Рекомбинантные миниантитела человека в формате scFv к энтеротоксину A стафилококков: получение и характеристика тема диссертации и автореферата по ВАК РФ 03.01.03, кандидат биологических наук Фурсова, Ксения Константиновна

  • Фурсова, Ксения Константиновна
  • кандидат биологических науккандидат биологических наук
  • 2013, ПущиноПущино
  • Специальность ВАК РФ03.01.03
  • Количество страниц 132
Фурсова, Ксения Константиновна. Рекомбинантные миниантитела человека в формате scFv к энтеротоксину A стафилококков: получение и характеристика: дис. кандидат биологических наук: 03.01.03 - Молекулярная биология. Пущино. 2013. 132 с.

Оглавление диссертации кандидат биологических наук Фурсова, Ксения Константиновна

ВВЕДЕНИЕ

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Энтеротоксины стафилококков

1.1.1. Стафилококки - условно-патогенные микроорганизмы

1.1.2. Энтеротоксины стафилококков

1.1.3. Молекулярная структура стафилококкового энтеротоксина А

1.1.4. Механизм действия энтеротоксинов стафилококков

1.1.5. Методы молекулярной детекции стафилококковых энтеротоксинов

1.2. Антитела

1.2.1. Структура иммуноглобулинов

1.2.2. Разнообразие форматов антител

1.2.3. Методы и технологии получения бсЕу

1.2.4. Экспрессия бсГу

1.2.5. Применение антител

1.3. Продукция рекомбинантных белков в клетках Е.соИ

1.3.1. Основные аспекты рефолдинга

1.3.2. Выделение телец включения

1.3.3. Способы рефолдинга белка

1.3.4. Добавки при рефолдинге

1.3.5. Вклад дисульфидных связей в белковый фолдинг

ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Материалы исследования

2.2. Методы

2.2.1. Аффинная селекция миниантител из фаговой библиотеки

2.2.2. Скрининг индивидуальных продуцентов из фаговой библиотеки

2.2.3. Выделение фаговых частиц

2.2.4. ИФА бсГу в фаговом формате

2.2.5. ИФА эсЕу-фрагментов

2.2.6. «Сэндвич»-иммуноанализ на иммунопланшетах

2.2.7. Иммуно-ПЦР в фаговом формате

2.2.8. Клонирование генов миниантител в экспрессионный вектор

2.2.9. Трансформация и анализ клонов Е.соИ

2.2.10. Экспрессия всЕу в клетках Е.соИ

2.2.11. Анализ уровня синтеза всЕу

2.2.12. Экспрессия и выделение эсЕу из телец включения

2.2.13. Экспрессия и выделение растворимых бсЕу

2.2.14. Рефолдинг миниантител с помощью металл-хелатной хроматографии

2.2.15. Рефолдинг миниантител гель фильтрацией

2.2.16. Определение аргинина с помощью тонкослойной хроматографии

2.2.17. Электрофоретический анализ белковых препаратов в нативных условиях

2.2.18. Регистрация спектров кругового дихроизма

2.2.19. Определение констант диссоциации

2.2.20. Эпитопный анализ стафилококкового энтеротоксина А

2.2.21. Иммуно-блот анализ

2.2.22. Лиофилизация миниантител

ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Миниантитела в фаговом формате

3.1.1. Получение всЕу фрагментов в составе фаговой частицы

3.1.2. Использование фаговых миниантител для детекции

3.2. Миниантитела всЕу

3.2.1. Анализ уровня синтеза миниантител

3.2.1.1. Выделение миниантител из растворимой фракции

3.2.1.2. Выделение миниантител в денатурирующих условиях

3.3. Оценка стабильности миниантител при различных условиях хранения

3.4. Характеристика миниантител

3.4.1. Аффинность миниантител в отношении SEA

3.4.2. Анализ взаимодействия миниантител с родственными стафилококковыми энтеротоксинами

3.4.3. Эпитопный анализ стафилококкового энтеротоксина А

ВЫВОДЫ

СПИСОК СОКРАЩЕНИЙ

СПИСОК ЛИТЕРАТУРЫ

Рекомендованный список диссертаций по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Рекомбинантные миниантитела человека в формате scFv к энтеротоксину A стафилококков: получение и характеристика»

ВВЕДЕНИЕ

Актуальность темы исследования

Бактерии рода Staphylococcus являются одной из основных причин пищевых отравлений и аутоиммунных расстройств. К причинам патогенности Staphylococcus aureus относятся факторы вирулентности вырабатываемые бактерией - это и факторы адгезии, и разнообразные ферменты, играющие роль факторов «агрессии и защиты», и комплекс секретируемых экзотоксинов (Becker et al., 2003). Около 6% синтезируемого клеткой белка составляют энтеротоксины (Thomas et al., 2007; Lowy, 1998). На сегодняшний день описано более 20 энтеротоксинов, среди которых SEA один из наиболее распространенных.

Энтеротоксины - семейство белков с молекулярной массой 23-29 кД, взаимодействующих с антигенами гистосовместимости (MHC-II) и Т-клеточным рецептором (TCR) (Thomas et al., 2009). В результате такого взаимодействия является образование комплекса из двух видов клеток и антигена, провоцирующий гипериммунный ответ (Profit, Fraser, 2003).

Отравление пищевыми продуктами, содержащими энтеротоксины стафилококков, широко распространено и находится на втором месте после отравлений, вызываемых сальмонельными инфекциями (Lowy, 1998; Le Louir et al., 2003). При пищевых отравлениях возможны различные осложнения, включая развитие пневмонии (Cheng et al., 2012), аутоиммунных заболеваний, таких как ревматоидный артрит (Howell et al.,1991.), атопический дерматит (Ikezawa et al., 2010; Niebuhr et al., 2010), и аллергические заболевания. Синтезируемые бактериями энтеротоксины могут проникать в кровоток не только через ткани желудочно-кишечного тракта, но и через эпителиальные ткани дыхательных путей и кожных покровов (Balaban, Rasooly, 2000; Peterson et al., 2005).

Таким образом, задача детекции и нейтрализации токсинов является актуальной в здравоохранении, и представляет интерес для современной науки. Вакцинация пациентов природным антигеном осложняется ответной

гиперреакцией организма. Применение рекомбинантных аналогов энтеротоксина и конкурентных молекул, блокирующих взаимодействие токсинов с рецепторами на компетентных клетках оказалось малоэффективно (Bavari et al., 1996; Bavari et al., 1999). Показано, что антитела иммунных доноров способны нейтрализовывать энтеротоксины при пассивной вакцинации. Поэтому получение нейтрализующих антител или искусственных конструктов на их основе может быть одним из решений данной задачи и представляет несомненный интерес.

Один из основных способов получения антител человека - это конструирование библиотек антител на основе генетического материала антителопродуцирующих клеток доноров и отбор из этих библиотек антител с заданными свойствами.

Цель данной работы: получение рекомбинантных миниантител человека в формате scFv против стафилококкового энтеротоксина А с помощью технологии фагового дисплея и характеристика их взаимодействия с антигеном. В задачи работы входило:

1. провести аффинное обогащение фаговой библиотеки на стафилококковом энтеротоксине А и определить уровень детекции SEA с помощью фаговых антител;

2. экспрессировать антитела в клетках Е. coli и выделить очищенные препараты миниантител в активной форме;

3. разработать способ хранения полученного препарата миниантител;

4. определить основные характеристики полученных миниантител: аффинность, специфичность;

5. провести картирование эпитопов SEA, распознаваемых полученными миниантител ами.

Научная новизна работы

В настоящей работе впервые были получены миниантитела человека в формате scFv против стафилококкового энтеротоксина А. На основе полученных фаговых антител разработан способ детекции SEA с

использованием фагового иммуно-ПЦР. Разработан способ выделения и ренатурации миниантител из телец включения методом гельфильтрации через слой раствора аргинина. Впервые показана возможность хранения лиофилизованного препарата фаговых миниантител. Установлены эпитопы взаимодействия полученных антител со стафилококковым энтеротоксином А.

Научно-практическая значимость работы

Полученные антитела возможно использовать для создания диагностического набора на основе твердофазного ИФА или ПЦР метода, а также терапевтического препарата с токсин-нейтрализующей активностью. Антитела могут быть перспективным инструментом для структурно-функциональных исследований стафилококковых энтеротоксинов.

Методология работы состояла из набора молекулярно-биологических методов, таких как технология фагового дисплея, молекулярное клонирование, экспрессия и выделение рекомбинантных белков, ПЦР. Характеристика антител проводилась с помощью физико-химических и иммунохимических методов: белковый электрофорез, спектроскопия кругового дихроизма, иммуно-ферментный анализ и иммуноблоттинг. Для установления эпитопов использовались базы данных и пакеты программ NCBI/BLAST, Chromas, GeneRunner 3.05, ClustalW, UCSF Chimera 1.6.2.

