Разработка генной терапии врожденной гиперплазии надпочечников с использованием векторов AAV и редактирования генома, опосредованного CRISPR/Cas9 / Development of gene therapy for congenital adrenal hyperplasia using AAV vectors and CRISPR/Cas9-mediated genome editing тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Сакр Навар
- Специальность ВАК РФ00.00.00
- Количество страниц 178
Оглавление диссертации кандидат наук Сакр Навар
Table of contents
Abstract
Introduction
Aim and objectives of the study
Relevance of the work
Scientific novelty
Theoretical and Practical Significance
Author's contribution
Statements to be defended
Approbation of the thesis
Publications
Structure and size of the work
Chapter 1. Literature review
1.1 Adrenal gland structure and function
1.2 Congenital adrenal hyperplasia
1.2.1 Pathophysiology of CAH
1.2.2 Standard management and treatment protocols for CAH
1.3 Gene therapy
1.3.1 Adeno-associated viral (AAV) vectors
1.3.2 Studies of gene therapy for CAH
1.3.3 Limitations of gene-addition therapies in CAH
1.4 Genome editing
1.4.1 CRISPR/Cas9 system
1.4.2 Therapeutic applications of the CRISPR/Cas9
1.4.3 Safety and ethical considerations
Chapter 2. Materials and methods
2.1 Plasmids
2.2 Restriction enzyme digestion
2.3 DNA ligation
2.4 Plasmid propagation and purification
2.5 Cell Culture
2.6 Nucleic acids extraction
2.7 Polymerase chain reaction (PCR)
2.8 Vector genome copy numbers per cell (VGC/cell)
2.9 Digital PCR (dPCR)
2.10 AAV production
2.11 AAV titration
2.12 Transfection and transduction
2.13 B16-Cas9 cells production
2.14 CRISPR-Cas9 editing efficiency
2.15 Genotyping
2.16 Animal procedures
2.17 Immunofluorescence assays
2.18 Autofluorescence characterization and treatment
2.19 Steroid hormone assay
2.20 Statistical analysis
Chapter 3. Results
3.1 Development and validation of vectors for CAH gene therapy
3.1.1 Rosa26 locus targeting using the CRISPR/Cas9 system
3.1.2 Construction and validation of plasmids for Cyp21al expression and targeted knock-in
3.1.3 Functional evaluation of genetic constructs
3.1.4 Assessment of knock-in efficiency via CRISPR/Cas9-mediated homology-dependent and independent DNA repair
3.1.5 AAV-based CRISPR/Cas9-mediated knock-in of the Cyp21a1 expression cassette at the Rosa26 locus
3.2 Optimization of in vivo protocols for gene therapy development
3.2.1 Evaluation of the intra-adrenal administration route for gene delivery to the adrenal glands77
3.2.2 Gene expression and CRISPR/Cas9-mediated knock-in following intra-adrenal delivery
3.2.3 Gene delivery to adrenal glands via systemic AAV administration
3.2.4 Tropism of AAV serotypes for the adrenal glands following systemic injection
3.2.5 Characterizing and quenching autofluorescence in mouse adrenal Cortex tissue
3.2.6 Establishing the protocol for obtaining Cyp21a1-- mice
3.3 Therapeutic outcomes of gene therapies in Cyp21a1-/- mice
3.3.1 AAV-DJ-mediated expression and CRISPR/Cas9-mediated knock-in in the adrenal glands94
3.3.2 Long-term study design for evaluating AAV-mediated gene therapy and CRISPR/Cas9-based gene editing therapy for CAH in Cyp21a1-/- mice
3.3.3 Evaluation of vector genome and mRNA expression profiles in Cyp21a1-/- mouse tissues
3.3.4 Immunofluorescence analysis of AAV-mediated expression in Cyp21a1-/- adrenal and liver tissues
3.3.5 Evaluation of steroid hormone profiles
3.3.6 Evaluation of body weight changes
3.3.7 Survival of Cyp21a1mice after treatment
3.4 Evaluation of optimized genome-editing therapy in Cyp21a1-- mice
3.4.1 Dose selection and study design
3.4.2 Analysis of vector genome copy number per cell in adrenal glands and liver
3.4.3 Knock-in frequency in the adrenal glands and liver
3.4.4 Immunofluorescence analysis of AAV-mediated expression in Cyp21a1-/- adrenal tissue134
3.4.5 Assessment of serum steroid hormone dynamics in Cyp21a1-/- mice following treatment135
3.4.6 Evaluation of body weight and survival in Cyp21a1-/- mice after treatment
Chapter 4. Discussion
Conclusion
Main results and the outlook
Abbreviations
Acknowledgments
References
Supplementary Materials
List of Figures
Figure 1.1 Congenital adrenal hyperplasia due to 21-hydroxylase deficiency
Figure 1.2 Gene therapy using recombinant AAV vectors
Figure 1.3 Schematic of the adrenal cortex renewal
Figure 1.4 Programmable gene editing using ZFNs, TALENs, and CRISPR/Cas9
Figure 1.5 The mechanism of non-homologous end joining and Homology-directed repair
Figure 1.6 Genome editing with programmable nucleases
Figure 3.1 CRISPR/Cas9 genome-editing efficiency at the Rosa26 locus
Figure 3.2 Schematic representations of plasmid constructs for Cyp21a1 expression and CRISPR/Cas9-
mediated knock-in
Figure 3.3 Restriction digestion and sequencing analyses of plasmid constructs
Figure 3.4 Evaluation of plasmid packaging into the AAV-2 vector
Figure 3.5 Optimization of B16 cell transfection
Figure 3.6 Evaluation of plasmid-mediated expression of 21-hydroxylase, EGFP, and Cas9
Figure 3.7 Efficiency of CRISPR/Cas9-mediated knock-in via NHEJ and HDR repair mechanisms
Figure 3.8 AAV-CRISPR/Cas9-mediated genome editing at the Rosa26 locus
Figure 3.9 Distribution of AAV serotypes in adrenal glands and liver after intra-adrenal injection
Figure 3.10 Impact of local AAV injection on survival and adrenal hormone concentrations in mice
Figure 3.11 Gene expression and CRISPR/Cas9 genome editing following AAV intra-adrenal
administration
Figure 3.12 Systemic administration of AAV for gene delivery to the adrenal glands
Figure 3.13 AAV-mediated transgene expression in adrenal glands and liver after systemic injection
Figure 3.14 Autofluorescence (AF) emission spectra of mouse adrenal cortex tissue sections
Figure 3.15 The effect of different tissue treatments on green wavelength autofluorescence
Figure 3.16 Reduction of AF from pigment-laden cells in the adrenal tissue of aged mice
Figure 3.17 IF staining of adrenal tissue sections treated with TrueBlack™ or MaxBlock™
Figure 3.18 EGFP detection in fixed frozen adrenal tissue sections treated with TrueBlack™
Figure 3.19 PCR-RFLP assay for genotyping of H-2aw18 mice
Figure 3.20 TaqMan-probe-based multiplex real-time qPCR assay for Cyp21a1 genotyping
Figure 3.21 Efficient gene delivery and targeted knock-in in the adrenal glands of Cyp21a1-/- mice following gene delivery using AAV-DJ
Figure 3.22 Study design for evaluating CAH genome-editing therapy in Cyp21a1-/- mice
Figure 3.23 The VGC/cell in the adrenal glands at different time points post AAV injection
Figure 3.24 AAV-mediated mRNA expression in the adrenal glands at different time points post AAV
injection
Figure 3.25 The VGC/cell in the liver at different time points post AAV injection
Figure 3.26 AAV-mediated mRNA expression in the liver at different time points post AAV injection
Figure 3.27 The VGC/cell in the kidneys and gonads at different time points post AAV injection
Figure 3.28 The VGC/cell in the heart and brain at different time points post AAV injection
Figure 3.29 Summary of VGC/cell in different mouse tissues
Figure 3.30 Immunofluorescence staining in Cyp21a1-/- mouse adrenal tissue 4 weeks post-injection
Figure 3.31 EGFP fluorescence in Cyp21a1-/- mouse liver tissue 4 weeks post-injection
Figure 3.32 Immunofluorescence staining in Cyp21a1-/- mouse adrenal tissue 8 weeks post-injection
Figure 3.33 EGFP fluorescence in Cyp21a1-/- mouse liver tissue 8 weeks post-injection
Figure 3.34 Immunofluorescence staining in Cyp21a1-/- mouse adrenal tissue 16 weeks post-injection
Figure 3.35 EGFP fluorescence in Cyp21a1-/- mouse liver tissue 16 weeks post-injection
Figure 3.36 EGFP fluorescence in Cyp21a1-/- mouse liver tissue 30 weeks post-injection
Figure 3.37 Immunofluorescence staining in Cyp21a1-/- mouse adrenal tissue 4 weeks post-injection
Figure 3.38 Serum concentrations of 11-deoxycorticosterone in mouse serum
Figure 3.39 Serum concentrations of corticosterone in mouse serum
Figure 3.40 Serum concentrations of progesterone in mouse serum
Figure 3.41 Serum concentrations of aldosterone and 18-hydroxycorticosterone in mouse serum
Figure 3.42 Body weight gain in Cyp21a1-- mice after treatment
Figure 3.43 Evaluation of survival rates in Cyp21a1-/- mice post-treatment
Figure 3.44 Dose selection and study design for the evaluation of optimized genome-editing therapy in
Cyp21a1-/- mice. (A)
Figure 3.45 VGC/cell in adrenal glands and liver of Cyp21a1-/- mice at week 28 post-injection
Figure 3.46 Knock-in frequency in adrenal glands and liver of Cyp21a1-/- mice at 28 weeks postinjection
Figure 3.47 Immunofluorescence staining of adrenal tissue from Cyp21a1-/- mice 28 weeks postinjection
Figure 3.48 Serum concentrations of steroid hormones in Cyp21a1-/- mice after treatment
Figure 3.49 Body weight and survival of Cyp21a1-/- mice after treatment
List of Tables
Table 1. 1 Summary of preclinical gene therapy studies on a mouse model of CAH
Table 2.1 Plasmids used in this study
Table 2. 2 List of primers and probes for real-time PCR and digital PCR
Table 2.3 List of genotyping primers and probes for multiplex real-time PCR
Table 2.4 List of antibodies used in this study
Supplementary Table 1.1 Wild-type and H-2aw18 Cyp21a1 sequences
Supplementary Table 1.2 The mean VGC/cell (SD) of AAV-Cyp21 in different mouse tissues at different
time points following injection with AAV-DJ-Cyp21 and AAV-DJ-Cas9
Supplementary Table 1.3 The mean VGC/cell (SD) of AAV-Cyp21 in different mouse tissues at different
time points following injection with AAV-DJ-Cyp21
Supplementary Table 1.4 Serum concentrations of 11-deoxycorticosterone in mice from different
experimental groups at various time points post-injection
Supplementary Table 1.5 Serum concentrations of corticosterone in mice from different experimental
groups at various time points post-injection
Supplementary Table 1.6 Serum concentrations of progesterone in mice from different experimental
groups at various time points post-injection
Supplementary Table 1.7 Serum concentrations of aldosterone in mice from different experimental groups
at various time points post-injection
Supplementary Table 1.8 Serum concentrations of 18-hydroxycorticosterone in mice from different experimental groups at various time points post-injection
Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Development of a retinal-like cell model of cone dystrophy associated with mutation in the KCNV2 gene / Разработка сетчаткоподобной клеточной модели колбочковой дистрофии ассоциированной с мутациями в гене KCNV22024 год, кандидат наук Алсаллум Алмакдад
Development of vectors based on herpesvirus and poliovirus for oncolytic biotherapy/Разработка векторов на основе герпесвируса и полиовируса для онколитической биотерапии2023 год, кандидат наук Хамад Аззам Нассерович
Введение диссертации (часть автореферата) на тему «Разработка генной терапии врожденной гиперплазии надпочечников с использованием векторов AAV и редактирования генома, опосредованного CRISPR/Cas9 / Development of gene therapy for congenital adrenal hyperplasia using AAV vectors and CRISPR/Cas9-mediated genome editing»
Abstract
Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is an inherited disorder characterized by impaired Cortisol and aldosterone synthesis, leading to significant metabolic complications and life-threatening adrenal crises. The current hormone replacement therapy fails to mimic the endogenous hormones' circadian rhythm and is associated with long-term complications due to glucocorticoid overexposure. Gene therapy offers an alternative approach, targeting the underlying genetic defect to restore steroid hormone production. This thesis presents a proof-of-concept study investigating CRISPR/Cas9-mediated genome-editing therapy in a Cyp21a1-/- mouse model of CAH. Novel genetic constructs were developed to mediate Cyp21a1 expression and to enable site-specific knock-in at the Rosa26 safe harbor locus in the mouse genome. The efficiency of homology-directed repair (HDR) and non-homologous end joining (NHEJ) was evaluated for CRISPR/Cas9-mediated gene knock-in. NHEJ was more efficient than HDR in mediating the integration of the Cyp21a1 expression cassette into the Rosa26 locus. The local and systemic administration routes of adeno-associated virus (AAV) vectors for gene delivery to the adrenal glands were evaluated. Intra-adrenal injection did not enhance the adrenal specificity of AAV transduction and failed to achieve sufficient transgene expression in the adrenal cortex. In contrast, systemic administration resulted in higher vector genome copy numbers per cell (VGC/cell) in the adrenal glands compared to local delivery. Strong transgene expression was achieved in the adrenal glands and liver following systemic injection of the synthetic AAV-DJ serotype. AAV-based CRISPR/Cas9-mediated knock-in via the NHEJ pathway enabled stable targeted integration of the Cyp21a1 expression cassette into the genomes of adrenal and hepatic cells, detectable for at least 28 weeks post-injection. Genome-editing therapy resulted in durable therapeutic effects. Treated mice exhibited stable restoration of 11-deoxycorticosterone concentrations, prolonged improvement in body weight, and 100% survival over 28 weeks after AAV injection. This thesis demonstrates the feasibility of CRISPR/Cas9-mediated genome editing as a therapeutic approach for CAH and highlights its potential to achieve sustained correction of steroidogenesis. While further studies are necessary to optimize delivery methods, improve genome-editing efficiency, and address concerns regarding the long-term safety of genome-editing approaches, these findings provide a strong foundation for advancing CRISPR/Cas-based therapies toward clinical translation.
Introduction
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders that affect adrenal steroidogenesis. The most common form, accounting for over 90% of cases, is 21-hydroxylase deficiency (21-OHD), which results from mutations in the human CYP21A2 gene [1]. The 21-hydroxylase enzyme plays a critical role in the biosynthesis of cortisol and aldosterone. The absence or reduction of 21-hydroxylase activity leads to the inability to produce these hormones and an overproduction of adrenal androgens [1, 2]. The terms CAH and 21-OHD will be used interchangeably in this thesis.
