизмов. Известно, что большинство изученных плазмид биодеградации ПАУ, как правило, относятся к группам несовместимости Р-2, Р-7 и Р-9 (Кочетков и Воронин, 1984). Основные исследования организации катаболических генов проводили на плазмидах NAH7 и pDTGl, которые принадлежат Р-9 группе несовместимости. Плазмиды катаболизма нафталина других групп несовместимости в настоящий момент являются менее изученными. Поскольку несовместимость плазмид связана со спецификой организации их базовых репликонов, принадлежность плазмиды к определенной группе несовместимости определяет круг её бактериальных хозяев, а также возможность совмещения различных признаков в одном штамме микроорганизмов. Вопрос о взаимосвязи между плазмидными репликонами и катаболическими генами, а также определенными группами плазмид биодеградации и их бактериальными хозяевами, остается открытым.

Катаболические опероны часто располагаются внутри мобильных элементов. Транспозонная организация катаболических оперонов, а также высокая гомология генов биодеградации подразумевают возможность их независимой эволюции путем транспозиционных и рекомбинационных событий, что наряду с горизонтальным генетическим переносом является мощным фактором распространения таких оперонов как внутри, так и между микробными популяциями. Изучение разнообразия генетических систем деградации ПАУ способствует пониманию эволюционных процессов, лежащих в основе существующих в настоящее время катаболических путей.

Цель и задачи работы:

Целью настоящей работы являлся анализ генетических систем катаболизма нафталина штаммов флуоресцирующих псевдомонад, изолированных из различных географических регионов Российской Федерации, Украины и Беларуси и способных к утилизации нафталина и его производных.

В соответствии целью, в работе были поставлены следующие задачи:

1. Выделение, определение спектра утилизируемых субстратов и генотипический анализ деструкторов нафталина рода Pseudomonas.

2. Изучение роли плазмид в генетическом контроле деградации ПАУ.

3. Определение биохимических путей деградации нафталина, фенантрена и салицилата штаммами-деструкторами.

4. Анализ полиморфизма ключевых генов биодеградации нафталина.

5. Изучение плазмид катаболизма нафталина, принадлежащих к группам несовместимости Р-7 и Р-9.

Научная новизна

В настоящей работе проведен анализ генетических систем катаболизма нафталина 52 штаммов флуоресцирующих псевдомонад, изолированных из различных регионов России, Украины и Беларуси. Установление филогенетической взаимосвязи между штаммами одного вида показало, что многие изолированные из различных географически удаленных регионов Российской Федерации деструкторы ПАУ являются близкородственными.

Выделена новая группа генов nahAc. Разработаны новые специфические праймеры для обнаружения методом ПЦР и характеристики генов nahG и nahR. Впервые изучено разнообразие генов nahG, обнаружены два новых варианта последовательностей гена nahG. Показано, что встречаемость различных вариантов генов nahAc и nahG отличается для штаммов-деструкторов, принадлежащих к разным видам. Обнаружено существование вариаций в организации биодеградативных оперонов, включая наличие различных сочетаний генов nahAc и nahG в одном и том же штамме, а также присутствие негомологичных генов nahG или nahR. Впервые обнаружено сочетание генов салицилат 5-гидроксилазы nagG с «классическими» nahA - генами. Изучены штаммы, имеющие ген салицилат гидроксилазы в транс-положении по отношению к иай7-оперону. Подобный двуплазмидный контроль пути утилизации нафталина до настоящего времени не был описан в литературе.

Обнаружено влияние характера синтеза нафталин диоксигеназы на способность микроорганизмов-деструкторов нафталина утилизировать более высокомолекулярные ПАУ (фенантрен).

Проведен анализ плазмид утилизации нафталина и салицилата групп несовместимости Р-7 и Р-9. Показано, что плазмиды биодеградации нафталина Р-9 группы несовместимости чаще встречаются в штаммах Pseudomonas putida, в то время как для плазмид группы несовместимости Р-7, по-видимому, основным хозяином является Р. fluorescens. Исследованные плазмиды деградации нафталина IncP-9 группы по структурной организации подразделяются на три подгруппы (А, В и С). Наблюдается некоторая корреляция между строением репликона (IncP-9ß и IncP-9S - подгруппы) и структурой плазмиды в целом. Плазмиды 1псР-7 отличаются большим структурным разнообразием и не образуют какие-либо группы.

