Рибосомные белки S13 и S16 человека: влияние на сплайсинг собственных пре-мРНК тема диссертации и автореферата по ВАК РФ 03.00.04, кандидат химических наук Парахневич, Наталья Михайловна

  • Парахневич, Наталья Михайловна
  • кандидат химических науккандидат химических наук
  • 2008, Новосибирск
  • Специальность ВАК РФ03.00.04
  • Количество страниц 119
Парахневич, Наталья Михайловна. Рибосомные белки S13 и S16 человека: влияние на сплайсинг собственных пре-мРНК: дис. кандидат химических наук: 03.00.04 - Биохимия. Новосибирск. 2008. 119 с.

Оглавление диссертации кандидат химических наук Парахневич, Наталья Михайловна

ОГЛАВЛЕНИЕ.

ПРИНЯТЫЕ СОКРАЩЕНИЯ.

ВВЕДЕНИЕ

ГЛАВА 1. Регуляция экспрессии генов на уровне сплайсинга (Обзор литературы).

1.1. Регуляция сплайсинга пре-мРНК белков, участвующих в метаболизме РНК.

1.1.1. Регуляция стайсинга пре-мРНК SR-белков.

1.1.1.1. Регуляция сплайсинга пре-мРНК белка SRp20.

1.1.1.2. Регуляция сплайсинга пре-мРНК белка SC35.

1.1.1.3. Регуляция сплайсинга пре-мРНК белка 9G8.

1.1.1.4. Регуляция сплайсинга пре-мРНК белка tra-2.

1.1.1.5. Регуляция сплайсинга пре-мРНК белка tra2-betal.

1.1.1.6. Регуляция сплайсинга пре-мРНК белка atRSZ33.

1.1.1.7. Регуляция сплайсинга пре-мРПК белка RSZ36.

1.1.2. Регуляция стайсинга пре-мРНК белков hnRNP.

1.1.2.1. Регуляция сплайсинга пре-мРНК белка РТВ.

1.1.2.2. Регуляция сплайсинга пре-мРНК hnRNP А1.

1.1.2.3. Регуляция сплайсинга пре-мРПК белка HRP59.

1.1.3. Регуляция сплайсинга пре-мРНК других белков.

1.1.3.1. Регуляция сплайсинга пре-мРНК белка Yralp.

1.1.3.2. Регуляция сплайсинга пре-мРНК Nova.

1.1.3.3. Регуляция сплайсинга пре-мРНК SWAP.

1.1.3.4. Регуляция сплайсинга пре-мРНК белков Т1А-1 и T1AR.

1.1.3.5. Регуляция сплайсинга пре-мРНК Sex-lethal.

1.2. Участие рибосомных белков в регуляции сплайсинга своих пре-мРНК.

1.2.1. Регуляция сплайсинга пре-мРНК грЬЗО.

1.2.2. Регуляция стайсинга пре-мРНК rpS 14.

1.2.3. Регуляция сплайсинга пре-мРНКrpLl.

1.2.4. Регуляция стайсинга пре-мРНК rpLl2.

1.2.5. Регуляция стайсинга пре-мРНК rpS28.

1.2.6. Регуляция стайсинга npe-.uPHKrpL3.

1.2.7. Регуляция стайсинга пре-мРНК rpS26.

Рекомендованный список диссертаций по специальности «Биохимия», 03.00.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Рибосомные белки S13 и S16 человека: влияние на сплайсинг собственных пре-мРНК»

Рибосомные белки являются структурными элементами рибосомы -многокомпонентной клеточной органеллы, осуществляющей биосинтез белков. Известно, что наряду с функциями, связанными со сборкой рибосомы и трансляцией мРНК [1], многие из этих белков обладают так называемыми «внерибосомными» функциями [2], иначе говоря, они участвуют в различных клеточных процессах, находясь в свободном состоянии, т.е. вне рибосомы. Точная регуляция биосинтеза рибосомных белков является необходимым условием для полноценной жизнедеятельности как отдельной клетки, так и целого организма, а нарушение этой регуляции может приводить к различным критическим изменениям [3, 4]. Согласно современным представлениям регуляция экспрессии генов рибосомных белков эукариот происходит на стадиях транскрипции, сплайсинга и трансляции [5]. Кроме того, регуляция количества рибосомных белков в эукариотических клетках может осуществляться за счет изменения скорости деградации вновь синтезированных белков [6]. Согласно данным [5, 7] регуляция экспрессии генов рибосомных белков эукариот на стадиях транскрипции и трансляции происходит координировано, по принципу «все сразу». Такая регуляция достигается благодаря наличию общих регуляторных элементов как в генах рибосомных белков [8, 9], так и в мРНК, кодирующих эти белки [10, 11]. Регуляция экспрессии генов рибосомных белков на уровне сплайсинга изучена хуже, но в большинстве известных случаев показано, что регуляция на этой стадии осуществляется по принципу «обратной связи», т.е. через взаимодействие рибосомного белка с кодирующей его пре-мРНК [12]. Такой механизм регуляции обеспечивает необходимый уровень каждого рибосомного белка в клетке, независимо от количества остальных рибосомных белков, что может являться исключительно важным для выполнения рибосомными белками функций, не связанных с процессом трансляции. К моменту начала настоящей работы практически отсутствовала информация о механизмах регуляции экспрессии генов рибосомных белков человека на уровне сплайсинга, за исключением того, что к тому времени было известно, что рибосомный белок S26 (гр от англ. ribosomal protein) человека обладает высоким сродством к фрагменту кодирующей его пре-мРНК, содержащему первый интрон [13, 14]. Таким образом, изучение роли рибосомных белков в регуляции сплайсинга кодирующих их пре-мРНК и особенностей РНК-белковых взаимодействий, лежащих в основе этого процесса, имеет важное значение для понимания молекулярных механизмов регуляции биосинтеза рибосомных белков.