Globally, CAH due to 21-OHD occurs in approximately 1 in 14,000 to 1 in 18,000 live births, with significant regional and ethnic variations [3]. The disorder presents a spectrum of clinical phenotypes based on the level of residual 21-hydroxylase activity. In severe, classic salt-wasting forms of CAH, patients face life-threatening adrenal crises due to deficiencies in cortisol and aldosterone, alongside virilization caused by excess androgen production [4, 5]. The deficiency in cortisol leads to a disruption in the feedback loop that regulates the hypothalamic-pituitary-adrenal axis. In the absence of sufficient cortisol, adrenocorticotropic hormone (ACTH) is continuously released from the pituitary gland, leading to adrenal hyperplasia and excessive production of androgens [3].
Despite advancements in early diagnosis and treatment, CAH continues to be associated with significant morbidity and mortality [6, 7]. The standard treatment, glucocorticoid and mineralocorticoid replacement therapy introduced in the 1950s, has dramatically improved survival rates but poses considerable challenges. Current therapies fail to replicate the natural circadian rhythm of cortisol production, often requiring supraphysiological doses, which contribute to long-term complications such as growth suppression, obesity, osteoporosis, and fertility problems [5, 8-11]. Additionally, hormonal replacement therapy addresses only the symptoms without correcting the underlying genetic defect, leaving patients reliant on lifelong medication and vulnerable to adrenal crises, particularly during stress or illness. These limitations underscore the need for more targeted and durable therapeutic approaches to restore adrenal hormone production and reduce the long-term adverse effects of current treatments [12, 13].
In recent years, gene therapy has emerged as a promising approach to addressing the underlying cause of monogenic diseases. However, early gene therapy studies for CAH treatment have encountered significant limitations, particularly concerning the durability of therapeutic effects [12, 14, 15]. The rapid cellular turnover of the adrenal cortex presents a challenge for current adeno-associated virus (AAV)-mediated gene-addition strategies [16, 17]. Gene-addition strategies rely primarily on adeno-associated
virus (AAV) episomal expression, which gradually declines over time in regenerative tissues like the adrenal glands. This decline limits the long-term efficacy of these therapies [12, 15].
The lack of an optimal AAV vector with strong tropism for adrenal tissue and the ability to sustain long-term gene expression has limited the success of gene therapy approaches for CAH. The use of novel AAV vectors with enhanced adrenal gland tropism could significantly improve therapeutic outcomes by enabling more efficient and sustained gene delivery to the target tissue.
The emergence of CRISPR/Cas9 technology has revolutionized gene therapy, offering a precise and versatile tool for targeted genome modification. Initially discovered as part of the bacterial immune defense system, CRISPR/Cas9 has been adapted into a powerful technology for precise genetic engineering [18, 19]. This approach holds great promise for gene therapy, particularly for correcting monogenic disorders like CAH, where permanent genetic correction could eliminate the need for lifelong treatments [12].
More than 100 distinct mutations have been identified in the human CYP21A2 gene, including deletions, point mutations, and insertions [20]. Given the complexity and diversity of these mutations, designing specific therapies tailored to individual mutations would be time-consuming, resource-intensive, and unlikely to provide a comprehensive solution for the entire CAH population. Additionally, most CAH patients are compound heterozygotes, carrying two different disease-causing mutations in the CYP21A2 gene, further complicating the development of mutation-specific therapies [21, 22].
Instead, the knock-in of a fully functional copy of the 21-hydroxylase gene via CRISPR/Cas9-mediated genome editing offers a more efficient and broadly applicable therapeutic strategy for addressing the full spectrum of CAH mutations. By integrating the functional gene into the genome of adrenal cortex stem or progenitor cells, the therapeutic gene becomes a permanent part of the genome, allowing corrected cells to proliferate and continuously produce the necessary steroid hormones. This approach eliminates the reliance on transient gene expression, enhances the durability of therapeutic effects, and could ultimately reduce or even eliminate the need for lifelong hormone replacement therapy.
Therefore, addressing the limitations of both hormone replacement therapy and current gene therapy approaches is crucial. There is an urgent need for innovative therapeutic strategies that not only restore physiological cortisol production but also offer durable solutions for managing CAH, significantly reducing patient reliance on lifelong steroid replacement therapy and minimizing associated complications.
Aim and objectives of the study
The aim of this study is to develop gene therapy approaches for congenital adrenal hyperplasia due to 21-hydroxylase deficiency using AAV vectors and CRISPR/Cas9-mediated genome editing.
To achieve this aim, the following objectives were defined:
1. Construction of gene expression cassettes and assembly of AAV viral vectors for CAH genome-editing therapy.
2. Optimization of AAV administration routes for targeted and efficient gene delivery to the mouse adrenal glands.
3. Evaluation of AAV serotype tropism for the mouse adrenal glands.
4. Assessment of CRISPR/Cas9-mediated site-specific gene knock-in in the mouse adrenal glands.
5. Evaluation of long-term therapeutic outcomes of AAV-based CRISPR/Cas9-mediated genome-editing therapy in the Cyp21a1-/- mouse model.
In this study, genetic constructs were developed to enable expression of the Cyp21a1 gene and to allow its CRISPR/Cas9-mediated knock-in at the safe harbor Rosa26 locus in the mouse genome. The efficiency of homology-directed repair (HDR) and non-homologous end joining (NHEJ) DNA repair mechanisms in mediating gene knock-in was evaluated in cell lines. The administration routes of AAV vectors —both local intra-adrenal and systemic injections —were compared to optimize AAV delivery to the adrenal cortex. To determine the most effective AAV serotype for targeted gene delivery to the adrenal glands, the tropism of various wild-type (WT) and synthetic AAV serotypes was evaluated following both local and systemic administration. The AAV-mediated expression of the Cyp21a1 gene in cell lines and mouse tissues was evaluated to assess the efficiency of gene delivery and expression in various biological systems. Additionally, the knock-in of the Cyp21a1 gene into the target Rosa26 locus, following delivery of the CRISPR/Cas9 system components and the knock-in donor sequence using a dual AAV vector approach, was assessed both in vitro and in vivo.
In this study, Cyp21a1-/- mice were used as a model for CAH due to 21-OHD to evaluate the efficacy of the therapeutic approach. Cyp21a1-/- mice exhibit a phenotype similar to human CAH, including impaired steroidogenesis and adrenal hyperplasia. The biodistribution of AAV vectors across several tissues, including the adrenal glands, liver, kidneys, heart, brain, and gonads, was analyzed to evaluate tissue-specific targeting and non-target tissue transduction. Additionally, the dynamics of vector genome
copy numbers and gene expression in the adrenal glands and liver were analyzed at multiple time points to assess the persistence of vector genomes and the durability of gene expression in these tissues. Furthermore, comprehensive steroid hormone profiles were analyzed to evaluate the therapeutic impact of the genome-editing strategy on restoring steroidogenesis. In addition, weight gain and survival rates were monitored as indicators of treatment effectiveness, reflecting overall health and physiological improvements in treated animals.
This research represents a pioneering effort to address critical challenges in the treatment of CAH due to 21-hydroxylase deficiency. To our knowledge, this proof-of-concept study is the first to apply CRISPR/Cas9-based genome editing for the treatment of CAH in an animal model. By using AAV-based CRISPR/Cas9-mediated knock-in of the Cyp21a1 gene into the adrenal gland cells' genome, this study aims to achieve prolonged therapeutic effects and offer a more durable, long-term solution to the genetic disorder. The study demonstrated that the NHEJ DNA repair mechanism mediates site-specific gene integration in the mouse adrenal gland genome. Another essential contribution of this study is its focus on improving gene delivery to the adrenal glands using engineered AAV capsids. To our knowledge, this study is the first to demonstrate the strong tropism of the synthetic AAV-DJ serotype for the adrenal cortex, highlighting its potential to enhance gene delivery efficiency despite its strong tropism for liver tissue. These findings have important implications not only for CAH but also for other genetic adrenal disorders, where targeted delivery to adrenal tissue is critical for effective therapy. Furthermore, this research offers a comprehensive evaluation of AAV administration routes for efficient gene delivery to the adrenal glands.
The evaluation of the long-term therapeutic potential of the genome-editing approach is a central focus of this study. By demonstrating sustained gene expression, improved steroid hormone profiles, and improved survival rates in Cyp21a1-/- mice, the study demonstrates the potential to reduce or even eliminate the need for lifelong hormone replacement therapy. The findings are applicable to the development of gene therapies for other adrenal insufficiencies and disorders and contribute to the optimization of AAV-based CRISPR/Cas9 genome editing in highly regenerative tissues such as the adrenal cortex.
Relevance of the work
CAH due to 21-OHD is one of the most common autosomal recessive disorders, affecting
approximately 1 in 14,000 to 18,000 live births worldwide. 21-OHD disrupts adrenal steroidogenesis,
resulting in cortisol and aldosterone deficiencies and excessive adrenal androgen production. The clinical
consequences range from hyperandrogenism and virilization to life-threatening adrenal crises. Despite
advancements in neonatal screening and hormone replacement therapies, the global burden of CAH
13
remains significant, with considerable morbidity and mortality, particularly in regions where screening programs are less accessible.
The standard treatment for CAH involves lifelong hormone replacement therapy with glucocorticoids and mineralocorticoids to compensate for cortisol and aldosterone deficiencies. However, these therapies do not address the underlying genetic defect and often require supraphysiological doses to suppress androgen excess. The prolonged use of such high doses leads to serious side effects, including growth suppression, obesity, metabolic disorders, and osteoporosis. Moreover, hormone replacement therapy fails to restore normal physiological functions, such as the natural circadian rhythm of cortisol production, and leaves patients susceptible to adrenal crises during illness or stress. These limitations highlight the need for alternative, long-term treatment options that target the root cause of the disorder, making gene therapy a highly relevant area of research.
Gene therapy has emerged as a promising treatment for monogenic diseases, and CAH is an ideal candidate for such approaches due to its well-defined genetic cause. While gene-addition strategies have shown success in improving the biochemical profile in CAH mouse models, a major challenge remains— the high turnover rate of adrenal cortex cells. Therapies relying on AAV vector-mediated episomal expression have been shown to gradually lose their therapeutic effect over time as vector genomes are diluted in the rapidly regenerating adrenal cortex. Consequently, there is a critical need for gene therapies that can provide long-term, stable gene expression in the adrenal cortex.
CRISPR/Cas9 genome-editing technology has revolutionized gene therapy, offering the potential to permanently correct genetic mutations. In the context of CAH, the ability to knock in a functional copy of the 21-hydroxylase gene into the genome of adrenal cortex cells using the CRISPR/Cas9 system could provide a lasting solution by addressing the underlying genetic defect. Genome-editing technology offers the potential for a curative, one-time treatment with durable therapeutic effects. The restoration of normal steroidogenesis may significantly reduce or even eliminate the need for lifelong hormone replacement therapy, along with the associated long-term complications.
This study addresses the unmet clinical needs of CAH by targeting the limitations of hormone replacement therapy and advancing CRISPR/Cas9-based genome-editing therapies. The research contributes to the development of long-term, curative treatments for CAH and potentially other genetic diseases.
Scientific novelty
All the results presented in this thesis are original. To our knowledge, this proof-of-concept study
represents the first application of CRISPR/Cas9-mediated genome editing for the treatment of CAH due to 21-OHD. This novel approach addresses the underlying genetic cause of CAH, offering a potential long-term solution through targeted, site-specific knock-in of the Cyp21a1 gene in adrenal cells. It is a pioneering effort, as previous gene therapies for CAH primarily focused on gene addition rather than genome-editing therapies. Additionally, this study introduces, for the first time, the synthetic AAV-DJ serotype for efficient gene delivery to the adrenal glands. The comprehensive evaluation of AAV vector biodistribution across multiple tissues contributes to the safety profile of AAV-mediated therapies. The study also addresses a methodological challenge by conducting the first systematic investigation of autofluorescence in adrenal tissue sections and by proposing several solutions to improve data quality in fluorescent imaging studies. Importantly, this study goes beyond short-term studies by providing a comprehensive analysis of long-term therapeutic outcomes, including the sustainability of vector genomes and gene expression, steroid hormone production, body weight, and survival rates in Cyp21a1-/- mice.
Theoretical and Practical Significance
This study significantly advances the theoretical understanding of genome-editing therapies, particularly in the context of monogenic disorders like CAH. It enriches the existing literature by demonstrating the use of CRISPR/Cas9 not only as a tool for gene knock-out but also as a mechanism for gene knock-in, offering stable therapeutic effects through the integration of functional genes at specific loci. The research provides valuable insights into the efficiency of DNA repair mechanisms, specifically homology-directed repair (HDR) and non-homologous end joining (NHEJ) during genome editing. Emphasizing that NHEJ is more efficient than HDR in mediating gene knock-in is important for optimizing genome-editing strategies. This knowledge enhances a broader understanding of how DNA repair pathways can be applied therapeutically.
The study expands knowledge of AAV vectors by investigating AAV serotype tropism to the adrenal glands. The finding that synthetic AAV-DJ exhibits strong adrenal cortex and liver tropism informs vector engineering to improve gene delivery, supporting further research to optimize vector tropism. Additionally, systemic IV AAV administration yields higher adrenal gene expression than local injections, which are constrained by injection volume and do not enhance AAV transduction specificity. These findings suggest that vascularization and blood supply are key factors influencing AAV biodistribution.
The study's practical significance lies in its potential to drive the development of new therapies for CAH. Demonstrating that AAV-based CRISPR/Cas9-based genome-editing therapy restores steroid
hormone production in a CAH mouse model, the research paves the way for more effective, long-lasting treatments that could reduce or eliminate lifelong hormone replacement therapy, improving patient quality of life. The findings extend beyond CAH to other adrenal and monogenic disorders.
Furthermore, the research provides valuable data on the long-term efficacy of gene therapies by monitoring therapeutic outcomes over an extended period. These findings are highly relevant for clinical translation, where maintaining long-term gene expression poses a significant challenge. The sustained therapeutic effects demonstrated by AAV-based CRISPR/Cas9 genome editing over time support the clinical viability of these approaches. The study also offers protocols and tools for future gene therapy research. Methods for genotyping, evaluating vector genome copy numbers, assessing mRNA expression in tissues, and autofluorescence quenching in adrenal tissues offer valuable resources for other researchers engaged in both preclinical and clinical studies.
Author's contribution
The results presented in this thesis were obtained from the scientific research conducted by the applicant as a PhD student at the Moscow Institute of Physics and Technology (MIPT, Phystech). The applicant conducted the research under the supervision of Dr. Pavel Volchkov, with scientific and medical consultation provided by Dr. Maria Vorontsova. Conducting experiments, obtaining results, conducting data analysis, and writing the thesis were primarily undertaken by the applicant or with his direct participation. Experimental design and preparation of manuscripts for publication were completed by the applicant or in active collaboration with Dr. Olga Glazova. Flow cytometry analysis was conducted with assistance from Ekaterina Antonova. Animal procedures were carried out at the Faculty of Medicine, M.V. Lomonosov Moscow State University, with assistance from Liudmila Shevkova and Alena Shilova, under the guidance of Dr. Vladimir Popov. Confocal microscopy imaging was performed at the Endocrinology Research Centre and the Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies. Steroid hormone analyses were performed at the Endocrinology Research Centre and Arkhimed clinic (Moscow).
