Сайты гликирования белков плазмы крови как перспективные биомаркеры сахарного диабета второго типа тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Соболева Алена Вадимовна

  • Соболева Алена Вадимовна
  • кандидат науккандидат наук
  • 2023, ФГБОУ ВО «Санкт-Петербургский государственный университет»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 247
Соболева Алена Вадимовна. Сайты гликирования белков плазмы крови как перспективные биомаркеры сахарного диабета второго типа: дис. кандидат наук: 00.00.00 - Другие cпециальности. ФГБОУ ВО «Санкт-Петербургский государственный университет». 2023. 247 с.

Оглавление диссертации кандидат наук Соболева Алена Вадимовна

Directory

1. List of abbreviations

2. Introduction

2.1 Diabetes mellitus

2.2 Post-translational modifications of proteins

2.3 Protein glycation

2.4 Physiological role of protein glycation in the mammalian organism

2.5 Analytical approaches to characterize protein glycation

2.5.1 Conventional methods of Maillard analytics

2.5.2 Proteomics in analysis of protein glycation

2.5.3 Chromatographic and mass spectrometric approaches to improve the coverage of glycated proteome

2.5.4 Assessment of modification types and positions in glycated proteins and peptides

2.6 Biomarkers of T2DM

3. Objectives

3.1 Thesis statements to be defended

3.2 Scientific novelty

3.3 Theoretical and practical value

3.4 Reliability of the obtained results

3.4.1 Approbation of the research

3.4.2 Personal contribution of the author

3.4.3 Publications

3.5 Thesis structure

4. Materials and methods

4.1 Reagents

4.2 Equipment

4.3 Laboratory plasticware

4.4 Software

4.5 Peptide synthesis

4.6 Setup of experimental cohorts

4.7 Blood sampling, isolation of plasma and determination of protein contents therein

4.8 SDS-PAGE and precision of protein determination

4.9 Tryptic digestion

4.9.1 Tryptic digestion of proteins from human plasma

4.9.2 Spiking with internal standards

4.10 Boronic acid affinity chromatography

4.12 Liquid chromatography - mass spectrometry (LC-MS) analysis

4.12.1 LC-MS analysis of tryptic digests

4.12.2 LC-MS and MS/MS analysis of tryptic digests with internal standards

4.13 Standardization and validation of method for quantification of glycated peptides

4.14 Peptide identification and primary statistical analysis

4.15 Statistical analysis, generation and validation of the linear discriminant analysis model

5. Results

5.1 Identification of new peptide biomarkers of T2DM in blood plasma

5.1.1 Experimental workflow: sample preparation

5.1.2 Annotation of glycated peptides and specific glycation sites

5.1.3 Label-free relative quantification

5.1.4 Confirmation of amino acid sequence of glycated biomarker peptides

5.2 Absolute quantification of prospective T2DM biomarkers by the standard isotope dilution approach

5.2.1 Standard isotope dilution and tryptic digestion

5.2.2 Annotation of glycated peptides and corresponding internal standards by LC-MS

5.2.3 Standardization and validation of the quantification method

5.2.4 Absolute quantification of plasma protein glycation sites

5.3 Integrated biomarker of T2DM

5.3.1 Search for new glycated sites and relative quantitative analysis without labeled standards

5.3.2 Linear discriminant analysis

6. Discussion

6.1 Experimental setup

6.2 Biomarker potential of glycated proteolytic peptides

6.3 Absolute quantification of individual glycation sites

6.4 Specific set of glycation sites as an integrated biomarker of T2DM

7. Conclusions

8. References

9. Supplementary information

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Сайты гликирования белков плазмы крови как перспективные биомаркеры сахарного диабета второго типа»

2. Introduction

2.1 Diabetes mellitus

Diabetes mellitus (DM) is a group of metabolic diseases underlied by absolute or relative insufficiency of insulin secretion, compromised activity of this hormone, or both, resulting in hyperglycemia [1]. The hyperglycaemic state develops as a result of insulin deficiency, insulin resistance and impaired beta cell function, manifested as a persistent increase in blood glucose content [2, 3]. The disease is characterized by chronic progression and alterations in plethora of metabolic pathways (carbohydrate, fat and protein metabolism, mineral and water equilibrium) which leads to damage and dysfunction of various organs and tissues [4, 5]. Type 2 DM (T2DM) is typically manifested as progressive defect of insulin secretion usually accompanied with resistance to this hormone [6]. To date, T2DM is generally considered to be an incurable disease, although the current state of the diabetes therapy protocols allows efficient suppression of its progression [7]. The global incidence of T2DM doubles during the last 30 years becoming a non-communicable epidemic [8]. According to the World Health Organization (WHO) there are currently more than 463 million people with DM worldwide, but in 2030 this number will increase to 578 million and will reach 700 million in 2045 [9]. On the other hand, the real rate of morbidity growth is far ahead of even such depressing forecasts provided by statisticians. The complete understanding of the reasons behind this dramatic increase in case numbers is still unclear, although such factors as steadily increasing survival rates of diabetic individuals in the human population, continuous improvement of the disease management, reducing premature mortality, diet quality and increasing number of younger adults with T2DM might be the primary contributors in the observed dynamics of diabetes cases [9].

Since the early stages of the disease, as well as and the preceding development of insulin resistance and glucose tolerance, are asymptomatic, T2DM is usually diagnosed only at the stage of well-manifested complications [10]. It is important to note, that in many cases, when T2DM is mediated by environmental and life style-related factors, the progress of the disease can be suppressed or even reversed at the early stages without the use of medication or only by minimal treatment. On the other hand, prediction of the disease onset and correctness of its early diagnosis would reduce the risk of complication development. This requires, however, clear understanding of the molecular mechanisms underlying the pathogenesis of T2DM, the nature of the environmental factors affecting these mechanisms, as well as the availability of highly-sensitive, efficient and reliable methods for early diagnosis of T2DM and prediction of its possible occurrence. Appropriate analytical methods can be based on specific biomarkers, which might rely on key metabolites [11, 12], physiological signals [12], specific proteins [13] or individual modification sites therein [14, 15]. Thereby, the accuracy of

diagnosis and/or prediction critically depends on the number of individual markers, taken in consideration [16].

2.2 Post-translational modifications of proteins

Proteins represent the principal effector molecules in living cells, directly impacting on expression the information encoded in genes. The whole protein complement of a cell, tissue or organism at a given time point is usually referred to as proteome, analogously to the global gene complement, defined as genome [17]. Remarkably, due to the fact that each gene can encode more than one protein, proteome turns to be much more complex than genome [18]. One of the major mechanisms behind this outstanding variability of unique protein structures is underlied by their covalent modifications, occurring either co- or post-translationally [19]. Resulting chemical structures and reactions behind their formation vary essentially in eukaryotes with alkylation, glycosylation, hydroxylation, oxidation, and phosphorylation being the most widely spread. During the last decades, these modifications were shown to play an important role in modulation of the protein structure and function contributing in regulation of cell homeostasis [20].

The majority of these modifications are enzyme-dependent. Thus, reversible phosphorylation of serine, threonine and tyrosine residues in eukaryotic proteins plays an important role in signal transduction, regulation of cellular metabolism and the cell cycle [21]. Indeed, intracellular signal transduction relies on finely tuned activities of specific kinases and phosphatases, thus the patterns of corresponding phosphorylation sites clearly indicate activation or inhibition of these enzymes and, hence, the whole signaling pathways, related to their activity [22]. On the other hand, glycosylation of serine and asparagine residues in membrane and secretory proteins is often involved in cell-cell recognition [23]. Besides, characteristic and structurally unique glycan moieties target corresponding glycoproteins to specific cellular compartments [24]. Not less importantly, acetylation of lysine residues in core histones plays a key role in regulation of the functional state of chromatin [25], whereas hydroxylation of proline residues stabilizes the tertiary structure of collagens [26]. The common features of enzyme-dependent modifications include site and residue specificity and often reversibility. In contrast, non-enzymatic modifications are not site-specific (no consensus sequence required) and are mostly irreversible [27].

These non-enzymatic modifications of cellular and extracellular proteins are represented with oxidation, deamidation, glyco- and lipoxidation. Deamidation occurs at glutamine and asparagine residues and accompanies age-related deleterious alterations in protein structure [28]. Protein oxidation is mediated by reactive oxygen species (ROS), and can occur at the polypeptide backbone [29], or target methionine, cysteine, lysine, tyrosine and tryptophan residues [30]. Oxidative modifications are the markers of protein damage [31] and are known to render proteins for degradation in the proteasome

[32]. On the other hand, reversible oxidation of cysteine residues impacts on the regulation of cellular metabolism and physiology, underlying the phenomenon of ROS-signaling [33, 34]. Glycation, as well as closely related glyco- and lipoxidation [35], represents one of the most structurally heterogeneous non-enzymatic post-translational modification, characterized with an array of biological effects, many of which are still waiting for a thorough study.