Положения, выносимые на защиту

1. Используя библиотеку миниантител, сконструированную на основе неиммунных доноров с помощью методов аффинной селекции возможно получить миниантитела к стафилококковому энтеротоксину А. Разработан способ детекции SEA с использованием полученных миниантител с помощью метода иммуно-ПЦР в фаговом формате.

2. Полученные рекомбинантные антитела эффективно экспрессируются в клетках Е. coli. Миниантитела синтезируются как в виде растворимого клеточного белка, так и виде телец включения. Полученные миниантитела успешно подвергаются рефолдингу телец включения с помощью метода

гельфильтрации через слой аргинина. Участие аргинина в данном процессе способствует повышению выхода ренатурированного препарата. 3. Полученные рекомбинантные антитела распознают разные эпитопы молекулы стафилококкового энтеротоксина А. Эпитопы представляют собой линейные участки длиной 5-7 аминокислот, локализованные на поверхности молекулы SEA.

Апробация работы

Материалы диссертации были представлены на международных конференциях: зимняя молодёжная научная школа «Перспективные направления физико-химической биологии и биотехнологии» (Москва, 2013), 9th IST Asia Pacific meeting on animal, plant and microbial toxins (Владивосток, 2011), 10-ом съезде Научного общества гастроэнтерологов России «Российские научные школы. Технологии качества» (Москва, 2010), на ежегодных Пущинских школах-конференциях молодых ученых «Биология - наука XXI века» (Пущино, 2010, 2011, 2012), V Международная конференция «Наука и образование для целей биобезопасности» (Пущино, 2008).

Диссертационная работа была апробирована на межлабораторном семинаре ФБУН ФИБХ РАН, и семинаре секции "Молекулярная биология" Ученого совета ФГУП ГосНИИгенетика.

Основные результаты по теме диссертации изложены в 10 работах: 4 статьи в журналах, входящих в перечень периодических изданий, рекомендованных ВАК; 6 - представлено в виде материалов конференций.

Похожие диссертационные работы по специальности «Молекулярная биология», 03.01.03 шифр ВАК

Заключение диссертации по теме «Молекулярная биология», Фурсова, Ксения Константиновна

выводы

1. С помощью технологии фагового дисплея получены миниантитела человека в формате бсБу к стафилококковому энтеротоксину А. Разработан способ детекции стафилококкового энтеротоксина А в фемптомолярных концентрациях методом иммуно-ПЦР в фаговом формате.

2. Предложены условия экспрессии миниантител в растворимом виде и в виде телец включения. Разработан способ рефолдинга одноцепочных миниантител в присутствии раствора аргинина с помощью метода гельфильтрации. Метод позволяет отделять мономерную активную форму мининатител от агрегированной. Эффективность рефолдинга составляет 5080%.

3. Подобраны условия хранения миниантител. Показано, что миниантитела, экспонированные в виде слитного БсРу-рШ белка на фаговой частице, так и свободные миниантитела сохраняют свою активность после лиофилизации в присутствии 0,1 М трегалозы.

4. Исследована специфичность взаимодействия полученных миниантител с энтеротоксинами стафилококков. Константы диссоциации миниантител при взаимодействии со стафилококковым энтеротоксином А

7 ^ составляют 10 - 10 .

5. Установлены последовательности распознаваемых миниантителами эпитопов. Показано, что миниантитела распознают линейные эпитопы, локализованные на разных доменах стафилокококкового энтеротоксина А.

Список литературы диссертационного исследования кандидат биологических наук Фурсова, Ксения Константиновна, 2013 год

Список литературы

1. Гусарова В.Д., Миронов А.Ф. Выделение бактериальных белков из тел включения бактериальных продуцентов. Биофармацевтический журнал 2010; 2(1): 14-29

2. Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование /под ред. Баева А.А., Скрябина К.Г. Москва: «Мир»; 1984. 479 с.

3. Пол У. Иммунология. Москва: «Мир»; 1987. Т.1. 456 с.

4. Степанов В.М. Молекулярная биология. Структура и функции белков, /под ред. Спирина А.С. Москва: «Высшая школа»; 1996. 334 с.

5. Улитин А. Б.,. Капралова М. В, Ламан А. Г., Шепеляковская А. О, Булгакова Е. В., Фурсова К. К., Аббасова С. Г., Волков С. К.,. Бровко Ф. А, Несмеянов В. А. Библиотека мини-антител человека в формате фагового дисплея. Создание и апробация. Доклады Академии наук. 2005; 405(4): 555-558

6. Abrahmsen L, Dohlsten М, Segren S, Bjork P, Jonsson E, Kalland T Characterization of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. EMBO J. 1995 Jul 3;14(13):2978-86

7. Adams GP, McCartney JE, Tai M-S, Oppermann H, Huston JS, Stafford III WF. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-cerbB-2 single-chain Fv. Cancer Res. 1993;53: 4026-34

8. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotech 2005;23:1147-57

9. Aitken RAntibody phage display. Methods and protocols, in: Shaw, I., Kane M., The Isolation of scFvs Against Small Target Molecules/Second ed. Humana Press Totowa, New Jersey,. 2009; 562, p.83-97

10.Arad G, Levy R, Hillman D, Kaempfer R. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. NatMed 2000; 6:414-21

1 l.Arakawa T, Timasheff SN. Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry. 1984 ;23(25):5912-23

12.Arakawa T, Tsumoto K, Kita Y, Chang B, Ejima D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids. 2007 Nov;33(4):587-605

13.Arakawa T., Ejima D., Tsumoto K., Obeyama N., Tanaka Y., Kita Y., Timasheff S. Suppression of protein interactions by arginine: A proposed mechanism of the arginine effects. Biophis Chem. 2007 Apr; 127(1-2): 1-8.Arakawa Tsutomu, Kita Yoshiko, Sato Haruna, Ejima Daisuke Protein Expression and Purification 63 (2009): 158-163

14.Arbabi Ghahroudi M., Desmyter, A., Wyns, L., Hamers, R., Muyldermans, S. FEBS Lett. 1997; 414: 521-526

15.Archer D. L., and Young F. E. 1988. Contemporary issues: diseases with a food vector. Clin. Microbiol. Rev. 1:377-398.

16.Asano R, Ikoma K, Sone Y, Kawaguchi H, Taki S, Hayashi H, Nakanishi T, Umetsu M, Katayose Y, Unno M, Kudo T, Kumagai I Highly enhanced cytotoxicity of a dimeric bispecific diabody, the hEx3 tetrabody. J Biol Chem. 2010 Jul 2; 285(27): 20844-9.

17.Asano R, Watanabe Y, Kawaguchi H, Fukazawa H, Nakanishi T, Umetsu M, et al. Highly effective recombinant format of a humanized IgG-like bispecific antibody for cancer immunotherapy with retargeting of lymphocytes to tumor cells. J Biol Chem 2007; 282: 27659-65.

18.Baker M. D. and Acharya R. K. Superantigens Structure, Function, and Diversity. From: Methods in Molecular Biology, vol. 214: Superantigen Protocols/ Edited by T. Krakauer © Humana Press Inc., Totowa, NJ

19.Balaban N, Rasooly A. Staphylococcal enterotoxins. Int J Food Microbiol. 2000 Oct 1; 61(1): 1-10.

20.Baneyx F. and Mujacic M. Recombinant protein folding and misfolding in Escherichia coli.Nat. Biotechnol 22 (2004)1399-1408

21.Baneyx F. Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol. 1999; 10:411-421.

22.Barbas CF, Kang AS, Lerner RA, Benkovic SJ. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad SciUSA. 1991; 88(18):7978-82.

23.Batas B, Chaudhuri JB. Protein refolding at high concentration using size-exclusion chromatography. Biotechnol Bioeng. 1996; 50(1): 16-23.

24.Batas B, Schiraldi E, Chaudhuri JB. Inclusion body purification and protein refolding using microfiltration and size exclusion chromatography Journal of Biotechnology. 1999, 68: 149 - 158

25.Bavari S, Ulrich RG, LeClaire RD. Cross-reactive antibodies prevent the lethal effects of Staphylococcus aureus superantigens. J Infect Dis 1999; 180:1365-9.

26.Bavari S.; Dyas B.; Ulrich R.G. Superantigen vaccines: a comparative study of genetically attenuated receptor-binding mutants of staphylococcal enterotoxin A. J. Infect. Dis. 1996, 174: 338-345.

27.Baynes, B. M., Wang, D. I. C., and Trout, B. L. Role of arginine in the stabilization of proteins against aggregation. Biochemistry. 2005, 44: 49194925.

28.Beatty JD, Beatty BG, Vlahos WG. J Immunol Methods. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. 1987 Jun 26; 100(1-2): 173-9.