Statements to be defended
1. Systemic administration of AAV vectors results in efficient delivery and strong gene expression in adrenal cortex cells. The synthetic AAV-DJ serotype demonstrates strong tropism for both the adrenal glands and liver, supporting its suitability for developing gene therapy strategies for adrenal genetic disorders.
2. The non-homologous end joining repair pathway enables efficient site-specific knock-in of the Cyp21a1 expression cassette at CRISPR/Cas9-induced double-strand breaks in vitro and in vivo, confirming its applicability for stable genome editing in regenerative tissues.
3. This proof-of-concept study presents the first application of CRISPR/Cas9-mediated genome editing for the treatment of 21-OHD in an animal model. AAV-based CRISPR/Cas9-mediated knock-in of the Cyp21a1 expression cassette partially corrects steroidogenesis and ensures long-term survival in Cyp21a1-/- mice, demonstrating the therapeutic potential of genome-editing therapy for CAH.
Approbation of the thesis
The main results of the work were presented at the following scientific conferences and seminars:
1. The 64th All-Russian Scientific Conference of the Moscow Institute of Physics and Technology, Dolgoprudny, Russia, 2021.
2. Moscow Workshop on the Prospects of Gene and Cell Therapy, Dolgoprudny, Russia, 2022.
3. Scientific seminar "Development of gene therapy for a mouse model of congenital adrenal hyperplasia using genome editing techniques", Life Sciences Research Center of MIPT, Dolgoprudny, Russia, 2023.
4. IV Young Scientists Congress, Sochi, Russia, 2024.
Publications
1. Sakr, N., Glazova, O., Shevkova, L., Onyanov, N., Kaziakhmedova, S., Shilova, A., Vorontsova, M.V., Volchkov, P. Characterizing and Quenching Autofluorescence in Fixed Mouse Adrenal Cortex Tissue. International Journal of Molecular Sciences 2023, 24(4):3432.
2. Glazova O., Bastrich A., Deviatkin A., Onyanov N., Kaziakhmedova S., Shevkova L., Sakr N., Petrova D., Vorontsova M., Volchkov P. Models of Congenital Adrenal Hyperplasia for Gene Therapies Testing. International Journal of Molecular Sciences 2023, 24(6):5365.
3. Glazova O., Vorontsova M., Sakr N., Shevkova L., Onyanov N., Kaziakhmedova S., Volchkov P.Y. Gene and cell therapy of adrenal pathology: achievements and prospects. Problemy Endokrinologii 2021, 67(6):80-89
4. Patent No. 2812468 C1. Expression vectors based on adeno-associated virus / Glazova O.V., Shevkova L.V., Sakr N., Vorontsova M.V., Volchkov P.Y.; applicant and rights holder OOO "Geneticheskie tekhnologii". - No. 2023120008; filed 29.07.2023; published 30.01.2024, Bulletin No. 4.
5. Patent No. 2812469 C1. Combination of vectors for therapy of congenital dysfunction of adrenal cortex / Glazova O.V., Shevkova L.V., Sakr N., Vorontsova M.V., Volchkov P.Y.; applicant and rights holder OOO "Geneticheskie tekhnologii". - No. 2023120009; filed 29.07.2023; published 30.01.2024, Bulletin No. 4.
Structure and size of the work
The thesis consists of the following sections: Abstract, Introduction, Literature Review, Materials and Methods, Results, Discussion, Conclusions, Main Results and Outlook, and References. The thesis includes 178 pages and 55 figures. The reference list contains 247 references.
Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК
Заключение диссертации по теме «Другие cпециальности», Сакр Навар
Conclusion
This proof-of-concept study investigated CRISPR/Cas9-mediated knock-in of a functional Cyp21a1 gene at the Rosa26 safe-harbor locus as a therapeutic strategy for CAH in a 21-OHD mouse model. This AAV-based genome-editing strategy is designed to overcome dilution and loss of AAV-mediated expression caused by the adrenal cortex's high regenerative capacity. Systemic AAV-mediated delivery of the CRISPR/Cas9 system and the knock-in donor cassette enabled a stable integration of the Cyp21a1 expression cassette in the adrenal glands and liver tissues via non-homologous end joining, supporting its potential for genome-editing therapy in regenerative tissues.
The AAV-based genome-editing therapy achieved a durable benefit in Cyp21a1-- mice. It maintained stable persistence of the Cyp21a1 expression cassette in adrenal tissue, supported long-term restoration of 11-deoxycorticosterone synthesis, and ensured 100% survival over 28 weeks. These findings support genome editing as a viable strategy for sustained functional correction in CAH.
Despite the promising results of this study, several challenges remain. The strong tropism of wildtype AAV and AAV-DJ serotypes for the liver tissue raises potential concerns for clinical applications, particularly regarding off-target effects and immune responses. Enhancing adrenal-specific expression and editing using tissue-specific promoters and modified AAV capsids will be crucial for improving safety and therapeutic outcomes. Additionally, further investigation is needed to address knock-in efficiency, off-target genome editing, and the long-term effects of CRISPR/Cas9 activity.
This thesis provides valuable insights into the development of genome-editing therapy for CAH as a promising strategy to overcome the limitations of gene-addition therapy. Future studies should focus on refining vector design, enhancing adrenal targeting, and improving editing efficiency while ensuring safety for clinical translation. Overall, the findings presented here establish a strong foundation for advancing CRISPR/Cas-based therapies toward clinical application, paving the way for next-generation treatments with curative potential for CAH and other monogenic endocrine disorders.
Main results and the outlook
1. AAV expression cassettes were constructed and validated. The assembled AAV vectors enabled Cyp21a1 and Cas9 expression in vitro and in vivo.
2. Systemic AAV administration resulted in high vector genome copy numbers and strong transgene expression in mouse adrenal glands.
3. The synthetic AAV-DJ serotype demonstrated strong tropism for the mouse adrenal cortex and liver following systemic administration.
4. CRISPR/Cas9-mediated knock-in via non-homologous end joining enabled stable site-specific integration of the Cyp21a1 expression cassette in mouse adrenal and hepatic cells.
5. Genome-editing therapy with AAV-Cyp21 and AAV-Cas9 resulted in sustained restoration of 11-deoxycorticosterone synthesis, prolonged body-weight improvement, and 100% survival in Cyp21a1-/- mice over 28 weeks post-treatment.
Список литературы диссертационного исследования кандидат наук Сакр Навар, 2025 год
References
1. White, P. C. and Speiser, P. W. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency // Endocr Rev. 2000. Vol. 21, No. 3. pp. 245-291. doi: 10.1210/edrv.21.3.0398.
2. Parsa, A. A. and New, M. I. Steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia // J Steroid Biochem Mol Biol. 2017. Vol. 165, No. Pt A. pp. 2-11. doi: 10.1016/j.jsbmb.2016.06.015.
3. Claahsen-van der Grinten, H. L. Speiser, P. W. Ahmed, S. F. Arlt, W. Auchus, R. J. Falhammar, H. Fluck, C. E. Guasti, L. Huebner, A. Kortmann, B. B. M. Krone, N. Merke, D. P. Miller, W. L. Nordenstrom, A. Reisch, N. Sandberg, D. E. Stikkelbroeck, Nmml, Touraine, P. Utari, A. Wudy, S. A. and White, P. C. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management // Endocr Rev. 2022. Vol. 43, No. 1. pp. 91-159. doi: 10.1210/endrev/bnab016.
4. Odenwald, B. Nennstiel-Ratzel, U. Dorr, H. G. Schmidt, H. Wildner, M. and Bonfig, W. Children with classic congenital adrenal hyperplasia experience salt loss and hypoglycemia: evaluation of adrenal crises during the first 6 years of life // Eur J Endocrinol. 2016. Vol. 174, No. 2. pp. 177-186. doi: 10.1530/EJE-15-0775.
5. Uslar, T. Olmos, R. Martinez-Aguayo, A. and Baudrand, R. Clinical Update on Congenital Adrenal Hyperplasia: Recommendations from a Multidisciplinary Adrenal Program // J Clin Med. 2023. Vol. 12, No. 9. doi: 10.3390/jcm12093128.
6. Falhammar, H. Frisen, L. Norrby, C. Hirschberg, A. L. Almqvist, C. Nordenskjold, A. and Nordenstrom, A. Increased mortality in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency // J Clin Endocrinol Metab. 2014. Vol. 99, No. 12. pp. E2715-2721. doi: 10.1210/jc.2014-2957.
7. Jenkins-Jones, S. Parviainen, L. Porter, J. Withe, M. Whitaker, M. J. Holden, S. E. Morgan, C. L. Currie, C. J. and Ross, R. J. M. Poor compliance and increased mortality, depression and healthcare costs in patients with congenital adrenal hyperplasia // Eur J Endocrinol. 2018. Vol. 178, No. 4. pp. 309-320. doi: 10.1530/EJE-17-0895.
8. Mallappa, A. and Merke, D. P. Management challenges and therapeutic advances in congenital adrenal hyperplasia // Nat Rev Endocrinol. 2022. Vol. 18, No. 6. pp. 337-352. doi: 10.1038/s41574-022-00655-w.
9. Claahsen-van der Grinten, H. L. Stikkelbroeck, N. M. Otten, B. J. and Hermus, A. R. Congenital adrenal hyperplasia—pharmacologic interventions from the prenatal phase to adulthood // Pharmacol Ther. 2011. Vol. 132, No. 1. pp. 1-14. doi: 10.1016/j.pharmthera.2011.05.004.
10. Renan Vieira da Costa Júnior, José, and Luchini Batista, Sérgio. Glucocorticoid-Induced Osteoporosis // Osteoporosis - Recent Advances, New Perspectives and Applications [Working Title]. 2021.
11. Ferris, Heather A. New mechanisms of glucocorticoid-induced insulin resistance: make no bones about it // The Journal of clinical investigation. 2012. Vol. 122, No. 11. pp. 3854-3857.
12. van Dijk, Eva B. Ginn, Samantha L. Alexander, Ian E. and Graves, Lara E. Genome editing in the adrenal gland: a novel strategy for treating congenital adrenal hyperplasia // Exploration of Endocrine and Metabolic Diseases. 2024. Vol. 1, No. 3. pp. 101-121. doi: 10.37349/eemd.2024.00011.
13. Mariniello, K. and Guasti, L. Towards novel treatments for adrenal diseases: Cell- and gene therapy-based approaches // Mol Cell Endocrinol. 2021. Vol. 524. Art. 111160. doi: 10.1016/j.mce.2021.111160.
14. Tajima, T. Okada, T. Ma, X. M. Ramsey, W. Bornstein, S. and Aguilera, G. Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochromeP450 21-hydroxylase into the
155
adrenal gland of21-hydroxylase-deficient mice // Gene Ther. 1999. Vol. 6, No. 11. pp. 1898-1903. doi: 10.1038/sj.gt.3301018.
15. Markmann, S. De, B. P. Reid, J. Jose, C. L. Rosenberg, J. B. Leopold, P. L. Kaminsky, S. M. Sondhi, D. Pagovich, O. and Crystal, R. G. Biology of the Adrenal Gland Cortex Obviates Effective Use of Adeno-Associated Virus Vectors to Treat Hereditary Adrenal Disorders // Hum Gene Ther. 2018. Vol. 29, No. 4. pp. 403-412. doi: 10.1089/hum.2017.203.
16. Pihlajoki, M. Dorner, J. Cochran, R. S. Heikinheimo, M. and Wilson, D. B. Adrenocortical zonation, renewal, and remodeling // Front Endocrinol (Lausanne). 2015. Vol. 6. Art. 27. doi: 10.3389/fendo.2015.00027.
17. Lerario, A. M. Finco, I. LaPensee, C. and Hammer, G. D. Molecular Mechanisms of Stem/Progenitor Cell Maintenance in the Adrenal Cortex // Front Endocrinol (Lausanne). 2017. Vol. 8. Art. 52. doi: 10.3389/fendo.2017.00052.
18. Jinek, M. Chylinski, K. Fonfara, I. Hauer, M. Doudna, J. A. and Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. Vol. 337, No. 6096. pp. 816-821. doi: 10.1126/science.1225829.
19. Cong, L. Ran, F. A. Cox, D. Lin, S. Barretto, R. Habib, N. Hsu, P. D. Wu, X. Jiang, W. Marraffini, L. A. and Zhang, F. Multiplex genome engineering using CRISPR/Cas systems // Science. 2013. Vol. 339, No. 6121. pp. 819-823. doi: 10.1126/science.1231143.
20. Nimkarn, S. Lin-Su, K. and New, M. I. Steroid 21 hydroxylase deficiency congenital adrenal hyperplasia // Pediatr Clin North Am. 2011. Vol. 58, No. 5. pp. 1281-1300, xii. doi: 10.1016/j.pcl.2011.07.012.
21. Finkielstain, Gabriela P. Chen, Wuyan, Mehta, Sneha P, Fujimura, Frank K. Hanna, Reem M, Van Ryzin, Carol, McDonnell, Nazli B. and Merke, Deborah P. Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency // J Clin Endocrinol Metab. 2011. Vol. 96, No. 1. pp. E161-E172.
22. Hannah-Shmouni, F. Chen, W. and Merke, D. P. Genetics of Congenital Adrenal Hyperplasia // Endocrinol Metab Clin North Am. 2017. Vol. 46, No. 2. pp. 435-458. doi: 10.1016/j.ecl.2017.01.008.
23. Hiller-Sturmhofel, S. and Bartke, A. The endocrine system: an overview // Alcohol Health Res World. 1998. Vol. 22, No. 3. pp. 153-164. URL: http://www.ncbi.nlm.nih.gov/pubmed/15706790.
24. Xing, Y. Lerario, A. M. Rainey, W. and Hammer, G. D. Development of adrenal cortex zonation // Endocrinol Metab Clin North Am. 2015. Vol. 44, No. 2. pp. 243-274. doi: 10.1016/j.ecl.2015.02.001.
25. Bollag, W. B. Regulation of aldosterone synthesis and secretion // Compr Physiol. 2014. Vol. 4, No. 3. pp. 1017-1055. doi: 10.1002/cphy.c130037.
26. Jacobson, L. Hypothalamic-pituitary-adrenocortical axis regulation // Endocrinol Metab Clin North Am. 2005. Vol. 34, No. 2. pp. 271-292, vii. doi: 10.1016/j.ecl.2005.01.003.
27. Dumontet, T. and Martinez, A. Adrenal androgens, adrenarche, and zona reticularis: A human affair? // Mol Cell Endocrinol. 2021. Vol. 528. Art. 111239. doi: 10.1016/j.mce.2021.111239.