Целью настоящей работы являлось изучение регуляции экспрессии генов рибосомных белков Б13 и 816 человека на стадии сплайсинга. Внерибосомные функции этих белков пока не известны, однако имеются данные о возможном участии гр813 в подавлении апоптоза, индуцированного лекарствами против рака желудка [15].

Основными задачами являлись:

• создание экспрессирующих плазмидных конструкций, несущих кДНК рибосомных белков 813 и 816 человека, и получение препаратов рекомбинантных рибосомных белков 813 и 816, пригодных для использования в структурно-функциональных тестах;

• выявление с помощью компьютерного анализа наиболее консервативных интронов в составе пре-мРНК, кодирующих рибосомные белки 813 и 816;

• изучение связывания рибосомных белков 813 и 816 с фрагментами их пре-мРНК, содержащими наиболее консервативные интроны, и исследование влияния данных белков на сплайсинг этих фрагментов;

• определение нуклеотидов фрагмента пре-мРНК рибосомного белка 813, меняющих свою доступность действию ферментов в присутствии кодируемого белка, и выявление их роли в регуляции сплайсинга этого фрагмента.

Похожие диссертационные работы по специальности «Биохимия», 03.00.04 шифр ВАК

Заключение диссертации по теме «Биохимия», Парахневич, Наталья Михайловна

выводы

1. Получены и охарактеризованы рекомбинаптные рибосомные белки 813 и 816 человека. Показано, что вторичная структура этих белков соответствует структуре нативных рибосомных белков 813 и 816, при этом структура белка 813 стабильна при рН 4 — 8 и концентрации мочевины, не превышающей 3 М, а белка Б16 — при рН 2 — 8 и концентрации мочевины до 2 М.

2. С помощью компьютерного анализа установлено, что в генах рибосомных белков 813 и 816 первый интрон наиболее консервативен по сравнению с другими интронами этих генов, что указывает на его регуляторную роль.

3. Показано, что рибосомные белки 813 и 816 способны специфично связываться с фрагментами кодирующих их пре-мРНК, содержащими первый интрон, и ингибировать сплайсинг этих фрагментов в ядерном экстракте клеток НеЬа по принципу «обратной связи».

4. Определены нуклеотидные остатки фрагмента пре-мРНК рибосомного белка 813, изменяющие свою доступность РНКазам Т1, Т2 и VI в присутствии данного белка. Установлено, что большинство из этих остатков расположено вблизи 5'- и З'-сайтов сплайсинга первого интрона. Показано, что мутации в районах, содержащих эти остатки, уменьшают ингибирующий эффект рибосомного белка 813 на сплайсинг фрагмента его пре-мРНК, содержащего первый интрон.

ЗАКЛЮЧЕНИЕ

Представленная работа является важным этапом исследования, направленного на изучение регуляции экспрессии генов рибосомных белков человека на уровне сплайсинга. Предположение о роли первых интронов в авторегуляции сплайсинга их пре-мРНК, сделанное на основании сравнительного анализа нуклеотидных последовательностей генов рибосомных белков S13 и S16 человека и других млекопитающих, нашло подтверждение в опытах in vitro, где показано, что эти белки, специфично связываясь с фрагментами своих пре-мРНК, содержащими первый интрон, ингибируют их сплайсинг в ядерном экстракте клеток HeLa. Результаты экспериментов по определению структурных элементов фрагмента пре-мРНК rpS13, принимающих участие в связывании с rpS13, показали, что этот белок связывается с кодирующей его пре-мРНК в районе сайтов сплайсинга первого интрона, причем специфичность этого взаимодействия определяет как первичная, так и вторичная структура участка связывания.

Анализ литературных источников, представленный в Главе 1, показал, что участки связывания эукариотических рибосомных белков на кодирующих их пре-мРНК, как правило, имеют общие структурные черты с участками связывания этих белков на рРНК и мРНК. Сравнение участка связывания rpS13 в области 5'-сайта сплайсинга первого интрона действительно выявило сходство его структуры со структурой участка связывания его прокариотического гомолога — rpS 15 Т. thermophilus на 16S рРНК. Сродство рибосомных белков к кодирующим их мРНК значительно ниже, чем к пре-мРНК. Вероятно, появление у эукариот экзон-интронного строения генов позволило клетке перенести регуляцию экспрессии генов многих рибосомных белков с уровня трансляции (как это происходит у прокариот) на уровень сплайсинга, используя для этого некодируюгцие последовательности в пре-мРНК — интроны, и тем самым выйти на новый, более высокий уровень регуляции.

Список литературы диссертационного исследования кандидат химических наук Парахневич, Наталья Михайловна, 2008 год

1. Ferreira-Cerca S., Poell G., Gleizes P.-E., Tschochner H., Milkereit P. Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function // Mol. Cell. 2005. V. 20. P. 263-275.

2. Wool I.G., Chan Y.-L., GluecfcA. Mammalian ribosomes: the structure and the evolution of the proteins // Translational control / Eds. Hershey J.W.B., Mathews M.B., Sonenberg N. New-York: Cold Spring Harbor Laboratory Press. 1996. P. 685-732.

3. Campagnoli M.F., Ramenghi U., Armiraglio M., Quarello P., Garelli E., Carando A., Avondo F., Pavesi E., Fribourg S., Gleizes P.E., Loreni F., Dianzani I. RPS19 mutations in patients with Diamond-Blackfan anemia // Hum. Mutat. 2008. V. 29. P. 911-920.

4. Lindstrom M.S., Zhang Y. Ribosomal protein S9 is a novel B23/NPM binding protein required for normal cell proliferation // J Biol Chem. 2008. V. 283. P. 15568-15576.

5. Zhao Y., Sohn J.H., Warner J.R. Autoregulation in the biosynthesis of ribosomes // Mol. Cell. Biol. 2003. V. 23. P. 699-707.

6. Perry R.P. Balanced production of ribosomal proteins // Gene. 2007. V.401. P. 1-3.

7. Wyrwicz L.S., Gaj P., Hoffmann M., Rychlewski L., Ostrowski J. A common cis-element in promoters of protein synthesis and cell cycle genes // Acta Biochim. Pol. 2007. V. 54. P. 89-98.

