Регуляция экспрессии генов пороформирующих токсинов B. cereus тема диссертации и автореферата по ВАК РФ 03.01.03, кандидат биологических наук Шадрин, Андрей Михайлович

  • Шадрин, Андрей Михайлович
  • кандидат биологических науккандидат биологических наук
  • 2010, Москва
  • Специальность ВАК РФ03.01.03
  • Количество страниц 128
Шадрин, Андрей Михайлович. Регуляция экспрессии генов пороформирующих токсинов B. cereus: дис. кандидат биологических наук: 03.01.03 - Молекулярная биология. Москва. 2010. 128 с.

Оглавление диссертации кандидат биологических наук Шадрин, Андрей Михайлович

СПИСОК СОКРАЩЕНИЙ:.

ОГЛАВЛЕНИЕ:.

ВВЕДЕНИЕ.

1. Токсины Bacillus cereus их регуляторы.

1.1. Микроорганизмы группы В. cereus.

1.2. Токсины бактерий группы В. cereus.

1.2.1. Фосфолипазы.

1.2.2. Энтеротоксины: гемолизин BL. негемолитический энтеротоксин, цитотоксин К и гемолизин II.

1.2.3. Другие гемолизины В. cereus: гемолизин III, цереолизин О.

1.2.4. Мало охарактеризованные токсины: энтеротоксин FM и энтеротоксин ВсеТ

1.3. Регуляторы хромосомных гемолитических факторов патогенности.

1.3.1. PlcR, регулятор фосфолипазы С.

1.3.2. HlyllR, регулятор гемолизина II.

1.3.3. Für, регулятор гомеостаза железа.

1.3.4. Двухкомпонентная редокс чувствительная система ResD-ResE.

1.3.5. Fnr, регулятор восстановления фумарата и нитрата.

1.3.6. FlhA регулирует секрецию НЫ и PC-PLC.

2. Структура РНК-полимеразы прокариот и её транскрипционных комплексов.

2.1. Структура кор-фермента РНКП.

2.2. Структура холофермента.

2.3. Инициация транскрипции. Особенности закрытого комплекса.

2.4. Структура открытого комплекса [67].

2.5. Особенности структуры инициирующего транскрипцию комплекса. Абортивная инициация.

2.6. Элонгационный комплекс [109].

2.7. Структура активного центра фермента.

3. Особенности инициации транскрипции у микроорганизмов рода Bacillus.

3.1. Структурные элементы промоторов.

3.1.1. Базальные «-10» и «-35» элементы.

3.1.2. «-10 удлиненный» элемент.

3.1.3. UP-элемент.

3.1.4. Дискриминатор.

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Регуляция экспрессии генов пороформирующих токсинов B. cereus»

Актуальность темы исследования. По данным организации «European Food Safety Authority» Bacillus cereus является четвертой по распространенности причиной пищевых отравлений. Вид Bacillus cereus входит в состав группы В. cereus, представителями которой являются В. anthracis, вызывающий сибирскую язву; В. thuringiensis, продуцирующий параспоральные кристаллы токсина, действующего на определенные виды насекомых, и, сравнительно недавно охарактеризованный как отдельный психротолерантный вид. В. weihenstephanensis. Бактерии этой группы широко распространены в природе и часто встречаются в почве. Гены, предающие специфические свойства В. anthracis и В. ihuringiensis, локализованы на макроплазмидах. Однако отдельно взятый штамм представителя группы В. cereus может синтезировать до десятка токсинов, гены которых расположены на бактериальной хромосоме. Некоторые из этих токсинов могут вызывать тяжелые отравления у людей, в том числе — со смертельным исходом. Особый интерес вызывают два пороформирующих токсина - гемолизин II и цитотоксин К. Аминокислотная последовательность гемолизина II сходна с последовательностью цитотоксина К (37% идентичности). Оба токсина относятся к семейству Р-складчатых пороформирующих токсинов. К другим представителям этого семейства относят а-гемолизин, лейкоцидины, у-гемолизин Staphylococcus aureus и Р-токсин Clostridium perfringens. Однако регуляция экспрессии генов гемолизина II и цитотоксина К осуществляется независимо. Ген цитотоксина К находится под контролем транскрипционного активатора PlcR, включающего экспрессию большинства токсинов В. cereus по механизму «чувства кворума» («quorum sensing»), в то время как экспрессия гемолизина II репрессируется транскрипционным регулятором HlyllR.