29.Becker K, Friedrich AW, Lubritz G, Weilert M, Peters B, von Eiff C Prevalence of genes coding pyrogenic toxin superantigens and exfoliative toxins among strains of isolated from blood and nasal specimens. J Clin Microbiol 2003, 41:1434-1439.

30.Becker K, Roth R, Peters G Rapid and specific detection of toxigenic Staphylococcus aureus: Use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxin shock syndrome toxin 1 gene. J Clin Microbiol 1998, 36:2548-2553

31.Bennett R.W. Staphylococcal enterotoxin and its rapid identification in foods by enzyme-linked immunosorbent assay-based methodology. J. Food Prot. 2005, 68, 1264-1270.

32.Berdichevsky Y., R. Lamed, D. Frenkel, Y. Gophna, E. Bayer, S. Yaron, Y. Shoham, I. Benhar, Protein Exprès. Purif. 1999, 17: 249-259

33.Bergdoll M. S. Enterotoxins. In C. S. F. Easmon and C. Adlam (ed.), Staphylococci and staphylococcal infections. Academic Press, New York, NY. 1983 Dev. Biol. 29A:203-207.

34.Bergdoll M.S. Monkey feeding test for staphylococcal enterotoxin. Meth. Enzymol 1988, 165, 324-333.

35.Bird R.E., Hardman K.D., Jacobson J.W., Johnson S., Kaufman B.M., Lee S.M., Lee T., Pope S.H., Riordman G.S., Whitlow M.: Single-chain antigen-binding proteins. Science 1988242,423-426).

36.Blazek D., Celer V. The Production and Application of Single-Chain Antibody Fragments. Folia Microbiol. 2003, 48 (5), 687-698

37.Boder ET, Midelfort KS, Wittrup KD. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sei USA 2000;97: 10701-5.

38.Bohach G, Fast D, Nelson R et al. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol 1990; 17:251-72.

39.Bohach GA, Hovde CJ, Handley JP, Schlievert PM. Cross-neutralization of staphylococcal and streptococcal pyrogenic toxins by monoclonal and polyclonal antibodies. Infect Immun 1988; 56:400-4.

40.Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (LI9) to the ED-B domain of fibronectin. Int J Cancer 2002; 102: 75-85.

41.Bostrom, J., Yu, S.F., Kan, D., Appleton, B.A., Lee, C.V., Billeci, K., Man, W., Peale, F., Ross, S., Wiesmann, C., Fuh, G., 2009. Variants of the antibody

herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323, 1610-4

42. Bowers PM, Neben TY, Tomlinson GL, Dalton JL, Altobell L, Zhang X, Macomber JL, Wu BF, Toobian RM, McConnell AD, Verdino P, Chau B, Horlick RA, King DJ. Humanization of antibodies using heavy chain CDR3-grafting coupled with in vitro somatic hypermutation. J Biol Chem. 2013 Mar 15;288(11):7688-96

43.Brereton HM, Chamberlain D, Yang R, Tea M, McNeil S, Coster DJ, et al. Single chain antibody fragments for ocular use produced at high levels in a commercial wheat variety. J Biotechnol 2007; 129: 539-46.

44.Breuer, K., M. Wittmann, B. Bosche, A. Kapp, and T. Werfel. Severe atopic dermatitis is associated with sensitization to staphylococcal enterotoxin B (SEB). Allergy 2000; 55:551-555.

45.Brinkmann U, Buchner J, Pastan I .Independent domain folding of Pseudomonas exotoxin and single-chain immunotoxins: influence of interdomain connections. Proc Natl Acad Sei USA. 1992; 9(7):3075-9.

46.Brockmann EC. Selection of stable scFv antibodies by phage display. Methods Mol Biol. 2012;907:123-44

47.Bruenke J, Fischer B, Barbin K, Schreiter K, Wächter Y, Mahr K, et al. A recombinant bispecific single-chain Fv antibody against HLA class II and FcgammaRIII (CD 16) triggers effective lysis of lymphoma cells. Br J Haematol 2004; 125: 167-79.

48.Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem. 1992 Sep;205(2):263-70.

49.Buchner J, Rudolph R. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (NY). 1991 Feb;9(2): 157-62.

50.Biihler P, Wolf P, Gierschner D, Schaber I, Katzenwadel A, Schultze-Seemann W, Wetterauer U, Tacke M, Swamy M, Schamel WW, Elsasser-Beile U. A bispecific diabody directed against prostate-specific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells. Cancer Immunol Immunother. 2008 Jan;57(l):43-52.

51.Bulaj G. Formation of disulfide bonds in proteins and peptides. Biotechnol Adv. 2005 Jan;23(l):87-92.

52.Bunning, V. K., J. A. Lindsay, and D. L. Archer. Chronic health effects of microbial foodborne disease. World Health Stat. 1997. 50:51-56.

53.Burgess RR. Refolding solubilized inclusion body proteins. Methods Enzymol. 2009;463:259-82.

54.Cabrita LD, Bottomley SP. Protein expression and refolding—a practical guide to getting the most out of inclusion bodies.Biotechnol Annu Rev. 2004; 10:31-50.

55.Carpenter JF, Crowe JH. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 1989, 28:3916-3922.

56.Casman E. P., and Bennett R. W. Production of antiserum for staphylococcal enterotoxin. Appl. Microbiol. 1964,12:363-367.

57. Casman E. P.; Bennett R. W. Culture medium for the production of staphylococcal enterotoxin A J. Bacterid. 1963, 86, 18-23.

58.Chames P, Van Regenmortel M, Weiss E and Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. British Journal of Pharmacology, 2009, 157 220-233

59.Chao, G., Lau, W. L., Hackel, B. J., Sazinsky, S. L., Lippow, S. M., and Wittrup, K. D. Isolating and engineering human antibodies using yeast surface display. Nat.Protoc. 2006,1, 755-768.

60.Chasteen L, Ayriss J, Pavlik P, Bradbury A.R.M. Eliminating helper phage from phage display. Nucl Acids Res 2006;34: 145.

61 .Chen C, Snedecor B, Nishihara J, Joly J, McFarland N, Andersen D. High-level accumulation of a recombinant antibody fragment in the periplasm of

Escherichia coli requires a triple-mutant (degP pre spr) host strain. Biotechnol Bioeng 2004;85:463-74.

62.Cheng P, Liu T, Zhou WY, Zhuang Y, Peng LS, Zhang JY, Yin ZN, Mao XH, Guo G, Shi Y, Zou QM. Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia. BMC Immunol. 2012; 13:38.

63.Chiang YC, Liao WW, Fan CM, Pai WY, Chiou CS, Tsen HY: PCR detection of Staphylococcal enterotoxins (SEs) N, O, P, Q, R, U, and survey of SE types in Staphylococcus aureus isolates from food-poisoning cases inTaiwan. Int J Food Microbiol 2008, 121:66-73

64.Choi Y.; Kotzin B.; Hernon L.; Callahan J.; Marrack P.; Kappler J. Interaction of Staphylococcus aureus toxin "superantigens" with human T cells. Proc. Natl. Acad. Sci. USA 1989, 86, 8941-8945

65.Chowdhury, P.S. and Wu, H Tailor-made antibody therapeutics. Methods 2005; 36,11-24

66.Cleland, J. L., Builder, S. E., Swartz, J. R., Winkler, M., Chang, J. Y., and Wang, D. I. Polyethylene glycol enhanced protein refolding. Biotechnology 1992; 10, 1013-1019.

67.Cloutier SM, Couty S, Terskikh A, Marguerat L, Crivelli V, Pugnieres M. Streptabody, a high avidity molecule made by tetramerization of in vivo biotinylated, phage display-selected scFv fragments on streptavidin. Mol Immunol 2000;37: 1067-77.

68.Cohen P.A. Intrabodies Targeting scFv Expression to Eukaryotic Intracellular Compartments. Methods Mol Biol. 2002;178:367-78.

69.Coomber D.W.J In M. O'Brien and R. Aitken (Eds.) Methods in Molecular Biology: Antibody phage display: Methods and Protocols. 2002 Humana Press Inc., Totowa, New Jersey, 178, pp. 133-145

70.Cremonesi P, Luzzana M, Brasca M, Morandi S, Lodi R, Vimercati C, Agnellini D, Caramenti G, Moroni P, Castiglioni B. Development of a multiplex PCR assay for the identification of Staphylococcus aureus

enterotoxigenic strains isolated from milk and dairy products. Mol Cell Probes. 2005 (5):299-305.

71.Cunha MLRS, Calsolari RA, Araüjo Jr. JP. Detection of enterotoxin and toxic shock syndrome toxin 1 genes in Staphylococcus, with emphasis on coagulase-negative staphylococci. 2007; 51(4):381-90

72.Cunha MLRS, Peresi E, Calsolari RAO, Araüjo Jr. JP. Detection of Enterotoxins genes in coagulase-negative Staphylococci isolated from foods. Braz. J. Microbiol. 2006; 37: 64-69.