Практическая значимость работы

Анализ генетических систем катаболизма ПАУ представляет несомненный интерес как в фундаментальном, так и в прикладном аспектах. Изучение организации генетических систем катаболизма ПАУ является основой понимания эволюционных процессов, приводящих к возникновению разнообразия генов катаболических путей и изменению спектра утилизируемых субстратов, вследствие горизонтального переноса генов, транспозиционных событий, перестановок в ДНК, слияния генов, точечных мутаций и т.д. Полученная в настоящей работе информация позволяет расширить наши представления об молекулярных механизмах адаптации микроорганизмов к загрязнению окружающей среды ксенобиотиками, а также является предпосылкой для дальнейших исследований.

С прикладной точки зрения, разработанные в настоящей работе специфические праймеры могут быть использованы для обнаружения и характеристики штаммов-деструкторов, а также для мониторинга популяций бактериальных деструкторов в загрязненной почве. Использование ПЦР со специфическими праймерами позволяет также оценить биодеградативный потенциал загрязненной территории. Приобретение новых биодеградативных способностей микроорганизмами под воздействием селективного давления может происходить не только в открытой среде, но и в лабораторных условиях. Охарактеризованные в данной работе катаболические плазмиды могут быть использованы для трансформации аборигенных штаммов, которые более адаптированы к окружающей среде и предпочтительны для биоремедиации, с целью получения микроорганизмов с более широким спектром утилизируемых субстратов. Штаммы, способные к утилизации не одного, а нескольких ПАУ, представляют интерес не только для исследования основных принципов биодеградации ПАУ, но и, по-видимому, перспективны для использования их в биотехнологиях очистки окружающей среды.

Апробация работы

Материалы диссертации были представлены на российских и международных конференциях: IV Пущи некая конференция молодых ученых, 1999; VII Путинская конференция молодых ученых, 2003; "Pseudomonas 2001" Congress, Brüssels, Belghim, 2001; Third symposium of the EU-concerted action on "Mobile genetic elements' contribution to bacterial adaptability and diversity" (MECBAD), Berlin, Geimany, 2001; 1* FEMS Congress of European Microbiologists, Ljubljana, Slovenia, 2003.

Публикации

По материалам диссертации опубликовано 8 работ, из них 3 статьи и 5 тезисов.

Структура и объем диссертации

Диссертация состоит из введения, обзора литературы, материалов и методов, результатов, обсуждения, выводов и списка литературы. Работа изложена на 129 страницах машинописного текста, включает 6 таблиц и 33 рисунка. Библиография включает 171 наименование, из них 10 отечественных и 161 зарубежная работа.

Похожие диссертационные работы по специальности «Молекулярная биология», 03.00.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Измалкова, Татьяна Юрьевна

выводы

1. Установлено, что близкородственные штаммы флуоресцирующих псевдомонад, способные к деградации нафталина и салицилата, широко распространены в географически удаленных регионах России и Украины.

2. Выдвинуто предположение, что основной причиной возникновения у микроорганизмов-деструкторов нафталина способности к росту на фенантрене является изменение регуляции nahl-oперона.

3. Показано, что плазмиды биодеградации нафталина Р-9 группы несовместимости чаще встречаются в штаммах Pseudomonas putida, Р-7 группы - в штаммах Pseudomonas fluorescens.

4. Исследованные в настоящей работе плазмиды биодеградации нафталина IncP-9 группы по структурной организации подразделяются на 3 группы. Установлена корреляция между строением репликона (IncP-9ß и 1псР-95-подгруппы) и структурой плазмиды в целом.

5. Обнаружено, что структура катаболических оперонов может варьировать. Установлено, что в ряде случаев ключевые гены биодеградации нафталина, а также nahl и паИ2 опероны могут перемещаться и эволюционировать независимо друг от друга, образуя различные сочетания у разных штаммов.

Список литературы диссертационного исследования кандидат биологических наук Измалкова, Татьяна Юрьевна, 2004 год

1. Балашова Н.В., Кошелева И.А., Филонов А.Е., Гаязов Р.Р., Воронин А.М. Штамм Pseudomonas putida BS3701 - деструктор фенантрена и нафталина // Микробиология. 1997. Т. 66. С. 488-493.

2. Воронин А.М., Кулакова А.Н., Цой Т.В., Кошелева И.А., Кочетков В.В. Молчащие гены мета пути окисления катехола в составе плазмид биодеградации нафталина // Биохимия. 1988. Т. 229. N 1. С. 237-240.

3. Доналдсон Н. Химия и технология соединений нафталинового ряда. М.: Наука. 1963. с.655.

4. Кочетков В.В. Плазмиды биодеградации нафталина у бактерий рода Pseudomonas II Дисс. канд. биол. наук, 1985. С. 1-145.

5. Кочетков В.В., Воронин А.М. Сравнительное изучение плазмид, контролирующих биодеградацию нафталина культурой Pseudomonas И Микробиология. 1984. Т. 53. С. 639-644.