8. Zhao Y., Mcintosh K.B., Rudra D., Schawalder S., Shore D., Warner J.R. Fine-structure analysis of ribosomal protein gene transcription // Mol. Cell Biol. 2006. V. 26. P. 48534862.

9. Hamilton T.L., Stoneley M., Spriggs K.A., Bushell M. TOPs and their regulation // Biochem. Soc. Trans. 2006. V. 34. P. 12-26.

10. Иванов A.B., Малыгин A.A., Карпова Г.Г. Рибосомные белки эукариот: взаимодействие с собственными пре-мРНК и участие в регуляции их сплайсинга // Молекуляр. биология. 2006. Т. 40. С. 640-649.

11. Иванов А.В., Малыгин А.А., Карпова Г.Г. Рибосомные белки, связывающиеся с первым интроном пре-мРНК рибосомного белка S26 человека, стимулируют взаимодействие белков экстракта клеток HeLa с этим интроном // Молекуляр. биология. 2002. Т. 36. С. 503-510.

12. Иванов А.В., Малыгин А.А., Карпова Г.Г. Взаимодействие рибосомного белка S26 человека с фрагментами мРНК и пре-мРНК этого белка в ядерном экстракте клеток HeLa//Молекуляр. биология. 2003. Т. 37. С. 900-905.

13. Shi Y., Zhai К, WangX., Han Z„ Liu С., Lan M„ Du J., Guo C., Zhang Y. Wu K, Fan D. Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing druginduced apoptosis // Exp. Cell Res. 2004. V. 296. P. 337-346.

14. Moore M.J., Query C.C., Sharp P. A. Splicing of precursors to messenger RNAs by the spliceosome // The RNA world / Eds. Gesteland R.F. Atkins J.F. New-York: Cold Spring Harbor Laboratory Press. 1993. P. 303-358.

15. Rio D.C. Splicing of pre-mRNA: Mechanism, regulation and role in development // Cuir. Opin. Genet. Dev. 1993. V. 3. P. 574-584.

16. Sharp P.A. Split genes and RNA splicing // Cell. 1994. V. 77. P. 805-815.

17. Jurica M.S., Moore M.J. Pre-mRNA splicing: awash in sea of proteins // Mol. Cell. 2003. V. 12. P. 5-14.

18. Graveley B.R. Sorting out the complexity of SR protein functions // RNA. .2000. V. 6. P. 1197-1211.

19. Manley J.R., Tacke R. SR proteins and splicing control //Genes Dev. 1996. V. 10. P. 1569-1579.

20. Wang Z., Hoffman H.M., Grabowski P.J. Intrinsic U2AF binding is modulated by exon enhancer signals in parallel with changes in splicing activity // RNA. 1995. V. 1. P. 2135.

21. Zahler A.M., Neugenbauer K.M., Lane W.S., Roth M.B. Distinct functions of SR proteins in alternative premRNA splicing // Science. 1993. V. 260. P. 219-222.

22. Caceres J.F., Screaton G.R., Krainer A.R. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm // Genes Dev. 1998. V.12. P. 5566.

23. Wu I.Y., Maniatis T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing // Cell. 1993. V. 75. P. 1061-1070.

24. KohtzJ.D., Jamison S.F., Will C.L., Zuo P., Liihrmann R., Garcia-Blanco M.A., Manley J.L. Protein-protein interactions and 5'-splice site recognition in mammalian mRNA precursors//Nature. 1994. V. 368. P. 119-124.

25. Prasad J., Colwill K, Pawson T., Manley J.L. The protein kinase Clk/Sty directly modulates SR protein activity: Both hyper- and hypophosphorylation inhibit splicing // Mol. Cell. Biol. 1999. V. 19. P. 6991-7000.

26. Misteli T., Caceres J.F., Clement J.Q., Krainer A.R., Wilkinson M.F., Spector D.L. Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo // J. Cell. Biol. 1998. V. 143. P. 297-307.

27. Jumaa H., Nielsen P.J. The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation // EMBO J. 1997. V. 16. P. 5077-5085.

28. Jumaa H., Guenet J.L., Nielsen P.J. Regulated expression and RNA-processing of transcripts from the Srp20 splicing factor gene during the cell cycle // Mol. Cell. Biol. 1997 V. 17. P. 3116-3124.

29. Jumaa H., Nielsen P.J. Regulation of SRp20 exon 4 splicing // Biochim. Biophys. Acta. 2000. V. 1494. P. 137-143.

30. Kumar S., Lopez A. J. Negative feedback regulation among SR splicing factors encoded by Rbpl and Rbpl-like in Drosophila// EMBO J. 2005 V. 24. P. 2646-2655.

31. Sureau A., Perbal B. Several mRNAs with variable 3' untranslated regions and different stability encode the human PR264/SC35 splicing factor // Proc. Natl. Acad. Sci. U.S.A. 1994. V. 91. P. 932-936.

32. SureauA., Gattoni R., Dooghe Y, Stevenin J., SoretJ. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs // EMBO J. 2001. V. 20. P. 1785-1796.

33. Popielarz M., Cavaloc Y., Mattei M.G., Gattoni R., Stevenin J. The gene encoding human splicing factor 9G8. Structure, chromosomal localization, and expression of alternatively processed transcripts // J. Biol. Chem. 1995. V. 270. P. 17830-17835.

34. Lejeune R, Cavaloc Y., Stevenin J. Alternative Splicing of Intron 3 of the Serine/Arginine-rich Protein 9G8 Gene // J. Biol. Chem. 2001. V. 276. P. 7850-7858.

35. Baker B.S. Sex in flies: the splice of life // Nature. 1989. V. 340. P. 521-524.

36. Nagoshi R.N., Baker B.S. Regulation of sex-specific RNA splicing at the Drosophila doublesex gene: cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns // Genes Dev. 1990. V. 4. P. 89-97.