Для того чтобы обеспечить быстрое переключение экспрессии генов в ответ на изменение условий внешней среды, активность РНК-полимеразы строго контролируется. Стадия инициации транскрипции является главным этапом контроля регуляции генной экспрессии. Изучение взаимодействия РНК-нолимеразы с промоторами генов и влияния на это взаимодействие транскрипционных факторов является важнейшей задачей молекулярной биологии, позволяющей определить механизмы реализации информации, заложенной в геноме организма. Большинство накопленных к настоящему времени данных, описывающих инициацию транскрипции, базируются на результатах, полученных на моделях РНК-полимераз Е. coli и Thermus thermophilus, молекулы которых имеют ряд существенных структурных и функциональных отличий от РНК-полимераз микроорганизмов группы В. cereus. Понимание механизмов регуляции экспрессии, в особенности, генов токсинов Bacillus cereus и детальное изучение взаимодействия РНК-полимеразы с их промоторами, несомненно, представляют интерес для молекулярной биологии. Актуальность исследования регуляции генов токсинов бактерий рода Bacillus не вызывает сомнений. Более того, впоследствии, результаты исследований могут послужить основой для создания новых лекарственных препаратов используемых при терапии инфекционных заболеваний. Цели и задачи исследования:

Целью данной работы являлось изучение особенностей механизма регуляции генов пороформирующих токсинов гемолизина II и цптотоксина К у микроорганизмов группы В. cereus. Для достижения этой цели были поставлены следующие задачи:

1) Оценить разнообразие и особенности распределения аллелей генов цитотоксина К, гемолизина II и его транскрипционного регулятора hlyTIR в большой популяции штаммов В. cereus, выделенных из различных природных источников.

2) Охарактеризовать взаимодействие РНК-полимеразы с промоторами генов гемолизина II, цитотоксина К,plcR и papR.

3) Определить для генов цитотоксина К и гемолизина II этапы инициации транскрипции, на которые влияют HlyllR и PlcR.

Научная новизна работы. Впервые определены частоты встречаемости аллелей генов цитотоксина К, гемолизина II и его транскрипционного репрессора HlyllR у 40 штаммов группы В. cerens, выделенных на территории стран СНГ. На модели В. subtilis установлено что, в случае отсутствия контроля экспрессии гена гемолизина II регулятором HlyllR, гемолитическая активность, наблюдаемая в культуре клеток, увеличивается в 200 раз, что в не менее чем в 5 раз превышает гемолитическую активность родительского штамма В. cereus ВКМ В-771. Впервые детально охарактеризованы комплексы, формируемые РНК-полимеразой в ходе инициации транскрипции на промоторах генов гемолизина II, цитотоксина К, plcR и papR. Впервые определены стадии инициации транскрипции, на которые оказывают влияние HlyllR и PlcR для промоторов генов гемолизина II, цитотоксина К, plcR и papR. Научно-практическая значимость работы. Представленная работа является частью серии работ, направленной на исследование регуляции инициации транскрипции у грамм-положительных микроорганизмов. Используемый в данной работе метод стабилизации открытого комплекса с помощью нуклеотидов позволяет четко отслеживать механизм инициации транскрипции для промоторов с коротким (несколько секунд) временем полураспада открытого комплекса. Предложенный вариант анализа полиморфизма длин рестрикционпых фрагментов гена цитотоксина К может быть использован при разработке тест-систем, позволяющих детектировать штаммы, несущие смертельно опасный для человека аллель cytKl гена цитотоксина К. При моделировании регуляции экспрессии гена гемолизина II был создан штамм В. subtilis - суперпродуцент гемолизина II, который может послужить прототипом для суперпродуцентов других пороформирующих токсинов. Полученные в ходе данного исследования результаты имеют несомненное практическое значение и могут с успехом найти применение, как в медицинской диагностике, так и послужить основой для дальнейших научных исследований регуляции экспрессии генов Bacillus cereus.

I. ОБЗОР ЛИТЕРАТУРЫ

Похожие диссертационные работы по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Шадрин, Андрей Михайлович

ВЫВОДЫ:

1. Определены частоты встречаемости генов cytK, hlyll, hlyllR среди 40 природных изолятов бактерий группы Bacillus cereus и описан полиморфизм генов токсинов. Показано, что близкими ПДРФ типами генов обладают штаммы из одних и тех же фингерпринтных кластеров. Ген hlyllR встречается только совместно с геном гемолизина II.

2. Выявлено, что гемолизин II - доминирующий гемолитический фактор Bacillus cereus, в отсутствии HlyllR.

3. Обнаружена группа близкородственных микроорганизмов В. cereus и В. thuringiensis несущих аллель гена гемолизина II с делецией двух регуляторных элементов промотора: с /¿-активирующего UP-элемента и оператора для HlyllR.

4. Охарактеризованы транскрипционные комплексы, формируемые на промоторах гемолизина II, содержащие РНК-ДНК гетеродуплексы длиной 2, 7 и 12 пн.

5. Установлено, что для открытых комплексов, образующихся на промоторах генов hlyll, cytK,plcR и papR В. cereus, характерен малый период полураспада.

6. Для промоторов генов cytK, plcR, papR и hlyll определены стадии инициации транскрипции, на которые оказывают влияние регуляторы PlcR и HlyllR.