6. Кошелева И.А., Балашова Н.В., Измалкова Т.Ю., Филонов А.Е., Соколов C.JL, Слепенькин A.B., Боронин А.М. Деградация фенантрена мутантными штаммами-деструкторами нафталина // Микробиология. 2000. Т.69. В.6. С.783-789.

7. Кошелева И.А., Соколов СЛ., Балашова Н.В., Филонов А.Е., Мелешко Е.И., Гаязов Р.Р., Боронин А.М. Генетический контроль биодеградации нафталина штаммом Pseudomonas sp. 8909NII Генетика. 1997. Т.ЗЗ. № 6. С. 762-768.

8. Кошелева И.А., Цой Т.В., Кулакова А.Н., Боронин А.М. Сравнительный анализ организации плазмиды NPL-1, контролирующей окисление нафталина клетками Pseudomonas putida и ее производных // Генетика. 1986. Т.22. № 10. С. 23892397.

9. Маниатис Т., Фрич Э., Самбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М., «Мир». 1984. 480 с.

10. Ю.Соколов СЛ., Кошелева И.А., Мавроди О.В., Мавроди Д.В., Боронин А.М. Структурная организация и экспрессия гена салицилат гидроксилазы штамма Pseudomonas putida BS814 (pBS106) II Генетика. 1998. T.34. № 2. С. 206-212.

11. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool // J. Mol. Biol. 1990. V. 215. P. 403-410.

12. Andreoni V, Bernasconi S, Colombo M, van Beilen JB, Cavalca L. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN // Environ. Microbiol. 2000. V. 2. P. 572-577.

13. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (ed.), 1999. Shot Protocols in Molecular Biology. John Wiley and Sons, Inc. 4th ed., p. 1056.

14. Barbas, J.T., Sigman, M.E. and Dabestani, R. Photochemical oxidation of phenanthrene sorbed on silica-gel // Environ. Sci. Technol. 1996. V. 30. P. 17761780.

15. Barnsley E.A. The induction of the enzymes of naphthalene metabolism in Pseudomonads by salicylate and 2-aminobenzoate // J.Gen.Microbiol., 1975. Vol.88. P. 193-195.

16. Barnsley E.A. Naphthalene metabolism by pseudomonas: The oxidation of 1,2-dihydroxynaphthalene to 2-hydroxychromene-2-carboxylic acid and formation of 2'-hydroxybenzalpyruvate. Biochem. Biophys. Res. Commun., 1976. Vol.72. P. 11161121.

17. Barriault D., Durand J., Maaroufi H., Eltis L.D., Sylvestre M. Degradation of polychlorinated biphenyl metabolites by naphthalene-catabolizing enzymes // Appl. Environm. Microbiol., 1998. Vol.64. P. 4637-4642.

18. Blumer M. Polycyclic aromatic hydrocarbons in nature // Sci. Amer. 1976 V. 234(3). P. 35 45.

19. Boronin, A.M. Diversity of Pseudomonas plasmids: To what extent? // FEMS Microbiology Letters. 1992. V. 100. P. 461-468.

20. Bosch R., Garcia-Valdes E., Moore E.R.B. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10 // Gene. 1999a. V.236. P. 149-157.

21. Bosch R, Garcia-Valdes E., Moore E.R.B. Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN 10 // Gene. 2000. V.245. P. 65-74.

22. Bosch R, Moore E.R.B., Garcia-Valdes E., Pieper D.H. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10 // J.Bacteriol. 1999b. Vol.181. P.2315-2322.

23. Bumpus J.A. Biodégradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium II Appl. Environm. Microbiol., 1989. Vol.55. P. 154-158.

24. Cane P.A., Williams P.A. The Plasmid-coded Metabolism of Naphthalene and 2-Methylnaphthalene in Pseudomonas strains: Phenotypic Changes Correlated with Structural modification of the Plasmid pWW60-l// J. Gen. Microbiol. 1982. V.128. P. 2281-2290.

25. Cavalieri EL, Rogan EG. Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons // Xenobiotica. 1995 V. 25(7). P. 677-88.

26. Cebolla A, Sousa C, de Lorenzo V. Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers // J Biol Chem. 1997. V. 272. P. 3986-3992.

27. Cerniglia C.E. Biodégradation of Polycyclic Aromatic Hydrocarbons // Curr. Opin. Biotechnol. 1993. V. 4. P. 331 338.

28. Cerniglia C.E. Microbial Metabolism of Polycyclic Aromatic Hydrocarbons // Larkin A (Ed) Advances in Applied Microbiology. Academic Press. New York. 1984. V.30. P.31-37.