73.Daly S.; Dillonab P.; Manningab B., Dunneab L.; Killardb A., O'Kennedy R. Production and Characterization of Murine Single Chain Fv Antibodies to Aflatoxin B 1 Derived From a Pre-immunized Antibody Phage Display Library System. Food and Agricultural Immunology 2002; 14, 255-274

74.Dammeyer T, Steinwand M, Krüger SC, Dübel S, Hust M, Timmis KN. Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory. Microb Cell Fact. 2011; 10:11.

75.Daugherty PS, Chen G, Olsen MJ, Iverson BL, Georgiou G. Antibody affinity maturation using bacterial surface display. Protein Eng 1998;11: 825-32.

76.Dauwalder O, Pachot A, Cazalis MA, Paye M, Faudot C, Badiou C, Mougin B, Vandenesch F, Etienne J, Lina G, Monneret G. Early kinetics of the transcriptional response of human leukocytes to staphylococcal superantigenic enterotoxins A and G.Microb Pathog. 2009 ;47(3): 171-6.

77.De Schutter K, Callewaert. N. Pichia Surface Display: A Tool for Screening Single Domain Antibodies Methods Mol Biol. 2012; 911:125-34

78.Descloux E, Perpoint T, Ferry T, Lina G, Bes M, Vandenesch F, et al. One in five mortality in non-menstrual toxic shock syndrome versus no mortality in menstrual cases in a balanced French series of 55 cases. Eur J Clin Microbiol Infect Dis 2008;27:37-43.

79.Desjarlais JR, Lazar GA, Zhukovsky EA, Chu SY. Optimizing engagement of the immune system by anti-tumor antibodies: an engineer's perspective. Drug Discov Today 2007;12: 898-910.

80.Deyev SM, Waibel R, Lebedenko EN, Schubiger AP, Pluckthun A. Design of multivalent complexes using the barnasexbarstar module. Nat Biotechnol 2003 ;21: 1486-92.

81.Dinges M.M., Orwin, P.M., Schlievert, P.M., Exotoxins of Staphylococcus aureus. Clin Microbiol Rev. 2000; 13, 16-34.

82.Dolezal O, De Gori R,Walter M, Doughty L, Hattarki M, Hudson PJ, et al. Single-chain Fv multimers of the anti-neuraminidase antibody NC10: the residue at position 15 in the VL domain of the scFv-0 (VL-VH) molecule is primarily responsible for formation of a tetramer-trimer equilibrium. Protein Eng 2003; 16: 47-56.

83.Dong J, Hasan S, Fujioka Y, Ueda H. Detection of small molecule diagnostic markers with phage-based open-sandwich immuno-PCR.J Immunol Methods. 2012 Mar 30;377(l-2): 1-7.

84.Drozdowski B, Zhou Y, Kline B, Spidel J, Chan YY, Albone E, Turchin H, Chao Q, Henry M, Balogach J, Routhier E, Bavari S, Nicolaides NC, Sass PM, Grasso L. Generation and characterization of high affinity human monoclonal antibodies that neutralize staphylococcal enterotoxin B. J Immune Based Ther Vaccines. 2010 ;8:9.

85. Du C, Chan W, McKeithan T, Nickerson K. Surface display of recombinant proteins on Bacillus thuringiensis spores. Appl Environ Microbiol 2005;71: 3337-41.

86.Ejima D.; Yumioka R.; Arakawa T. and Tsumoto K. Arginine as an effective additive in gel permeation chromatography.J.Chromatogr. A 2005 1094, 49-55;

87.Florescu A, Amir E, Bouganim N, demons M. Immune therapy for breast cancer in 2010-hype or hope? Curr Oncol. 2011 Jan;18(l):9-18.

88.Fraile S, Munoz A, de Lorenzo V, Fernandez LA. Secretion of proteins with dimerization capacity by the haemolysin type I transport system of Escherichia coli. Mol Microbiol 2004;53: 1109-21.

89.Frame K. K., and Hu W. S. The loss of antibody productivity in continuous culture of hybridoma cells. Biotechnol. Bioeng 1990; 35:469-476.

90.Fraser JD, Urban RG, Strominger JL, Robinson H. Zinc regulates the function of two superantigens. Proc Natl Acad Sci USA. 1992 Jun 15;89(12):5507-11.

91.Fraser J.D., Profit T. The bacterial superantigen and superantigen-like proteins. Immunol Rev. 2008; 225, 226-243

92.Froude JW, Stiles B, Pelat T, Thullier P. Antibodies for biodefense. MAbs. 2011 Nov-Dec;3(6):517-27.

93.Froude JW, Thullier P, Pelat T. Antibodies against anthrax: mechanisms of action and clinical applications. Toxins (Basel). 2011 Nov;3(l 1): 1433-52.

94.Fukuda I, Kojoh K, Tabata N, Doi N, Takashima H, Miyamoto-Sato E, Yanagawa H. In vitro evolution of single-chain antibodies using mRNA display .Nucleic Acids Res. 2006;34(19):el27.

95.Garber EA, Venkateswaran KV, O'Brien TW Simultaneous multiplex detection and confirmation of the proteinaceous toxins abrin, ricin, botulinum toxins, and Staphylococcus enterotoxins a, B, and C in food. J Agric Food Chem. 2010 Jun 9;58(11):6600-7.

96.Garcia-Rodriguez, C., Levy, R., Aradt, J.W., Forsyth, C.M., Razai, A., Lou, J., Geren, I., Stevens, R.C., Marks, J.D. Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nat. Biotechnol. 2007; 25, 107-16.

97.Gasser B., Mattanovich D. Antibody production with yeasts and filamentous fungi: on the road to large scale? Biotechnol Lett 2007; 29:201-212

98.Goldenberg D.P. Analysis of protein conformation by gel electrophoresis. In: Creighton T.E. (ed) Protein structure, a practical approach. Oxford University Press, Oxford 1989

99.Golovanov AP, Hautbergue GM, Wilson SA, Lian LY. A simple method for improving protein solubility and long-term stability. J Am Chem Soc. 2004 Jul 28;126(29):8933-9.

100.Graumann K, Premstaller A . Manufacturing of recombinanttherapeutic proteins in microbial systems. Biotechnol J 20061: 164-186.

101.Griffiths, A.D. et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 1994. 13, 3245-3260

102.Griggs ND, Pontzer CH, Jarpe MA, Johnson HM. Mapping of multiple binding domains of the superantigen staphylococcal enterotoxin A for HLA. J Immunol 1992;148:2516-21.

103.Gu Z, Weidenhaupt M, Ivanova N, Pavlov M, Xu B, Su ZG, Janson JCChromatographic methods for the isolation of, and refolding of proteins from, Escherichia coli inclusion bodies . Protein Expr Purif. 2002 Jun;25(l): 174-9.

104.Gu Z, Zhu X, Ni S, Zhou H, Su Z. Inhibition of aggregation by media selection, sample loading and elution in size exclusion chromatographic refolding of denatured bovine carbonic anhydrase B. J Biochem Biophys Methods. 2003 Jun 30;56(l-3):165-75.

105.Guo J, Chen L, Ai H-W, Jing J-N, Zhou J-Y, Zhang C-Y, et al. A novel fusion protein of IP10-scFv retains antibody specificity and chemokine function. Biochem Biophys Res Commun 2004;320: 506-13.

106.Guo JQ, Li QM, Zhou JY, Zhang GP, Yang YY, Xing GX, Zhao D, You SY, Zhang C. Efficient recovery of the functional IP10-scFv fusion protein from inclusion bodies with an on-column refolding system. Protein Expr Purif. 2006 Jan;45(l): 168-74

107.Guo YC, Zhou YF, Zhang XE, Zhang ZP, Qiao YM, Bi LJ, Wen JK, Liang MF, Zhang JB. Phage display mediated immuno-PCR. Nucleic Acids Res. 2006 May 8;34(8):e62.

108-Guo J.Q., You H.Y., Li L., Zhang Y.Z., Huang J.N., Zhang Ch.Y., Construction and high-level expression of a single-chain Fv antibody fragment specific for acidic isoferritin in Escherichia coli. J. Biotechnol. 2003; 102, 177189

109.Gupta P, Han SY, Holgado-Madruga M, Mitra SS, Li G, Nitta RT, Wong AJ. Development of an EGFRvIII specific recombinant antibody. BMC Biotechnol. 2010 Oct 7;10:72.

110.Hackel B, Huang D, Bubolz J, Wang X, Shusta E. Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae. Pharm Res 2006;23: 790-7.

111.Halin C, Rondini S, Nilsson F, Berndt A, Kosmehl H, Zardi L, et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 2002;20: 264-9.

112.Hamada H, Shiraki K. L-argininamide improves the refolding more effectively than L-arginine. J Biotechnol. 2007 ; 130(2): 153-60.