Список литературы диссертационного исследования кандидат биологических наук Шадрин, Андрей Михайлович, 2010 год

1. Rasko D.A., Altherr M.R., Han C.S. Ravel J., Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev, 2005. 29(2): p. 303-29.

2. Di Franco C., Beccari E., Santini Т., Pisaneschi G. Tecce G., Colony shape as a genetic trait in the pattern-forming Bacillus mycoides. BMC Microbiol, 2002. 2: p. 33.

3. Nakamura L.K., Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol, 1998. 48 Pt 3: p. 1031-5.

4. Lechner S., Mayr R., Francis K.P., Pruss B.M., Kaplan Т., Wiessner-Gunkel E., Stewart G.S. Schcrer S., Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol. 1998. 48 Pt 4: p. 1373-82.

5. Ко K.S., Kim J.W., Kim J.M., Kim W. Chung S.I., Kim I.J. Kook Y.H., Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR Gene. Infect Immun. 2004. 72(9): p. 5253-61.

6. Priest F.G., Barker M., Baillie L.W., Holmes E.C. Maiden M.C., Population structure and evolution of the Bacillus cereus group. J Bacteriol, 2004. 186(23): p. 7959-70.

7. Slamti L. Lereclus D., A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. Embo J, 2002. 21(17): p. 4550-9.

8. Michelet N G.P., Mahillon J, Bacillus cereus enterotoxins, hi- and tri-component cytolysins, and other hemolysins, in The Comprehensive Sourcebook of Bacterial Protein Toxins, Alouf J P.M., Editor. 2006, Elsevier, p. 1072.

9. Dorland, Dorland's Medical Dictionary. 2007: Elsiver. 2208.

10. Beecher D.J. Macmillan J.D., Characterization of the components of hemolysin BL from Bacillus cereus. Infect Imraun, 1991. 59(5): p. 1778-84.

11. Lund T. Granum P.E., Characterisation of a non-hacmolytic enterotoxin complex from Bacillus cereus isolated after afoodborne outbreak. FEMS Microbiol Lett, 1996. 141(2-3): p. 151-6.

12. Granum P.E., O'Sullivan K. Lund T., The sequence of the non-haemolytic enterotoxin operonfrom Bacillus cereus. FEMS Microbiol Lett, 1999. 177(2): p. 225-9.

13. Lund T., De Buyser M.L. Granum P.E., A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol, 2000. 38(2): p. 254-61.

14. Tran S.L., Guillemet E., Ngo-Camus M., Clybomv C., Puhar A., Moris A., Gohar M., Lereclus D. Ramarao N., Haemolysin II is a Bacillus cereus virulence factor that induces apoptosis of macrophages. Cell Microbiol, 2010.

15. Fagerlund A., Ween O., Lund T., Hardy S.P. Granum P.E., Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology, 2004. 150(Pt 8): p. 268997.

16. Andreeva Z.I., Nesterenko V.F., Fomkina M.G., Ternovsky V.I., Suzina N.E., Bakulina A.Y., Solonin A.S. Sineva E.V., The properties of Bacillus cereus hemolysin II pores depend on environmental conditions. Biochim Biophys Acta, 2007.1768(2): p. 253-63.

17. Beecher D.J., Schoeni J.L. Wong A.C., Enterotoxic activity of hemolysin BLfrom Bacillus cereus. Infect Immun, 1995. 63(11): p. 4423-8.

18. Guinebretiere M.H., Broussolle V. Nguyen-The C., Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol, 2002. 40(8): p. 3053-6.

19. Stentors L.P., Mayr R., Scherer S. Granum P.E., Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol Lett, 2002. 215(1): p. 47-51.

20. Granum P.E. Lund T., Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett, 1997.157(2): p. 223-8.

21. Lindback T., Fagerlund A., Rodland M.S. Granum P.E., Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology, 2004. 150(Pt 12): p. 3959-67.

22. Beecher D.J. Wong A.C., Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. .T Biol Chem, 1997. 272(1): p. 233-9.

23. Gohar M., Okstad O.A., Gilois N., Sanchis V., Kolsto A.B. Lereclus D., Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics, 2002. 2(6): p. 784-91.

24. Lund T. Granum P.E., Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology, 1997.143 ( Pt 10): p. 3329-36.

25. Sinev M.A., Budarina Zh I., Gavrilenko I.V., Tomashevskii A. Kuz'min N.P., Evidence of the existence of hemolysin IIfrom Bacillus cereus: cloning the genetic determinant of hemolysin II. Mol Biol (Mosk), 1993. 27(6): p. 1218-29.

26. Budarina Z.I., Sinev M.A., Mayorov S.G., Tomashevski A.Y., Shmelev I.V. Kuzmin N.P., Hemolysin II is more characteristic of Bacillus thuringiensis than Bacillus cereus. Arch Microbiol, 1994. 161(3): p. 252-7.