28. Axelrod, Julius, and Reisine, Terry D. Stress hormones: their interaction and regulation // Science. 1984. Vol. 224, No. 4648. pp. 452-459.
29. Lin, D. Sugawara, T. Strauss, J. F. 3rd, Clark, B. J. Stocco, D. M. Saenger, P. Rogol, A. and Miller, W. L. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis // Science. 1995. Vol. 267, No. 5205. pp. 1828-1831. doi: 10.1126/science.7892608.
30. Stocco, D. M. and Clark, B. J. Regulation of the acute production of steroids in steroidogenic cells // Endocr Rev. 1996. Vol. 17, No. 3. pp. 221-244. doi: 10.1210/edrv-17-3-221.
31. MacKenzie, S. M. van Kralingen, J. C. and Davies, E. Regulation of Aldosterone Secretion // Vitam Horm. 2019. Vol. 109. pp. 241-263. doi: 10.1016/bs.vh.2018.07.001.
32. Kater, C. E. Giorgi, R. B. and Costa-Barbosa, F. A. Classic and current concepts in adrenal steroidogenesis: a reappraisal // Arch Endocrinol Metab. 2022. Vol. 66, No. 1. pp. 77-87. doi: 10.20945/2359-3997000000438.
33. Xing, Y. Parker, C. R. Edwards, M. and Rainey, W. E. ACTH is a potent regulator of gene expression in human adrenal cells // J Mol Endocrinol. 2010. Vol. 45, No. 1. pp. 59-68. doi: 10.1677/JME-10-0006.
34. Nogueira, E. F. Xing, Y. Morris, C. A. and Rainey, W. E. Role of angiotensin II-induced rapid response genes in the regulation of enzymes needed for aldosterone synthesis // J Mol Endocrinol. 2009. Vol. 42, No. 4. pp. 319-330. doi: 10.1677/JME-08-0112.
35. New, M. I. An update of congenital adrenal hyperplasia // Ann N Y Acad Sci. 2004. Vol. 1038. pp. 1443. doi: 10.1196/annals.1315.009.
36. Baumgartner-Parzer, S. M. Nowotny, P. Heinze, G. Waldhausl, W. and Vierhapper, H. Carrier frequency of congenital adrenal hyperplasia (21-hydroxylase deficiency) in a middle European population // J Clin Endocrinol Metab. 2005. Vol. 90, No. 2. pp. 775-778. doi: 10.1210/jc.2004-1728.
37. Pang, S. Y. Wallace, M. A. Hofman, L. Thuline, H. C. Dorche, C. Lyon, I. C. Dobbins, R. H. Kling, S. Fujieda, K. and Suwa, S. Worldwide experience in newborn screening for classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency // Pediatrics. 1988. Vol. 81, No. 6. pp. 866-874. URL: http://www.ncbi.nlm.nih.gov/pubmed/3259306.
38. Phedonos, A. A. Shammas, C. Skordis, N. Kyriakides, T. C. Neocleous, V. and Phylactou, L. A. High carrier frequency of 21-hydroxylase deficiency in Cyprus // Clin Genet. 2013. Vol. 84, No. 6. pp. 585-588. doi: 10.1111/cge.12153.
39. Navarro-Zambrana, A. N. and Sheets, L. R. Ethnic and National Differences in Congenital Adrenal Hyperplasia Incidence: A Systematic Review and Meta-Analysis // Horm Res Paediatr. 2023. Vol. 96, No. 3. pp. 249-258. doi: 10.1159/000526401.
40. Lee, H. H. Mutational analysis of CYP21A2 gene and CYP21A1P pseudogene: long-range PCR on genomic DNA // Methods Mol Biol. 2014. Vol. 1167. pp. 275-287. doi: 10.1007/978-1-4939-0835-6_19.
41. Engberg, H. Butwicka, A. Nordenstrom, A. Hirschberg, A. L. Falhammar, H. Lichtenstein, P. Nordenskjold, A. Frisen, L. and Landen, M. Congenital adrenal hyperplasia and risk for psychiatric disorders in girls and women born between 1915 and 2010: A total population study // Psychoneuroendocrinology. 2015. Vol. 60. pp. 195-205. doi: 10.1016/j.psyneuen.2015.06.017.
42. Cull, Melissa L. A support group's perspective // BMJ. 2005. Vol. 330, No. 7487. Art. 341. doi: 10.1136/bmj.38365.883843.79.
43. Fox, D. A. Ronsley, R. Khowaja, A. R. Haim, A. Vallance, H. Sinclair, G. and Amed, S. Clinical Impact and Cost Efficacy of Newborn Screening for Congenital Adrenal Hyperplasia // J Pediatr. 2020. Vol. 220. pp. 101-108 e2. doi: 10.1016/j.jpeds.2019.12.057.
44. Conlon, T. A. Hawkes, C. P. Brady, J. J. and Murphy, N. P. The presentation of congenital adrenal hyperplasia in an unscreened population // J Pediatr Endocrinol Metab. 2021. Vol. 34, No. 9. pp. 11231129. doi: 10.1515/j pem-2021-0123.
45. Speiser, P. W. Arlt, W. Auchus, R. J. Baskin, L. S. Conway, G. S. Merke, D. P. Meyer-Bahlburg, H. F. L. Miller, W. L. Murad, M. H. Oberfield, S. E. and White, P. C. Congenital Adrenal Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clinical Practice Guideline // J Clin Endocrinol Metab. 2018. Vol. 103, No. 11. pp. 4043-4088. doi: 10.1210/jc.2018-01865.
46. Frisch, H. Battelino, T. Schober, E. Baumgartner-Parzer, S. Nowotny, P. and Vierhapper, H. Salt wasting in simple virilizing congenital adrenal hyperplasia // J Pediatr Endocrinol Metab. 2001. Vol. 14, No. 9. pp. 1649-1655. doi: 10.1515/jpem.2001.14.9.1649.
47. Mullis, P. E. Hindmarsh, P. C. and Brook, C. G. Sodium chloride supplement at diagnosis and during infancy in children with salt-losing 21-hydroxylase deficiency // Eur J Pediatr. 1990. Vol. 150, No. 1. pp. 22-25. doi: 10.1007/BF01959473.
48. Hindmarsh, P. C. and Charmandari, E. Variation in absorption and half-life of hydrocortisone influence plasma cortisol concentrations // Clin Endocrinol (Oxf). 2015. Vol. 82, No. 4. pp. 557-561. doi: 10.1111/cen.12653.
49. Charmandari, E. Hindmarsh, P. C. Johnston, A. and Brook, C. G. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: alterations in cortisol pharmacokinetics at puberty // J Clin Endocrinol Metab. 2001. Vol. 86, No. 6. pp. 2701-2708. doi: 10.1210/jcem.86.6.7522.
50. Bonfig, W. Bechtold, S. Schmidt, H. Knorr, D. and Schwarz, H. P. Reduced final height outcome in congenital adrenal hyperplasia under prednisone treatment: deceleration of growth velocity during puberty // J Clin Endocrinol Metab. 2007. Vol. 92, No. 5. pp. 1635-1639. doi: 10.1210/jc.2006-2109.
51. Whittle, E. and Falhammar, H. Glucocorticoid Regimens in the Treatment of Congenital Adrenal Hyperplasia: A Systematic Review and Meta-Analysis // J Endocr Soc. 2019. Vol. 3, No. 6. pp. 1227-1245. doi: 10.1210/j s.2019-00136.
52. Hagenfeldt, K. Janson, P. O. Holmdahl, G. Falhammar, H. Filipsson, H. Frisen, L. Thoren, M. and Nordenskjold, A. Fertility and pregnancy outcome in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency // Hum Reprod. 2008. Vol. 23, No. 7. pp. 1607-1613. doi: 10.1093/humrep/den118.
53. Kumar, S. R. Markusic, D. M. Biswas, M. High, K. A. and Herzog, R. W. Clinical development of gene therapy: results and lessons from recent successes // Mol Ther Methods Clin Dev. 2016. Vol. 3. Art. 16034. doi: 10.1038/mtm.2016.34.
54. Resnik, D. B. and Langer, P. J. Human germline gene therapy reconsidered // Hum Gene Ther. 2001. Vol. 12, No. 11. pp. 1449-1458. doi: 10.1089/104303401750298607.
55. Nayerossadat, N. Maedeh, T. and Ali, P. A. Viral and nonviral delivery systems for gene delivery // Adv Biomed Res. 2012. Vol. 1, No. 1. Art. 27. doi: 10.4103/2277-9175.98152.
56. Avery, O. T. Macleod, C. M. and McCarty, M. Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types : Induction of Transformation by a Desoxyribonucleic
Acid Fraction Isolated from Pneumococcus Type Iii // J Exp Med. 1944. Vol. 79, No. 2. pp. 137-158. doi: 10.1084/jem.79.2.137.
57. Friedmann, T. and Roblin, R. Gene therapy for human genetic disease? // Science. 1972. Vol. 175, No. 4025. pp. 949-955. doi: 10.1126/science.175.4025.949.
58. Anderson, W. F. September 14, 1990: the beginning // Hum Gene Ther. 1990. Vol. 1, No. 4. pp. 371372. doi: 10.1089/hum.1990.1.4-371.
59. Uren, A. G. Kool, J. Berns, A. and van Lohuizen, M. Retroviral insertional mutagenesis: past, present and future // Oncogene. 2005. Vol. 24, No. 52. pp. 7656-7672. doi: 10.1038/sj.onc.1209043.
60. Hacein-Bey-Abina, S. Von Kalle, C. Schmidt, M. McCormack, M. P. Wulffraat, N. Leboulch, P. Lim, A. Osborne, C. S. Pawliuk, R. Morillon, E. Sorensen, R. Forster, A. Fraser, P. Cohen, J. I. de Saint Basile, G. Alexander, I. Wintergerst, U. Frebourg, T. Aurias, A. Stoppa-Lyonnet, D. Romana, S. Radford-Weiss, I. Gross, F. Valensi, F. Delabesse, E. Macintyre, E. Sigaux, F. Soulier, J. Leiva, L. E. Wissler, M. Prinz, C. Rabbitts, T. H. Le Deist, F. Fischer, A. and Cavazzana-Calvo, M. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1 // Science. 2003. Vol. 302, No. 5644. pp. 415419. doi: 10.1126/science.1088547.
61. Mercier, S. Gahery-Segard, H. Monteil, M. Lengagne, R. Guillet, J. G. Eloit, M. and Denesvre, C. Distinct roles of adenovirus vector-transduced dendritic cells, myoblasts, and endothelial cells in mediating an immune response against a transgene product // J Virol. 2002. Vol. 76, No. 6. pp. 2899-2911. doi: 10.1128/jvi.76.6.2899-2911.2002.
62. Kaufmann, K. B. Buning, H. Galy, A. Schambach, A. and Grez, M. Gene therapy on the move // EMBO Mol Med. 2013. Vol. 5, No. 11. pp. 1642-1661. doi: 10.1002/emmm.201202287.
63. Srivastava, A. Lusby, E. W. and Berns, K. I. Nucleotide sequence and organization of the adeno-associated virus 2 genome // J Virol. 1983. Vol. 45, No. 2. pp. 555-564. doi: 10.1128/JVI.45.2.555-564.1983.
64. Berns, K. I. and Giraud, C. Biology of adeno-associated virus // Curr Top Microbiol Immunol. 1996. Vol. 218. pp. 1-23. doi: 10.1007/978-3-642-80207-2_1.
65. Agbandje-McKenna, M. and Kleinschmidt, J. AAV capsid structure and cell interactions // Methods Mol Biol. 2011. Vol. 807. pp. 47-92. doi: 10.1007/978-1-61779-370-7_3.
66. Naso, M. F. Tomkowicz, B. Perry, W. L. 3rd, and Strohl, W. R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy // BioDrugs. 2017. Vol. 31, No. 4. pp. 317-334. doi: 10.1007/s40259-017-0234-5.
67. Meier, A. F. Fraefel, C. and Seyffert, M. The Interplay between Adeno-Associated Virus and its Helper Viruses // Viruses. 2020. Vol. 12, No. 6. doi: 10.3390/v12060662.
68. Dhungel, B. P. Bailey, C. G. and Rasko, J. E. J. Journey to the Center of the Cell: Tracing the Path of AAV Transduction // Trends Mol Med. 2021. Vol. 27, No. 2. pp. 172-184. doi: 10.1016/j.molmed.2020.09.010.
69. Riyad, J. M. and Weber, T. Intracellular trafficking of adeno-associated virus (AAV) vectors: challenges and future directions // Gene Ther. 2021. Vol. 28, No. 12. pp. 683-696. doi: 10.1038/s41434-021-00243-z.
70. Meyer, N. L. and Chapman, M. S. Adeno-associated virus (AAV) cell entry: structural insights // Trends Microbiol. 2022. Vol. 30, No. 5. pp. 432-451. doi: 10.1016/j.tim.2021.09.005.
71. Dreismann, A. K. Hallam, T. M. Tam, L. C. Nguyen, C. V. Hughes, J. P. Ellis, S. and Harris, C. L. Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway // Immunol Rev. 2023. Vol. 313, No. 1. pp. 402-419. doi: 10.1111/imr.13149.
72. Dismuke, David J, Tenenbaum, Liliane, and Samulski, Richard Jude. Biosafety of recombinant adeno-associated virus vectors // Current gene therapy. 2014. Vol. 13, No. 6. pp. 434-452.
73. Stilwell, J. L. and Samulski, R. J. Adeno-associated virus vectors for therapeutic gene transfer // Biotechniques. 2003. Vol. 34, No. 1. pp. 148-150, 152, 154 passim. doi: 10.2144/03341dd01.
74. Penaud-Budloo, Magalie, Le Guiner, Caroline, Nowrouzi, Ali, Toromanoff, Alice, Chérel, Yan, Chenuaud, Pierre, Schmidt, Manfred, von Kalle, Christof, Rolling, Fabienne, Moullier, Philippe, and Snyder, Richard O. Adeno-Associated Virus Vector Genomes Persist as Episomal Chromatin in Primate Muscle // Journal of Virology. 2008. Vol. 82. pp. 7875-7885.
75. Nakai, H. Yant, S. R. Storm, T. A. Fuess, S. Meuse, L. and Kay, M. A. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo // J Virol. 2001. Vol. 75, No. 15. pp. 6969-6976. doi: 10.1128/JVI.75.15.6969-6976.2001.
76. Wang, J. H. Gessler, D. J. Zhan, W. Gallagher, T. L. and Gao, G. Adeno-associated virus as a delivery vector for gene therapy of human diseases // Signal Transduct Target Ther. 2024. Vol. 9, No. 1. Art. 78. doi: 10.1038/s413 92-024-01780-w.
77. Chao, H. Liu, Y. Rabinowitz, J. Li, C. Samulski, R. J. and Walsh, C. E. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors // Mol Ther. 2000. Vol. 2, No. 6. pp. 619-623. doi: 10.1006/mthe.2000.0219.