2.3 Protein glycation

Glycation is usually referred to as the reaction of proteins with reducing sugars and dicarbonyl products of their degradation [36]. In general, glycation can be considered as a complex process, including degradation of reducing sugars, formation of reactive carbonyl compounds and covalent modification of protein. Therefore, glycation is often termed as Maillard reaction of proteins [37]. The formation of the sugar-protein complex through a series of chemical reactions was described by the French chemist Louis Camille Maillard (1878-1936) in 1912 [38]. Later on Mario Amadori identified N-D-glycosylamine is an intermediate in interaction of D-glucose with amino acids [39, 40], whereas Richard Kuhn und Alfredo Dansi identified 1-amino-1-deoxy-D-fructose as the product of a subsequent double bond migration [41] (Figure 1) [42].

Figure 1 Pathways of early and advanced glycation [42] (oxidative glycosylation [43], Namiki pathway [44], enolization [45], oxidative [46] and non-oxidative (enolization and dehydration stages are not mentioned) [47] degradation of early glycation products, polyol pathway [48] and lipid peroxidation [49].

This event is referred to as Amadori rearrangement and its product is termed as Amadori compound [39]. In 1961 formation of deoxyaldoses (Heyns products) was shown in reaction of amino acids with ketoses [50]. Both reactions rely on formation of corresponding relatively labile Schiff base

intermediates [51] and might take from minutes to weeks depending on temperature and reacting glycation agent (typically sugar) [52, 53].

These early glycation products are readily involved in further oxidation, degradation and rearrangement reactions yielding a heterogeneous group of advanced glycation end-products (AGEs, Figure 2). In mammals, AGEs are formed predominantly via so-called glycoxidative pathway, i.e. degradation of protein-bound early glycation products [54]. On the other hand, AGEs can be generated via the reactions of a-dicarbonyls, like glyoxal (GO), methylglyoxal (MGO) and 3-deoxyglucosone (3-DG), with lysyl and arginyl residues of proteins [55]. These highly-reactive intermediates are continuously generated in living organisms via oxidative degradation of sugars [55, 56], lipid catabolism [57], polyol pathway [58] and non-enzymatic conversion of glycolytic triosephosphate intermediates -glyceraldehyde-3-phosphate and dihydroxyacetone phosphate [59] (Figure 1). The latter mechanism can be judged as one of the principle contributors in a-dicarbonyl generation under stress conditions, when glycolysis is suppressed [60-62]. The second potent source of a-dicarbonyl compounds is metal-catalyzed monosaccharide autoxidation, i.e. of oxidation of sugar hydroperoxides in Fenton reaction [63, 64].

Despite their high heterogeneity (Figure 2), AGEs can be classified according their origin (lysine- or/and arginine-derived) [65, 66], formation pathways (i.e. formed via glycoxidation/Namiki pathway, oxidative glycosylation or non-oxidative pathway) [44, 67, 68], chemical structure (aliphatic, cyclic and heterocyclic) [69] and physical-chemical properties (fluorescent and non-fluorescent) [70,71]. Thus, depending on conditions, at least the half of such lysine-derived AGEs as N-(carboxymethyl)lysine (CML) and N-(carboxyethyl)lysine (CEL) are formed via the glycoxidative pathway [54, 72-75], cyclic pyrraline originates from the non-oxidative pathway [76-78], whereas heterocyclic GO- and MGO-derived hydroimidazolones (Glarg and MG-H, respectively) are formed exclusively by "oxidative glycosylation" - via direct interaction with a-dicarbonyls with arginyl side chains [79-83]. Such modifications, as N^-(carboxymethyl)- and N^-(2-carboxyethyl)arginine (CMA and CEA, respectively) represent the products of hydroimidazolone alkaline hydrolysis [84,85]. Formation of amide AGEs might relay on both glucoxidative and autoxidative pathways [45, 86]. Some AGEs, like pentosidine and vesperlysine (Figure 2) have pronounced fluorescent properties, representing on the group of cross-linking AGEs [87, 88]. Remarkably, some cross-linking AGEs (like, for example, GO-derived lysine dimer, GOLD [89], glucosepane [90] Figure 2) are not fluorescent. Thus, individual pathways advanced glycation reactions clearly differ in respect of the intermediates involved, resulting products and manifested biological effects.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Заключение диссертации по теме «Другие cпециальности», Соболева Алена Вадимовна

207 7. Выводы

1. Для идентификации гликированных пептидов был использован подход восходящей протеомики, основанный на триптическом протеолизе белков плазмы крови, обогащении гликированных пептидов на да-аминофенилбороновой кислоте и последующем анализе с помощью ЖХ-МС (DDA).

2. В общей сложности было идентифицировано 47 фруктозамин (Амадори)-содержащих сайтов гликирования. Соответствующие триптические пептиды уверенно и воспроизводимо детектировались с высокой интенсивностью сигнала.

3. Относительный количественный анализ без добавления меченых стандартов с последующей статистической обработкой выявил 42 гликированных пептида, представляющих 40 индивидуальных сайтов гликирования в девяти белках плазмы крови. Эти пептиды могут рассматриваться в качестве предполагаемых биомаркеров СД2. Среди них 10 ранее описанных биомаркеров были подтверждены, а для 30 сайтов биомаркерное поведение было продемонстрировано впервые.

4. Отдельные биомаркеры были способны предсказывать СД2 с вероятностью не менее 90 %. Более того, индивидуальные сайты гликирования ряда белков плазмы могут рассматриваться в качестве предполагаемых маркеров краткосрочного гликемического контроля.

5. На основании результатов ЛДА, выполненных для когорт пациентов, страдающих СД2, и нормогликемических индивидуумов, был предложен интегрированный биомаркер СД2 (т. е. набор триптических пептидов, содержащих модификацию - продукты Амадори) с точностью предсказания заболевания до 92 %.

6. Абсолютный количественный анализ с применением внутренних стандартов -дважды меченых гликированных пептидов позволил оценить абсолютные количества и молярные концентрации индивидуальных гликированных пептидов в белках плазмы крови.

Список литературы диссертационного исследования кандидат наук Соболева Алена Вадимовна, 2023 год

8. Список литературы

1. Kharroubi A.T., Darwish H.M. Diabetes mellitus: The epidemic of the century // World J. Diabetes. 2015. Vol. 6, № 6. P. 850-867.

2. Esser N., Utzschneider K.M., Kahn S.E. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia // Diabetologia. 2020. Vol. 63, № 10. P. 2007-2021.

3. Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects // Endocr. Rev. 1998. Vol. 19, № 4. P. 477-490.

4. Russell W.R. et al. Impact of Diet Composition on Blood Glucose Regulation // Crit. Rev. Food Sci. Nutr. Taylor & Francis, 2016. Vol. 56, № 4. P. 541-590.

5. Tzamaloukas A.H. et al. Serum sodium concentration and tonicity in hyperglycemic crises: major influences and treatment implications // J. Am. Heart Assoc. 2019. Vol. 8, № 19. P. e011786.

6. Galicia-Garcia U. et al. Pathophysiology of Type 2 Diabetes Mellitus // Int. J. Mol. Sci. 2020. Vol. 21, № 17. P. 6275.

7. Buse J.B. et al. How do we define cure of diabetes? // Diabetes Care. 2009. Vol. 32, № 11. P. 2133-2135.

8. Fox C.S. et al. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s // Circulation. American Heart Association, 2006. Vol. 113, № 25. P. 2914-2918.

9. Saeedi P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition // Diabetes Res. Clin. Pract. 2019. Vol. 157. P. 107843.

10. Ramachandran A. Know the signs and symptoms of diabetes // Indian J. Med. Res. 2014. Vol. 140, № 5. P. 579-581.

11. Long J. et al. Metabolite biomarkers of type 2 diabetes mellitus and pre-diabetes: a systematic review and meta-analysis // BMC Endocr. Disord. 2020. Vol. 20, № 1. P. 174.

12. Laakso M. Biomarkers for type 2 diabetes // Mol. Metab. Elsevier, 2019. Vol. 27. P. S139-S146.

13. Nowak C. et al. Protein Biomarkers for Insulin resistance and type 2 diabetes risk in two large community cohorts // Diabetes. 2016. Vol. 65, № 1. P. 276-284.

14. Bollineni R.C. et al. Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus // J. Proteome Res. 2014. Vol. 13, № 11. P. 5081-5093.

15. Frolov A., Blüher M., Hoffmann R. Glycation sites of human plasma proteins are affected to different extents by hyperglycemic conditions in type 2 diabetes mellitus // Anal. Bioanal. Chem. 2014. Vol. 406, № 24. P. 5755-5763.

16. Lyons T.J., Basu A. Biomarkers in diabetes: hemoglobin A1c, vascular and tissue markers // Transl. Res. 2012. Vol. 159, № 4. P. 303-312.

17. Boyer R. Posttranslational modification of proteins: Expanding nature's inventory. Christopher T. Walsh, Roberts & Company Publishers, Greenwood Village, CO, 2005, 576 pp., ISBN 0-9747077-3-2, $98.00 // Biochem. Mol. Biol. Educ. 2006. Vol. 34, № 6. P. 461-462.

18. Nielsen M.L., Savitski M.M., Zubarev R.A. Extent of modifications in human proteome samples and their effect on dynamic range of analysis in shotgun proteomics // Mol. Cell. Proteomics. American Society for Biochemistry and Molecular Biology, 2006. Vol. 5, № 12. P.2384-2391.