113.Han Y., Jin B., Lee S., Sohn Y., Joung J, and Lee J. Effects of Sugar Additives on Protein Stability of Recombinant Human Serum Albumin during Lyophilization and Storage. Arch Pharm Res 2007; 30 (9), 1124-1131,

114.Hannig G, Makrides SC. Strategies for optimizing heterologous protein expression in Escherichia coll. Trends in Biotech. 1998;16:54-60.

115.Harris TO, Grossman D, Kappler JW, Marrack P, Rich RR &Betley MJ .Lack of complete correlation between emetic and T-cell-stimulatory activities of staphylococcal enterotoxins. Infect Immun 1993 61: 3175-3183

116.Harrowing R.S. and J.B. Chaudhuri, J. Effect of column dimensions and flow rates on size-exclusion refolding of beta-lactamase. Biochem. Bioph. Meth. 2003; 56:177-188

117.Hedrick JA, Helms A, Vicari A, Zlotnik A. Characterization of a novel CC chemokine,HCC-4, whose expression is increased by interleukin-10. Blood 1998;91:4242-7.

118.Hennekinne JA, Brun V, De Buyser ML, Dupuis A, Ostyn A, Dragacci S. Innovative application of mass spectrometry for the characterization of staphylococcal enterotoxins involved in food poisoning outbreaks. Appl Environ Microbiol. 2009 ;75(3):882-4.

119.Herz, U., R. Bunikowski, M. Mielke, and H. Renz. Contribution of bacterial superantigens to atopic dermatitis. Int. Arch. Allergy Immunol. 1999; 118:240241

120.Hobeika AC, Johnson HM. A neutralizing epitope of the superantigen SEA has agonist activity on T cells. Biochem Biophys Res Commun 1996; 223: 565-71

121.Holbrook KA, Klein RS, Hartel D, Elliott DA, Barsky TB, Rothschild LH, Lowy FD. Staphylococcus aureus nasal colonization in HIV-seropositive and HIV-seronegative drug users. J Acquir Immune Defic Syndr HumRetrovirol 1997, 16:301-306.

122.Holliger P, Hudson PJ Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23: 1126-1136.

123.Holliger P., Prospero T., Winter G. "Diabodies": small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 1993; 90, 6444-6448

124.Holt L.J., C. Herring, L.S. Jespers, B.P Woolven,. and I.M Tomlinson, Trends Biotechnol. 2003; 21: 484-490

125.Hoogenboom H.R. Selecting and screening recombinant antibody libraries. Nat Biotechnol. 2005; 23(9), 1105-116.

126.Hornig N, Farber-Schwarz A. Production of bispecific antibodies: diabodies and tandem scFv. Methods Mol Biol. 2012 ;907:713-27.

127.Howell M. D., Diveley J. P., Lundeen K. A., Esty A, Winters S. T., Carlo D. J., Brostoff S. W. Limited T-cell receptor beta-chain heterogeneity among interleukin 2 receptor-positive synovial T cells suggests a role for superantigen in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 1991; 88:10921-10925.

128.Huang IY, Hughes JL, Bergdoll MS, Schantz EJ. Complete amino acid sequence of staphylococcal enterotoxin A. J Biol Chem. 1987; 25;262(15):7006-13.

129.Huang SH, Chang TC. Detection of Staphylococcus aureus by a sensitive immuno-PCR assay. Clin Chem. 2004;50(9): 1673-4.

130.Hudson KR, Tiedemann RE, Urban RG, Lowe SC, Strominger JL, Fraser JD. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. J Exp Med. 1995; 182(3):711-20.

131.Hudson PJ, Kortt AA High avidity scFv multimers; diabodies and triabodies. J Immunol Methods. 1999 Dec 10;231(1-2): 177-89.

132.Hust M, Dübel S, Schirrmann T. Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol. 2007;408:243-55.

133.Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dübel S. Single chain Fab (scFab) fragment. BMC Biotechnol. 2007 Mar 8;7:14.

134.1gawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K. Engineering the variable region of therapeutic IgG antibodies. MAbs. 2011; 3(3):243-52.

135. Ikezawa Z, Komori J, Ikezawa Y, Inoue Y, Kirino M, Katsuyama M, Aihara M. A Role of Staphyococcus aureus, Interleukin-18, Nerve Growth Factor and Semaphorin 3A, an Axon Guidance Molecule, in Pathogenesis and Treatment of Atopic Dermatitis. Allergy Asthma Immunol Res. 2010;2(4):235-46

136.1shibashi M, K Tsumoto, M. Tokunada, D. Ejima, Y. Kita, T. Arakawa. Is arginine a protein-denaturant? Protein Expres. Purif. 2005; 42: 1-6

137.Jain NK, Roy I. Effect of trehalose on protein structure Protein Sei. 2009; 18(1): 24-36.

138.James L.C., Roversi P., Tawfik D.S. Antibody Multispecificity Mediated by Conformational Diversity. Science 2003;299: 1362-1367

139.Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Etienne J, Vandenesch F, Bonneville M, Lina G. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol. 2001;166(l):669-77

140.Jevsevar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins. Biotechnol J. 2010 Jan;5(l):l 13-28..

141.Johns M. Phage display technology. Methods Mol Med. 2000;40:53-62.

142.Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321: 522-525.

143.Jordan E, Al-Halabi L, Schirrmann T, Hust M, Diibel S. Production of single chain Fab (scFab) fragments in Bacillus megaterium. Microb Cell Fact. 2007; 27;6:38.

144.Jungbauer A., Kaar W. Current status of technical protein refolding. Journal of Biotechnology 2007; 128: 587-596.

145.Jungbauer A., Kaar, W., Schlegl R. Folding and refolding of proteins in chromatographic beds. Curr. Opin. Biotechnol. 2004. 15,487^194.

146.Kamboj D.V., Nema V.A. K. Pandey, A. K. Goel, and L. Singh.. Heterologous expression of staphylococcal enterotoxin B (seb) gene for antibody production. Electron. J. Biotechnol. 2006. www.ejbiotechnology.info/content/vol9/issue5/full/3/index.html

147.Kappler J.W.; Herman A.; Clements J.; Marrack P. Mutations defining functional regions of the superantigen staphylococcal enterotoxin B. J. Exp. Med. 1992, 175,387-396.

148.Kenanova V, Olafsen T, Williams LE, Ruel NH, Longmate J, Yazaki PJ. Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy. Cancer Res 2007;67: 718-26.

149.Kessler, N., M. Aymard, and S. Bertrand.. Stability of a murine hybridoma is dependent on the clone line and culture media. In Vitro Cell. 1993 ; 203-7.

150.Kim HJ, McCoy M, Gee SJ, Gonzalez-Sapienza GG, Hammock BD. Noncompetitive phage anti-immunocomplex real-time polymerase chain reaction for sensitive detection of small molecules. Anal Chem. 201 l;83(l):246-53.

151.Kipriyanov SM, LittleM, Kropshofer H, Breitling F, Gotter S, Dubel S. Affinity enhancement of a recombinant antibody: formation of complexes with multiple valency by a singlechain Fv fragment-core streptavidin fusion. Protein Eng 1996;9:203-11

152.Kohler PL, Greenwood SD, Nookala S, Kotb M, Kranz DM, Schlievert PM. Staphylococcus aureus isolates encode variant staphylococcal enterotoxin B

proteins that are diverse in superantigenicity and lethality. PLoS One. 2012;7(7):e41157.

153.Krakauer T. Therapeutic Down-Modulators of Staphylococcal Superantigen-Induced Inflammation and Toxic Shock. Toxins 2010, 2, 1963-1983;

154.Krakauer, T. Stimulant-dependent modulation of cytokines and chemokines by airway epithelial cells: cross- talk between pulmonary epithelial and peripheral blood mononuclear cells. Clin. Diagn.Lab. Immunol. 2002, 9, 126— 131.

155.Kudou M, Shiraki K, Fujiwara S, Imanaka T, Takagi M. Prevention of thermal inactivation and aggregation of lysozyme by polyamines. Eur J Biochem. 2003; 270(22):4547-54.

156.Kudou M., Yumioka D., Ejima T., Arakawa K., Tsumoto R. A novel protein refolding system using lauroyl-L-glutamate as a solubilizing detergent and arginine as a folding assisting agent Protein Expression and Purification 2011;75; 46-54.

157.Kufer P, Lutterbuse R, Baeuerle PA. The promise of bispecific antibodies. Discov Med. 2004 Oct;4(23):325-32.

158.Kum W. S. and Chow A. W Inhibition of Staphylococcal Enterotoxin A-Induced Superantigenic and Lethal Activities by a Monoclonal Antibody to Toxic Shock Syndrome Toxin-1. The Journal of Infectious Diseases 2001;183:1739-48

159.Kum W.W., Laupland K.B., Chow A.W. Defining a novel domain of staphylococcal toxic shock syndrome toxin-1 critical for major histocompatibility complex class II binding, superantigenic activity, and lethality. Can J Microbiol 2000; 46:171-9.