78. Pañeda, Astrid, Vanrell, Lucía, Mauleón, Itsaso, Crettaz, Julien, Berraondo, P. Timmermans, Eric Jacobus Hubertus, Beattie, Stuart, Twisk, Jaap, van Deventer, Sander J. H. Prieto, Jesús, Fontanellas, Antonio, Rodríguez-Pena, M S, and González-Aseguinolaza, Gloria. Effect of adeno-associated virus serotype and genomic structure on liver transduction and biodistribution in mice of both genders // Human gene therapy. 2009. Vol. 20, No. 8. pp. 908-917.
79. Bevan, A. K. Duque, S. Foust, K. D. Morales, P. R. Braun, L. Schmelzer, L. Chan, C. M. McCrate, M. Chicoine, L. G. Coley, B. D. Porensky, P. N. Kolb, S. J. Mendell, J. R. Burghes, A. H. and Kaspar, B. K. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders // Mol Ther. 2011. Vol. 19, No. 11. pp. 1971-1980. doi: 10.1038/mt.2011.157.
80. Yang, B. Li, S. Wang, H. Guo, Y. Gessler, D. J. Cao, C. Su, Q. Kramer, J. Zhong, L. Ahmed, S. S. Zhang, H. He, R. Desrosiers, R. C. Brown, R. Xu, Z. and Gao, G. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10 // Mol Ther. 2014. Vol. 22, No. 7. pp. 1299-1309. doi: 10.1038/mt.2014.68.
81. Büning, Hildegard, Huber, Anke, Zhang, Liang, Meumann, Nadja, and Hacker, Ulrich T. Engineering the AAV capsid to optimize vector-host-interactions // Current opinion in pharmacology. 2015. Vol. 24. pp. 94-104.
82. Kotterman, M. A. and Schaffer, D. V. Engineering adeno-associated viruses for clinical gene therapy // Nat Rev Genet. 2014. Vol. 15, No. 7. pp. 445-451. doi: 10.1038/nrg3742.
83. Choi, V. W. McCarty, D. M. and Samulski, R. J. AAV hybrid serotypes: improved vectors for gene delivery // Curr Gene Ther. 2005. Vol. 5, No. 3. pp. 299-310. doi: 10.2174/1566523054064968.
84. Drouin, Lauren M. and Agbandje-McKenna, Mavis. Adeno-associated virus structural biology as a tool in vector development // Future virology. 2013. Vol. 8, No. 12. pp. 1183-1199.
85. McCarty, D. M. Self-complementary AAV vectors; advances and applications // Mol Ther. 2008. Vol. 16, No. 10. pp. 1648-1656. doi: 10.1038/mt.2008.171.
86. McCarty, D. M. Monahan, P. E. and Samulski, R. J. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis // Gene Ther. 2001. Vol. 8, No. 16. pp. 1248-1254. doi: 10.1038/sj.gt.3301514.
87. Grimm, D. Lee, J. S. Wang, L. Desai, T. Akache, B. Storm, T. A. and Kay, M. A. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses // J Virol. 2008. Vol. 82, No. 12. pp. 5887-5911. doi: 10.1128/JVI.00254-08.
88. Chauhan, Monika, Daugherty, Audrey L. Khadir, Fatemeh, Duzenli, Ozgun F. Hoffman, Alexandra, Tinklenberg, Jennifer A. Kang, Peter B. Aslanidi, George, and Pacak, Christina A. AAV-DJ is superior to AAV9 for targeting brain and spinal cord, and de-targeting liver across multiple delivery routes in mice // Journal of Translational Medicine. 2024. Vol. 22.
89. Jang, M. Lee, S. E. and Cho, I. H. Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington's Disease // Front Cell Neurosci. 2018. Vol. 12. Art. 157. doi: 10.3389/fncel.2018.00157.
90. Lerch, T. F. O'Donnell, J. K. Meyer, N. L. Xie, Q. Taylor, K. A. Stagg, S. M. and Chapman, M. S. Structure of AAV-DJ, a retargeted gene therapy vector: cryo-electron microscopy at 4.5 A resolution // Structure. 2012. Vol. 20, No. 8. pp. 1310-1320. doi: 10.1016/j.str.2012.05.004.
91. Li, X. Wei, X. Lin, J. and Ou, L. A versatile toolkit for overcoming AAV immunity // Front Immunol. 2022. Vol. 13. Art. 991832. doi: 10.3389/fimmu.2022.991832.
92. Katada, Y. Kobayashi, K. Tsubota, K. and Kurihara, T. Evaluation of AAV-DJ vector for retinal gene therapy // PeerJ. 2019. Vol. 7. Art. e6317. doi: 10.7717/peerj.6317.
93. Kondratov, O. Kondratova, L. Mandel, R. J. Coleman, K. Savage, M. A. Gray-Edwards, H. L. Ness, T. J. Rodriguez-Lebron, E. Bell, R. D. Rabinowitz, J. Gamlin, P. D. and Zolotukhin, S. A comprehensive study of a 29-capsid AAV library in a non-human primate central nervous system // Mol Ther. 2021. Vol. 29, No. 9. pp. 2806-2820. doi: 10.1016/j.ymthe.2021.07.010.
94. Maguire, A. M. Bennett, J. Aleman, E. M. Leroy, B. P. and Aleman, T. S. Clinical Perspective: Treating RPE65-Associated Retinal Dystrophy // Mol Ther. 2021. Vol. 29, No. 2. pp. 442-463. doi: 10.1016/j.ymthe.2020.11.029.
95. Prado, D. A. Acosta-Acero, M. and Maldonado, R. S. Gene therapy beyond luxturna: a new horizon of the treatment for inherited retinal disease // Curr Opin Ophthalmol. 2020. Vol. 31, No. 3. pp. 147-154. doi: 10.1097/ICU.0000000000000660.
96. Blair, H. A. Onasemnogene Abeparvovec: A Review in Spinal Muscular Atrophy // CNS Drugs. 2022. Vol. 36, No. 9. pp. 995-1005. doi: 10.1007/s40263-022-00941-1.
97. Blair, H. A. Valoctocogene Roxaparvovec: First Approval // Drugs. 2022. Vol. 82, No. 14. pp. 15051510. doi: 10.1007/s40265-022-01788-y.
98. Ozelo, M. C. Mahlangu, J. Pasi, K. J. Giermasz, A. Leavitt, A. D. Laffan, M. Symington, E. Quon, D. V. Wang, J. D. Peerlinck, K. Pipe, S. W. Madan, B. Key, N. S. Pierce, G. F. O'Mahony, B. Kaczmarek, R.
Henshaw, J. Lawal, A. Jayaram, K. Huang, M. Yang, X. Wong, W. Y. Kim, B. and Group, G. ENEr8-1 Trial. Valoctocogene Roxaparvovec Gene Therapy for Hemophilia A // N Engl J Med. 2022. Vol. 386, No. 11. pp. 1013-1025. doi: 10.1056/NEJMoa2113708.
99. Herzog, R. W. VandenDriessche, T. and Ozelo, M. C. First hemophilia B gene therapy approved: More than two decades in the making // Mol Ther. 2023. Vol. 31, No. 1. pp. 1-2. doi: 10.1016/j.ymthe.2022.12.001.
100. Pupo, A. Fernandez, A. Low, S. H. Francois, A. Suarez-Amaran, L. and Samulski, R. J. AAV vectors: The Rubik's cube of human gene therapy // Mol Ther. 2022. Vol. 30, No. 12. pp. 3515-3541. doi: 10.1016/j.ymthe.2022.09.015.
101. McClements, M. E. Charbel Issa, P. Blouin, V. and MacLaren, R. E. A fragmented adeno-associated viral dual vector strategy for treatment of diseases caused by mutations in large genes leads to expression of hybrid transcripts // J Genet Syndr Gene Ther. 2016. Vol. 7, No. 5. doi: 10.4172/2157-7412.1000311.
102. Carvalho, L. S. Turunen, H. T. Wassmer, S. J. Luna-Velez, M. V. Xiao, R. Bennett, J. and Vandenberghe, L. H. Evaluating Efficiencies of Dual AAV Approaches for Retinal Targeting // Front Neurosci. 2017. Vol. 11. Art. 503. doi: 10.3389/fnins.2017.00503.
103. Louis Jeune, Vedell, Joergensen, Jakob A, Hajjar, Roger J. and Weber, Thomas. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy // Human gene therapy methods. 2013. Vol. 24, No. 2. pp. 59-67.
104. Masat, E. Pavani, G. and Mingozzi, F. Humoral immunity to AAV vectors in gene therapy: challenges and potential solutions // Discov Med. 2013. Vol. 15, No. 85. pp. 379-389. URL: http://www.ncbi.nlm.nih.gov/pubmed/23819952.
105. Hareendran, Sangeetha, Balakrishnan, Balaji, Sen, Dwaipayan, Kumar, Sanjay, Srivastava, Alok, and Jayandharan, Giridhara R. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them // Reviews in Medical Virology. 2013. Vol. 23.
106. Speiser, Phyllis W, Dupont, Jakob, Zhu, Deguang, Serrat, Jorge, Buegeleisen, Miriam, Tusie-Luna, Maria Teresa, Lesser, Martin, New, Maria I. and White, Perrin C. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency // The Journal of clinical investigation. 1992. Vol. 90, No. 2. pp. 584-595.
107. White, P. C. Tusie-Luna, M. T. New, M. I. and Speiser, P. W. Mutations in steroid 21-hydroxylase (CYP21) // Hum Mutat. 1994. Vol. 3, No. 4. pp. 373-378. doi: 10.1002/humu.1380030408.
108. Shiroishi, T. Sagai, T. Natsuume-Sakai, S. and Moriwaki, K. Lethal deletion of the complement component C4 and steroid 21-hydroxylase genes in the mouse H-2 class III region, caused by meiotic recombination // Proc Natl Acad Sci USA. 1987. Vol. 84, No. 9. pp. 2819-2823. doi: 10.1073/pnas.84.9.2819.
109. Riepe, F. G. Tatzel, S. Sippell, W. G. Pleiss, J. and Krone, N. Congenital adrenal hyperplasia: the molecular basis of 21-hydroxylase deficiency in H-2(aw18) mice // Endocrinology. 2005. Vol. 146, No. 6. pp. 2563-2574. doi: 10.1210/en.2004-1563.
110. Glazova, O. Bastrich, A. Deviatkin, A. Onyanov, N. Kaziakhmedova, S. Shevkova, L. Sakr, N. Petrova, D. Vorontsova, M. V. and Volchkov, P. Models of Congenital Adrenal Hyperplasia for Gene Therapies Testing // Int J Mol Sci. 2023. Vol. 24, No. 6. doi: 10.3390/ijms24065365.
111. Schubert, T. Reisch, N. Naumann, R. Reichardt, I. Landgraf, D. Quitter, F. Thirumalasetty, S. R. Heninger, A. K. Sarov, M. Peitzsch, M. Huebner, A. and Koehler, K. CYP21A2 Gene Expression in a Humanized 21-Hydroxylase Mouse Model Does Not Affect Adrenocortical Morphology and Function // J Endocr Soc. 2022. Vol. 6, No. 6. pp. bvac062. doi: 10.1210/jendso/bvac062.
112. Thirumalasetty, S. R. Schubert, T. Naumann, R. Reichardt, I. Rohm, M. L. Landgraf, D. Gembardt, F. Peitzsch, M. Hartmann, M. F. Sarov, M. Wudy, S. A. Reisch, N. Huebner, A. and Koehler, K. A Humanized and Viable Animal Model for Congenital Adrenal Hyperplasia-CYP21A2-R484Q Mutant Mouse // Int J Mol Sci. 2024. Vol. 25, No. 10. doi: 10.3390/ijms25105062.
113. Ruiz-Babot, G. Balyura, M. Hadjidemetriou, I. Ajodha, S. J. Taylor, D. R. Ghataore, L. Taylor, N. F. Schubert, U. Ziegler, C. G. Storr, H. L. Druce, M. R. Gevers, E. F. Drake, W. M. Srirangalingam, U. Conway, G. S. King, P. J. Metherell, L. A. Bornstein, S. R. and Guasti, L. Modeling Congenital Adrenal Hyperplasia and Testing Interventions for Adrenal Insufficiency Using Donor-Specific Reprogrammed Cells // Cell Rep. 2018. Vol. 22, No. 5. pp. 1236-1249. doi: 10.1016/j.celrep.2018.01.003.
114. Kim, J. Koo, B. K. and Knoblich, J. A. Human organoids: model systems for human biology and medicine // Nat Rev Mol Cell Biol. 2020. Vol. 21, No. 10. pp. 571-584. doi: 10.1038/s41580-020-0259-3.
115. Werdermann, M. Berger, I. Scriba, L. D. Santambrogio, A. Schlinkert, P. Brendel, H. Morawietz, H. Schedl, A. Peitzsch, M. King, A. J. F. Andoniadou, C. L. Bornstein, S. R. and Steenblock, C. Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state // Mol Metab. 2021. Vol. 43. Art. 101112. doi: 10.1016/j.molmet.2020.101112.
116. Poli, G. Sarchielli, E. Guasti, D. Benvenuti, S. Ballerini, L. Mazzanti, B. Armignacco, R. Cantini, G. Lulli, M. Chortis, V. Arlt, W. Romagnoli, P. Vannelli, G. B. Mannelli, M. and Luconi, M. Human fetal adrenal cells retain age-related stem- and endocrine-differentiation potential in culture // FASEB J. 2019. Vol. 33, No. 2. pp. 2263-2277. doi: 10.1096/fj.201801028RR.
117. Naiki, Y. Miyado, M. Horikawa, R. Katsumata, N. Onodera, M. Pang, S. Ogata, T. and Fukami, M. Extra-adrenal induction of Cyp21a1 ameliorates systemic steroid metabolism in a mouse model of congenital adrenal hyperplasia // Endocr J. 2016. Vol. 63, No. 10. pp. 897-904. doi: 10.1507/endocrj.EJ16-0112.
118. Zhao, J. Yue, Y. Patel, A. Wasala, L. Karp, J. F. Zhang, K. Duan, D. and Lai, Y. High-Resolution Histological Landscape of AAV DNA Distribution in Cellular Compartments and Tissues following Local and Systemic Injection // Mol Ther Methods Clin Dev. 2020. Vol. 18. pp. 856-868. doi: 10.1016/j.omtm.2020.08.006.
119. Greig, J. A. Peng, H. Ohlstein, J. Medina-Jaszek, C. A. Ahonkhai, O. Mentzinger, A. Grant, R. L. Roy, S. Chen, S. J. Bell, P. Tretiakova, A. P. and Wilson, J. M. Intramuscular injection of AAV8 in mice and macaques is associated with substantial hepatic targeting and transgene expression // PLOS One. 2014. Vol. 9, No. 11. Art. e112268. doi: 10.1371/journal.pone.0112268.