19. Mann M., Jensen O.N. Proteomic analysis of post-translational modifications // Nat. Biotechnol. 2003. Vol. 21, № 3. P. 255-261.

20. Santos A.L., Lindner A.B. Protein posttranslational modifications: roles in aging and age-related disease // Oxid. Med. Cell. Longev. 2017. Vol. 2017. P. 5716409.

21. Gustin M.C. et al. MAP kinase pathways in the yeast saccharomyces cerevisiae // Microbiol. Mol. Biol. Rev. 1998. Vol. 62, № 4. P. 1264-1300.

22. Bononi A. et al. Protein kinases and phosphatases in the control of cell fate // Enzyme Res. 2011. Vol. 2011. P. 329098.

23. Dennis J.W., Granovsky M., Warren C.E. Protein glycosylation in development and disease // BioEssays News Rev. Mol. Cell. Dev. Biol. 1999. Vol. 21, № 5. P. 412-421.

24. Reily C. et al. Glycosylation in health and disease // Nat. Rev. Nephrol. 2019. Vol. 15, № 6. P. 346-366.

25. Wade P.A., Pruss D., Wolffe A.P. Histone acetylation: chromatin in action // Trends Biochem. Sci. 1997. Vol. 22, № 4. P. 128-132.

26. Risteli J., Kivirikko K.I. Activities of prolyl hydroxylase, lysyl hydroxylase, collagen galactosyltransferase and collagen glucosyltransferase in the liver of rats with hepatic injury // Biochem. J. 1974. Vol. 144, № 1. P. 115-122.

27. Jennings E.Q., Fritz K.S., Galligan J.J. Biochemical genesis of enzymatic and non-enzymatic post-translational modifications // Mol. Aspects Med. 2021. P. 101053.

28. Adav S.S., Sze S.K. Hypoxia-induced degenerative protein modifications associated with aging and age-associated disorders // Aging Dis. 2020. Vol. 11, № 2. P. 341— 364.

29. Davies M.J. Protein oxidation and peroxidation // Biochem. J. 2016. Vol. 473, № Pt 7. P. 805-825.

30. Ji J.A. et al. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization // J. Pharm. Sci. 2009. Vol. 98, № 12. P. 4485-4500.

31. Cai Z., Yan L.-J. Protein oxidative modifications: beneficial roles in disease and health // J. Biochem. Pharmacol. Res. 2013. Vol. 1, № 1. P. 15-26.

32. Lai C.-H. et al. Protein oxidation and degradation caused by particulate matter: 1 // Sci. Rep. Nature Publishing Group, 2016. Vol. 6, № 1. P. 33727.

33. Schieber M., Chandel N.S. ROS function in redox signaling and pxidative stress // Curr. Biol. CB. 2014. Vol. 24, № 10. P. R453-R462.

34. Foyer C.H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis // Environ. Exp. Bot. 2018. Vol. 154. P. 134-142.

35. Lyons T.J., Jenkins A.J. Glycation, oxidation, and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis // Diabetes Rev. Alex. Va. 1997. Vol. 5, № 4. P. 365-391.

36. Brings S. et al. Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention // Int. J. Mol. Sci. 2017. Vol. 18, № 5. P. 984.

37. Zhang Q. et al. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease // J. Proteome Res. 2009. Vol. 8, № 2. P. 754-769.

38. Billaud C., Adrian J. Louis-Camille Maillard, 1878-1936 // Food Rev. Int. Taylor & Francis, 2003. Vol. 19, № 4. P. 345-374.

39. Amadori M. The product of the condensation of glucose and p-phenetidine // Atti Della R. Accad. Naz. Dei Lincei. 1929. Vol. 9. P. 68-73.

40. Amadori M. The condensation product of glucose and p-anisidine // Atti Della Accad. Naz. Dei Lincei. 1929. Vol. 9. P. 226-230.

41. Kuhn R., Weygand F. Die Amadori-Umlagerung // Berichte Dtsch. Chem. Ges. B Ser. 1937. Vol. 70, № 4. P. 769-772.

42. Soboleva A. et al. Maillard proteomics: opening new pages // Int. J. Mol. Sci. 2017. Vol. 18, № 12. P. 2677.

43. Heyns K., Noack H. Die Umsetzung von D-Fructose mit L-Lysin and L-Arginin und dered Beziehung zu nichtenzymatischen Bräunungsreaktion // Chem. Ber. 1962. Vol. 95, № 3. P. 720-727.

44. Hodge J.E. The Amadori rearrangement // Adv. Carbohydr. Chem. 1955. Vol. 10. P. 169-205.

45. Wrodnigg T.M., Eder B. The Amadori and Heyns rearrangements: landmarks in the history of carbohydrate chemistry or unrecognized synthetic opportunities? // Glycoscience. Springer, Berlin, Heidelberg, 2001. P. 115-152.

46. Kutzli I., Weiss J., Gibis M. Glycation of plant proteins via Maillard reaction: reaction chemistry, technofunctional properties, and potential food application // Foods Basel Switz. 2021. Vol. 10, № 2. P. 376.

47. Araki A. Oxidative stress and diabetes mellitus: a possible role of alpha-dicarbonyl compounds in free radical formation // Nihon Ronen Igakkai Zasshi Jpn. J. Geriatr. 1997. Vol. 34, № 9. P. 716-720.

48. Ott C. et al. Role of advanced glycation end products in cellular signaling // Redox Biol. 2014. Vol. 2. P. 411-429.

49. Henning C. et al. Molecular basis of Maillard amide-advanced glycation end product (AGE) formation in vivo // J. Biol. Chem. 2011. Vol. 286, № 52. P. 44350-44356.

50. Gkogkolou P., Böhm M. Advanced glycation end products // Dermatoendocrinol. 2012. Vol. 4, № 3. P. 259-270.

51. Singh V.P. et al. Advanced glycation end products and diabetic complications // Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2014. Vol. 18, № 1. P. 1-14.

52. Comazzi S. et al. Advanced glycation end products and sorbitol in blood from differently compensated diabetic dogs // Res. Vet. Sci. 2008. Vol. 84, № 3. P. 341-346.

53. Sajithlal G.B., Chandrakasan G. Role of lipid peroxidation products in the formation of advanced glycation end products: Anin vitro study on collagen // Proc. Indian Acad. Sci. - Chem. Sci. 1999. Vol. 111, № 1. P. 215-229.

54. Wells-Knecht K.J. et al. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose // Biochemistry. 1995. Vol. 34, № 11. P. 3702-3709.

55. Vistoli G. et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation // Free Radic. Res. 2013. Vol. 47 Suppl 1. P. 3-27.

56. Wolff S.P., Dean R.T. Glucose autoxidation and protein modification. The potential role of "autoxidative glycosylation" in diabetes // Biochem. J. 1987. Vol. 245, № 1. P. 243-250.

57. Dhar A. et al. Methylglyoxal production in vascular smooth muscle cells from different metabolic precursors // Metabolism. 2008. Vol. 57, № 9. P. 1211-1220.

58. Nowotny K. et al. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus // Biomolecules. 2015. Vol. 5, № 1. P. 194-222.

59. Kalapos M.P. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications // Toxicol. Lett. 1999. Vol. 110, № 3. P. 145-175.

60. Allaman I., Bélanger M., Magistretti P.J. Methylglyoxal, the dark side of glycolysis // Front. Neurosci. 2015. Vol. 9. P. 23.

61. Sibbersen C., Johannsen M. Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease // Essays Biochem. Portland Press, 2020. Vol. 64, № 1. P. 97-110.

62. Richard J.P. Mechanism for the formation of methylglyoxal from triosephosphates // Biochem. Soc. Trans. 1993. Vol. 21, № 2. P. 549-553.

63. Horikawa H. et al. Production of hydroxyl radicals and alpha-dicarbonyl compounds associated with Amadori compound-Cu2+ complex degradation // Free Radic. Res. 2002. Vol. 36, № 10. P. 1059-1065.

64. Chen X.-M., Kitts D.D. Identification and quantification of a-dicarbonyl compounds produced in different sugar-amino acid Maillard reaction model systems // Food Res. Int. 2011. Vol. 44, № 9. P. 2775-2782.

65. Collier T.A. et al. Intra-molecular lysine-arginine derived advanced glycation end-product cross-linking in Type I collagen: A molecular dynamics simulation study // Biophys. Chem. 2016. Vol. 218. P. 42-46.

66. Grillo M.A., Colombatto S. Advanced glycation end-products (AGEs): involvement in aging and in neurodegenerative diseases // Amino Acids. 2008. Vol. 35, № 1. P. 29-36.

67. Luevano-Contreras C., Garay-Sevilla Ma.E., Chapman-Novakofski K. Role of dietary advanced glycation end products in diabetes mellitus // J. Evid.-Based Complement. Altern. Med. SAGE Publications Inc STM, 2013. Vol. 18, № 1. P. 50-66.

68. Jakus V., Rietbrock N. Advanced glycation end-products and the progress of diabetic vascular complications // Physiol. Res. 2004. Vol. 53, № 2. P. 131-142.

69. Shumilina J. et al. Glycation of plant proteins: regulatory roles and interplay with sugar signalling? // Int. J. Mol. Sci. 2019. Vol. 20, № 9. P. 2366.