37. Chandler D., McGuffin M.E., Piskur J., Yao J., Baker B.S Mattox W. Evolutionary conservation of regulatory strategies for the sex determination factor transformer-2 // Mol. Cell. Biol. 1997. V. 17. P. 2908-2919.

38. Mattox W., Baker B.S. Autoregulation of the splicing of transcripts from the transformer-2 gene of Drosophila // Genes Dev. 1991. V. 5. P. 786-796.

39. Amrein H., Maniatis T., Nothiger R. Alternatively spliced transcripts of the sex-determining gene tra-2 of Drosophila encode functional proteins of different size // EMBO J. 1990. V. 9. P. 3619-3629.

40. Mattox W., McGuffin M.E., Baker B.S. A negative feedback mechanism revealed by functional analysis of the alternative isoforms of the Drosophila splicing regulator Transformer-2//Genetics. 1996. V. 143. P. 303-314.

41. McGuffin M.E., Chandler D„ Somaiya D., Dauwalder B., Mattox W. Autoregulation of transformer-2 alternative splicing is necessary for normal male fertility in Drosophila // Genetics. 1998. V. 149. P. 1477-1486.

42. Chandler D.S., McGuffin M.E, Mattox W. Functionally antagonistic sequences are required for normal autoregulation of Drosophila tra-2 pre-mRNA splicing // Nucleic Acids Res. 2001. V. 29. P. 3012-3019.

43. Chandler D.S., Qi J., Mattox W. Direct Repression of Splicing by transformer-2 // Mol. Cell. Biol. 2003. V. 23. P. 5174-5185.

44. Qi J., Su S., Mattox W. The doublesex splicing enhancer components Tra2 and Rbpl also repress splicing through an intronic silencer // Mol. Cell. Biol. 2007. V. 27. P. 699708.

45. Lynch K.W., Maniatis T. Synergistic interactions between two distinct elements of a regulated splicing enhancer // Genes Dev. 1995. V. 9. P. 284-293.

46. Lynch K.W., Maniatis T. Assembly Of specific SR protein complexes on distinct regulatory elements of the Drosophila Doublesex splicing enhancer // Genes Dev. 1996. V. 10. P. 2089-2101.

47. Beil B., Screaton G., Stamm S. Molecular cloning of htra2-beta-l and htra2-beta-2, two human homologs of tra-2 generated by alternative splicing // DNA Cell. Biol. 1997. V. 16. P. 679-690.

48. Cowper A.E., Caceres J.F., Mayeda A., Screaton G.R. Serine-arginine (SR) protein-like factors that antagonize authentic SR proteins and regulate alternative splicing // J. Biol. Chem. 2001. V. 276. P. 48908-48914.

49. Stoilov P., Daoud R., Nayler O., Stamm S. Human tra2-betal autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA // Hum. Mol. Genet. 2004. V. 13. P. 509-524.

50. Lopato S., Kalyna M., Dorner S., Kobayashi R., Krainer A.R., Barta A. atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes//Genes Dev. 1999. V. 13. P. 987-1001.

51. Kalyna M., Lopato S., Barta A. Ectopic expression of atRSZ33 reveals its function in splicing and causes pleiotropic changes in development // Mol. Biol. Cell. 2003. V. 14. P. 3565-3577.

52. Isshiki M., Tsumoto A., Shimamoto K The Serine/Arginine-Rich Protein Family in Rice Plays Important Roles in Constitutive and Alternative Splicing of Pre-mRNA // Plant Cell. 2006. V. 18. P. 146-158.

53. Michelotti E.F., Michelotti G.A., Aronsohn A.I., Levens D. Heterogeneous nuclear ribonucleoprotein K is a transcription factor // Mol. Cell. Biol. 1996. V. 16. P. 23502360.

54. Ostareck D.H., Ostareck-Lederer A., Wilm M., Thiele B.J., Mann M., Hentze M.W. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP El regulate 15-lipoxygenase translation from the 3' end // Cell. 1997. V. 89. P. 597-606.

55. Valcarcel J., Gebauer F. Post-transcriptional regulation:the dawn of PTB // Curr. Biol. 1997. V. 7. P. 705-708.

56. Wagner E.J., Garcia-Blanco M.A. Polypyrimidine tract binding protein antagonizes exon definition // Mol. Cell. Biol. 2001. V. 21. P. 3281-3288.

57. Shen J., Zu K, Cass C.L., Beyer A.L., Hirsh J. Exon skipping by overexpression of a Drosophila heterogeneous nuclear ribonucleoprotein in vivo// Proc. Natl. Acad. Sei. U.S.A. 1995. V. 92. P. 1822-1825.

58. Zu K, Sikes M.L., Haynes S.R., Beyer A.L. Altered levels of the Drosophila HRB87F/hrp36 hnRNP protein have limited effects on alternative splicing in vivo // Mol. Biol. Cell. 1996. V. 7. P. 1059-1073.

59. Siebel C.W., Fresco L.D., Rio D.C. The mechanism of somatic inhibition of Drosophila P-element pre-mRNA splicing: multiprotein complexes at an exon pseudo-5' splice site control U1 snRNP binding // Genes Dev. 1992. V. 6. P. 1386-1401.

60. Siebel C.W., Kanaar R., Rio D.C. Regulation of tissue-specific P-element pre-mRNA splicing requires the RNA-binding protein PSI// Genes Dev. 1994. V. 8. P. 1713-1725.

61. Spelltnan R., Rideau A., Matlin A., Gooding C., Robinson F., McGlincy N., Grellscheid S.N., Southby J., Wollerton M., Smith C. Regulation of alternative splicing by PTB and associated factors // Biochem. Soc. T. 2005. V. 33. P. 457-460.

62. Burd C.G., Dreyfuss G. RNA binding specificity of hnRNP Al: significance of hnRNP Al high-affinity binding sites in pre-mRNA splicing // EMBO J. 1994. V.13. P. 11971204.