120. Graves, L. E. van Dijk, E. B. Zhu, E. Koyyalamudi, S. Wotton, T. Sung, D. Srinivasan, S. Ginn, S. L. and Alexander, I. E. AAV-delivered hepato-adrenal cooperativity in steroidogenesis: Implications for gene therapy for congenital adrenal hyperplasia // Mol Ther Methods Clin Dev. 2024. Vol. 32, No. 2. Art. 101232. doi: 10.1016/j.omtm.2024.101232.
121. Perdomini, M. Dos Santos, C. Goumeaux, C. Blouin, V. and Bougneres, P. An AAVrh10-CAG-CYP21-HA vector allows persistent correction of 21-hydroxylase deficiency in a Cyp21(-/-) mouse model // Gene Ther. 2017. Vol. 24, No. 5. pp. 275-281. doi: 10.1038/gt.2017.10.
122. Freedman, B. D. Kempna, P. B. Carlone, D. L. Shah, M. Guagliardo, N. A. Barrett, P. Q. Gomez-Sanchez, C. E. Majzoub, J. A. and Breault, D. T. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells // Dev Cell. 2013. Vol. 26, No. 6. pp. 666-673. doi: 10.1016/j.devcel.2013.07.016.
123. Kim, J. H. and Choi, M. H. Embryonic Development and Adult Regeneration of the Adrenal Gland // Endocrinol Metab (Seoul). 2020. Vol. 35, No. 4. pp. 765-773. doi: 10.3803/EnM.2020.403.
124. INGLE, DWIGHT J, and HIGGINS, GEORGE M. The extent of regeneration of the enucleated adrenal gland in the rat as influenced by the amount of capsule left at operation // Endocrinology. 1939. Vol. 24, No. 3. pp. 379-382.
125. Nakayama, T. Imai, S. Soma, M. Izumi, Y. and Kanmatsuse, K. Compensatory adrenal growth and steroidogenesis after unilateral adrenalectomy // Endocr J. 1993. Vol. 40, No. 5. pp. 523-527. doi: 10.1507/endocrj.40.523.
126. Thomas, M. and Hornsby, P. J. Transplantation of primary bovine adrenocortical cells into scid mice // Mol Cell Endocrinol. 1999. Vol. 153, No. 1-2. pp. 125-136. doi: 10.1016/s0303-7207(99)00070-2.
127. King, P. Paul, A. and Laufer, E. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages // Proc Natl Acad Sci U S A. 2009. Vol. 106, No. 50. pp. 2118521190. doi: 10.1073/pnas.0909471106.
128. Graves, L. E. Torpy, D. J. Coates, P. T. Alexander, I. E. Bornstein, S. R. and Clarke, B. Future Directions for Adrenal Insufficiency: Cellular Transplantation and Genetic Therapies // J Clin Endocrinol Metab. 2023. Vol. 108, No. 6. pp. 1273-1289. doi: 10.1210/clinem/dgac751.
129. Buaas, F. W. Gardiner, J. R. Clayton, S. Val, P. and Swain, A. In vivo evidence for the crucial role of SF1 in steroid-producing cells of the testis, ovary and adrenal gland // Development. 2012. Vol. 139, No. 24. pp. 4561-4570. doi: 10.1242/dev.087247.
130. Walczak, E. M. Kuick, R. Finco, I. Bohin, N. Hrycaj, S. M. Wellik, D. M. and Hammer, G. D. Wnt signaling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms // Mol Endocrinol. 2014. Vol. 28, No. 9. pp. 1471-1486. doi: 10.1210/me.2014-1060.
131. Lyraki, R. and Schedl, A. Adrenal cortex renewal in health and disease // Nat Rev Endocrinol. 2021. Vol. 17, No. 7. pp. 421-434. doi: 10.1038/s41574-021-00491-4.
132. Shirley, J. L. de Jong, Y. P. Terhorst, C. and Herzog, R. W. Immune Responses to Viral Gene Therapy Vectors // Mol Ther. 2020. Vol. 28, No. 3. pp. 709-722. doi: 10.1016/j.ymthe.2020.01.001.
133. Ronzitti, G. Gross, D. A. and Mingozzi, F. Human Immune Responses to Adeno-Associated Virus (AAV) Vectors // Front Immunol. 2020. Vol. 11. Art. 670. doi: 10.3389/fimmu.2020.00670.
134. Kishimoto, Takashi Kei, and Samulski, Richard Jude. Addressing high dose AAV toxicity, 'one and done' or 'slower and lower'? // Expert Opinion on Biological Therapy. 2022. Vol. 22. pp. 1067-1071.
135. Ertl, H. C. J. Immunogenicity and toxicity of AAV gene therapy // Front Immunol. 2022. Vol. 13. Art. 975803. doi: 10.3389/fimmu.2022.975803.
136. van der Loo, J. C. and Wright, J. F. Progress and challenges in viral vector manufacturing // Hum Mol Genet. 2016. Vol. 25, No. R1. pp. R42-52. doi: 10.1093/hmg/ddv451.
137. Mandel, R. J. Burger, C. and Snyder, R. O. Viral vectors for in vivo gene transfer in Parkinson's disease: properties and clinical grade production // Exp Neurol. 2008. Vol. 209, No. 1. pp. 58-71. doi: 10.1016/j.expneurol.2007.08.008.
138. Beerli, R. R. and Barbas, C. F. 3rd. Engineering polydactyl zinc-finger transcription factors // Nat Biotechnol. 2002. Vol. 20, No. 2. pp. 135-141. doi: 10.1038/nbt0202-135.
139. Gaj, T. Gersbach, C. A. and Barbas, C. F. 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering // Trends Biotechnol. 2013. Vol. 31, No. 7. pp. 397-405. doi: 10.1016/j.tibtech.2013.04.004.
140. Ramirez, C. L. Certo, M. T. Mussolino, C. Goodwin, M. J. Cradick, T. J. McCaffrey, A. P. Cathomen, T. Scharenberg, A. M. and Joung, J. K. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects // Nucleic Acids Res. 2012. Vol. 40, No. 12. pp. 5560-5568. doi: 10.1093/nar/gks179.
141. Lee, J. Chung, J. H. Kim, H. M. Kim, D. W. and Kim, H. Designed nucleases for targeted genome editing // Plant Biotechnol J. 2016. Vol. 14, No. 2. pp. 448-462. doi: 10.1111/pbi.12465.
142. Leal, A. F. Herreno-Pachon, A. M. Benincore-Florez, E. Karunathilaka, A. and Tomatsu, S. Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches // Int J Mol Sci. 2024. Vol. 25, No. 5. doi: 10.3390/ijms25052456.
143. Asmamaw, M. and Zawdie, B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing // Biologics. 2021. Vol. 15. pp. 353-361. doi: 10.2147/BTT.S326422.
144. Liu, X. Li, G. Liu, Y. Zhou, F. Huang, X. and Li, K. Advances in CRISPR/Cas gene therapy for inborn errors of immunity // Front Immunol. 2023. Vol. 14. Art. 1111777. doi: 10.3389/fimmu.2023.1111777.
145. Liu, M. Rehman, S. Tang, X. Gu, K. Fan, Q. Chen, D. and Ma, W. Methodologies for Improving HDR Efficiency // Front Genet. 2018. Vol. 9. Art. 691. doi: 10.3389/fgene.2018.00691.
146. Lau, C. H. Tin, C. and Suh, Y. CRISPR-based strategies for targeted transgene knock-in and gene correction // Fac Rev. 2020. Vol. 9. Art. 20. doi: 10.12703/r/9-20.
147. Nami, F. Basiri, M. Satarian, L. Curtiss, C. Baharvand, H. and Verfaillie, C. Strategies for In Vivo Genome Editing in Nondividing Cells // Trends Biotechnol. 2018. Vol. 36, No. 8. pp. 770-786. doi: 10.1016/j.tibtech.2018.03.004.
148. Zhang, J. P. Li, X. L. Li, G. H. Chen, W. Arakaki, C. Botimer, G. D. Baylink, D. Zhang, L. Wen, W. Fu, Y. W. Xu, J. Chun, N. Yuan, W. Cheng, T. and Zhang, X. B. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage // Genome Biol. 2017. Vol. 18, No. 1. Art. 35. doi: 10.1186/s13059-017-1164-8.
149. He, X. Tan, C. Wang, F. Wang, Y. Zhou, R. Cui, D. You, W. Zhao, H. Ren, J. and Feng, B. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair // Nucleic Acids Res. 2016. Vol. 44, No. 9. Art. e85. doi: 10.1093/nar/gkw064.
150. Gonzalez Castro, N. Bjelic, J. Malhotra, G. Huang, C. and Alsaffar, S. H. Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies // Int J Mol Sci. 2021. Vol. 22, No. 19. doi: 10.3390/ijms221910355.
151. Smith, C. Abalde-Atristain, L. He, C. Brodsky, B. R. Braunstein, E. M. Chaudhari, P. Jang, Y. Y. Cheng, L. and Ye, Z. Efficient and allele-specific genome editing of disease loci in human iPSCs // Mol Ther. 2015. Vol. 23, No. 3. pp. 570-577. doi: 10.1038/mt.2014.226.
152. Shen, B. Zhang, W. Zhang, J. Zhou, J. Wang, J. Chen, L. Wang, L. Hodgkins, A. Iyer, V. Huang, X. and Skarnes, W. C. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects // Nat Methods. 2014. Vol. 11, No. 4. pp. 399-402. doi: 10.1038/nmeth.2857.
153. Anders, C. Niewoehner, O. Duerst, A. and Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease // Nature. 2014. Vol. 513, No. 7519. pp. 569-573. doi: 10.1038/nature13579.
154. Marraffini, L. A. and Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity // Nature. 2010. Vol. 463, No. 7280. pp. 568-571. doi: 10.1038/nature08703.
155. Varshney, G. K. Pei, W. LaFave, M. C. Idol, J. Xu, L. Gallardo, V. Carrington, B. Bishop, K. Jones, M. Li, M. Harper, U. Huang, S. C. Prakash, A. Chen, W. Sood, R. Ledin, J. and Burgess, S. M. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9 // Genome Res. 2015. Vol. 25, No. 7. pp. 1030-1042. doi: 10.1101/gr.186379.114.
156. Bortesi, L. and Fischer, R. The CRISPR/Cas9 system for plant genome editing and beyond // Biotechnol Adv. 2015. Vol. 33, No. 1. pp. 41-52. doi: 10.1016/j.biotechadv.2014.12.006.
157. Frangoul, H. Altshuler, D. Cappellini, M. D. Chen, Y. S. Domm, J. Eustace, B. K. Foell, J. de la Fuente, J. Grupp, S. Handgretinger, R. Ho, T. W. Kattamis, A. Kernytsky, A. Lekstrom-Himes, J. Li, A. M. Locatelli, F. Mapara, M. Y. de Montalembert, M. Rondelli, D. Sharma, A. Sheth, S. Soni, S. Steinberg, M. H. Wall, D. Yen, A. and Corbacioglu, S. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and beta-Thalassemia // N Engl J Med. 2021. Vol. 384, No. 3. pp. 252-260. doi: 10.1056/NEJMoa2031054.
158. Frangoul, H. Locatelli, F. Sharma, A. Bhatia, M. Mapara, M. Molinari, L. Wall, D. Liem, R. I. Telfer, P. Shah, A. J. Cavazzana, M. Corbacioglu, S. Rondelli, D. Meisel, R. Dedeken, L. Lobitz, S. de Montalembert, M. Steinberg, M. H. Walters, M. C. Eckrich, M. J. Imren, S. Bower, L. Simard, C. Zhou, W. Xuan, F. Morrow, P. K. Hobbs, W. E. Grupp, S. A. and Group, Climb Scd- Study. Exagamglogene Autotemcel for Severe Sickle Cell Disease // N Engl J Med. 2024. Vol. 390, No. 18. pp. 1649-1662. doi: 10.1056/NEJMoa2309676.
159. Fu, B. Liao, J. Chen, S. Li, W. Wang, Q. Hu, J. Yang, F. Hsiao, S. Jiang, Y. Wang, L. Chen, F. Zhang, Y. Wang, X. Li, D. Liu, M. and Wu, Y. CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric beta(0)/beta(0) transfusion-dependent beta-thalassemia // Nat Med. 2022. Vol. 28, No. 8. pp. 1573-1580. doi: 10.1038/s41591-022-01906-z.
160. Lu, Y. Xue, J. Deng, T. Zhou, X. Yu, K. Deng, L. Huang, M. Yi, X. Liang, M. Wang, Y. Shen, H. Tong, R. Wang, W. Li, L. Song, J. Li, J. Su, X. Ding, Z. Gong, Y. Zhu, J. Wang, Y. Zou, B. Zhang, Y. Li, Y. Zhou, L. Liu, Y. Yu, M. Wang, Y. Zhang, X. Yin, L. Xia, X. Zeng, Y. Zhou, Q. Ying, B. Chen, C. Wei, Y. Li, W. and Mok, T. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer // Nat Med. 2020. Vol. 26, No. 5. pp. 732-740. doi: 10.1038/s41591-020-0840-5.
161. Rupp, L. J. Schumann, K. Roybal, K. T. Gate, R. E. Ye, C. J. Lim, W. A. and Marson, A. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells // Sci Rep. 2017. Vol. 7, No. 1. Art. 737. doi: 10.1038/s41598-017-00462-8.
162. Xu, L. Park, K. H. Zhao, L. Xu, J. El Refaey, M. Gao, Y. Zhu, H. Ma, J. and Han, R. CRISPR-mediated Genome Editing Restores Dystrophin Expression and Function in mdx Mice // Mol Ther. 2016. Vol. 24, No. 3. pp. 564-569. doi: 10.1038/mt.2015.192.
163. Duchene, B. L. Cherif, K. Iyombe-Engembe, J. P. Guyon, A. Rousseau, J. Ouellet, D. L. Barbeau, X. Lague, P. and Tremblay, J. P. CRISPR-Induced Deletion with SaCas9 Restores Dystrophin Expression in Dystrophic Models In Vitro and In Vivo // Mol Ther. 2018. Vol. 26, No. 11. pp. 2604-2616. doi: 10.1016/j.ymthe.2018.08.010.
164. Ohmori, T. Nagao, Y. Mizukami, H. Sakata, A. Muramatsu, S. I. Ozawa, K. Tominaga, S. I. Hanazono, Y. Nishimura, S. Nureki, O. and Sakata, Y. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice // Sci Rep. 2017. Vol. 7, No. 1. Art. 4159. doi: 10.1038/s41598-017-04625-5.
165. He, X. Zhang, Z. Xue, J. Wang, Y. Zhang, S. Wei, J. Zhang, C. Wang, J. Urip, B. A. Ngan, C. C. Sun, J. Li, Y. Lu, Z. Zhao, H. Pei, D. Li, C. K. and Feng, B. Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response // Nat Commun.