70. Muniz A. et al. In vitro inhibitory activity of Acca sellowiana fruit extract on end products of advanced glycation // Diabetes Ther. 2018. Vol. 9, № 1. P. 67-74.

71. Qais F.A. et al. Chapter 13 - Understanding Biochemical and Molecular Mechanism of Complications of Glycation and Its Management by Herbal Medicine // New Look to Phytomedicine / ed. Ahmad Khan M.S., Ahmad I., Chattopadhyay D. Academic Press, 2019. P. 331-366.

72. Greifenhagen U., Frolov A., Hoffmann R. Oxidative degradation of N(s)-fructosylamine-substituted peptides in heated aqueous systems // Amino Acids. 2015. Vol. 47, № 5. P. 1065-1076.

73. Brock J.W.C. et al. Proteomic analysis of the site specificity of glycation and carboxymethylation of ribonuclease // J. Proteome Res. 2003. Vol. 2, № 5. P. 506-513.

74. Glomb M.A., Monnier V.M. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction // J. Biol. Chem. 1995. Vol. 270, № 17. P. 10017-10026.

75. Baldensperger T. et al. Novel a-oxoamide advanced-glycation endproducts within the N6-carboxymethyl lysine and N6-carboxyethyl lysine reaction cascades // J. Agric. Food Chem. 2018. Vol. 66, № 8. P. 1898-1906.

76. Nakayama T., Hayase F., Kato H. Formation of s-(2-Formyl-5-hydroxy-methyl-pyrrol-1-yl)-l-norleucine in the Maillard Reaction between d-Glucose and l-Lysine // Agric. Biol. Chem. Taylor & Francis, 1980. Vol. 44, № 5. P. 1201-1202.

77. Hayase F. et al. Aging of proteins: immunological detection of a glucose-derived pyrrole formed during maillard reaction in vivo. // J. Biol. Chem. American Society for Biochemistry and Molecular Biology, 1989. Vol. 264, № 7. P. 3758-3764.

78. George Njoroge F., Sayre L.M., Monnier V.M. Detection of d-glucose-derived pyrrole compounds during maillard reaction under physiological conditions // Carbohydr. Res. 1987. Vol. 167. P. 211-220.

79. Frolov A. et al. Arginine-derived advanced glycation end products generated in peptide-glucose mixtures during boiling // J. Agric. Food Chem. 2014. Vol. 62, № 16. P. 36263635.

80. Lo T.W. et al. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin // J. Biol. Chem. 1994. Vol. 269, № 51. P. 32299-32305.

81. Genuth S. et al. Skin advanced glycation end products glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type 1 diabetes // Diabetes. 2015. Vol. 64, № 1. P. 266-278.

82. Thornalley P.J. et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry // Biochem. J. 2003. Vol. 375, № Pt 3. P. 581-592.

83. Sjoblom N.M., Kelsey M.M.G., Scheck R A. A systematic study of selective protein glycation // Angew. Chem. Int. Ed Engl. 2018. Vol. 57, № 49. P. 16077-16082.

84. Iijima K. et al. Identification of Nro-carboxymethylarginine as a novel acid-labile advanced glycation end product in collagen // Biochem. J. 2000. Vol. 347, № 1. P. 23-27.

85. Klöpfer A., Spanneberg R., Glomb M.A. Formation of arginine modifications in a model system of Na-tert-butoxycarbonyl (Boc)-arginine with methylglyoxal // J. Agric. Food Chem. 2011. Vol. 59, № 1. P. 394-401.

86. Henning C., Glomb M.A. Pathways of the Maillard reaction under physiological conditions // Glycoconj. J. 2016. Vol. 33, № 4. P. 499-512.

87. Dyer D.G. et al. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. // J. Biol. Chem. 1991. Vol. 266, № 18. P. 11654-11660.

88. Nakamura K., Nakazawa Y., Ienaga K. Acid-stable fluorescent advanced glycation end products: vesperlysines A, B, and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose // Biochem. Biophys. Res. Commun. 1997. Vol. 232, № 1. P. 227-230.

89. Perrone A. et al. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects // Oxid. Med. Cell. Longev. 2020. Vol. 2020. P. 3818196.

90. Monnier V.M. et al. Glucosepane: a poorly understood advanced glycation end product of growing importance for diabetes and its complications // Clin. Chem. Lab. Med. 2014. Vol. 52, № 1. P. 21-32.

91. Monnier V.M. et al. The Role of the Amadori Product in the Complications of Diabetes // Ann. N. Y. Acad. Sci. 2008. Vol. 1126, № 1. P. 81-88.

92. Ha K.-S. et al. In vitro and in vivo antihyperglycemic effect of 2 Amadori rearrangement compounds, arginyl-fructose and arginyl-fructosyl-glucose // J. Food Sci. 2011. Vol. 76, № 8. P. H188-193.

93. Yamagishi S., Matsui T. Role of Hyperglycemia-Induced Advanced Glycation End Product (AGE) Accumulation in Atherosclerosis // Ann. Vasc. Dis. 2018. Vol. 11, № 3. P. 253-258.

94. Fishman S.L. et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review // Mol. Med. 2018. Vol. 24, № 1. P. 59.

95. Vlassara H., Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? // Curr. Diab. Rep. 2014. Vol. 14, № 1. P. 453.

96. Rhee S.Y., Kim Y.S. The Role of Advanced Glycation End Products in Diabetic Vascular Complications // Diabetes Metab. J. 2018. Vol. 42, № 3. P. 188-195.

97. Bhat S. et al. Advanced Glycation End Products (AGEs) in Diabetic Complications // Mechanisms of Vascular Defects in Diabetes Mellitus / ed. Kartha C.C., Ramachandran S., Pillai R M. Cham: Springer International Publishing, 2017. P. 423-449.

98. Sasaki N. et al. Advanced Glycation End Products in Alzheimer's Disease and Other Neurodegenerative Diseases // Am. J. Pathol. 1998. Vol. 153, № 4. P. 1149-1155.

99. Chou P.-S. et al. Effect of Advanced Glycation End Products on the Progression of Alzheimer's Disease // J. Alzheimers Dis. IOS Press, 2019. Vol. 72, № 1. P. 191-197.

100. Luevano-Contreras C., Chapman-Novakofski K. Dietary advanced glycation end products and aging // Nutrients. 2010. Vol. 2, № 12. P. 1247-1265.

101. Chaudhuri J. et al. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality // Cell Metab. 2018. Vol. 28, № 3. P. 337-352.

102. Asadipooya K., Uy E.M. Advanced Glycation End Products (AGEs), Receptor for AGEs, Diabetes, and Bone: Review of the Literature // J. Endocr. Soc. Oxford Academic, 2019. Vol. 3, № 10. P. 1799-1818.

103. Sergi D. et al. The role of dietary advanced glycation end products in metabolic dysfunction // Mol. Nutr. Food Res. 2020. P. e1900934.

104. Smuda M. et al. Comprehensive analysis of Maillard protein modifications in human lenses: effect of age and cataract // Biochemistry. 2015. Vol. 54, № 15. P. 2500-2507.

105. Nagaraj R.H., Linetsky M., Stitt A.W. The pathogenic role of Maillard reaction in the aging eye // Amino Acids. 2012. Vol. 42, № 4. P. 1205-1220.

106. Nandi S.K. et al. Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of a-crystallin: Implications for lens aging and presbyopia // J. Biol. Chem. 2020. Vol. 295, № 17. P. 5701-5716.

107. Bansode S. et al. Glycation changes molecular organization and charge distribution in type I collagen fibrils: 1 // Sci. Rep. Nature Publishing Group, 2020. Vol. 10, № 1. P. 3397.

108. Gautieri A. et al. Age- and diabetes-related nonenzymatic crosslinks in collagen fibrils: Candidate amino acids involved in Advanced Glycation End-products // Matrix Biol. 2014. Vol. 34. P. 89-95.

109. Li R. et al. In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR // Chem. Commun. Camb. Engl.

2017. Vol. 53, № 100. P. 13316-13319.

110. Collier T.A. et al. Effect on the mechanical properties of type I collagen of intramolecular lysine-arginine derived advanced glycation end-product cross-linking // J. Biomech.

2018. Vol. 67. P. 55-61.

111. Sell D.R., Monnier V.M. Molecular basis of arterial stiffening: role of glycation -a mini-review // Gerontology. 2012. Vol. 58, № 3. P. 227-237.

112. Senatus L.M., Schmidt A.M. The AGE-RAGE axis: implications for age-associated arterial diseases // Front. Genet. 2017. Vol. 8. P. 187.

113. Peng Y. et al. AGE-RAGE signal generates a specific NF-kB RelA "barcode" that directs collagen I expression // Sci. Rep. 2016. Vol. 6, № 1. P. 1-10.

114. Kim H.J., Jeong M.S., Jang S.B. Molecular characteristics of RAGE and advances in small-molecule inhibitors: 13 // Int. J. Mol. Sci. Multidisciplinary Digital Publishing Institute, 2021. Vol. 22, № 13. P. 6904.