63. Oh Y.L., Hahm B„ Kim Y.K., Lee H.K, Lee J.W., Song 0., Tsukiyama Kohara K„ Kohara M., Nomoto A., Jang S.K. Determination of functional domains in polypyrimidine-tract-binding protein // Biochem. J. 1998. V. 331. P. 169-175.

64. Ghetti A., Pinol Roma S„ Michael W.M., Morandi C., Dreyfuss G. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs // Nucleic Acids Res. 1992. V. 20. P. 3671-3678.

65. Patton J.G., Mayer S.A., Tempst P., Nadal Ginard B. Characterization and molecular cloning of polypyrimidine tract- binding protein: a component of a complex necessary for pre-mRNA splicing // Genes Dev. 1991. V. 5. P. 1237-1251.

66. Perez I, McAfee J.G., Patton J.G. Multiple RRMs contribute to RNA binding specificity and affinity for polypyrimidine tract binding protein // Biochemistry. 1997. V.36. P. 11881-11890.

67. Perez I., Lin C.-H., McAfee J.G., Patton J.G. Mutation of PTB binding sites causes misregulation of alternative 3' splice site selection in vivo // RNA. 1997. V. 3. P. 764778.

68. Wollerton M., Gooding C., Robinson F., Brown E., Jackson R, Smith C. Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein // RNA. 2001. V. 7. P. 819-832.

69. Wollerton M.C., Gooding C., Wagner E.J., Garcia-Blanco M.A., Smith C. Autoregulation of Polypyrimidine Tract Binding Protein by Alternative Splicing Leading to Nonsense-Mediated Decay // Mol. Cell. 2004. V. 13. P. 91-100.

70. Mayeda A., Krainer A. R. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2 // Cell. 1992. V. 68. P. 365-375.

71. Mayeda A., Helfman D. M., Krainer A. R. Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and pre-mRNA splicing factor SF2/ASF // Mol. Cell. Biol. 1993. V. 13. P. 2993-3001.

72. Mayeda A., Munroe S. M., Caceres J. F„ Krainer A. R. Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins // EMBO J. 1994. V. 13. P. 5483-5495.

73. Chabot B., Blanchette M., Lapierre I., La Branche H. An intron element modulating 5' splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNP A1 // Mol. Cell. Biol. 1997. V. 17. P. 1776-1786.

74. Eperon I.C., Ireland D.C., Smith R.A., Mayeda A., Krainer A.R. Pathways for selection of 59 splice sites by U1 snRNPs and SF2/ASF // EMBO J. 1993. V. 12. P. 3607-3617.

75. Kiesler E., Hase M.E., Brodin D., Visa N. Hrp59, an hnRNP M protein in Chironomus and Drosophila, binds to exonic splicing enhancers and is required for expression of a subset of mRNAs // J. Cell. Biol. 2005. V. 168. P. 1013-1025.

76. Datar K. V, Dreyfuss G., Swanson M.S. The human hnRNP M proteins: identification of a methionine/arginine-rich repeat motif in ribonucleoproteins // Nucleic Acids Res. 1993. V. 21. P. 439-446.

77. Kafasla P., Patrinou-Georgoula M., Guialis A. The 72/74-kDa polypeptides of the 70110 S large heterogeneous nuclear ribonucleoprotein complex (LH-nRNP) represent a discrete subset of the hnRNP M protein family // Biochem. J. 2000. V. 350. P. 495-503.

78. Blencowe B.J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases // Trends Biochem. Sci. 2000. V. 25. P. 106-110.

79. Kiesler E, Hase M.E., Brodin D., Visa N. Hrp59, an hnRNP M protein in Chironomus and Drosophila, binds to exonic splicing enhancers and is required for expression of a subset of mRNAs // J. Cell. Biol. 2005. V. 168. P. 1013-1025.

80. Strafier K, Hurt E. Yralp, a conserved nuclear RNAbinding protein, interacts directly with Mex67p and is required for mRNA export // EMBO J. 2000. V. 19. P. 410-420.

81. Lei E.P., Krebber H., Silver P.A. Messenger RNAs are recruited for nuclear export during transcription // Genes Dev. 2001. V. 15. P. 1771-1782.

82. Lei E.P. Silver P.A. Intron status and 39-end formation control cotranscriptional export of mRNA // Genes Dev. 2002. V. 16. P. 2761-2766.

83. Kim M., Ahn S.H., Krogan N.J., Greenblatt J.F., Buratowski, S. Transitions in RNA polymerase II elongation complexes at the 39 ends of genes // EMBO J. 2004. V. 23. P. 354-364.

84. Abruzzi K.C., Lacadie S., Rosbash M. Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes // EMBO J. 2004. V. 23. P. 2620-2631.

85. Rodríguez-Navarro S., Stráfier K., Hurt E. An intron in the YRA1 gene is required to control Yral protein expression and mRNA export in yeast // EMBO Rep. 2002. V. 3. P. 438-442.

86. Preker P.J., Kim K.S., Guthrie C. Expression of the essential mRNA export factor Yralp is autoregulated by a splicing-dependent mechanism // RNA. 2002. V. 8. P. 969980.

87. Preker P. J., Guthrie C. Autoregulation of the mRNA export factor Yralp requires inefficient splicing of its pre-mRNA // RNA. 2006. V. 12. P. 994-1006.

88. Spingola M, Ares Jr.M. A yeast intronic splicing enhancer and Nam8p are required for Merlp-activated splicing // Mol. Cell. 2000. V. 6. P. 329-338.

89. Libri D., Stutz F., McCarthy T., Rosbash M. RNA structural patterns and splicing: Molecular basis for an RNAbased enhancer // RNA. 1995. V. 1. P. 425-436.

90. Newman A. Specific accessory sequences in Saccharomyces cerevisiae introns control assembly of pre-mRNAs into spliceosomes // EMBO J. 1987. V. 6. P. 3833-3839.

91. Buckanovich R.J., Yang Y.Y., Darnell R.B. The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies // J. Neurosci. 1996. V. 16. P. 1114-1122.

92. Yang Y.Y., Yin G.L., Darnell R.B. The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia // Proc. Natl. Acad. Sci. U.S.A. 1998. V. 95. P. 13254-13259.