29. Cerniglia C.E., Yang S.K. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans II Appl Environ Microbiol 1984. V. 47(1). P. 119-124.

30. Coates J.D., Woodward J., Allen J., Philp P., Lovley D.R. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments // Appl Environ Microbiol. 1997. V. 63. P. 3589-3593.

31. Crawford R.L. Novel pathway for degradation of protocatechuic acid in Bacillus Species //J. Bacterid., 1974. Vol. 121. P. 531-536.

32. Crawford R.L., Frick T.D. Purification and properties of gentisate-1,2-dioxygenase from Moraxella osloensis II J. Bacteriol. 1975. V.121. P. 794-799.

33. Dagher F, Deziel E, Lirette P, Paquette G, Bisaillon JG, Villemur R. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils // Can. J. Microbiol. 1997. V. 43. P. 368-377.

34. Dagley S., Evans W.C., Ribbone D.W. New pathways in the oxidative metabolizm of aromatic compounds by microorganisms //Nature, 1960. P. 188-560.

35. Davies J.I., Evans W.C. Oxidative metabolism of naphthalene by soil pseudomonas: The ring-fission mechanism // J. Biochem., 1964. Vol.91. P. 251-261.

36. Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE. Metabolism of anthracene by a Rhodococcus species // FEMS Microbiol. Lett. 2001. V. 204. P. 205211.

37. Delaney, S.M., Mavrodi, D.V., Bonsall, R.F., Thomashow, L.S., 2001. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J. Bacteriol. 183, 318-327.

38. Dennis J.J., Zylstra G.J. Complete sequence and genetic organization of pDTGl, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4 // J. Mol.Biot. 2004. V. 341(3). P. 753-768.

39. Denome S.A., Stanley D.C., Olston E.S., Young K.D. Metabolism of dibenzothiophene and naphthalene inPseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway // J.Bacteriol., 1993. Vol.176. P. 21582164.

40. Dombek P.E., Johnson L.K., Zimmerley S.T., Sadowsky M.J. Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isoletes from human and animal sources // Appl.Environnm.Microbiol., 2000. Vol.66. P. 2572-2577.

41. Dua D., Meera S. Purification and characterization of naphthalene oxygenase from Corynebacterium renale II J. Bacterid. 1981. Vol.120. P.461^165.

42. Dunn N.W., Gunsalus I.C. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida // J.Bacteriol., 1973. Vol. 114. P. 974979.

43. Eaton R.W., Chapman P.J. Bacterial metabolism of naphthalene: Construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions//J. Bacterid. 1992. V.174. P. 7542-7552.

44. Eaton R.W., Selifonova O.V., Gedney R.M. Isopropylbenzene catabolic pathway in Pseudomonas putida RE204: nucleotide sequence analysis of the ipb operon and neighboring DNA from pRE4 // Biodégradation. 1998. V.9. P. 119-132.

45. Ensley B.D., Gibson D.T. Naphthalene dioxygenase: purification and properties of a terminal oxygenase component // J Bacterid. 1983. V. 155. P. 505-511.

46. Ensley B.D., Haigler E.B. Naphthalene dioxygenase from Pseudomonas NCIB 9816 // Methods in enzymology, 1990. V.188. P. 46-52.

47. Evans C.G.T., Herbert D., Tempest D.B. The continuous cultivation of microorganisms. 2. Construction of a chemostat // Methods in Microbiology. 1970. V.2. P. 277-327.

48. Evans W.C., Fernley H.N. Griffiths E. Oxidative metabolism of phenantrene and anthracene by soil pseudomonads: the ring-fission mechanism // J Biochem., 1965. Vol. 95. P. 819-831.

49. Falco G., Domingo J.L., Llobet J.M., Teixido A., Casas C., Muller L. Polycyclic aromatic hydrocarbons in foods: human exposure through the diet in Catalonia, Spain // J.Food Prot. 2003. V.66. P.2325-2331.

50. Feist C.F., Hegeman G.D. Phenol and benzoate metabolism by Pseudomonas putida of tangential pathways //J.Bacteriol. 1969. V.100. P. 869-877.

51. Flowers-Geary L, Bleczinki W, Harvey RG, Penning TM. Cytotoxicity and mutagenicity of polycyclic aromatic hydrocarbon ortho-quinones produced by dihydrodiol dehydrogenase //Chem Biol Interact. 1996. V. 5;99(l-3). P.55-72.

52. Foght J.M., Westlake D.W. Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens II Biodégradation. 1996. V.7. P. 353-366.