115. Chen M.-C. et al. RAGE acts as an oncogenic role and promotes the metastasis of human lung cancer // Cell Death Dis. 2020. Vol. 11, № 4. P. 265.

116. Thornton K. et al. Dietary advanced glycation end products (AGEs) could alter ovarian function in mice // Mol. Cell. Endocrinol. 2020. Vol. 510. P. 110826.

117. Chen Y. et al. Loganin alleviates testicular damage and germ cell apoptosis induced by AGEs upon diabetes mellitus by suppressing the RAGE/p38MAPK/NF-KB pathway // J. Cell. Mol. Med. 2020. Vol. 24, № 11. P. 6083-6095.

118. Ahmed N. et al. Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes // Diabetes Care. 2005. Vol. 28, № 10. P. 2465-2471.

119. Andleeb F. et al. Hemoglobin structure at higher levels of hemoglobin A1C in type 2 diabetes and associated complications // Chin. Med. J. (Engl.). 2020. Vol. 133, № 10. P. 1138-1143.

120. Lapolla A., Molin L., Traldi P. Protein glycation in diabetes as determined by mass spectrometry // Int. J. Endocrinol. 2013. Vol. 2013. P. 412103.

121. Freund M.A., Chen B., Decker E.A. The inhibition of advanced glycation end products by carnosine and other natural dipeptides to reduce diabetic and age-related complications // Compr. Rev. Food Sci. Food Saf. 2018. Vol. 17, № 5. P. 1367-1378.

122. Awasthi S., Saraswathi N.T. Non-enzymatic glycation mediated structure-function changes in proteins: case of serum albumin // RSC Adv. The Royal Society of Chemistry, 2016. Vol. 6, № 93. P. 90739-90753.

123. Schalkwijk C.G., Brouwers O., Stehouwer C.D.A. Modulation of insulin action by advanced glycation endproducts: a new player in the field // Horm. Metab. Res. Horm. Stoffwechselforschung Horm. Metab. 2008. Vol. 40, № 9. P. 614-619.

124. Huang X. et al. Probing the conformational changes of ovalbumin after glycation using HDX-MS // Food Chem. 2015. Vol. 166. P. 62-67.

125. Kawahito S., Kitahata H., Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress // World J. Gastroenterol. 2009. Vol. 15, № 33. P. 4137-4142.

126. Lopez- Diez R. et al. Cellular mechanisms and consequences of glycation in atherosclerosis and obesity // Biochim. Biophys. Acta BBA - Mol. Basis Dis. 2016. Vol. 1862, № 12. P.2244-2252.

127. Stirban A., Gawlowski T., Roden M. Vascular effects of advanced glycation end products: clinical effects and molecular mechanisms // Mol. Metab. 2013. Vol. 3, № 2. P. 94108.

128. Sharma Y. et al. Advanced glycation end products and diabetic retinopathy // J. Ocul. Biol. Dis. Infor. 2013. Vol. 5, № 3-4. P. 63-69.

129. Lee E.-J. et al. Chrysin inhibits advanced glycation end products-induced kidney fibrosis in renal mesangial cells and diabetic kidneys // Nutrients. 2018. Vol. 10, № 7. P. 882.

130. Turk Z. Glycation and complications of diabetes // Diabetol. Croat. 2001. Vol. 30. P. 49-54.

131. Sugimoto K., Yasujima M., Yagihashi S. Role of advanced glycation end products in diabetic neuropathy // Curr. Pharm. Des. 2008. Vol. 14, № 10. P. 953-961.

132. Rasheed Z., Akhtar N., Haqqi T.M. Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-кВ in human osteoarthritis chondrocytes // Rheumatol. Oxf. Engl. 2011. Vol. 50, № 5. P. 838-851.

133. Prasad C. et al. Advanced glycation end products and risks for chronic diseases: intervening through lifestyle modification // Am. J. Lifestyle Med. 2017. Vol. 13, № 4. P. 384404.

134. Tsai T.-T. et al. Advanced glycation end products in degenerative nucleus pulposus with diabetes // J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2014. Vol. 32, № 2. P. 238-244.

135. Rabbani N., Thornalley P.J. Protein glycation - biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine // Redox Biol. 2021. Vol. 42. P. 101920.

136. Ehrlich H. et al. Carboxymethylation of the fibrillar collagen with respect to formation of hydroxyapatite // J. Biomed. Mater. Res. B Appl. Biomater. 2010. Vol. 92, № 2. P. 542-551.

137. Peppa M., Uribarri J., Vlassara H. Glucose, advanced glycation end products, and diabetes complications: what is new and what works // Clin. Diabetes. 2003. Vol. 21, № 4. P. 186-187.

138. Frolov A., Hoffmann R. Identification and relative quantification of specific glycation sites in human serum albumin // Anal. Bioanal. Chem. 2010. Vol. 397, № 6. P. 23492356.

139. Yaylayan V.A., Huyghues-Despointes A. Chemistry of Amadori rearrangement products: analysis, synthesis, kinetics, reactions, and spectroscopic properties // Crit. Rev. Food Sci. Nutr. 1994. Vol. 34, № 4. P. 321-369.

140. Somani B.L., Sinha R., Gupta M.M. Fructosamine assay modified for the estimation of glycated hemoglobin // Clin. Chem. 1989. Vol. 35, № 3. P. 497.

141. Gajahi Soudahome A. et al. Glycation of human serum albumin impairs binding to the glucagon-like peptide-1 analogue liraglutide // J. Biol. Chem. 2018. Vol. 293, № 13. P. 4778-4791.

142. Handzhiyski Y., Mironova R., Ivanov I. Effect of acetyl salicyilic acid on glycation and mutability of Escherichia coli chromosomal DNA // Biotechnol. Biotechnol. Equip. Taylor & Francis, 2009. Vol. 23, № 1. P. 1079-1083.

143. Dimitrova R., Mironova R., Ivanov I. Glycation of proteins in Escherichia coli: effect of nutrient broth ingredients on glycation // Biotechnol. Biotechnol. Equip. 2004. Vol. 18, № 2. P. 99-103.

144. Boucher S.E. et al. Evaluation of the furosine and homoarginine methods for determining reactive lysine in rumen-undegraded protein1 // J. Dairy Sci. 2009. Vol. 92, № 8. P. 3951-3958.

145. Schmitt A. et al. Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics // Anal. Biochem. 2005. Vol. 338, № 2. P. 201-215.

146. Kalousovâ M., Skrha J., Zima T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus // Physiol. Res. 2002. Vol. 51, № 6. P. 597-604.

147. Yanagisawa K. et al. Specific fluorescence assay for advanced glycation end products in blood and urine of diabetic patients // Metabolism. 1998. Vol. 47, № 11. P. 13481353.

148. Skrha J. et al. Glycation of lens proteins in diabetes and its non-invasive assessment - first experience in the Czech Republic // Vnitr. Lek. 2015. Vol. 61, № 4. P. 346350.

149. Ashraf J.M. et al. Recent advances in detection of AGEs: Immunochemical, bioanalytical and biochemical approaches // IUBMB Life. 2015. Vol. 67, № 12. P. 897-913.

150. Vytâsek R., Sedovâ L., Vilim V. Increased concentration of two different advanced glycation end-products detected by enzyme immunoassays with new monoclonal antibodies in sera of patients with rheumatoid arthritis // BMC Musculoskelet. Disord. 2010. Vol. 11, № 1. P. 83.

151. Kase S., Ishida S., Rao N.A. Immunolocalization of advanced glycation end products in human diabetic eyes: an immunohistochemical study // J. Diabetes Mellit. 2011. Vol. 01, № 03. P. 57.

152. Finco A.B. et al. Generation and characterization of monoclonal antibody against Advanced Glycation End Products in chronic kidney disease // Biochem. Biophys. Rep. 2016. Vol. 6. P. 142-148.

153. Sun K. et al. Elevated serum carboxymethyl-lysine, an advanced glycation end product, predicts severe walking disability in older women: The Women's Health and Aging Study I // J. Aging Res. 2012. Vol. 2012. P. 586385.

154. Morais M.P.P. et al. Analysis of protein glycation using phenylboronate acrylamide gel electrophoresis // Proteomics. 2010. Vol. 10, № 1. P. 48-58.

155. Guerin-Dubourg A. et al. Structural modifications of human albumin in diabetes // Diabetes Metab. 2012. Vol. 38, № 2. P. 171-178.

156. Pereira Morais M.P. et al. Analysis of protein glycation using fluorescent phenylboronate gel electrophoresis // Sci. Rep. 2013. Vol. 3, № 1. P. 1437.

157. Yu J. et al. Direct UV determination of Amadori compounds using ligand-exchange and sweeping capillary electrophoresis // Anal. Bioanal. Chem. 2016. Vol. 408, № 6. P. 1657-1666.

158. de Sa P.F.G. et al. The use of capillary electrophoresis to monitor Maillard reaction products (MRP) by glyceraldehyde and the epsilon amino group of lysine // Food Chem. 2001. Vol. 72, № 3. P. 379-384.

159. Deyl Z., Miksik I., Struzinsky R. Separation and partial characterization of Maillard reaction products by capillary zone electrophoresis // J. Chromatogr. 1990. Vol. 516, № 1. P. 287-298.