2022. Vol. 13, No. 1. Art. 7275. doi: 10.1038/s41467-022-34898-y.
166. Hu, Z. Zhou, M. Wu, Y. Li, Z. Liu, X. Wu, L. and Liang, D. ssODN-Mediated In-Frame Deletion with CRISPR/Cas9 Restores FVIII Function in Hemophilia A-Patient-Derived iPSCs and ECs // Mol Ther Nucleic Acids. 2019. Vol. 17. pp. 198-209. doi: 10.1016/j.omtn.2019.05.019.
167. Hu, Z. Wu, Y. Xiao, R. Zhao, J. Chen, Y. Wu, L. Zhou, M. and Liang, D. Correction of F8 intron 1 inversion in hemophilia A patient-specific iPSCs by CRISPR/Cas9 mediated gene editing // Front Genet.
2023. Vol. 14. Art. 1115831. doi: 10.3389/fgene.2023.1115831.
168. Chen, H. Shi, M. Gilam, A. Zheng, Q. Zhang, Y. Afrikanova, I. Li, J. Gluzman, Z. Jiang, R. Kong, L. J. and Chen-Tsai, R. Y. Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII // Sci Rep. 2019. Vol. 9, No. 1. Art. 16838. doi: 10.1038/s41598-019-53198-y.
169. Jo, D. H. Song, D. W. Cho, C. S. Kim, U. G. Lee, K. J. Lee, K. Park, S. W. Kim, D. Kim, J. H. Kim, J. S. Kim, S. Kim, J. H. and Lee, J. M. CRISPR-Cas9-mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis // Sci Adv. 2019. Vol. 5, No. 10. pp. eaax1210. doi: 10.1126/sciadv.aax1210.
170. Pierce, E. A. Aleman, T. S. Jayasundera, K. T. Ashimatey, B. S. Kim, K. Rashid, A. Jaskolka, M. C. Myers, R. L. Lam, B. L. Bailey, S. T. Comander, J. I. Lauer, A. K. Maguire, A. M. and Pennesi, M. E. Gene Editing for CEP290-Associated Retinal Degeneration // N Engl J Med. 2024. Vol. 390, No. 21. pp. 19721984. doi: 10.1056/NEJMoa2309915.
171. Ruan, G. X. Barry, E. Yu, D. Lukason, M. Cheng, S. H. and Scaria, A. CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10 // Mol Ther. 2017. Vol. 25, No. 2. pp. 331-341. doi: 10.1016/j.ymthe.2016.12.006.
172. Maeder, M. L. Stefanidakis, M. Wilson, C. J. Baral, R. Barrera, L. A. Bounoutas, G. S. Bumcrot, D. Chao, H. Ciulla, D. M. DaSilva, J. A. Dass, A. Dhanapal, V. Fennell, T. J. Friedland, A. E. Giannoukos, G. Gloskowski, S. W. Glucksmann, A. Gotta, G. M. Jayaram, H. Haskett, S. J. Hopkins, B. Horng, J. E. Joshi, S. Marco, E. Mepani, R. Reyon, D. Ta, T. Tabbaa, D. G. Samuelsson, S. J. Shen, S. Skor, M. N. Stetkiewicz, P. Wang, T. Yudkoff, C. Myer, V. E. Albright, C. F. and Jiang, H. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10 // Nat Med. 2019. Vol. 25, No. 2. pp. 229-233. doi: 10.1038/s41591-018-0327-9.
173. Ruan, J. Hirai, H. Yang, D. Ma, L. Hou, X. Jiang, H. Wei, H. Rajagopalan, C. Mou, H. Wang, G. Zhang, J. Li, K. Chen, Y. E. Sun, F. and Xu, J. Efficient Gene Editing at Major CFTR Mutation Loci // Mol Ther Nucleic Acids. 2019. Vol. 16. pp. 73-81. doi: 10.1016/j.omtn.2019.02.006.
174. VanLith, C. Guthman, R. Nicolas, C. T. Allen, K. Du, Z. Joo, D. J. Nyberg, S. L. Lillegard, J. B. and Hickey, R. D. Curative Ex Vivo Hepatocyte-Directed Gene Editing in a Mouse Model of Hereditary Tyrosinemia Type 1 // Hum Gene Ther. 2018. Vol. 29, No. 11. pp. 1315-1326. doi: 10.1089/hum.2017.252.
175. Li, N. Gou, S. Wang, J. Zhang, Q. Huang, X. Xie, J. Li, L. Jin, Q. Ouyang, Z. Chen, F. Ge, W. Shi, H. Liang, Y. Zhuang, Z. Zhao, X. Lian, M. Ye, Y. Quan, L. Wu, H. Lai, L. and Wang, K. CRISPR/Cas9-Mediated Gene Correction in Newborn Rabbits with Hereditary Tyrosinemia Type I // Mol Ther. 2021. Vol. 29, No. 3. pp. 1001-1015. doi: 10.1016/j.ymthe.2020.11.023.
176. Ishikawa, T. Imamura, K. Kondo, T. Koshiba, Y. Hara, S. Ichinose, H. Furujo, M. Kinoshita, M. Oeda, T. Takahashi, J. Takahashi, R. and Inoue, H. Genetic and pharmacological correction of aberrant dopamine synthesis using patient iPSCs with BH4 metabolism disorders // Hum Mol Genet. 2016. Vol. 25, No. 23. pp. 5188-5197. doi: 10.1093/hmg/ddw339.
177. Tsai, S. Q. Zheng, Z. Nguyen, N. T. Liebers, M. Topkar, V. V. Thapar, V. Wyvekens, N. Khayter, C. Iafrate, A. J. Le, L. P. Aryee, M. J. and Joung, J. K. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases // Nat Biotechnol. 2015. Vol. 33, No. 2. pp. 187-197. doi: 10.1038/nbt.3117.
178. Kosicki, M. Tomberg, K. and Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements // Nat Biotechnol. 2018. Vol. 36, No. 8. pp. 765-771. doi: 10.1038/nbt.4192.
179. Hoijer, I. Emmanouilidou, A. Ostlund, R. van Schendel, R. Bozorgpana, S. Tijsterman, M. Feuk, L. Gyllensten, U. den Hoed, M. and Ameur, A. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations // Nat Commun. 2022. Vol. 13, No. 1. Art. 627. doi: 10.1038/s41467-022-28244-5.
180. Cromer, M. K. Barsan, V. V. Jaeger, E. Wang, M. Hampton, J. P. Chen, F. Kennedy, D. Xiao, J. Khrebtukova, I. Granat, A. Truong, T. and Porteus, M. H. Ultra-deep sequencing validates safety of CRISPR/Cas9 genome editing in human hematopoietic stem and progenitor cells // Nat Commun. 2022. Vol. 13, No. 1. Art. 4724. doi: 10.1038/s41467-022-32233-z.
181. Charlesworth, C. T. Deshpande, P. S. Dever, D. P. Camarena, J. Lemgart, V. T. Cromer, M. K. Vakulskas, C. A. Collingwood, M. A. Zhang, L. Bode, N. M. Behlke, M. A. Dejene, B. Cieniewicz, B. Romano, R. Lesch, B. J. Gomez-Ospina, N. Mantri, S. Pavel-Dinu, M. Weinberg, K. I. and Porteus, M. H. Identification of preexisting adaptive immunity to Cas9 proteins in humans // Nat Med. 2019. Vol. 25, No. 2. pp. 249-254. doi: 10.1038/s41591-018-0326-x.
182. Wagner, D. L. Amini, L. Wendering, D. J. Burkhardt, L. M. Akyuz, L. Reinke, P. Volk, H. D. and Schmueck-Henneresse, M. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population // Nat Med. 2019. Vol. 25, No. 2. pp. 242-248. doi: 10.1038/s41591-018-0204-6.
183. Hakim, C. H. Kumar, S. R. P. Perez-Lopez, D. O. Wasala, N. B. Zhang, D. Yue, Y. Teixeira, J. Pan, X. Zhang, K. Million, E. D. Nelson, C. E. Metzger, S. Han, J. Louderman, J. A. Schmidt, F. Feng, F. Grimm, D. Smith, B. F. Yao, G. Yang, N. N. Gersbach, C. A. Chen, S. J. Herzog, R. W. and Duan, D. Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models // Nat Commun. 2021. Vol. 12, No. 1. Art. 6769. doi: 10.1038/s41467-021-26830-7.
184. Li, A. Tanner, M. R. Lee, C. M. Hurley, A. E. De Giorgi, M. Jarrett, K. E. Davis, T. H. Doerfler, A. M. Bao, G. Beeton, C. and Lagor, W. R. AAV-CRISPR Gene Editing Is Negated by Pre-existing Immunity to Cas9 // Mol Ther. 2020. Vol. 28, No. 6. pp. 1432-1441. doi: 10.1016/j.ymthe.2020.04.017.
185. The Royal, Society, National Academy of, Sciences, National Academy of, Medicine, and International Commission on the Clinical Use of Human Germline Genome, Editing // The National Academies Collection: Reports funded by National Institutes of Health. 2020. doi: 10.17226/25665.
186. Dickenson, D. and Darnovsky, M. Did a permissive scientific culture encourage the 'CRISPR babies' experiment? // Nat Biotechnol. 2019. Vol. 37, No. 4. pp. 355-357. doi: 10.1038/s41587-019-0077-3.
187. Howell, Emily L. Kohl, Patrice, Scheufele, Dietram A. Clifford, Sarah, Shao, Anqi, Xenos, Michael A. and Brossard, Dominique. Enhanced threat or therapeutic benefit? Risk and benefit perceptions of human gene editing by purpose and heritability of edits // Journal of Risk Research. 2020. Vol. 25, No. 2. pp. 139155. doi: 10.1080/13669877.2020.1806911.
188. Shinwari, Zabta Khan, Tanveer, Faouzia, and Khalil, Ali Talha. Ethical Issues Regarding CRISPR Mediated Genome Editing // Current issues in molecular biology. 2018. Vol. 26. pp. 103-110.
189. Gaviglio, A. M. Skinner, M. W. Lou, L. J. Finkel, R. S. Augustine, E. F. and Goldenberg, A. J. Gene-targeted therapies: Towards equitable development, diagnosis, and access // Am J Med Genet C Semin Med Genet. 2023. Vol. 193, No. 1. pp. 56-63. doi: 10.1002/ajmg.c.32032.
190. Hampson, G. Towse, A. Pearson, S. D. Dreitlein, W. B. and Henshall, C. Gene therapy: evidence, value and affordability in the US health care system // J Comp Eff Res. 2018. Vol. 7, No. 1. pp. 15-28. doi: 10.2217/cer-2017-0068.
191. Bailey, A. M. Arcidiacono, J. Benton, K. A. Taraporewala, Z. and Winitsky, S. United States Food and Drug Administration Regulation of Gene and Cell Therapies // Adv Exp Med Biol. 2015. Vol. 871. pp. 129. doi: 10.1007/978-3-319-18618-4_1.
192. Evitt, N. H. Mascharak, S. and Altman, R. B. Human Germline CRISPR-Cas Modification: Toward a Regulatory Framework // Am J Bioeth. 2015. Vol. 15, No. 12. pp. 25-29. doi: 10.1080/15265161.2015.1104160.
193. Suzuki, K. Tsunekawa, Y. Hernandez-Benitez, R. Wu, J. Zhu, J. Kim, E. J. Hatanaka, F. Yamamoto, M. Araoka, T. Li, Z. Kurita, M. Hishida, T. Li, M. Aizawa, E. Guo, S. Chen, S. Goebl, A. Soligalla, R. D. Qu, J. Jiang, T. Fu, X. Jafari, M. Esteban, C. R. Berggren, W. T. Lajara, J. Nunez-Delicado, E. Guillen, P. Campistol, J. M. Matsuzaki, F. Liu, G. H. Magistretti, P. Zhang, K. Callaway, E. M. Zhang, K. and Belmonte, J. C. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration // Nature. 2016. Vol. 540, No. 7631. pp. 144-149. doi: 10.1038/nature20565.
194. Sanjana, N. E. Shalem, O. and Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening // Nat Methods. 2014. Vol. 11, No. 8. pp. 783-784. doi: 10.1038/nmeth.3047.
195. Platt, R. J. Chen, S. Zhou, Y. Yim, M. J. Swiech, L. Kempton, H. R. Dahlman, J. E. Parnas, O. Eisenhaure, T. M. Jovanovic, M. Graham, D. B. Jhunjhunwala, S. Heidenreich, M. Xavier, R. J. Langer, R. Anderson, D. G. Hacohen, N. Regev, A. Feng, G. Sharp, P. A. and Zhang, F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling // Cell. 2014. Vol. 159, No. 2. pp. 440-455. doi: 10.1016/j.cell.2014.09.014.
196. Sakr, N. Glazova, O. Shevkova, L. Onyanov, N. Kaziakhmedova, S. Shilova, A. Vorontsova, M. V. and Volchkov, P. Characterizing and Quenching Autofluorescence in Fixed Mouse Adrenal Cortex Tissue // Int J Mol Sci. 2023. Vol. 24, No. 4. Art. 3432. doi: 10.3390/ijms24043432.
197. Mylle, E. Codreanu, M. C. Boruc, J. and Russinova, E. Emission spectra profiling of fluorescent proteins in living plant cells // Plant Methods. 2013. Vol. 9, No. 1. Art. 10. doi: 10.1186/1746-4811-9-10.
198. Yu, Z. Shi, J. Zhang, J. Wu, Y. Shen, R. and Fei, J. Comparative study on the expression characteristics of transgenes inserted into the Gt(ROSA)26Sor and H11 loci in mice // Acta Biochim Biophys Sin (Shanghai). 2024. Vol. 56, No. 11. pp. 1687-1698. doi: 10.3724/abbs.2024081.
199. Chu, V. T. Weber, T. Wefers, B. Wurst, W. Sander, S. Rajewsky, K. and Kuhn, R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells // Nat Biotechnol. 2015. Vol. 33, No. 5. pp. 543-548. doi: 10.1038/nbt.3198.
200. Romanienko, P. J. Giacalone, J. Ingenito, J. Wang, Y. Isaka, M. Johnson, T. You, Y. and Mark, W. H. A Vector with a Single Promoter for In Vitro Transcription and Mammalian Cell Expression of CRISPR gRNAs // PLOS One. 2016. Vol. 11, No. 2. Art. e0148362. doi: 10.1371/journal.pone.0148362.
201. Laster, D. J. Akel, N. S. Hendrixson, J. A. James, A. Crawford, J. A. Fu, Q. Berryhill, S. B. Thostenson, J. D. Nookaew, I. O'Brien, C. A. and Onal, M. CRISPR interference provides increased cell type-specificity compared to the Cre-loxP system. iScience. 2023. Vol. 26, No. 8. Art. 107428. doi: 10.1016/j.isci.2023.107428.
202. Wang, Guangqin, Gu, Yunpeng, and Liu, Zhiyong. Deciphering the genetic interactions between Pou4f3, Gfi1, and Rbm24 in maintaining mouse cochlear hair cell survival. eLife. 2024. Art. RP90025. doi: 10.7554/eLife.90025.3.