53. Fredrickson J.K., Balkwill D.L., Drake G.R, Romine M.F., Ringelberg D.B., White D.C. Aromatic-degrading Sphingomonas isolates from the deep subsurface // Appl. Environ Microbiol. 1995. V. 61. P. 1917-1922.

54. Fuenmayor S.L., Wild M., Boyles A.L., Williams P.A. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2 // J. Bacterid., 1998. Vol.180. P. 2522-2530.

55. Galushko A., Minz D., Schink B., Widdel F. Anaerobic degradation of naphthalene by a pure .culture of a novel type of marine sulphate-reducing bacterium // Environ Microbiol. 1999. V. 1. P. 415-420.

56. Greated A., Thomas C.M. A pair of PCR primers for IncP-9 plasmids // Microbiology. 1999. V.145. P.3003-3004.

57. Gomaa EA, Gray JI, Rabie S, Lopez-Bote C, Booren AM. Polycyclic aromatic hydrocarbons in smoked food products and commercial liquid smoke flavourings // Food Addit Contain. 1993. V.10(5). P. 503-21.

58. Gloyal A.K., Zylstra G.J. Molecular cloning of novel genes for polycyclic aromatic hydrocarbons degradation from Comamonas testosteroni GZ39 // Appl. Environm. Microbiol., 1996. V. 62. P. 230-236.

59. Gloyal A.K., Zylstra G.J. Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni II J. Ind. Microbiol. Biotechnol. 1997. V. 19. P. 401-406.

60. Grimm A.C., Harwood C.S. NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene // J. Bacterid., 1999. Vol.181. P. 3310-3316.

61. Grand E., Denecke D., Eichenlaub R. Naphthalene degradation via salicylate and gentisate by Rodococcus sp strain B4 // Appl. Environm. Microbiol., 1992. V. 58. P. 1874-1877.

62. Guengerich FP. Metabolic activation of carcinogens // Pharmacol Ther. 1992. V. 54(1). P. 17-61.

63. Habe H., Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria // Biosci. Biotechnol. Biochem. 2003. V.67. P.225-243.

64. Haigler B.E., Gibson D.T. Purification and properties of HA^H-ferredoxinNAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816 // J Bacterid. 1990a. V. 172. P. 457-464.

65. Haigler B.E., Gibson D.T. Purification and properties of ferredoxinNAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816 // J Bacteriol. 19906. V. 172. P. 465-468.

66. Hammel K.E., Green B., Gai W.Z. Ring Fission of Anthracene by a Eukaryote // Proc Natl Acad Sci USA. 1991. V. 88(23). P. 10605-10608.

67. Hegeman G.D. Synthesis of enzymes by the wild type // J. Bacteriol. 1966. V.91. P. 1140-1154.

68. Herrick J.B., Stuart-Keil K.G., Ghiorse W.C., Madsen E.L. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site // Appl. Environm. Microbiol., 1997. Vol. 63. P. 2330-2337.

69. Hintner J. P., Lechner C., Riegert U., Kuhm A.E., Storm T., Reemtsma T., Stolz A. Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans // J. Bacteriol. 2001. V. 183. P. 6936-6942.

70. Hohnstock A.M., Stuart-Keil K.G., Kull E.E., Madsen E.L. Naphthalene and donor cell density influence field conjugation of naphthalene catabolism plasmids // Appl. Environm. Microbiol. 2000. V. 66. P. 3088-3092.

71. Jeffrey A.M., Yeh H.J., Jerina D.M., Patel T.R., Davey J.F., Gibson D.T. Initial reactions in the oxidation of naphthalene by Pseudomonas putida // Biochemistry. 1975. V. 14(3). P. 575-84.

72. Jones R.M., Britt-Compton B., Williams P.A. The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are on operon that is regulated by NagR, a LysR-type transcriptional regulator//J. Bacterid. 2003. V.185. P.5847-5853.

73. Ka JO, Tiedje JM. Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer// J Bacteriol. 1994. V. 176. P. 5284-5289.

74. Kalb VF, Bernlohr RW. A new spectrophotometric assay for protein in cell extract // Anal. Biochem. 1977. V.82. P. 362-366.

75. Kasai Y., Kishira H., Harayama S. Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment // Appl.Environ.Microbiol., 2002. Vol. 68. P. 5625-5633.

76. Kasai Y., Shindo K., Harayama S., Misawa N. Molecular characterization and the substrate preference of a polycyclic aromatic hydrocarbons dioxygenase from Cycloclasticus sp. strain A5 // Appl.Environ.Microbiol., 2003. Vol. 69. P. 6688-6697.

77. Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase // Structure. 1998. V. 6. P. 571-586.

78. Kim E, Zylstra GJ. Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1 //J. Ind. Microbiol. Biotechnol. 1999. V. 23. P. 294-302.