27. Gouaux E., Hobaugh M. Song L., alpha-Hemolysin, gamma-hemolysin, and leukocidin from Staphylococcus aureus: distant in sequence but similar in structure. Protein Sci, 1997. 6(12): p. 2631-5.

28. Baida G.E. Kuzmin N.P., Cloning and primary structure of a new hemolysin gene from Bacillus cereus. Biochim Biophys Acta, 1995. 1264(2): p. 151-4.

29. Baida G.E. Kuzmin N.P., Mechanism of action of hemolysin IIIfrom Bacillus cereus. Biochim Biophys Acta, 1996. 1284(2): p. 122-4.

30. Palmer M., The family of thiol-activated, cholesterol-binding cytolysins. Toxicon, 2001. 39(11): p. 1681-9.

31. AgataN., Ohta M., Arakawa Y. Mori M., The bceT gene of Bacillus cereus encodes an enterotoxicprotein. Microbiology, 1995. 141 ( Pt 4): p. 983-8.

32. Hansen B.M., Hoiby P.E., Jensen G.B. Hendriksen N.B., The Bacillus cereus bceT enterotoxin sequence reappraised. FEMS Microbiol Lett, 2003. 223(1): p. 21-4.

33. Agaisse H., Gominet M., Okstad O.A., Kolsto A.B. Lereclus D., PlcR is apleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol, 1999. 32(5): p. 1043-53.

34. Gohar M., Faegri K., Perchât S. Ravnum S., Okstad O.A., Gominet M., Kolsto A.B. Lereclus D., The PlcR virulence regulon of Bacillus cereus. PLoS One, 2008. 3(7): p. e2793.

35. Callegan M.C., Kane S.T., Cochran D.C. Gilmorc M.S., Gominet M. Lereclus D., Relationship of plcR-regulatedfactors to Bacillus endophthalmitis virulence. Infect Immun, 2003. 71(6): p. 3116-24.

36. Pomerantsev A.P., Pomerantseva O.M., Camp A.S., Mukkamala R., Goldman S. Leppla S.H., PapR peptide maturation: role of the NprB protease in Bacillus cereus 569 PlcRJPapR global gene regulation. FEMS Immunol Med Microbiol, 2009. 55(3): p. 361-77.

37. Bouillaut L., Perchât S., Arold S., Zorrilla S., Slamti L., Henry C., Gohar M. Declerck N. Lereclus D., Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res, 2008. 36(11): p. 3791-801.

38. Gominet M„ Slamti L., Gilois N., Rose M. Lereclus D., Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol, 2001. 40(4): p. 963-75.

39. Slamti L. Lereclus D., Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J Bacteriol, 2005. 187(3): p. 1182-7.

40. Kovalevskiy O.V., Lebedev A.A., Surin A.K., Solonin A.S. Antson A.A., Crystal structure of Bacillus cereus HlyllR. a transcriptional regulator of the gene for pore-forming toxin hemolysin II. J Mol Biol, 2007. 365(3): p. 825-34.

41. Baichoo N. Helmann J.D., Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol, 2002.184(21): p. 5826-32.

42. Carpenter B.M., Whitmire J.M. Merrell D.S., This is not your mother's repressor: the complex role of fur in pathogenesis. Infect Immun, 2009. 77(7): p. 2590-601.

43. Bsat N. Helmann J.D., Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J Bacteriol, 1999. 181(14): p. 4299-307.

44. Harvie D.R., Vilchez S., Steggles J.R. Ellar D.J., Bacillus cereus Fur regulates iron metabolism and is required for full virulence. Microbiology, 2005. 151(Pt 2): p. 569-77.

45. Родикова E.A. Регуляция транскрипции гена гемолизина IIBacillus cereus : диссертация . кандидата биологических наук : 03.00.03. 2007, Пущино. 112 с.

46. Esbelin J., Armengaud J., Zigha A. Duport C., ResDE-dependent regulation of enterotoxin gene expression in Bacillus cereus: evidence for multiple modes of binding for ResD and interaction with Fnr. J Bacteriol, 2009. 191(13): p. 4419-26.

47. Esbelin J., Jouanneau Y., Armengaud J. Duport C., ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus. J Bacteriol, 2008. 190(12): p. 4242-51.

48. Messaoudi K., Clavel T., Schmitt P. Duport C., Fnr mediates carbohydrate-dependent regulation of catabolic and enterotoxin genes in Bacillus cereus F4430/73. Res Microbiol, 2010. 161(1): p. 30-9.

49. Zhang G., Campbell E.A., Minakhin L., Richter C., Severinov K. Darst S.A., Crystal structure ofThermus aquaticus core RNA polymerase at 3.3 A resolution. Cell, 1999. 98(6): p. 811-24.

50. Murakami K.S., Masuda S., Campbell E.A., Muzzin O. Darst S.A., Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science, 2002. 296(5571): p. 1285-90.