160. Marie A.-L. et al. Capillary zone electrophoresis and capillary electrophoresis-mass spectrometry for analyzing qualitative and quantitative variations in therapeutic albumin // Anal. Chim. Acta. 2013. Vol. 800. P. 103-110.

161. Hau J., Devaud S., Blank I. Detection of Amadori compounds by capillary electrophoresis coupled to tandem mass spectrometry // Electrophoresis. 2004. Vol. 25, № 13. P. 2077-2083.

162. Meitinger M., Hartmann S., Schieberle P. Development of stable isotope dilution assays for the quantitation of Amadori compounds in foods // J. Agric. Food Chem. American Chemical Society, 2014. Vol. 62, № 22. P. 5020-5027.

163. Davidek T. et al. Simultaneous quantitative analysis of Maillard reaction precursors and products by high-performance anion exchange chromatography // J. Agric. Food Chem. American Chemical Society, 2003. Vol. 51, № 25. P. 7259-7265.

164. Joo K.-M. et al. Simultaneous determination of two Amadori compounds in Korean red ginseng (Panax ginseng) extracts and rat plasma by high-performance anion-exchange chromatography with pulsed amperometric detection // J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2008. Vol. 865, № 1-2. P. 159-166.

165. Davidek T. et al. Analysis of Amadori compounds by high-performance cation exchange chromatography coupled to tandem mass spectrometry // Anal. Chem. American Chemical Society, 2005. Vol. 77, № 1. P. 140-147.

166. Troise A.D. et al. Simultaneous quantification of amino acids and Amadori products in foods through ion-pairing liquid chromatography-high-resolution mass spectrometry // Amino Acids. 2015. Vol. 47, № 1. P. 111-124.

167. Akillioglu H.G., Lund M.N. Quantification of advanced glycation end products and amino acid cross-links in foods by high-resolution mass spectrometry: Applicability of acid hydrolysis // Food Chem. 2022. Vol. 366. P. 130601.

168. Cheng W. et al. Development of an isotope dilution UHPLC-QqQ-MS/MS-based method for simultaneous determination of typical advanced glycation end products and acrylamide in baked and fried foods // J. Agric. Food Chem. American Chemical Society, 2021. Vol. 69, № 8. P. 2611-2618.

169. Frolov A., Hoffmann R. Analysis of Amadori peptides enriched by boronic acid affinity chromatography // Ann. N. Y. Acad. Sci. 2008. Vol. 1126. P. 253-256.

170. Zhang Q. et al. Proteomic profiling of nonenzymatically glycated proteins in human plasma and erythrocyte membranes // J. Proteome Res. 2008. Vol. 7, № 5. P. 2025-2032.

171. Zhang Q. et al. Enrichment and analysis of nonenzymatically glycated peptides: boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry // J. Proteome Res. 2007. Vol. 6, № 6. P. 2323-2330.

172. Hashimoto C. et al. Highly-sensitive detection of free advanced glycation end-products by liquid chromatography-electrospray ionization-tandem mass spectrometry with 2,4,6-trinitrobenzene sulfonate derivatization // Anal. Chem. 2013. Vol. 85, № 9. P. 4289-4295.

173. Hohmann C. et al. Detection of free advanced glycation end products in vivo during hemodialysis // J. Agric. Food Chem. 2017. Vol. 65, № 4. P. 930-937.

174. Soboleva A. et al. Probing protein glycation by chromatography and mass spectrometry: analysis of glycation adducts // Int. J. Mol. Sci. 2017. Vol. 18, № 12. P. E2557.

175. Ahmed N. et al. Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins // Invest. Ophthalmol. Vis. Sci. 2003. Vol. 44, № 12. P. 5287-5292.

176. Venkatraman J., Aggarwal K., Balaram P. Helical peptide models for protein glycation: proximity effects in catalysis of the Amadori rearrangement // Chem. Biol. 2001. Vol. 8, № 7. P. 611-625.

177. Zhang Q. et al. Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects // J. Proteome Res. 2011. Vol. 10, № 7. P. 3076-3088.

178. Bilova T. et al. Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation Hotspots // J. Biol. Chem. 2017. Vol. 292, № 38. P. 15758-15776.

179. Lapolla A. et al. Non-enzymatic glycation of IgG: an in vivo study // Horm. Metab. Res. Horm. Stoffwechselforschung Horm. Metab. 2002. Vol. 34, № 5. P. 260-264.

180. Stefanowicz P. et al. Evaluation of high temperature glycation of proteins and peptides by electrospray ionization mass spectrometry // Acta Biochim. Pol. 2001. Vol. 48, № 4. P. 1137-1141.

181. Mao P., Wang D. Top-down proteomics of a drop of blood for diabetes monitoring // J. Proteome Res. 2014. Vol. 13, № 3. P. 1560-1569.

182. Frolov A., Hoffmann P., Hoffmann R. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry // J. Mass Spectrom. JMS. 2006. Vol. 41, № 11. P. 1459-1469.

183. Dupree E.J. et al. A critical review of bottom-up proteomics: the good, the bad, and the future of this field // Proteomes. 2020. Vol. 8, № 3. P. 14.

184. Zhang Q. et al. Application of electron transfer dissociation mass spectrometry in analyses of non-enzymatically glycated peptides // Rapid Commun. Mass Spectrom. RCM. 2007. Vol. 21, № 5. P. 661-666.

185. Stefanowicz P., Kijewska M., Szewczuk Z. Does electron capture dissociation (ECD) provide quantitative information on the chemical modification of lysine side chains in proteins? The glycation of ubiquitin // Anal. Chem. 2014. Vol. 86, № 15. P. 7247-7251.

186. Samanta S. et al. Glycosylation of erythrocyte spectrin and its modification in visceral leishmaniasis // PLOS ONE. Public Library of Science, 2011. Vol. 6, № 12. P. e28169.

187. Chen C. et al. Bioinformatics methods for mass spectrometry-based proteomics data analysis // Int. J. Mol. Sci. 2020. Vol. 21, № 8. P. 2873.

188. Bilova T. et al. A snapshot of the plant glycated proteome: structural, functional, and mechanistic aspects // J. Biol. Chem. 2016. Vol. 291, № 14. P. 7621-7636.

189. Zhang M., Xu W., Deng Y. A new strategy for early diagnosis of type 2 diabetes by standard-free, label-free LC-MS/MS quantification of glycated peptides // Diabetes. 2013. Vol. 62, № 11. P. 3936-3942.

190. Brede C. et al. Measurement of glycated albumin in serum and plasma by LC-MS/MS // Scand. J. Clin. Lab. Invest. 2016. Vol. 76, № 3. P. 195-201.

191. Kimzey M.J. et al. Site specific modification of the human plasma proteome by methylglyoxal // Toxicol. Appl. Pharmacol. 2015. Vol. 289, № 2. P. 155-162.

192. Priego-Capote F. et al. Glycation isotopic labeling with 13C-reducing sugars for quantitative analysis of glycated proteins in human plasma // Mol. Cell. Proteomics MCP. 2010. Vol. 9, № 3. P. 579-592.

193. Yates J.R., Ruse C.I., Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications // Annu. Rev. Biomed. Eng. 2009. Vol. 11, № 1. P. 4979.

194. Giansanti P. et al. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin // Nat. Protoc. 2016. Vol. 11, № 5. P. 993-1006.

195. Loziuk P.L. et al. Understanding the role of proteolytic digestion on discovery and targeted proteomic measurements using liquid chromatography tandem mass spectrometry and design of experiments // J. Proteome Res. 2013. Vol. 12, № 12. P. 5820-5829.

196. Meltretter J., Becker C.-M., Pischetsrieder M. Identification and site-specific relative quantification of beta-lactoglobulin modifications in heated milk and dairy products // J. Agric. Food Chem. 2008. Vol. 56, № 13. P. 5165-5171.

197. Marvin L.F. et al. Characterization of lactosylated proteins of infant formula powders using two-dimensional gel electrophoresis and nanoelectrospray mass spectrometry // Electrophoresis. 2002. Vol. 23, № 15. P. 2505-2512.

198. Zhang X. Less is more: membrane protein digestion beyond urea-trypsin solution for next-level proteomics // Mol. Cell. Proteomics MCP. 2015. Vol. 14, № 9. P. 2441-2453.

199. Müller T., Winter D. Systematic evaluation of protein reduction and alkylation reveals massive unspecific side effects by iodine-containing reagents // Mol. Cell. Proteomics MCP. 2017. Vol. 16, № 7. P. 1173-1187.

200. Suttapitugsakul S. et al. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics // Mol. Biosyst. The Royal Society of Chemistry, 2017. Vol. 13, № 12. P. 2574-2582.

201. Serra A. et al. Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate // Anal. Bioanal. Chem. 2016. Vol. 408, № 7. P. 19631973.

202. Liang Y. et al. Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment // J. Biol. Chem. 2014. Vol. 289, № 47. P. 3252632537.

203. Rumachik N.G., Malaker S.A., Paulk N.K. VectorMOD: Method for bottom-up proteomic characterization of rAAV capsid post-translational modifications and vector impurities // Front. Immunol. 2021. Vol. 12. P. 830.