79. Kiyohara H., Nagao K., Nomi R. Degradation of phenanthrene through 0-pthalate by imAeromonas sp., //Agril. Biol. Chem., 1976. Vol.40. P. 1075-1082.

80. Kiyohara H., Nagao K. Enzymatic conversion of l-hydroxy-2-naphthoate in phenanthrene-grown Aeromonas sp.S45Pl // Agril. Biol. Chem., 1977. Vol.41. P. 705-707.

81. Kiyohara H., Nagao K. The Catabolism of phenanthrene and naphthalene by bacteria // J. Gen. Microbiol., 1978. Vol.105. P.69-75.

82. Kiyohara H., Nagao K., Yana K. Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates // Appl. Environ. Microbiol. 1982a. V.43. P. 454457.

83. Kiyohara H., Nagao K., Kouno K., Yano K. Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2 // Appl.Environ.Microbiol., 1982b. Vol. 43. P. 458-461.

84. Keith L.H., Telliard W.A. Priority pollutants I. A perspective view // Environ. Sci. Technol. 1979. V. 13. P. 416-423.

85. Krasowiak, R., Smalla, K., Sokolov, S., Kosheleva, I., Titok, M., Thomas, C.M., 2002. PCR primers for detection and characterization of IncP-9 plasmids. FEMS Microbiol. Ecol. V. 2(2), P. 217-225.

86. Krieg, N.J., Holt J.G. (ed.), 1984.Bergey's Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, MD.

87. Kulakov LA, Allen CC, Lipscomb DA, Larkin MJ. Cloning and characterization of a novel cis-naphthalene dihydrodiol dehydrogenase gene (narB) from Rhodococcus sp. NCIMB12038 // FEMS Microbiol. Lett. 2000. V. 182. P. 327-331.

88. Kurkela S.H., Lehvaslaiho E.T., Oalva E.T., Teeri T.H. Cloning, nucleotide sequencing and characterisation of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816 // Gene, 1988. Vol. 73. P.355-362.

89. Larkin MJ, Allen CC, Kulakov LA, Lipscomb DA. Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB 12038 // J. Bacteriol. 1999. V. 181. P. 6200-6204.

90. Laurie A.D., Lloyd-Jones G. The phrt genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbons catabolism // J.Bacteriol., 1999. Vol. 181. P.531-540.

91. Laurie A.D., Lloyd-Jones G. Qualification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR // Appl.Environ.Microbiol., 2000. Vol. 66. P. 1814-1817.

92. Lee J., Oh J., Min K.R., Kim C.K., Min K.H., Lee K.S., Kim Y.C., Lim J. Y., Kim Y. Structure of catechol 2,3-dioxygenase gene encoded in chromosomal DNA of Pseudomonas putida KF715 // Biochem Biophys Res Commun. 1996 V. 224(3). P. 831-836.

93. Lewtas J. Complex mixtures of air pollutants: characterizing the cancer risk of polycyclic organic matter // Environ Health Perspect. 1993. V. 100. P. 211-218.

94. Li W., Shi J., Wang X., Han Y., Tong W., Ma L., Liu B., Cai B. Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-l from Pseudomonas sp. strain ND6 // Gene. 2004. V. 336. P. 231-40.

95. Menn F.-M., Applegate B.M., Sayler G.S. Plasmid-mediated catabolism of naphthalene, phenenthrene and anthracene to naphthoic acid // Appl.Environ.Microbiol., 1993. V. 59. P. 1938-1942.

96. Meyer S., Moser R., Neef A., Stahl U., Kämpfer R. Differential detection of polyaromatic-hydrocarbons-degrading bacteria using PCR and gene probes // Microbiology. 1999. V. 145. P. 1731-1741.

97. Miller E.C., Miller J.A. Searches for ultimate chemical cancirogens and their reactions with cellular macromolecules // Cancer., 1981. Vol.47. P.2327-2345.

98. Moen M.A., Hammel K.E. Lipid Peroxidation by the Manganese Peroxidase of Phanerochaete chrysosporium Is the Basis for Phenanthrene Oxidation by the Intact Fungus // Appl Environ Microbiol. 1994. V. 60. P. 1956-1961.

99. Narro M.L., Cemiglia C.E., Van Baalen C, Gibson D.T. Evidence for an NIH shift in oxydation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM // Appl.Environ.Microbiol., 1992a. Vol. 58. P. 1360-1363.

100. Narro M.L., Cemiglia C.E., Van Baalen C, Gibson D.T. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6 // Appl.Environ.Microbiol., 19926. Vol. 58. P. 1351-1359.