51. Murakami K.S., Masuda S. Darst S.A., Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science, 2002. 296(5571): p. 1280-4.

52. Vassylyev D.G., Sekinc S., Laptenko O., Lee J., Vassylyeva M.N., Borakhov S. Yokoyama S., Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature, 2002. 417(6890): p. 712-9.

53. Vassylyev D.G., Vassylyeva M.N., Perederina A., Tahirov T.H. Artsimovitch I., Structural basis for transcription elongation by bacterial RNA polymerase. Nature, 2007. 448(7150): p. 157-62.

54. Vassylyev D.G., Vassylyeva M.N., Zhang J., Palangat M., Artsimovitch I. Landick R., Structural basis for substrate loading in bacterial RNA polymerase. Nature, 2007. 448(7150): p. 163-8.

55. Sousa R., Chung Y.T., Rose J.P. Wang B.C., Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature, 1993. 364(6438): p. 593-9.

56. Jeruzalmi D. Steitz T.A., Structure ofT7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme. Embo J, 1998.17(14): p. 4101-13.

57. Cheetham G.M. Steitz T.A., Structure of a transcribing T7 RNA polymerase initiation complex. Science, 1999. 286(5448): p. 2305-9.

58. Cheetham G.M., Jeruzalmi D. Steitz T.A., Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature, 1999. 399(6731): p. 80-3.

59. Tahirov T.H., Temiakov D., Anikin M., Patlan V., McAllister W.T., Vassylyev D.G. Yokoyama S., Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature, 2002. 420(6911): p. 43-50.

60. Cramer P., Bushnell D.A. Kornberg R.D., Structural basis of transcription: RNA polymerase Ilat 2.8 angstrom resolution. Science, 2001. 292(5523): p. 1863-76.

61. Gnatt A.L., Cramer P., Fu J., Bushnell D.A. Kornberg R.D., Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science, 2001. 292(5523): p. 1876-82.

62. Naryshkin N., Revyakin A., Kim Y., Mekler V. Ebright R.H., Structural organization of the RNA polymerase-promoter open complex. Ceil, 2000. 101(6): p. 601-11.

63. Korzheva N., Mustaev A., Kozlov M., Malhotra A., Nikiforov V., Goldfarb A. Darst S.A., A structural model of transcription elongation. Science, 2000. 289(5479): p. 619-25.

64. Darst S.A., Bacterial RNA polymerase. Curr Opin Struct Biol, 2001.11(2): p. 155-62.

65. Campbell E.A., Korzheva N., Mustaev A., Murakami K., Nair S., Goldfarb A. Darst S.A., Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell, 2001.104(6): p. 901-12.

66. Allison L.A., Moyle M., Shales M. Ingles C.J., Extensive homology among the largest subunits ojeukaryotic andprokaryotic RNA polymerases. Cell, 1985. 42(2): p. 599-610.

67. Borukhov S. Nudler E., RNA polymerase: the vehicle of transcription. Trends Microbiol, 2008.16(3): p. 126-34.

68. Ghosh P., Ishihama A. Chatterji D., Escherichia coli RNA polymerase subunit omega and its N-terminal domain bind full-length beta' to facilitate incorporation into the alpha2beta subassembly. Eur J Biochem, 2001. 268(17): p. 4621-7.

69. Darst S.A., OpalkaN., Chacon P., Polyakov A., Richter C., Zhang G. Wriggers W., Conformational flexibility of bacterial RNA polymerase. Proc Natl Acad Sei USA, 2002. 99(7): p. 4296-301.

70. Nudler E., RNA polymerase active center: the molecular engine of transcription. Annu Rev Biochem, 2009. 78: p. 335-61.

71. Nikiforov V.G., The RNA polymerase structure-activity studies (1962-2001). Mol Biol (Mosk), 2002. 36(2): p. 197-207.

72. Borukhov S. Nudler E., RNA polymerase holoenzyme: structure, function and biological implications. Curr Opin Microbiol, 2003. 6(2): p. 93-100.

73. Artsimovitch I., Svetlov V., Murakami K.S. Landick R., Co-overexpression of Escherichia coli RNA polymerase subimits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J Biol Chem, 2003. 278(14): p. 12344-55.

74. Naryshkina T., Kuznedelov K. Severinov K., The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid. J Mol Biol, 2006. 361(4): p. 634-43.

75. Severinov K.V., Interactions of DNA-dependent bacterial RNA polymerase with promoters. Mol Biol (Mosk). 2007. 41(3): p. 423-32.

76. Ederth J., Artsimovitch I., Isaksson L.A. Landick R., The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing. J Biol Chem, 2002. 277(40): p. 37456-63.

77. Wigneshweraraj S.R., Burrows P.C., Nechaev S., Zenkin N., Severinov K. Buck M., Regulated communication between the upstream face of RNA polymerase and the beta' subunit jaw domain. Embo J, 2004. 23(21): p. 4264-74.