93. Buckanovich R.J., Darnell R.B. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo // Mol. Cell. Biol. 1997. V. 17. P. 3194-3201.

94. Dredge K.B., Stefani G., Engelhard C.C., Darnell R.B. Nova autoregulation reveals dual functions in neuronal splicing // EMBO J. 2005. V. 24. P. 1608-1620.

95. Dredge B.K., Darnell R.B. Nova regulates GABA(A) receptor gamma2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer // Mol. Cell. Biol. 2003. V. 23. P. 4687-4700.

96. Chou T.B., Zachar Z, Bingham P.M. Developmental expression of a regulatory gene is programmed at the level of splicing // EMBO J. 1987. V. 6. P. 4095-4104.

97. Denhez F., Lafyatis R. Conservation of regulated alternative splicing and identification of functional domains in vertebrate homologs to the Drosophila splicing regulator, suppressor-of-white-apricot//J. Biol. Chem. 1994. V. 269. P. 16170-16179.

98. Zachar Z., Tze-Bin G, and Bingham P.M. Evidence that a regulatory gene autoregulates splicing of its transcript // EMBO J. 1987. V. 6. P. 4105-4111.

99. Zachar Z., Chou T.B., Kramer J., Mims I.P., Bingham P.M. Analysis of Autoregulation at the Level of Pre-mRNA Splicing of the suppressor-of-white-apricot Gene in Drosophila// Genetics. 1994. V. 137. P. 139-150.

100. Sarhissian M., WinneA., Lafyatis R. The Mammalian Homolog of Suppressor-of-white-apricot Regulates Alternative mRNA Splicing of CD45 Exon 4 and Fibronectin IIICS // J. Biol. Chem. 1996. V. 271. P. 31106-31114.

101. Tian Q., Taupin J., Elledge S., Robertson M., Anderson P. Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis // J. Exp. Med. 1995. V. 182. P. 865-874.

102. Taupin J. L., Tian Q., Kedersha N., Robertson M., Anderson P. The RNA-binding protein TIAR is translocated from the nucleus to the cytoplasm during Fas-mediated apoptotic cell death // Proc. Natl. Acad. Sci. U.S.A. 1995. V. 92. P. 1629-1633.

103. Gueydan C., Droogmans L., Chalon P., Huez G., Caput D., Kruys V. Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA // J. Biol. Chem. 1999. V. 274. P. 2322-2326.

104. Piecyk M., Wax S., Beck A.R., Kedersha N., Gupta M., Maritim B., Chen S., Gueydan C., Kruys V., Streuli M., Anderson P. TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha // EMBO J. 2000. V. 19. P. 4154-4163.

105. Kedersha N. Cho M.R., Li W., Yacono P.W., Chen S., Gilks N., Golan D.E., Anderson P. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules // J. Cell Biol. 2000. V. 151. P. 1257-1268.

106. Kedersha N„ Gupta M., Li W., Miller /., Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules //J. Cell. Biol. 1999. V. 147. P. 1431-1442.

107. Forch P., Puig O., Kedersha N. Martinez C., Granneman S., Seraphin B., Anderson P., Valcarcel J. The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing // Mol. Cell. 2000. V. 6. P. 1089-1098.

108. Bandziulis R.J., Swanson M.S., Dreyfuss G. RNA-binding proteins as developmental regulators // Genes and Dev. 1989. V. 3. P. 431-437.

109. Bell L.R., Maine E.M., Schedl P., Cline T.W. Sexlethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins // Cell. 1988. V. 55. P. 1037-1046.

110. Sosnowski B.A., Belote J.M. McKeown M. Sex-specific alternative splicing of RNA from he transformer gene results from sequence-dependent splice site blockage // Cell.1989. V. 3.P. 449-459.

111. Inoue K, Hoshijima K, Sakamoto H. Shimura Y. Binding of the Drosophila Sex-lethal gene product to the alternative splice site of transformer primary transcript // Nature.1990. V. 344. P. 461-463.

112. Sakamoto H., Inoue K, Higuchi I., Ono Y., Shimura Y. Control of Drosophila Sex-lethal pre-mRNA splicing by its own female-specific product // Nucleic Acids Res. 1992. V. 20. P. 5533-5540.

113. Wang J., Bell L.R. The Sex-lethal amino terminus mediates cooperative interactions in RNA binding and is essential for splicind regulation // Genes Dev. 1994. V. 8. P. 20722085.

114. Deshpande G., Samuels M.E., Schedl P.D. Sex-lethal interacts with splicing factors injvitro and in vivo // Mol. Cell. Biol. 1996. V. 16. P. 5036-5047.

115. Lallena M.J., Chalmers K.J., Llamazares S., Lamond A.I., Valcarcel J. Splicing regulation at the second catalytic step' by SEXLETHAL involves 3' splice site recognition by SPF45 // Cell. 2002. V. 109. P. 285-296.

116. Penalva L.O., Lallena M.J., Valcarcel J. Switch in 3' splice site recognition between exon definition and splicing catalysis is important for Sex-lethal autoregulation // Mol. Cell. Biol. 2001. V. 21. P. 1986-1996.

117. Nagengast A.A., Stitzinger S.M., Tseng C.H., Mount S.M., Salz H.K. Sex-lethal splicing autoregulation in vivo: interactions between SEX-LETHAL, the U1 snRNP and U2AF underlie male exon skipping // Development. 2003. V. 130. P. 463-471.

118. Mager W.H., Planta R.J., Ballesta J.-P.G., Lee J.C., Mizuta K., Suzuki K„ Warner J.R., Woolford J. A new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae // Nucleic Acids Res. 1997. V. 25. P. 4872-4875.

119. Dabeva M.D., Post-Beittenmiller M.A., Warner J.R. Autogenous regulation of splicing of the transcript of a yeast ribosomal protein gene // Proc. Natl. Acad. Sci. U.S.A. 1986. V. 83. P. 5854-5857.