160.Kumagai I., Asano R., Nakanishi T., Hashikami K., Tanaka S., Badran A., Sanada H., Umetsu M. Integration of PEGylation and refolding for renaturation of recombinant proteins from insoluble aggregates produced in bacteria-application to a single-chain Fv fragment.J Biosci Bioeng. 2010 109(5):447-52.

161.Kumar TK, Samuel D, Jayaraman G, Srimathi T, Yu C. The role of proline in the prevention of aggregation during protein folding in vitro. Biochem Mol Biol Int. 1998 0ct;46(3):509-17.

162.Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 1970, 227, 680-685.

163.Larkin E.A., Stiles B.G., Ulrich R.G. Inhibition of toxic shock by human monoclonal antibodies against staphylococcal enterotoxin B.PLoS One. 2010 ll;5(10):el3253

164.Larkin, E.A., Carman, R.J., Krakauer T, Stiles B.G., 2009. Staphylococcus aureus: the toxic presence of a pathogen extraordinaire. Curr Med Chem. 30, 4003-4019.

165.Le Louir Y., Baron F., Gautier M. Staphylococcus aureus and food poisoning Genet. Mol. Res2003. 2;63-76

166.Lee A.C., Robbins R. N., and M. S. Bergdoll. Isolation of specific and common antibodies to staphylococcal enterotoxins A and E by affinity chromatography. Infect. Immun. 1978; 21:387-391

167.Lee C.T., Morreale, G., Middelberg, A.P.J. Combined in fermenter extraction and cross-flow microfiltration for improved inclusion body processing. Biotechnol. Bioeng. 2004; 85: 103-113.

168.Levin A, Weiss G. Optimizing the affinity and specificity of proteins with molecular display. Mol Biosyst 2006; 2: 49-57

169.Lewitan B. Stochastic modeling and optimization of phage display. J Mol Biol 1998;277:893-916.

170.Li H, Liera A, Malchiodi EL, Mariuzza RA. The structural basis of T cell activation by superantigens.Annu Rev Immunol. 1999;17:435-66.

171.Li M., Su Z., Janson J. In vitro protein refolding by chromatographic procedures Protein Exprès. Purif. 2004; 33:1-10

172.Lina G, Bohach GA, Nair SP, Hiramatsu K, Jouvin-Marche E, Mariuzza R: Standard nomenclature for the superantigens expressed by Staphylococcus. J Infect Dis 2004, 189:2334-2336.

173.Lindsay, J. A., A. Ruzin, H. F. Ross, N. Kurepina, and R. P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29:527-543.

174.Lowman HB, Bass SH, Simpson N, Wells JA. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry. 1991 Nov 12;30(45):10832-8.

175.Lowy F.D: Staphylococcus aureus infections. N Engl J Med 1998,339:520532.

176.Luginbuhl B., Kanyo Z., Jones R.M., Fletterick R.J., Prusiner S.B., Cohen F.E. Directed evolution of an anti-prion protein scFv fragmentto an affinity of 1 pM and its structural interpretation. J MolBiol 2006; 363: 75-97.

177.Ma JKC, Drake PMW, Chargelegue D, Obregon P, Prada A. Antibody processing and engineering in plants, and new strategies for vaccine production. Vaccine 2005;23: 1814-8.

178.Makvandi-Nejad S, McLean M, Hirama T, Almquist K, MacKenzie C, Hall J. Transgenic tobacco plants expressing a dimeric single-chain variable fragment (scFv) antibody against Salmonella enterica serotype Paratyphi B. Transgenic Res 2005; 14: 785-92.

179.Mallender WD, Voss EW. Construction, expression, and activity of a bivalent bispecific single-chain antibody. J Biol Chem 1994;269: 199-206.

180.Mao S. Gao C, Lo CH, Wirsching P, Wong CH, Janda KD.. Phage-display library selection of high-affinity human single-chain antibodies to tumor-associated carbohydrate antigens sialyl Lewisx and Lewisx. Proc. Natl. Acad. Sci. USA 1999; 96; 6953-6958

181.Marks J.D. Griffiths AD, Malmqvist M, Clackson TP, Bye JM, Winter G.. Bypassing immunization: building high affinity human antibodies by chain shuffling. Bio/Technology 1992; 10: 779-783

182.Marrack, P.; Kappler, J. The staphylococcal enterotoxins and their relatives. Science 1990; 248: 705-7011

183.Mayfield SP, Franklin SE. Expression of human antibodies in eukaryotic micro-algae.Vaccine 2005 ;23: 1828-32

184.Maynard J, Georgiou G. Antibody Engineering. Annu Rev Biomed Eng 2000;2: 339-76.

185.McCormick JK, Yarwood JM, Schlievert PM. Toxic shock syndrome and bacterial superantigens: an update. Annu Rev Microbiol. 2001;55:77-104.

186.McKay, D.M. Bacterial superantigens: provocateurs of gut dysfunction and inflammation? Trends Immunol. 2001, 22, 497-501.

187.Mechaly A., Zahavy E., and Fisher M.Development and implementation of a single-chain Fv antibody for specific detection of Bacillus anthracis spores. Appl. Environ. Microbiol. 2008. 74:818-822

188.Medina M.B. Development of a fluorescent latex microparticle immunoassay for the detection of staphylococcal enterotoxin B (SEB). J Agric Food Chem. 2006 Jul 12;54(14):4937-42.

189.Medina M.B. A biosensor method for a competitive immunoassay detection of staphylococcal enterotoxin B (SEB) in milk. J. Rapid Methods Autom. Microbiol. 2005, 13, 37-55.

190.Medina M. B. Detection of staphylococcal enterotoxin B (SEB) with surface plasmon biosensor. J. Rapid Methods Autom. Microbiol. 2003, 11, 225-243.

191 .Mehrotra, M., G. Wang, and W. M. Johnson. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J. Clin. Microbiol. 2000. 38:1032-1035.

192.Mendis C, Das R, Hammamieh R, Royaee A, Yang D, Peel S, et al. Transcriptional response signature of human lymphoid cells to staphylococcal enterotoxin B.Genes Immun 2005;6:84-94.

193.Mendoza FJM, Martin MC.Enterotoxins and toxic shock syndrome toxin in Staphylococcus aureus recovered from human nasal carriers and manually handled foods: Epidemiology and genetic findings. Microbes Infect 2005; 7: 187-194.

194.Meng F, Park Y, Zhou HRole of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase. Int J Biochem Cell Biol. 2001 Jul;33(7):701-9.

195.Mergulhäo FJ, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli. Biotechnol Adv. 2005 May;23(3): 177-202

196.Meyer RF, Miller L, Bennett RW, MacMillan JD. Development of a monoclonal antibody capable of interacting with five serotypes of Staphylococcus aureus enterotoxin. Appl Environ Microbiol 1984; 47:283-7.

197.Miethke T, Wahl C, Heeg K et al. T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B. Critical role of tumor necrosis factor. J Exp Med 1992; 175:91-8.

198.Miller M, Cook HA, Furuya EY, Bhat M, Lee MH, Vavagiakis P, Visintainer P,Vasquez G, Larson E, Lowy FD: Staphylococcus aureus in the community: colonization versus infection. PLoS One 2009, 4:e6708.

199.Mollick J.A., Chintagumpala M.M., Cook R.G. and Rich R.R. Staphylococcal exotoxin activation of T cells. Role of exotoxin - MHC Class II binding affinity and Class II isotype. J. Immunol. 1991; 146, 463-468.

200.Monday SR, Bohach GA. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J Clin Microbiol. 1999 Oct; 37(10):3411-4.

201.Monjezi R, Tan SW, Tey BT, Sieo CC, Tan WSJ Detection of hepatitis B virus core antigen by phage display mediated TaqMan real-time immuno-PCR. Virol Methods 2013 Jan; 187(1): 121-6.

202.Munson SH, Tremaine MT, Betley MJ, Welch RA. Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect Immun. 1998 Jul;66(7):3337-48.

203.Naimushin AN, Soelberg SD, Nguyen DK, Dunlap L, Bartholomew D, Elkind J, Melendez J, Furlong CE. Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens Bioelectron. 2002 Jun;17(6-7):573-84.

204.Najera-Sanchez, G., R. Maldonado-Rodriguez, P. Ruiz Olvera, and L. M. de la Garza. Development of two multiplex polymerase chain reactions for the detection of enterotoxigenic strains of Staphylococcus aureus isolated from foods. J. Food Prot. 2003;66:1055-1062

205.Natsume A, Wakitani M, Yamane-Ohnuki N, Shoji-Hosaka E, Niwa R, Uchida K, et al. Fucose removal from complex-type oligosaccharide enhances the antibodydependent cellular cytotoxicity of single-gene-encoded bispecific antibody comprising of two single-chain antibodies linked to the antibody constant region. J Biochem 2006; 140: 359-68.