78. Murakami K.S. Darst S.A., Bacterial RNA polymerases: the wholo story. Curr Opin Struct Biol, 2003.13(1): p. 31-9.

79. Zenkin N., Kulbachinskiy A., Yuzenkova Y., Mustaev A., Bass I., Severinov K. Brodolin K., Region 1.2 of the RNA polymerase sigma subunit controls recognition of the -10 promoter element. Embo J, 2007. 26(4): p. 955-64.

80. Craig M.L., Suh W.C. Record M.T., Jr., HO. and DNase I probing of E sigma 70 RNA polymerase—lambda PR promoter open complexes: Mg2+ binding and its structural consequences at the transcription start site. Biochemistry, 1995.34(48): p. 15624-32.

81. Schickor P., Metzger W., Werel W., Lederer H. Heumann H., Topography of intermediates in transcription initiation ofE.coli. Embo J, 1990. 9(7): p. 2215-20.

82. Spassky A., Kirkegaard K. Buc H., Changes in the DNA structure of the lac UV5 promoter during formation of an open complex with Escherichia coli RNA polymerase. Biochemistry, 1985. 24(11): p. 2723-31.

83. Ozoline O.N. Tsyganov M.A., Structure of open promoter complexes with Escherichia coli RNA polymerase as revealed by the DNase Ifootprinting technique: compilation analysis. Nucleic Acids Res, 1995. 23(22): p. 4533-41.

84. Haugen S.P., Ross W. Gourse R.L., Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat Rev Microbiol, 2008. 6(7): p. 507-19.

85. Hsu L.M., Promoter clearance and escape in prokaryotes. Biochim Biophys Acta, 2002. 1577(2): p. 191-207.

86. Kapanidis A.N., Margeat E., Ho S.O. Kortkhonjia E., Weiss S. Ebright R.H., Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science, 2006. 314(5802): p. 1144-7.

87. Revyakin A., Liu C., Ebright R.H. Strick T.R., Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science, 2006. 314(5802): p. 1139-43.

88. Vassylyeva M.N., Svetlov V., Dearborn A.D., Klyuyev S., Artsimovitch I. Yassylyev D.G., The carboxy-terminal coiled-coil of the RNA polymerase beta'-subunit is the main binding site for Gre factors. EMBO Rep, 2007. 8(11): p. 1038-43.

89. Gelles J. Landick R., RNA polymerase as a molecular motor. Cell, 1998. 93(1): p. 13-6.

90. Spirin A.S., RNA polymerase as a molecular machine. Mol Biol (Mosk), 2002. 36(2): p. 208-15.

91. Lewin B., Genes VIII. 2004: Benjamin Cummings. 1056.

92. I-Ielmann J.D., Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res, 1995. 23(13): p. 2351-60.

93. Voskuil M.I., Voepel K. Chambliss G.H., The -16 region, a vital sequence for the utilization of a promoter in Bacillus subtilis and Escherichia coli. Mol Microbiol, 1995.17(2): p. 271-9.

94. Camacho A. Salas M., Effect of mutations in the "extended -10" motif of three Bacillus subtilis sigmaA-RNA polymerase-dependentpromoters. J Mol Biol, 1999. 286(3): p. 683-93.

95. Voskuil M.I. Chambliss G.H., The -16 region of Bacillus subtilis and other gram-positive bacterial promoters. Nucleic Acids Res, 1998. 26(15): p. 3584-90.

96. Voskuil M.I. Chambliss G.H., The TRTGn motif stabilizes the transcription initiation open complex. J Mol Biol, 2002. 322(3): p. 521-32.

97. Ozoline O.N., Fujita N. Ishihama A., Transcription activation mediated by the carboxyl-terminal domain of the RNA polymerase alpha-subunit. Multipoint monitoring using a fluorescent probe. J Biol Chem, 2000. 275(2): p. 1119-27.

98. Ross W., Thompson J.F. Newlands J.T. Gourse R.L., E.coli Fisprotein activates ribosomal RNA transcription in vitro and in vivo. Embo J, 1990. 9(11): p. 3733-42.

99. Ross W., Gosink K.K., Salomon J. Igarashi K., Zou C., Ishihama A. Severinov K. Gourse R.L., A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science, 1993. 262(5138): p. 1407-13.

100. Browning D.F. Busby S .J., The regulation of bacterial transcription initiation. Nat Rev Microbiol, 2004. 2(1): p. 57-65.

101. Ross W. Gourse R.L., Sequence-independent upstream DNA-alphaCTD interactions strongly stimulate Escherichia coli RNA polymerase-lacUV5promoter association. Proc Natl Acad Sci USA, 2005.102(2): p. 291-6.