120. EngF.J., Warner J.R. Structural basis for the regulation of splicing of a yeast messenger RNA // Cell. 1991. V. 65. P. 797-804.

121. Woolford J.L. Nuclear pre-mRNA splicing in yeast // Yeast. 1989. V. 5. P. 439-457.

122. Dabeva M.D., Warner J.R. Ribosomal protein L32 of Saccharomyces cerevisiae regulates both splicing and translation of its own transcript // J. Biol. Chem. 1993. V. 268. P. 19669-19674.

123. Vilardell J., Warner JR. Regulation of splicing at an intermediate step in the formation of the spliceosome // Genes Dev. 1994. V. 8. P. 211-220.

124. Li H., Dalai S., Kohler J„ Vilardell J., White S.A. Characterization of the pre-mRNA binding site for yeast ribosomal protein L32: the importance of a purine-rich internal loop // J. Mol. Biol. 1995. V. 250. P. 447-459.

125. White S.A., Li H. Yeast ribosomal protein L32 recognizes an RNA G*U juxtaposition // RNA. 1996. V. 2. P. 226-234.

126. Li B., Vilardell J., Warner J.R. An RNA structure involved in feedback regulation of splicing and of translation is critical for biological fitness // Proc. Natl. Acad. Sci. U.S.A. 1996. V. 93. P. 1596-1600.

127. Li H., While S.A. RNA apatamers for yeast ribosomal protein L32 have a conserved purine-rich internal loop // RNA. 1997. V. 3. P. 245-254.

128. Vilardell J., Warner J.R. Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA // Mol. Cell. Biol. 1997. V. 17. P. 1959-1965.

129. Mao H., Williamson JR. Local folding coupled to RNA binding in the yeast ribosomal protein L30 // J. Mol. Biol. 1999. V. 292. P. 345-359.

130. Mao H., Williamson JR. Assignment of the L30-mRNA complex using selective isotopic labeling and RNA mutants // Nucleic Acids Res. 1999. V. 27. P. 4059-4070.

131. Mao H., While S.A., Williamson J.R. A novel loop-loop recognition motif in the yeast ribosomal protein L30 autoregulatory RNA complex // Nat. Struct. Biol. 1999. V. 6. P. 1139-1147.

132. Chao J.A., Prasad G.S., White S.A., Stout C.D., Williamson JR. Inherent protein structural flexibility at the RNA-binding interface of L30e // J. Mol. Biol. 2003. V. 326. P. 999-1004.

133. Chao J.A., Williamson J.R. Joint X-ray and NMR refinement of the yeast L30e-mRNA complex // Structure. 2004. V. 12. P. 1165-1176.

134. Vilardell J, Yu S.J., Warner J.R. Multiple functions of an evolutionarily conserved RNA binding domain // Mol. Cell. 2000. V. 5. P. 761-766.

135. Halic M, Becker T., Frank J., Spahn C.M., Beckmann R. Localization and dynamic behavior of ribosomal protein L30e //Nat. Struct. Mol. Biol. 2005. V. 12. P. 467-468.

136. Vilardell J., Chartrand P., Singer R.H., Warner J.R. The odyssey of a regulated transcript //RNA. 2000. V. 6. P. 1773-1780.

137. Nomura M. Regulation of ribosome biosynthesis in Escherichia coli and Saccharomyces cerevisiae: diversity and common principles // J. Bacteriol. 1999. V. 181. P. 6857-6864.

138. Li Z, Paulovich A.G., Woolford J.L. Feedback inhibition of the yeast ribosomal protein gene CRY2 is mediated by the nucleotide sequence and secondary structure of CRY2 pre-mRNA // Mol. Cell. Biol. 1995. V. 15. P. 6454-6464.

139. Fewell S.W. Woolford J.L. Ribosomal protein S14 of Saccharomyces cerevisiae regulates its expression by binding to RPS14B pre-mRNA and to 18S rRNA // Mol. Cell. Biol. 1999. V. 19. P. 826-834.

140. Antunez de Mayolo P., Woolford J.L. Interactions of yeast ribosomal protein rpS14 with RNA // J. Mol. Biol. V. 333. P. 697-709.

141. Pierandrei-Amaldi P., Amaldi F., Bozzoni I., Fragapane P. Regulation of ribosomal protein genes during Xenopus development // Molecular approaches to developmental biology / Eds. Firtel R.A., Davidson E.H. New York: Alan R. Liss, Inc. 1987. P. 267278.

142. Caffarelli E., Fragapane P., Gehring I., Bozzoni I. The accumulation of mature RNA for the Xenopus laevis ribosomal protein LI is controlled at the level of splicing and turnover of the precursor RNA // EMBO J. 1987. V. 6. P. 3493-3498.

143. Gultyaev A.P., Shestopalov B.V. Structural basis for autogenous regulation of Xenopus laevis ribosomal protein LI synthesis at the splicing level // FEBS Lett. 1988. V. 232. P. 9-11.

144. Fragapane P., Prislei S., Michienzi A., Caffarelli E., Bozzoni I. A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA // EMBO J. 1993. V. 12. P. 2921-2928.

145. Caffarelli E., Arese M., Santoro B., Fragapane P., Bozzoni I. In vitro study of processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis // Mol. Cell. Biol. 1994. V. 14. P. 2966-2974.

146. Presutti С., Ciafre S.A., Bozzoni I. The ribosomal protein L2 in S. cerevisiae controls the level of accumulation of its own mRNA // EMBO J. 1991. V. 10. P. 2215-2221.

147. Presutti C., Villa Т., Hall D., Pertica C., Bozzoni I. Identification of the cis-elements mediating the autogenous control of ribosomal protein L2 mRNA stability in yeast // EMBO J. 1995. V. 14. P. 4022-4030.

148. Mitrovich Q.M., Anderson P. Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C. elegans II Genes Dev. 2000. V. 14. P. 21732184.