203. Watanuki, S. Kobayashi, H. Sugiura, Y. Yamamoto, M. Karigane, D. Shiroshita, K. Sorimachi, Y. Fujita, S. Morikawa, T. Koide, S. Oshima, M. Nishiyama, A. Murakami, K. Haraguchi, M. Tamaki, S. Yamamoto, T. Yabushita, T. Tanaka, Y. Nagamatsu, G. Honda, H. Okamoto, S. Goda, N. Tamura, T. Nakamura-Ishizu, A. Suematsu, M. Iwama, A. Suda, T. and Takubo, K. Context-dependent modification of PFKFB3 in hematopoietic stem cells promotes anaerobic glycolysis and ensures stress hematopoiesis. eLife. 2024. Vol. 12. doi: 10.7554/eLife.87674.
204. Glazova, Olga V. Комплексный подход в разработке генотерапевтического препарата на примере ВДКН/A comprehensive approach to gene therapy medicinal product development using CAH as a model. 2024. URL: https://mipt.ru/institute/departments/dissertatio/soiskateli/bn/glazova-olga-vladimirovna. (Access date: 08.10.2025)
205. Daae, E. Feragen, K. B. Nermoen, I. and Falhammar, H. Psychological adjustment, quality of life, and self-perceptions of reproductive health in males with congenital adrenal hyperplasia: a systematic review // Endocrine. 2018. Vol. 62, No. 1. pp. 3-13. doi: 10.1007/s12020-018-1723-0.
206. Mnif, M. F. Kamoun, M. Mnif, F. Charfi, N. Kallel, N. Ben Naceur, B. Rekik, N. Mnif, Z. Sfar, M. H. Sfar, M. T. Hachicha, M. Keskes, L. A. and Abid, M. Long-term outcome of patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency // Am J Med Sci. 2012. Vol. 344, No. 5. pp. 363-373. doi: 10.1097/MAJ.0b013e31824369e4.
207. Mooij, C. F. Webb, E. A. Claahsen van der Grinten, H. L. and Krone, N. Cardiovascular health, growth and gonadal function in children and adolescents with congenital adrenal hyperplasia // Arch Dis Child. 2017. Vol. 102, No. 6. pp. 578-584. doi: 10.1136/archdischild-2016-311910.
208. Halper, A. Hooke, M. C. Gonzalez-Bolanos, M. T. Vanderburg, N. Tran, T. N. Torkelson, J. and Sarafoglou, K. Health-related quality of life in children with congenital adrenal hyperplasia // Health Qual Life Outcomes. 2017. Vol. 15, No. 1. Art. 194. doi: 10.1186/s12955-017-0769-7.
209. Schroder, M. A. M. and Claahsen-van der Grinten, H. L. Novel treatments for congenital adrenal hyperplasia // Rev Endocr Metab Disord. 2022. Vol. 23, No. 3. pp. 631-645. doi: 10.1007/s11154-022-09717-w.
210. Wang, D. Zhang, F. and Gao, G. CRISPR-Based Therapeutic Genome Editing: Strategies and In Vivo Delivery by AAV Vectors // Cell. 2020. Vol. 181, No. 1. pp. 136-150. doi: 10.1016/j.cell.2020.03.023.
211. Uddin, F. Rudin, C. M. and Sen, T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future // Front Oncol. 2020. Vol. 10. Art. 1387. doi: 10.3389/fonc.2020.01387.
212. Chu, V. T. Weber, T. Graf, R. Sommermann, T. Petsch, K. Sack, U. Volchkov, P. Rajewsky, K. and Kuhn, R. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes // BMC Biotechnol. 2016. Vol. 16, No. 1. Art. 4. doi: 10.1186/s12896-016-0234-4.
213. Yang, D. Song, J. Zhang, J. Xu, J. Zhu, T. Wang, Z. Lai, L. and Chen, Y. E. Identification and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene expression // Sci Rep. 2016. Vol. 6, No. 1. Art. 25161. doi: 10.1038/srep25161.
214. Yu, M. Sun, X. Tyler, S. R. Liang, B. Swatek, A. M. Lynch, T. J. He, N. Yuan, F. Feng, Z. Rotti, P. G. Choi, S. H. Shahin, W. Liu, X. Yan, Z. and Engelhardt, J. F. Highly Efficient Transgenesis in Ferrets Using CRISPR/Cas9-Mediated Homology-Independent Insertion at the ROSA26 Locus // Sci Rep. 2019. Vol. 9, No. 1. Art. 1971. doi: 10.1038/s41598-018-37192-4.
215. Pellenz, S. Phelps, M. Tang, W. Hovde, B. T. Sinit, R. B. Fu, W. Li, H. Chen, E. and Monnat, R. J. Jr. New Human Chromosomal Sites with "Safe Harbor" Potential for Targeted Transgene Insertion // Hum Gene Ther. 2019. Vol. 30, No. 7. pp. 814-828. doi: 10.1089/hum.2018.169.
216. Mao, Z. Bozzella, M. Seluanov, A. and Gorbunova, V. Comparison of nonhomologous end joining and homologous recombination in human cells // DNA Repair (Amst). 2008. Vol. 7, No. 10. pp. 1765-1771. doi: 10.1016/j.dnarep.2008.06.018.
217. Vasquez, K. M. Marburger, K. Intody, Z. and Wilson, J. H. Manipulating the mammalian genome by homologous recombination // Proc Natl Acad Sci U S A. 2001. Vol. 98, No. 15. pp. 8403-8410. doi: 10.1073/pnas.111009698.
218. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway // Annu Rev Biochem. 2010. Vol. 79. pp. 181-211. doi: 10.1146/annurev.biochem.052308.093131.
219. Rothkamm, K. Kruger, I. Thompson, L. H. and Lobrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle // Mol Cell Biol. 2003. Vol. 23, No. 16. pp. 5706-5715. doi: 10.1128/MCB.23.16.5706-5715.2003.
220. Zhao, X. Wei, C. Li, J. Xing, P. Li, J. Zheng, S. and Chen, X. Cell cycle-dependent control of homologous recombination // Acta Biochim Biophys Sin (Shanghai). 2017. Vol. 49, No. 8. pp. 655-668. doi: 10.1093/abbs/gmx055.
221. Sreekanth, V. Zhou, Q. Kokkonda, P. Bermudez-Cabrera, H. C. Lim, D. Law, B. K. Holmes, B. R. Chaudhary, S. K. Pergu, R. Leger, B. S. Walker, J. A. Gifford, D. K. Sherwood, R. I. and Choudhary, A.
Chemogenetic System Demonstrates That Cas9 Longevity Impacts Genome Editing Outcomes // ACS Cent Sci. 2020. Vol. 6, No. 12. pp. 2228-2237. doi: 10.1021/acscentsci.0c00129.
222. Kim, D. Luk, K. Wolfe, S. A. and Kim, J. S. Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases // Annu Rev Biochem. 2019. Vol. 88. pp. 191-220. doi: 10.1146/annurev-biochem-013118-111730.
223. Palaschak, B. Herzog, R. W. and Markusic, D. M. AAV-Mediated Gene Delivery to the Liver: Overview of Current Technologies and Methods // Methods Mol Biol. 2019. Vol. 1950. pp. 333-360. doi: 10.1007/978-1 -4939-913 9-6_20.
224. Sands, M. S. AAV-mediated liver-directed gene therapy // Methods Mol Biol. 2011. Vol. 807. pp. 141157. doi: 10.1007/978-1-61779-370-7_6.
225. Bish, Lawrence T. Sleeper, Meg M. Brainard, Benjamin, Cole, Stephen, Russell, Nicholas, Withnall, Elanor, Arndt, Jason, Reynolds, Caryn, Davison, Ellen, Sanmiguel, Julio, Wu, Di, Gao, Guangping, Wilson, James M. and Lee Sweeney, H. Percutaneous Transendocardial Delivery of Self-complementary Adeno-associated Virus 6 Achieves Global Cardiac Gene Transfer in Canines // Molecular Therapy. 2008. Vol. 16, No. 12. pp. 1953-1959. doi: 10.1038/mt.2008.202.
226. Davies, Melanie, and Hardman, Jonathan. Anaesthesia and adrenocortical disease // Continuing Education in Anaesthesia Critical Care & Pain. 2005. Vol. 5, No. 4. pp. 122-126. doi: 10.1093/bj aceaccp/mki033.
227. Parnaby, C. N. Galbraith, N. and O'Dwyer, P. J. Importance of the adrenal gland blood supply during laparoscopic subtotal adrenalectomy // J Laparoendosc Adv Surg Tech A. 2010. Vol. 20, No. 4. pp. 311315. doi: 10.1089/lap.2009.0361.
228. Reid, C. A. and Lipinski, D. M. Small and Micro-Scale Recombinant Adeno-Associated Virus Production and Purification for Ocular Gene Therapy Applications // Methods Mol Biol. 2018. Vol. 1715. pp. 19-31. doi: 10.1007/978-1-4939-7522-8_2.
229. Frith, Charles H. Lipogenic pigmentation, adrenal cortex, mouse // Endocrine System. 1996. pp. 458462.
230. Parker, George A, and Valerio, Marion G. Lipogenic pigmentation, adrenal cortex, rat // Endocrine System. 1983. pp. 64-66.
231. Walther, T. C. and Farese, R. V. Jr. Lipid droplets and cellular lipid metabolism // Annu Rev Biochem. 2012. Vol. 81, No. 1. pp. 687-714. doi: 10.1146/annurev-biochem-061009-102430.
232. Shen, W. J. Azhar, S. and Kraemer, F. B. Lipid droplets and steroidogenic cells // Exp Cell Res. 2016. Vol. 340, No. 2. pp. 209-214. doi: 10.1016/j.yexcr.2015.11.024.
233. Croce, A. C. and Bottiroli, G. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis // Eur J Histochem. 2014. Vol. 58, No. 4. Art. 2461. doi: 10.4081/ejh.2014.2461.
234. Mochizuki, Yasuhiro, Park, Min Kyun, Mori, Takao, and Kawashima, Seiichiro. The difference in autofluorescence features of lipofuscin between brain and adrenal // Zoological science. 1995. Vol. 12, No. 3. pp. 283-288.
235. Di Guardo, G. Lipofuscin, lipofuscin-like pigments and autofluorescence // Eur J Histochem. 2015. Vol. 59, No. 1. Art. 2485. doi: 10.4081/ejh.2015.2485.
236. Katz, Martin L, and Robison Jr, W Gerald. What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies // Archives of gerontology and geriatrics. 2002. Vol. 34, No. 3. pp. 169-184.
237. Baschong, W. Suetterlin, R. and Laeng, R. H. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM) // J Histochem Cytochem. 2001. Vol. 49, No. 12. pp. 1565-1572. doi: 10.1177/002215540104901210.
238. Whittington, N. C. and Wray, S. Suppression of Red Blood Cell Autofluorescence for Immunocytochemistry on Fixed Embryonic Mouse Tissue // Curr Protoc Neurosci. 2017. Vol. 81, No. 1. pp. 2 28 1-2 28 12. doi: 10.1002/cpns.35.
239. Zhang, J. P. Cheng, X. X. Zhao, M. Li, G. H. Xu, J. Zhang, F. Yin, M. D. Meng, F. Y. Dai, X. Y. Fu, Y. W. Yang, Z. X. Arakaki, C. Su, R. J. Wen, W. Wang, W. T. Chen, W. Choi, H. Wang, C. Gao, G. Zhang, L. Cheng, T. and Zhang, X. B. Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse // Genome Biol. 2019. Vol. 20, No. 1. Art. 276. doi: 10.1186/s13059-019-1907-9.
240. Grabek, A. Dolfi, B. Klein, B. Jian-Motamedi, F. Chaboissier, M. C. and Schedl, A. The Adult Adrenal Cortex Undergoes Rapid Tissue Renewal in a Sex-Specific Manner // Cell Stem Cell. 2019. Vol. 25, No. 2. pp. 290-296 e2. doi: 10.1016/j.stem.2019.04.012.
241. Liu, J. and Moon, Y. A. Simple Purification of Adeno-Associated Virus-DJ for Liver-Specific Gene Expression // Yonsei Med J. 2016. Vol. 57, No. 3. pp. 790-794. doi: 10.3349/ymj.2016.57.3.790.
242. Fonck, C. Su, C. Arens, J. Koziol, E. Srimani, J. Henshaw, J. Van Tuyl, A. Chandra, S. Vettermann, C. and O'Neill, C. A. Lack of germline transmission in male mice following a single intravenous administration of AAV5-hFVIII-SQ gene therapy // Gene Ther. 2023. Vol. 30, No. 7-8. pp. 581-586. doi: 10.1038/s41434-022-00318-5.
243. Favaro, P. Downey, H. D. Zhou, J. S. Wright, J. F. Hauck, B. Mingozzi, F. High, K. A. and Arruda, V. R. Host and vector-dependent effects on the risk of germline transmission of AAV vectors // Mol Ther. 2009. Vol. 17, No. 6. pp. 1022-1030. doi: 10.1038/mt.2009.56.
244. Assaf, B. T. and Whiteley, L. O. Considerations for Preclinical Safety Assessment of Adeno-Associated Virus Gene Therapy Products // Toxicol Pathol. 2018. Vol. 46, No. 8. pp. 1020-1027. doi: 10.1177/0192623318803867.
245. Merke, Deborah P. Auchus, Richard Joseph, Sarafoglou, Kyriakie, Geffner, Mitchell E. Kim, Mimi S. Escandon, Rafael D. Bharucha, Kamal N. Shaywitz, Adam J. Eclov, Rachel, Beard, Clayton W. Fur, Sophie Le, and Bougneres, Pierre F. Design of a Phase 1/2 Open-Label, Dose-Escalation Study of the Safety and Efficacy of Gene Therapy in Adults With Classic Congenital Adrenal Hyperplasia (CAH) Due to 21-hydroxylase Deficiency Through Administration of an Adeno-Associated Virus (AAV) Serotype 5-Based Recombinant Vector Encoding the Human CYP21A2 Gene // Journal of the Endocrine Society. 2021. Vol. 5, No. Supplement_1. pp. A82-A82. doi: 10.1210/jendso/bvab048.165.
246. White, P. C. Emerging treatment for congenital adrenal hyperplasia // Curr Opin Endocrinol Diabetes Obes. 2022. Vol. 29, No. 3. pp. 271-276. doi: 10.1097/MED.0000000000000723.
247. Pharma, BridgeBio // BridgeBio Pharma Reports Topline Results from Phase 1/2 Trial of Investigational Gene Therapy for Congenital Adrenal Hyperplasia (CAH). 2024. URL: https://bridgebio.com/news/bridgebio-pharma-reports-topline-results-from-phase-1-2-trial-of-investigational-gene-therapy-for-congenital-adrenal-hyperplasia-cah/. (Access date: 08.10.2025).
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.