102. Davis C.A., Capp M.W., Record M.T., Jr. Saecker R.M., The effects of upstream DNA on open complex formation by Escherichia coli RNA polymerase. Proc Natl Acad Sci USA, 2005. 102(2): p. 285-90.

103. Estrem S.T., Gaal T., Ross W. Gourse R.L., Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci USA, 1998. 95(17): p. 9761-6.

104. Katayama S., Matsushita O., Jung C.M., Minami J. Okabe A., Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. Embo J, 1999.18(12): p. 3442-50.

105. Gourse R.L., Ross W. Gaal T., UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol, 2000. 37(4): p. 687-95.

106. Haugen S.P., Berkmen M.B., Ross W., Gaal T., Ward C. Gourse R.L., rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell, 2006. 125(6): p. 1069-82.

107. Haugen S.P., Ross W., Manrique M. Gourse R.L., Fine structure of the promoter-s igma region 1.2 interaction. Proc Natl Acad Sci USA, 2008.105(9): p. 3292-7.

108. Graves M.C. Rabinowitz J.C., In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for "extended" promoter elements in gram-positive organisms. J Biol Chem, 1986. 261(24): p. 11409-15.

109. Zaman Z., Ansari A.Z., Gaudreau L., Nevado J. Ptashne M., Gene transcription by recruitment. Cold Spring Harb Symp Quant Biol, 1998. 63: p. 167-71.

110. Helmann J.D., Purification of Bacillus subtilis RNA polymerase and associatedfactors. Methods Enzymol, 2003. 370: p. 10-24.

111. Hyde E.I., Hilton M.D. Whiteley H.R., Interactions of Bacillus subtilis RNA polymerase with subunits determining the specificity of initiation. Sigma and delta peptides can bind simultaneously to core. J Biol Chem, 1986. 261(35): p. 16565-70.

112. Lopez de Saro F.J., YoshikawaN. Helmann J.D., Expression, abundance, and RNA polymerase binding properties of the delta factor of Bacillus subtilis. J Biol Chem, 1999. 274(22): p. 15953-8.

113. Borukhov S. Severinov K., Role of the RNA polymerase sigma subunit in transcription initiation. Res Microbiol, 2002.153(9): p. 557-62.

114. Artsimovitch I., Svetlov V., Anthony L., Burgess R.R. Landick R., RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J Bacteriol, 2000.182(21): p. 6027-35.

115. RojcrF., Nuez B., Mencia M. Salas M., The main early and late promoters of Bacillussubtilis phage phi 29 form unstable open complexes with sigma A-RNA polymerase that arecstabilized by DNA supercoiling. Nucleic Acids Res, 1993.21(4): p. 935-40.

116. Whipple F.W. Sonenshein A.L., Mechanism of initiation of transcription by Bacillus subtilis RNA polymerase at several promoters. J Mol Biol, 1992. 223(2): p. 399-414.

117. Nechaev S., Chlenov M. Severinov K., Dissection of two hallmarks of the open promoter complex by mutation in an RNA polymerase core submit. J Biol Chem, 2000. 275(33): p. 2551622.

118. Bartlett M.S., Gaal T., Ross W. Gourse R.L., RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn PI promoters. J Mol Biol, 1998. 279(2): p. 331-45.

119. Severinov K. Darst S.A., A mutant RNA polymerase that forms unusual open promoter complexes. ProcNatl Acad Sci USA, 1997. 94(25): p. 13481-6.

120. Zhou Y.N. Jin D.J., The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like "stringent" RNA polymerases in Escherichia coli. Proc Natl Acad Sci USA, 1998. 95(6): p. 2908-13.

121. Buc H. McClure W.R., Kinetics of open complex formation between Escherichia coli RNA polymerase and the lac UV5 promoter. Evidence for a sequential mechanism involving three steps. Biochemistry, 1985. 24(11): p. 2712-23.

122. Straney D.C. Crothers D.M., A stressed intermediate in the formation of stably initiated RNA chains at the Escherichia coli lac UV5promoter. J Mol Biol, 1987. 193(2): p. 267-78.

123. Brunner M. Bujard H., Promoter recognition and promoter strength in the Escherichia coli system. Embo J, 1987. 6(10): p. 3139-44.

124. Knaus R. Bujard H., PL of coliphage lambda: an alternative solution for an efficient promoter. Embo J, 1988. 7(9): p. 2919-23.

125. Ramos J.L., Martinez-Bueno M., Molina-Henares A.J., Teran W., Watanabe K., Zhang X., Gallegos M.T., Brennan R. Tobes R., The TetR family of transcriptional repressors. Microbiol Mol Biol Rev, 2005. 69(2): p. 326-56.

126. Martin R.G., Gillette W.K., Martin N.I. Rosner J.L., Complex formation between activator and RNA polymerase as the basis for transcriptional activation by Mar A and SoxS in Escherichia coll Mol Microbiol, 2002. 43(2): p. 355-70.