204. Saadé J. et al. Analysis of monoclonal antibody glycopeptides by capillary electrophoresis-mass spectrometry coupling (CE-MS) // Methods Mol. Biol. Clifton NJ. 2021. Vol. 2271. P. 97-106.

205. Vannuruswamy G. et al. Targeted quantification of the glycated peptides of human serum albumin // Methods Mol. Biol. Clifton NJ. 2017. Vol. 1619. P. 403-416.

206. Beer L.A. et al. In-Depth, Reproducible Analysis of Human Plasma Using IgY 14 and SuperMix Immunodepletion // Serum/Plasma Proteomics: Methods and Protocols / ed. Greening D.W., Simpson R.J. New York, NY: Springer, 2017. P. 81-101.

207. Fahiminiya S., Roche S., Gérard N. Improvement of 2D-PAGE resolution of human, porcine and canine follicular fluid: comparison of two immunodepletion columns // Reprod. Domest. Anim. Zuchthyg. 2012. Vol. 47, № 5. P. e67-70.

208. Steinsträßer L. et al. Immunodepletion of high-abundant proteins from acute and chronic wound fluids to elucidate low-abundant regulators in wound healing // BMC Res. Notes. 2010. Vol. 3. P. 335.

209. Bilova T. et al. Glycation of plant proteins under environmental stress — methodological approaches, potential mechanisms and biological role // Abiotic Biot. Stress Plants - Recent Adv. Future Perspect. 2016. P. 295-316.

210. Ellis G. et al. An automated "high-pressure" liquid-chromatographic assay for hemoglobin A1c // Clin. Chem. 1984. Vol. 30, № 11. P. 1746-1752.

211. Bollineni R.C., Hoffmann R., Fedorova M. Identification of protein carbonylation sites by two-dimensional liquid chromatography in combination with MALDI- and ESI-MS // J. Proteomics. 2011. Vol. 74, № 11. P. 2338-2350.

212. Greifenhagen U. et al. Plasma proteins modified by advanced glycation end products (AGEs) reveal site-specific susceptibilities to glycemic control in patients with type 2 diabetes // J. Biol. Chem. 2016. Vol. 291, № 18. P. 9610-9616.

213. Mitsuhashi T. et al. Depletion of reactive advanced glycation end products from diabetic uremic sera using a lysozyme-linked matrix. // J. Clin. Invest. 1997. Vol. 100, № 4. P. 847-854.

214. Soboleva A. et al. Quantification of prospective type 2 diabetes mellitus biomarkers by stable isotope dilution with bi-labeled standard glycated peptides // Anal. Methods. 2017. Vol. 9, № 3. P. 409-418.

215. Martinez-Val A. et al. Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution // Nat. Commun. 2021. Vol. 12, № 1. P. 7113.

216. Lapolla A. et al. A study on in vitro glycation processes by matrix-assisted laser desorption ionization mass spectrometry // Biochim. Biophys. Acta. 1993. Vol. 1225, № 1. P. 33-38.

217. Greifenhagen U. et al. Sensitive and site-specific identification of carboxymethylated and carboxyethylated peptides in tryptic digests of proteins and human plasma // J. Proteome Res. 2015. Vol. 14, № 2. P. 768-777.

218. Schmidt R. et al. Specific tandem mass spectrometric detection of AGE-modified arginine residues in peptides // J. Mass Spectrom. JMS. 2015. Vol. 50, № 3. P. 613-624.

219. Trougakos I.P. et al. Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type II and during development of coronary heart disease or at myocardial infarction // Exp. Gerontol. 2002. Vol. 37, № 10-11. P. 1175-1187.

220. Riaz S. Study of protein biomarkers of diabetes mellitus type 2 and therapy with vitamin B1 // J. Diabetes Res. 2015. Vol. 2015. P. 150176.

221. Huth C. et al. Protein markers and risk of type 2 diabetes and prediabetes: a targeted proteomics approach in the KORA F4/FF4 study // Eur. J. Epidemiol. 2019. Vol. 34, № 4. P. 409-422.

222. Abdulwahab R.A. et al. LC-MS/MS proteomic analysis revealed novel associations of 37 proteins with T2DM and notable upregulation of immunoglobulins // Int. J. Mol. Med. 2019. Vol. 43, № 5. P. 2118-2132.

223. Colombo S. et al. Orosomucoid (alpha1-acid glycoprotein) plasma concentration and genetic variants: effects on human immunodeficiency virus protease inhibitor clearance and cellular accumulation // Clin. Pharmacol. Ther. 2006. Vol. 80, № 4. P. 307-318.

224. Kamma E. et al. Elevated levels of serum CD5 antigen-like protein distinguish secondary progressive multiple sclerosis from other disease subtypes // Mult. Scler. Relat. Disord. 2021. Vol. 56. P. 103269.

225. Sanjurjo L. et al. AIM/CD5L: a key protein in the control of immune homeostasis and inflammatory disease // J. Leukoc. Biol. 2015. Vol. 98, № 2. P. 173-184.

226. Huisman T.H., Martis E.A., Dozy A. Chromatography of hemoglobin types on carboxymethylcellulose // J. Lab. Clin. Med. 1958. Vol. 52, № 2. P. 312-327.

227. Bookchin R.M., Gallop P.M. Structure of hemoglobin AIc: nature of the N-terminal beta chain blocking group // Biochem. Biophys. Res. Commun. 1968. Vol. 32, № 1. P. 86-93.

228. Rahbar S., Blumenfeld O., Ranney H.M. Studies of an unusual hemoglobin in patients with diabetes mellitus // Biochem. Biophys. Res. Commun. 1969. Vol. 36, № 5. P. 838843.

229. Koenig R.J. et al. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus // N. Engl. J. Med. 1976. Vol. 295, № 8. P. 417-420.

230. Goldstein D.E. et al. Recent advances in glycosylated hemoglobin measurements // Crit. Rev. Clin. Lab. Sci. 1984. Vol. 21, № 3. P. 187-228.

231. Lau C.S., Aw T.C. HbAlc in the diagnosis and management of diabetes mellitus: an update // Diabetes Updat. 2020. Vol. 6, № 1.

232. Welsh K.J., Kirkman M.S., Sacks D.B. Role of glycated proteins in the diagnosis and management of diabetes: research gaps and future directions // Diabetes Care. American Diabetes Association, 2016. Vol. 39, № 8. P. 1299-1306.

233. Balatbat J. Glycated (glycosylated) hemoglobin: HbAlc: new directions to diagnose diabetes: 2nd place winner 2010 AMT technical writing contest // J. Contin. Educ. Top. Issues. 2010.

234. Agilli M. et al. Hb H interference on measurement of HbAlc with ion-exchange HPLC // Acta Inform. Medica. 2013. Vol. 21, № 3. P. 216-218.

235. Zhang T. et al. Quantification of hemoglobin A1c by off-line HPLC separation and liquid chromatography-tandem mass spectrometry: a modification of the IFCC reference measurement procedure // Clin. Chem. Lab. Med. 2016. Vol. 54, № 4. P. 569-576.

236. Stöllner D. et al. Immunochemical determination of hemoglobin-A1c utilizing a glycated peptide as hemoglobin-A1c analogon // Biosens. Symp. Tüb. Universität Tübingen, 2001. P. 1-9.

237. Aleyassine H. et al. Agar gel electrophoretic determination of glycosylated hemoglobin: effect of variant hemoglobins, hyperlipidemia, and temperature // Clin. Chem. 1981. Vol. 27, № 3. P. 472-475.

238. Oremek G., Seiffert U.B., Schmid G. Determination of glycated hemoglobin by affinity chromatography // Clin. Chim. Acta Int. J. Clin. Chem. 1987. Vol. 168, № 1. P. 81-86.

239. Gupta S., Jain U., Chauhan N. Laboratory diagnosis of HbA1c: A review // J. Nanomedicine Res. 2017. Vol. 5, № 5. P. 00120.

240. Standefer J.C., Eaton R.P. Evaluation of a colorimetric method for determination of glycosylated hemoglobin // Clin. Chem. 1983. Vol. 29, № 1. P. 135-140.

241. Bonora E., Tuomilehto J. The pros and cons of diagnosing diabetes with A1C // Diabetes Care. American Diabetes Association, 2011. Vol. 34, № Supplement 2. P. S184-S190.

242. Nadelson J., Satapathy S.K., Nair S. Glycated hemoglobin levels in patients with decompensated cirrhosis // Int. J. Endocrinol. Hindawi, 2016. Vol. 2016. P. 8390210.

243. Anguizola J. et al. Review: Glycation of human serum albumin // Clin. Chim. Acta Int. J. Clin. Chem. 2013. Vol. 425. P. 64-76.

244. Kondaveeti S.B. et al. Evaluation of glycated albumin and microalbuminuria as early risk markers of nephropathy in type 2 diabetes mellitus // J. Clin. Diagn. Res. JCDR. 2013. Vol. 7, № 7. P. 1280-1283.

245. Muste C., Gu C. BTK-inhibitor drug covalent binding to lysine in human serum albumin using LC-MS/MS // Drug Metab. Pharmacokinet. 2022. Vol. 42. P. 100433.