101. Nishi A, Tominaga K, Furukawa K. A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715 // J. Bacteriol. 2000. V. 182. P. 1949-1955.

102. Ornston L.N. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. enzymes of catechol pathway // J. Biol. Chem., 1966. Vol. 166. P.9-14.

103. Parales RE, Parales JV, Gibson DT. Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essential for activity // J Bacteriol. 1999. V. 181. P. 18311837.

104. Parales RE, Lee K, Resnick SM, Jiang H, Lessner DJ, Gibson DT.Substrate Specificity of Naphthalene Dioxygenase: Effect of Specific Amino Acids at the Active Site of the Enzyme // J Bacteriol. 2000. V. 182. P. 1641-1649.

105. Park W, Jeon CO, Madsen EL. Interaction of NahR, a LysR-type transcriptional regulator, with the alpha subunit of RNA polymerase in the naphthalene degrading bacterium, Pseudomonas putida NCIB 9816-4 // FEMS Microbiol Lett. 2002. V. 213. P. 159-65.

106. Rockne K.J., Chee-Sanford J.C., Sanford R.A., Hedlund B.P., Staley J.T., Strand S.E. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. // Appl Environ Microbiol. 2000. V. 66. P. 1595-1601.

107. Rossello-Mora R.A., Lalucat J., Garcia-Valdes E. Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strain // Appl.Environ.Microbiol., 1994. Vol. 60. P. 966-972.

108. Saito A, Iwabuchi T, Harayama S. Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7 // Chemosphere. 1999. V. 38. P. 1331-1337.

109. Saito A., Iwabuchi T., Harayama S. A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli II J. Bacteriol., 2000. Vol.182. P.2134-2141.

110. Sanseverino J., Applegate B.M., King J.M.H., Sayler G.S. Plasmid-mediated mineralisation of naphthalene, phenenthrene and anthracene // Appl.Environ.Microbiol., 1993. V. 59. P. 1931-1937.

111. Saxton WL, Newton RT, Rorberg J, Sutton J, Johnson LE. Polycyclic aromatic hydrocarbons in seafood from the Gulf of Alaska following a major crude oil spill // Bull Environ Contain Toxicol. 1993. V. 51(4). P. 515-522.

112. Schell M.A. Transcriptional control of the nah and sal hydrocarbon-degradation opérons by the nahR gene product // Gene, 1985. Vol.36. P. 301-303.

113. Schell M.A., Poser E.F. Demonstration, characterization and mutational analysis of NahR protein binding to nah and sal promoters // J. Bacterid., 1989. V. 171. P. 837-846.

114. Schell M.A., Sukordhaman M. Evidence that the transcription activator encoded by the Pseudomonas putida nahR gene is evolutionary related to the transcription activator encoded by the Rhizobium nodD genes // J. Bacteriol., 1989. V. 171. P. 1952-1959.

115. Schell M.A., Wender P.E. Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon // J. Bacteriol., 1986. V. 166. P. 9-14.

116. Sentchilo V.S., Ravatn R., Werlen C., Zehnder A.J., van der Meer J.R. Unusual integrase gene expression on the clc genomic island in Pseudomonas sp. strain B13 // J Bacteriol. 2003. V. 185. P. 4530-4538.

117. Shamsuzzaman K.M., Barnsley E.A. The regulation of naphthalene metabolism in pseudomonads // Biochem. Biophys. Ree. Comm. 1974a. V.60. P. 582-587.

118. Shamsuzzaman K.M., Barnsley E.A. The Regulation of Oxygenase in Pseudomonas // Journal of General Microbiology. 1974b. V. 83. P. 165 170.

119. Shuttleworth KL, Cerniglia CE. Environmental aspects of PAH biodégradation // Appl Biochem Biotechnol. 1995. V. 54(1-3). P. 291-302.

120. Simon M.J., Osslund D.T., Saunders R., Ensley B. D., Suggs S., Harcourt A., Suen W., Gruden D.T., Zylstra G.J. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strain G7 and NCIB 9816-4 // Gene, 1993. Vol. 127. P. 31-37.

121. Sims J.L., Sims R.N., Matthews J.E. Approach to bioremediation of contaminated soil // Haz.Waste Haz.Matter., 1990. Vol.7. P. 117-149.

122. Strawinski R.J., Stone R.W. Conditions governing the oxidation of naphthalene and the chemical analysis of its products // J.Bacteriol., 1943. Vol. 45. P. 16-24.

123. Sutherland J.B. Detoxification of polycyclic aromatic hydrocarbons by fungi // J Ind Microbiol. 1992. V. 9(1). P. 53-61.