206.Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27(4):331-7

207.Nelson AL. Antibody fragments: hope and hype. MAbs. 2010 ;2(l):77-83.

208.Neuberger MS, Williams GT, Mitchell EB, Jouhal SS, Flanagan JG, Rabbitts TH. A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature 1985314: 268-270.

209.Niebuhr M, Scharonow H, Gathmann M, Mamerow D, Werfel T Staphylococcal exotoxins are strong inducers of IL-22: A potential role in atopic dermatitis.J Allergy Clin Immunol. 2010;126(6):1176-83.e4.

210.O'Brien P. M and Aitken R. Antibody Phage Display. Methods and Protocols. 2002 vol 178 University of Glasgow, Glasgow, Scotland, UK, Humana Press,Totowa, New Jersey

211.0kanojo M, Shiraki K, Kudou M, Nishikori S, Takagi M. Diamines prevent thermal aggregation and inactivation of lysozyme. J Biosci Bioeng. 2005 Nov;100(5):556-61.

212.01afsen T, Tan GJ, Cheung C-W, Yazaki PJ, Park JM, Shively JE, et al. Characterization of engineered anti-pl85HER-2 (scFv-CH3)2 antibody fragments (minibodies) for tumor targeting. Protein Eng Des Sel 2004b; 17: 315-23.

213.0moe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K: Comprehensive analysis of classical and newly described staphylococcal

superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol Lett 2005;246:191-198.

214.0moe K, Imanishi K, Hu DL, Kato H, Takahashi-Omoe H, Nakane A, Uchiyama T, Shinagawa K:Biological properties of staphylococcal enterotoxin-like toxin type R. Infect Immun 2004;72:3664-3667.

215,Ono HK, Omoe K, Imanishi K, Iwakabe Y, Hu DL, Kato H, Saito N, Nakane A,Uchiyama T, Shinagawa K: Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect Immun 2008, 76:4999-5005.

216.0rwin PM, Leung DY, Tripp TJ, Bohach GA, Earhart CA, Ohlendorf DH, Schlievert PM. Characterization of a novel staphylococcal enterotoxin-like superantigen, a member of the group V subfamily of pyrogenic toxins. Biochemistry 2002;41:14033-14040.

217.Pack P, Plueckthun A. Miniantibodies: use of amphipathic helixes to produce functional, flexibly linked dimeric FV fragmentswith high avidity in Escherichia coli. Biochemistry 1992;31: 1579-84.

218.Panagabko C.; Morley S.; Neely S.; Lei H.; Manor D., Atkinson J. Expression and refolding of recombinant human alpha-tocopherol transfer protein capable of specific alpha-tocopherol binding. Protein Expr. Purif. 2002; 24, 395-403

219.Panda AK. Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv Biochem Eng Biotechnol. 2003;85:43-93.

220.Pang LT, Kum WW, Chow AW. Inhibition of staphylococcal enterotoxin B-induced lymphocyte proliferation and tumor necrosis factor a secretion by MAb5, an anti-toxic shock syndrome toxin 1 monoclonal antibody. Infect Immun 2000; 68:3261-8

221.Pansri P, Jaruseranee N, Rangnoi K, Kristensen P, Yamabhai M. A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnology 2009, 9:6, 1-16

222.Papageorgiou, A.C.; Acharya, K.R. Microbial superantigens: from structure to function. Trends Microbiol. 2000, 8, 369-375.

223.Pavoni E, Monteriu G, Cianfriglia M, Minenkova O. New display vector reduces biological bias for expression of antibodies in E. coli. Gene. 2007 Apr 15;391(l-2): 120-9. Epub 2006 Dec 22.

224.Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L, Mackie K, et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun 2002;70:4987-96.

225.Pelat, T., M. Hust, M. Hale, M. P. Lefranc, S. Dubel, and P. Thullier. Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol 2009.9:60, 1-13.

226.Peterson, M.L.; Ault, K.; Kremer, M.J.; Klingelhutz, A.J.; Davis, C.C.; Squier, C.A.; Schlievert, P.M. The innate immune system is activated by stimulation of vaginal epithelial cells with Staphylococcus aureus and toxic shock syndrome toxin 1. Infect. Immun. 2005, 73, 2164-2174.

227.Poli MA, Rivera VR, Neal D. Sensitive and specific colorimetric ELISAs for Staphylococcus aureus enterotoxins A and B in urine and buffer. Toxicon. 2002 Dec;40(12):1723-6

228.Porter RR. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J 1959;73: 119-26.

229.Power, B.E., Kortt, A.A. & Hudson, P.J. Generation of recombinant multimeric antibody fragments for tumor diagnosis and therapy. Methods Mol. Biol. 2003; 207, 335-350

230.Presta L. Antibody engineering for therapeutics. Curr Opin Struct Biol. 2003; 13(4):519-25

231.Presta L. Evolving an anti-toxin antibody. Nat Biotechnol. 2007 Jan;25(l):63-5.

232.Proft T, Fraser JD. Bacterial superantigens. Clin Exp Immunol 2003;133:299-306

233.Puri NK, Crivelli E, Cardamone M, Fiddes R, Bertolini J, Ninham B, Brandon MR. Solubilization of growth hormone and other recombinant proteins from

Escherichia coli inclusion bodies by using a cationic surfactant.Biochem J. 1992 Aug 1;285 ( Pt 3):871-9.

234.Rasooly R, Hernlem B TNF as biomarker for rapid quantification of active Staphylococcus enterotoxin A in food.Sensors (Basel). 2012;12(5):5978-85.

235.Rasooly R., Do P. M., Hernlem B.. Auto-presentation of Staphylococcal enterotoxin A by mouse CD4+ T cells. Open Journal of Immunology 2011;1(1): 8-14

236.Razai A, Garcia-Rodriguez C, Lou J, Geren IN, Forsyth CM, Robles Y, Tsai R, Smith TJ, Smith LA, Siegel RW, Feldhaus M, Marks JD. Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A.J Mol Biol. 2005 Aug 5;351(1): 158-69.

237.Ren F, Li B, Zhang N, Cao M, Dan W, Zhang S. Expression, purification and characterization of anti-BAFF antibody secreted from the yeast Pichia pastoris. Biotechnol Lett 2008; 30: 1075-80.

238.Roy I, Gupta MN. Freeze-drying of proteins: some emerging concerns. Biotechnol Appl Biochem. 2004 Apr;39(Pt 2): 165-77.

239.Rubina, A. Yu , Filippova, M.A., Feizkhanova,G.U., Shepeliakovskaya, A.O., Sidina, E.I., Boziev,Kh. M., Laman, A.G., Brovko, F.A., Vertiev Yu.V., Zasedatelev, A.S., Grishin, E.V. Simultaneous Detection of Seven Staphylococcal Enterotoxins: Development of Hydrogel Biochips for Analytical and Practical Application. Anal. Chem., 2010, 82, 8881-8889

240.Salmain M, Ghasemi M, Boujday S, Spadavecchia J, Techer C, Val F, Le Moigne V, Gautier M, Briandet R, Pradier CM. Piezoelectric immunosensor for direct and rapid detection of staphylococcal enterotoxin A (SEA) at the ng level. Biosens Bioelectron. 2011 ;29(1): 140-4.

241.Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C. Proline inhibits aggregation during protein refolding. Protein Sei. 2000 ;9(2):344-52.

242.Schad EM, Zaitseva I, Zaitsev VN, Dohlsten M, Kalland T, Schlievert PM, Ohlendorf DH, Svensson LA. Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J. 1995 Jul 17;14(14):3292-301. 243.Schmidt H, Hensel M. Pathogenicity islands in bacterial pathogenesis. Clin

Microbiol Rev. 2004 Jan; 17(1): 14-56 244.Scholler N. Selection of antibody fragments by yeast display .Methods Mol

Biol. 2012;907:259-80. 245.Schutyser E, Struyf S, Van Damme J. The CC chemokine CCL20 and its

receptor CCR6. Cytokine Growth Factor Rev. 2003;14:409-26. 246.Sepp A., Griffiths A. Cell-free selection of domain antibodies by in vitro

compartmentalization. Meth. Mol. Biol. 2012; 911:183-98. 247.Sharma B.. Immunogenicity of therapeutic proteins. 1. Impact of product

handling. Biotechnol. Adv. 25, (2007) 310-317 6448. 248.Sharma N., Rees C. E., Dodd C. E. Development of a single reaction multiplex PCR toxin typing assay for Staphylococcus aureus strains. Appl. Environ. Microbiol. 2000;66:1347-1353. 249.Sheets M.D.. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 1998; 95, 6157-6162 250.Shembekar N, Mallajosyula W, Mishra A, Yeolekar L, Dhere R, Kapre S, Varadarajan R, Gupta SK. . Isolation of a High Affinity Neutralizing Monoclonal Antibody against 2009 Pandemic H1N1 Virus That Binds at the 'Sa' Antigenic Site.PLoS One. 2013;8(l):e55516 251.Shepelyakovskaya AO, Laman AG, Lomonosova AV, Fursova KK, Savinov GV, Vertiev YV, Brovko FA, Grishin EV. Effect of the format of antibodies on their specificity. Mol Immunol. 2011 Dec;49(3):433-40 252.Shiraki K, Kudou M, Fujiwara S, Imanaka T, Takagi M. Biophysical effect of amino acids on the prevention of protein aggregation. J Biochem. 2002 Oct;132(4):591-5.