127. Brown N.L., Stoyanov J.V., Kidd S.P. Hobman J.L., The MerR family of transcriptional regulators. FEMS Microbiol Rev, 2003. 27(2-3): p. 145-63.

128. Schlax P. J., Capp M.W. Record M.T., Jr., Inhibition of transcription initiation by lac repressor. J Mol Biol, 1995. 245(4): p. 331-50.

129. Straney S.B. Crothers D.M., Lac repressor is a transient gene-activating protein. Cell, 1987. 51(5): p. 699-707.

130. Lee J. Goldfarb A., lac repressor acts by modifying the initial transcribing complex so that it cannot leave the promoter. Cell, 1991. 66(4): p. 793-8.

131. Smith T.L. Sauer R.T., Dual regulation of open-complex formation and promoter clearance by Arc explains a novel repressor to activator switch. Proc Natl Acad Sci USA, 1996. 93(17): p. 8868-72.

132. Monsalve M., Calles B., Mencia M., Salas M. Rojo F., Transcription activation or repression by phage psi 29 protein p4 depends on the strength of the RNA polymerase-promoter interactions. Mol Cell, 1997.1(1): p. 99-107.

133. Cheng Y., Dylla S.M. Turnbough C.L., Jr., A long T. A tract in the upp initially transcribed region is requiredfor regulation of upp expression by UTP-dependent reiterative transcription in Escherichia coli. J Bacteriol, 2001.183(1): p. 221-8.

134. Yarnell W.S. Roberts J.W., The phage lambda gene Q transcription antiterminator binds DNA in the late gene promoter as it modifies RNA polymerase. Cell, 1992. 69(7): p. 1181-9.

135. Ausubel F.M., Current Protocols in Molecular Biology ed. Ausubel FM B.R., Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K 2003, New York: John Wiley & Sons. 5300.

136. Reyes-Ramirez A. Ibarra J.E., Fingerprinting of Bacillus thuringiensis type strains and isolates by using Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis. Appl Environ Microbiol, 2005. 71(3): p. 1346-55.

137. Joseph Sambrook D.R., Molecular cloning — laboratory manual. 2001, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. 999.

138. Van de Peer Y. De Wachter R., TREECONfor Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci, 1994.10(5): p. 569-70.

139. Nei M. Li W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979. 76(10): p. 5269-73.

140. Saitou N. Nei M., The neighbor-joining method: a new method for reconstructing phylogenetic trees Mol Biol Evol, 1987. 4(4): p. 406-25.

141. Michel E., Reich K.A., Favier R., Berche P. Cossart P., Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol Microbiol, 1990. 4(12): p. 2167-78.

142. Bhavsar A.P., Zhao X. Brown E.D., Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant. Appl Environ Microbiol, 2001. 67(1): p. 403-10.

143. Baida G., Budarina Z.I., Kuzmin N.P. Solonin A.S., Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol Lett, 1999.180(1): p. 7-14.

144. Borukhov S. Goldfarb A., Recombinant Escherichia coli RNA polymerase: purification of individually overexpressed subunits and in vitro assembly. Protein Expr Purif, 1993. 4(6): p. 503-11.

145. Tang H., Kim Y., Severinov K., Goldfarb A. Ebright R.H., Escherichia coli RNA polymerase holoenzyme: rapid reconstitution from recombinant alpha, beta, beta', andsigma subunits. Methods Enzymol, 1996. 273: p. 130-4.

146. Zeigler, Bacillus Genetic Stock Center Catalog of Strains. Seventh Edition ed. Vol. Volume 4: Integration Vectors for Gram-Positive Organisms. 2002. 56.

147. Guinebretiere M.H., Fagerlund A., Granum P.E. Nguyen-The C., Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel duplex PCR system. FEMS Microbiol Lett, 2006. 259(1): p. 74-80.

148. Kovalevskii O.V., Antson A. A. Solonin A.S., Contraction of the disordered loop located within C-terminal domain of the transcriptional regulator HlyllR causes its structural rearrangement. Mol Biol (Mosk), 2009. 43(1): p. 126-35.

149. Borukhov S., Sagitov V., Josaitis C.A., Gourse R.L. Goldfarb A. Two modes of transcription initiation in vitro at the rmB PI promoter of Escherichia coli. J Biol Chem, 1993. 268(31): p. 23477-82.1. Благодарности:

150. Я искренне благодарен своим научным руководителям Константину Викторовичу Северинову и Александру Сергеевичу Солонину за мудрое руководство и помощь при выполнении данной работы.

151. Я признателен оппонентам и рецензентам за критические замечания и обсуждение работы.

152. Также я хочу выразить особую признательность JI.C. Грабовской за помощь и поддержку в оформлении огромного количества документов сопутствующих защите кандидатской диссертации.

153. Особую благодарность выражаю своей маме Нине Павловне Шадриной за многолетнюю поддержку, помощь и сопереживание.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.