124. Sutherland J.B., Fu P.P., Yang Sh.K., Von Tungeln L.S., Cassilas R.P., Crow S.A., Cemiglia C.E. Enantiomeric composition of the /ram-dihydrodiols produced from phenanthrene by fungi // Appl. Environm. Microbiol. 1993. Vol.59. P. 21452149.

125. Sutherland J.B., Rafll F., Khan A.A., Cerniglia C.E. Mechanisms of polycyclic aromatic hydrocarbon degradation. In: Microbial Transformation and Degradation of Toxic Organic Chemicals // Willey-Liss, Inc., 1995. P. 269-306.

126. Suzuki K., Asao E., Nakamura Y., Nakamura M., Ohnishi K., Fukuda Sh. Overexpression of salicylate hydroxylase and the crucial role of Lys163 as its HA^H binding site // J. Biochem. 2000. V. 128. P. 239-299.

127. Tan H.-M. Bacterial catabolic transposons // Appl. Microbiol. Biotechnol. 1999. V. 51. P. 1-12.

128. Top E.M., Moenne-Loccoz Y., Pembroke T., Thomas, C.M. (ed.) Phenotypic traits conferred by plasmids // The horizontal gene pool. Harwood Academic Publishers, Amsterdam, 2000. pp. 249-285.

129. Tsuda M., lino T. Naphthalene degrading genes on plasmid NAH7 are on a defective transposon // Mol. Gen. Genet., 1990. Vol. 223. P.33-39.

130. Van de Peer Y., De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment // Comput. Applic. Biosci. 1994. V.10. P. 569-570.

131. Vazquez-Duhalt R, Westlake DW, Fedorak PM. Lignin Peroxidase Oxidation of Aromatic Compounds in Systems Containing Organic Solvents // Appl Environ Microbiol. 1994. V. 60. P. 459-466.

132. Weisburg W.G., Barnes S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study // Journal of Bacteriology. 1991. Vol.73. P. 697703.

133. Weller, D.M., 1983. Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all. Phytopathology 73, 1548-1553.

134. Wilkstrom P., Wilklund A., Anderson A.C., Forman M. DNA recovery and PCR quantification of catechol-2,3-dioxygenase genes from different soil types // Journal of Biotechnology. 1996. Vol.52. P. 107-120.

135. Williams P.A., Catterall F.A., Murray K. Metabolism of naphthalene, 2-methylnaphthlene, salicylate, and benzoate by Pseudomonas PG: tangential pathways //J. Bacterid. 1975. V.124. P. 679-685.

136. Williams P.A., Sayers J.R. The evolution of pathway for aromatic hydrocarbons oxidation in Pseudomonas II Biodégradation. 1994. V.5. P. 195-217.

137. Wilson M. S., Bakermans C., Madsen E. L. In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater//Appl.Environ. Microbiol. 1999. V. 65. P.80-87.

138. Yamamoto S., Katagiri M., Maeno H., Hayaishi O. Salicylate hydroxylase, monooxygenase requiring flavin adenine dinucleotide. 1. Purification and general properties // J. Biol. Chem. 1965. V. 230. P. 3408-3413.

139. Yang Y., Chen R.F., Shiaris M.P. Metabolism of naphthalene, fluorene and phenenthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB9816 // J.Bacteriol. 1994. V. 176. P. 2158-2164.

140. Yen K.M., Gunsalus I.C. Plasmid gene organization: naphthalene/salicylate oxidation // Proc.Natl.Acad.Sci.U.S.A., 1982. Vol.79. P.874-878.

141. Yen K.M., Gunsalus I.C. Regulation of naphthalene catabolic genes of plasmid NAH7 // J. Bacterid. 1985. V.162. P. 1008-1013.

142. Yen K.M., Serdar C.M. Genetics of naphthalene catabolism in Pseudomonads II CRC CritRev.Microbiol., 1988. Vol. 15. P. 247-268.

143. You IS, Ghosal D, Gunsalus IC. Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3'-flanking region//Biochemistry. 1991. V. 30. P. 1635-1641.

144. You I.-S., Murray R.I., Jollie D., Gunsalus I.C. Purification and characterization of salicylate hydroxylase from Pseudomonas putida PpG7 I I Biochem. Biophys. Res. Comm. 1990. V.169. P. 1049-1054.

145. Zhou N.Y., Fuenmayor S.L., Williams P.A. nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism I I J.Bacteriol., 2001. Vol.183. P. 700-708.

146. Zylstra G.J., Kim E., Gloyal A.K. Comparative Molecular Analysis of Genes for Polycyclic Aromatic Hydrocarbon Degradation // Genetic Engineering., 1997. Vol. 19. P. 257 269.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.