253.Shiraki K, Kudou M, Nishikori S, Kitagawa H, Imanaka T, Takagi M. Eur Arginine ethylester prevents thermal inactivation and aggregation of lysozyme.J Biochem. 2004 Aug;271(15):3242-7.

254.Shukla D, Trout BL Understanding the synergistic effect of arginine and glutamic acid mixtures on protein solubility.. J Phys Chem B. 2011 Oct 20;115(41): 11831-9

255.Shupp J.W.; Jett M.; Pontzer C.H. Identification of a transcytosis epitope on staphylococcal enterotoxins. Infect. Immun. 2002, 1029, 313-318.

256.Singh PK, Agrawal R, Kamboj DV, Gupta G, Boopathi M, Goel AK, Singh L. Construction of a single-chain variable-fragment antibody against the superantigen Staphylococcal enterotoxin B. Appl Environ Microbiol. 2010 Dec;76(24):8184-91.

257.Singh SM, Panda AK. Solubilization and refolding of bacterial inclusion body proteins.J Biosci Bioeng. 2005 Apr;99(4):303-10.

258.Skerra A, Pluckthun A: Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 1988, 240:1038-1041.

259.Skrlj N, Vranac T, Popovic M, Curin Serbec V, Dolinar M. . Specific binding of the pathogenic prion isoform: development and characterization of a humanized single-chain variable antibody fragment.PLoS One. 2011 Jan 20;6(l):el5783

260.Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 2985; 228:1315-1317

261.Sudol KL, Mastrangelo MA, Narrow WC, Frazer ME, Levites YR, Golde TE, Federoff HJ, Bowers W. Generating differentially targeted amyloid-beta specific intrabodies as a passive vaccination strategy for Alzheimer's disease.. Mol Ther. 2009 Dec; 17(12):2031-40.

262. Sundberg E.J., Deng L., Mariuzza R.A. TCR recognition of peptide/MHC class II complexes and superantigens. Semin. Immunol. 2007; 19:262-271

263.Sundstrom M, Hallen D, Svensson A, Schad E, Dohlsten M, Abrahmsen L. The Co-crystal structure of staphylococcal enterotoxin type A with Zn2+ at 2.7

A resolution. Implications for major histocompatibility complex class II binding.J Biol Chem. 1996 Dec 13;271(50):32212-6.

264.Swaminathan S, Furey W, Pletcher J, Sax M. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature. 1992 Oct 29;359(6398):801-6.

265.Taneja S, Ahmad F. Increased thermal stability of proteins in the presence of amino acids.Biochem J. 1994 Oct 1;303 ( Pt 1): 147-53

266.Thomas D, Chou S, Dauwalder O, Lina G. Diversity in Staphylococcus aureus enterotoxins. Chem Immunol Allergy 2007;93:24-41.

267.Thomas D, Dauwalder O, Brun V, Badiou C, Ferry T, Etienne J. Staphylococcus aureus superantigens elicit redundant and extensive human Vbeta patterns. Infect Immun 2009;77:2043-50.

268.Tikhonov I, Kitabwalla M, Wallace M, Malkovsky M, Volkman B, Pauza CD.Staphylococcal superantigens induce lymphotactin production by human CD4 and CD8 T cells. Cytokine 2001;16:73-8.

269.Tilahun ME, Kwan A, Natarajan K, Quinn M, Tilahun AY, Xie C, Margulies DH, Osborne BA, Goldsby RA, Rajagopalan G. Chimeric anti-staphylococcal enterotoxin B antibodies and lovastatin act synergistically to provide in vivo protection against lethal doses of SEB. PLoS One. 2011;6(1 l):e27203.

270.Todorovska A, Roovers RC, Dolezal O, Kortt AA, Hoogenboom HR, Hudson PJ. Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J Immunol Methods 2001 ;248: 47-66

271.Torres BA, Kominsky S, Perrin GQ, Hobeika AC, Johnson HM. Superantigens: the good, the bad, and the ugly. Exp Biol Med 2001;226:164-76.

272.Tsumoto K, Ejima D, Nagase K, Arakawa T. Arginine improves protein elution in hydrophobic interaction chromatography. The cases of human interleukin-6 and activin-A.J Chromatogr A. 2007 Jun 22; 1154(1 -2):81 -6.

273.Tsumoto K., Shinoki K., Kondo H., Uchikawa M., Juji T., Kumagai I. Highly efficient recovery of functional single-chain Fv fragments from inclusion

bodies overexpressed in by controlled introduction of oxidizing reagent— application to a human single-chain Fv fragment. Journal of Immunological Methods 1998; 219: 119-129

274.Tsumoto K.,. Umetsu M., Kumagai I., Ejima D., Philo J.S., Arakawa T. Role of arginine in protein refolding, solubilization, and purification. Biotechnol. Prog. 2004; 20:1301 - 1308

275.Ueno A, Arakawa F, Abe H, Matsumoto H, Kudo T, Asano R, et al. T-cell immunotherapy for human MK-1-expressing tumors using a fusion protein of the superantigen SEA and anti-MK-1 scFv antibody. Anticancer Res 2002; 22: 769-76.

276.Ulrich RG, Olson MA, Bavari S. Development of engineered vaccines effective against structurally related bacterial superantigens. Vaccine 1998; 16:1857-64.

277.Umetsu M., K. Tsumoto, M. Hara, K. Ashish, A. Goda, T. Adschiri, and I. Kumagai How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system. Spectroscopic evidence for highly efficient refolding of a single-chain Fv fragment. J. Biol. Chem. 2003 ;278: 8979-8987

278.Varshney AK, Wang X, Cook E, Dutta K, Scharff MD, Goger MJ, Fries BC. Generation, characterization, and epitope mapping of neutralizing and protective monoclonal antibodies against staphylococcal enterotoxin B-induced lethal shock. J Biol Chem. 2011 Mar 18;286(11):9737-47

279.Vasconcelos NG, da Cunha Mde L. Staphylococcal enterotoxins: Molecular aspects and detection methods Journal of Public Health and Epidemiology 2010;. 2(3):. 29-42,

280.Vaughan, T.J. Williams A.J., Pritchard K., Osbourn J.K., Pope A.R., Earnshaw J.C., McCafferty J., Hodits R.A., Wilton J., Johnson K.S. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 1996; 14, 309-314

281.Vera, A., Gozalez-Montalban, N., Aris, A., and Villaverde, A. The conformation quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol. Bioeng. 2006; 96, 1101-1106.

282.Wang C., Wang L., and Geng Z. High recovery refolding of rhG-CSF from Escherichia coli, using urea gradient size exclusion chromatography. Biotechnol. Prog. 2008;24:209-213

283.Weingart OG, Gao H, Crevoisier F, Heitger F, Avondet MA, Sigrist H. A bioanalytical platform for simultaneous detection and quantification of biological toxins. Sensors (Basel). 2012;12(2):2324-39.

284.Weisser, N.E., Hall, J.C. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol. Advances 2009; 27, 502-520.

285.Woof J.M., Burton D.R. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol. 2004; 4, 89-99.

286.Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005;23: 1137-46.

287.Yarwood J.M.; Leung D.Y., Schlievert P.M. Evidence for the involvement of bacterial superantigens in psoriasis, atopic dermatitis, and Kawasaki syndrome. FEMS Microbiol. Lett. 2000, 192, 1-7.

288.Young NM, MacKenzie CR, Narang SA, Oomen RP, Baenziger JE. Thermal stabilization of a single-chain Fv antibody fragment by introduction of a disulphide bond. FEBS Lett 1995;377: 135-9.

289.Yuan JM, Chyan CL, Zhou HX, Chung TY, Peng H, Ping G, Yang G. The effects of macromolecular crowding on the mechanical stability of protein molecules. Protein Sci. 2008 Dec; 17(12):2156-66.

290.Zhang L, Moo-Young M, Chou CP. Molecular manipulation associated with disulfide bond formation to enhance the stability of recombinant therapeutic protein.Protein Expr Purif. 2011 Jan;75(l):28-39.

291.Zhang S., Iandolo J., Stewart G..The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol. Lett. 1998; 168: 227-233

292.http://refold.med.monash.edu.au/default.php 293 .http://www.rituxan.com

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.