149. Cuccurese M., Russo G., Russo A., Pietropaolo C. Alternative splicing and nonsensemediated mRNA decay regulate mammalian ribosomal gene expression // Nucleic Acids Res. 2005. V. 33. P. 5965-5977.

150. Иванов А.В., Малыгин А.А., Карпова Г.Г. Рибосомный белок S26 человека ингибирует сплайсинг собственной пре-мРНК // Молекуляр. биология. 2004. Т. 38. С. 676-683.

151. Ivanov А. V., Malygin A.A., Karpova G.G. Human ribosomal protein S26 suppresses the splicing of its pre-mRNA // Biochim. Biophys. Acta. 2005. V. 1727. P. 134-140.

152. Бабкина Г.Т., Владимиров С.H., Грайфер Д.М., Матасова Н.Б., Смоленская И.А., Карпова Г.Г. Выделение рибосом и субчастиц из плаценты человека и определение их функциональной активности // Изв. Сиб. Отд. АН СССР. 1989. Вып. 2. С. 92-98.

153. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. 1970. V. 277. P. 680-685.

154. Madjar J.-J., Arpin M., Buisson M., Reboud J.-P. Spot position of rat liver ribosomal proteins by four different two-dimentional electrophoresis in polyacrylamide gel // Mol. Gen. Genet. 1979. V. 171. P. 121-134.

155. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction // Anal. Biochem. 1987. V. 162. P. 156-159.

156. Sambrook J., Russell D. Molecular cloning: a laboratory manual // Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2001.

157. Кислых В.И., Рамазанов Ю.А., Майстренко В.Ф., Мертвецов Н.П. Вихревой биореактор «БИОК». I. Опыт культивирования штамма E.coli BL21 (DE3) pZZSA, продуцирующего рекомбинантный ангиогенин человека // Биотехнология. 2001. № 3. С. 72-79.

158. Bradford М.М. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248-254.175. http://molbiout.narod.ru/extinction.htm, 25.08.2005.

159. Tsumoto K, Ejima D., Kumagai I., Arakawa T. Practical considerations in refolding proteins from inclusion bodies // Protein Expr. Purif. 2003. V. 28. P. 1-8.

160. Sreerama N., Venyaminov S.Y., Woody R.W. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy // Protein Science. 1999. V. 8. P. 370-380.

161. Малыгин А.А., Грайфер Д.М., Лалетина E.C., Шатский КН., Карпова Г.Г. Подход к выявлению функционально важных участков РНК, основанный на комплементарно-адресованной модификации // Молекуляр. биология. 2003. Т. 37. С. 1027-1034.

162. Clarke Р.А. RNA Footprinting and modification interference analysis // RNA-protein interaction protocols / Eds S.R. Haynes. Totowa, New Jersey: Humana Press, 1999. P. 73-91.

163. Wollenzien P. Isolation and identification of RNA cross-links // Methods Enzymol. 1988. V. 164. P. 319-329.

164. Brunei С., Romby P. Probing RNA structure and RNA-ligand complexes with chemical probes // Methods Enzymol. 2000. V. 318. P. 3-21.

165. Chan C.Y., Lawrence C.E., Ding Y. Structure clustering features on the Sfold Web server// Bioinformatics. 2005. V. 21. P. 3926-3928.

166. Gamier J., Gibrat J.-F., Robson B. GOR method for predicting protein secondary structure from amino acid sequence // Methods Enzymology. 1996. V. 266. P. 540-553.

167. Jones D.T. Protein secondary structure prediction based on position-specific scoring matrices //J. Mol. Biol. 1999. V. 292. P. 195-202.

168. Pollastri G., Przybylski D., Rost В., Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles // Proteins. 2002. V. 47. P. 228-235.

169. Ovcharenko I., Nobrega M.A., Loots G.G. Stubbs L. ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes // Nucleic Acids Res. 2004. V. 32. P. 280-286.188. http://www.ebi.ac.uk/emboss/align, 25.01.2006.

170. Щелкунов C.H. Генетическая инженерия: Учебное пособие // Н.: Сибирское университетское издательство. 2004. 459 с.

171. Cabrita L.D., Dai W„ Bottomley S.P. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production // BMC Biotechnol. 2006. V. 6:12.

172. Carson M., Johnson D.H., McDonald H., Brouillette C., Delucas L.J. His-tag impact on structure //Acta Crystallogr. D. Biol. Crystallogr. 2007. V. 63. P. 295-301.

173. Malygin A. A., Shaulo D.D., Karpova G.G. Proteins S7, S10, SI 6 and S19 of the human 40S ribosomal subunit are most resistant to dissociation by salt // Biochim. Biophys. Acta. 2000. V. 1494. P. 213-216.

174. Malygin A.A., Baranovskaya O.I., Ivanov A.V., Karpova G.G. Expression and Purification of Human Ribosomal Proteins S3, S5, S10, S19, and S26 // Protein Express. Purif. 2003. V. 28. P. 57-62.

175. Chandramouli P., TopfM., Menetret J.F., Eswar N. Cannone J.J., Guteil R.R., Sali A., Akey C. W. Structure of the Mammalian 80S Ribosome at 8.7 A Resolution // Structure. 2008. V. 16. P. 535-548.

176. Portier C„ Dondon L., Grunberg-Manago M. Translational autocontrol of the Escherichia coli ribosomal protein S15 // J. Mol. Biol. 1990. V. 211. P. 407-414.

177. Robert F., Brakier-Gingras L. Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA // Nucleic Acids Res. 2001. V. 29. P. 677-682.

178. Stelzl U., Zengel J.M., Tovbina M., Walker M., Nierhaus K.H., Lindahl L., Patel D.J. RNA-structural mimicry in Escherichia coli ribosomal protein L4-dependent regulation of the S10 operon // J. Biol. Chem. 2003. V. 278. P. 28237-22845.

179. Serganov A., Polonskaia A., Ehresmann B., Ehresmann C., Patel D.J. Ribosomal protein S15 represses its own translation via adaptation of an rRNA-like fold within its mRNA // EMBO J. 2003. V. 22. P. 1898-908.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.