246. Ueda Y., Matsumoto H. Recent topics in chemical and clinical research on glycated albumin // J. Diabetes Sci. Technol. SAGE PublicationsSage CA: Los Angeles, CA, 2015. Vol. 9, № 2. P. 177-182.

247. Kielmas M. et al. Testing isotopic labeling with [13Ce]glucose as a method of advanced glycation sites identification // Anal. Biochem. 2012. Vol. 431, № 1. P. 57-65.

248. Roohk H.V., Zaidi A.R. A review of glycated albumin as an intermediate glycation index for controlling diabetes // J. Diabetes Sci. Technol. 2008. Vol. 2, № 6. P. 11141121.

249. Rivera-Velez S. et al. Identification of differences in the formation of plasma glycated proteins between dogs and humans under diabetes-like glucose concentration conditions // Int. J. Biol. Macromol. 2019. Vol. 123. P. 1197-1203.

250. Kipps T.J. et al. Williams Hematology. 8th ed. The McGraw-Hill Education, 2010. 2460 p.

251. Nanjee M.N. et al. Effects of intravenous infusion of lipid-free Apo A-I in humans // Arterioscler. Thromb. Vasc. Biol. 1996. Vol. 16, № 9. P. 1203-1214.

252. Chung M.C.-M. Structure and function of transferrin // Biochem. Educ. 1984. Vol. 12, № 4. P. 146-154.

253. Turnover of fibrinogen in man // Acta Physiol. Scand. 1969. Vol. 76, № s325. P.

9-13.

254. Demirag B. et al. The effect of alpha-2 macroglobulin on the healing of ruptured anterior cruciate ligament in rabbits // Connect. Tissue Res. 2004. Vol. 45, № 1. P. 23-27.

255. Sand K.M.K. et al. Unraveling the interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics // Front. Immunol. 2015. Vol. 5. P. 682.

256. Spiller S., Frolov A., Hoffmann R. Quantification of specific glycation sites in human serum albumin as prospective type 2 diabetes mellitus biomarkers // Protein Pept. Lett. 2017. Vol. 24, № 10. P. 887-896.

257. Spiller S. et al. Glycated lysine-141 in haptoglobin improves the diagnostic accuracy for type 2 diabetes mellitus in combination with glycated hemoglobin HbA1c and fasting plasma glucose // Clin. Proteomics. 2017. Vol. 14. P. 10.

258. Danne T., Heinemann L., Bolinder J. New insulins, biosimilars, and insulin therapy // Diabetes Technol. Ther. Mary Ann Liebert, Inc., publishers, 2019. Vol. 21, № S1. P. S-57S-78 p.

259. Vieira R. et al. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome—review of classical and new compounds: Part-I // Pharmaceuticals. 2019. Vol. 12, № 4. P. 152.

260. Bruen D. et al. Glucose sensing for diabetes monitoring: recent developments // Sensors. 2017. Vol. 17, № 8. P. 1866.

261. Mesbah N.I. et al. Experiences of adults using continuous subcutaneous insulin infusion: a qualitative study // Med. Princ. Pract. Karger Publishers, 2020. Vol. 29, № 3. P. 255261.

262. Rekers N.V., von Herrath M.G., Wesley J.D. Immunotherapies and immune biomarkers in Type 1 diabetes: A partnership for success // Clin. Immunol. 2015. Vol. 161, № 1. P. 37-43.

263. Mambiya M. et al. The play of genes and non-genetic factors on type 2 diabetes // Front. Public Health. Frontiers, 2019. Vol. 7. P. 349.

264. Davegardh C. et al. DNA methylation in the pathogenesis of type 2 diabetes in humans // Mol. Metab. 2018. Vol. 14. P. 12-25.

265. Hu F.B. Globalization of Diabetes: The role of diet, lifestyle, and genes // Diabetes Care. American Diabetes Association, 2011. Vol. 34, № 6. P. 1249-1257.

266. Fmoc solid phase peptide synthesis: A practical approach / ed. Chan W., White P. Oxford, New York: Oxford University Press, 1999. 370 p.

267. Stefanowicz P. et al. Methods of the site-selective solid phase synthesis of peptide-derived Amadori products // Amino Acids. 2010. Vol. 38, № 3. P. 881-889.

268. Soboleva A. et al. Multiple glycation sites in blood plasma proteins as an integrated biomarker of type 2 diabetes mellitus // Int. J. Mol. Sci. 2019. Vol. 20, № 9. P. E2329.

269. Greifenhagen U. et al. Site-specific analysis of advanced glycation end products in plasma proteins of type 2 diabetes mellitus patients // Anal. Bioanal. Chem. 2016. Vol. 408, № 20. P. 5557-5566.

270. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. 1970. Vol. 227, № 5259. P. 680-685.

271. Sampaio E., Delfino V.D.A. Assessing albuminuria in spot morning samples from diabetic patients // Arq. Bras. Endocrinol. Metabol. Sociedade Brasileira de Endocrinologia e Metabologia, 2008. Vol. 52. P. 1482-1488.

272. Kendall F.E. et al. The comparative effect on satiety and subsequent energy intake of ingesting sucrose or isomaltulose sweetened trifle: a randomized crossover trial // Nutrients. 2018. Vol. 10, № 10. P. 1504.

273. Singh K., Rao J., Mahdi A.A. Short communication standard recomendation for interpretation for of HbA1c graph in ion exchange HPLC method // Int. J. Med. Investig. International Journal of Medical Investigation, 2014. Vol. 3, № 1. P. 40-41.

274. Mann H.B., Whitney D.R. On a test of whether one of two random variables is stochastically larger than the other // Ann. Math. Stat. 1947. Vol. 18, № 1. P. 50-60.

275. Holm S. A simple sequentially rejective multiple test procedure // Scand. J. Stat. 1979. Vol. 6, № 1. P. 65-70.

276. Venables W.N., Ripley B.D. Modern applied statistics with S. 4th ed. New York: Springer-Verlag, 2002.

277. Kutner M. et al. Applied linear statistical models. 5th edition. McGraw-Hill/Irwin, 2004. 1396 p.

278. Forrestel A.C. et al. Chronomedicine and type 2 diabetes: shining some light on melatonin // Diabetologia. 2017. Vol. 60, № 5. P. 808-822.

279. Pang Y., Wang S., Yuan Y. Learning regularized LDA by clustering // IEEE Trans. Neural Netw. Learn. Syst. 2014. Vol. 25, № 12. P. 2191-2201.

280. Politis D.N., Romano J.P., Wolf M. Subsampling. New York: Springer-Verlag,

1999.

281. Stone M. Cross-validatory choice and assessment of statistical predictions // J. R. Stat. Soc. Ser. B Methodol. 1974. Vol. 36, № 2. P. 111-147.

282. Lachenbruch P.A., Mickey M.R. Estimation of error rates in discriminant analysis // Technometrics. 1968. Vol. 10, № 1. P. 1-11.

283. Luntz A., Brailovsky V. On estimation of characters obtained in statistical procedure of recognition // Izv SSSR Ser. Tech. Kibern. 1969. Vol. 3. P. 48-52.

284. Taylor P.J. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry // Clin. Biochem. 2005. Vol. 38, № 4. P. 328-334.

285. Bantscheff M. et al. Quantitative mass spectrometry in proteomics: a critical review // Anal. Bioanal. Chem. 2007. Vol. 389, № 4. P. 1017-1031.

286. Thornalley P.J., Rabbani N. Detection of oxidized and glycated proteins in clinical samples using mass spectrometry--a user's perspective // Biochim. Biophys. Acta. 2014. Vol. 1840, № 2. P. 818-829.

287. Edwards S.H. et al. Reference measurement procedure for total glycerides by isotope dilution GC-MS // Clin. Chem. Oxford Academic, 2012. Vol. 58, № 4. P. 768-776.

288. Frolov A., Singer D., Hoffmann R. Solid-phase synthesis of glucose-derived Amadori peptides // J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2007. Vol. 13, № 12. P. 862-867.

289. Stefanowicz P. et al. A new procedure for the synthesis of peptide-derived Amadori products on a solid support | Alicja Kluczyk - Academia.edu // Tetrahedron Lett. 2007. Vol. 48. P. 967-969.

290. Modzel M. et al. A synthesis of new, bi-labeled peptides for quantitative proteomics // J. Proteomics. 2015. Vol. 115. P. 1-7.

291. Searle B.C. et al. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. // Nat. Commun. 2018. Vol. 9, № 1. P. 5128-5128.

292. Fedorova M., Frolov A., Hoffmann R. Fragmentation behavior of Amadori-peptides obtained by non-enzymatic glycosylation of lysine residues with ADP-ribose in tandem mass spectrometry // J. Mass Spectrom. JMS. 2010. Vol. 45, № 6. P. 664-669.

293. Carpenter C.B. et al. Complement metabolism in man: hypercatabolism of the fourth (C4) and third (C3) components in patients with renal allograft rejection and hereditary angioedema (HAE) // J. Clin. Invest. 1969. Vol. 48, № 8. P. 1495-1505.

294. Weinstein S.J. et al. Impact of circulating vitamin D binding protein levels on the association between 25-hydroxyvitamin D and pancreatic cancer risk: a nested case-control study // Cancer Res. 2012. Vol. 72, № 5. P. 1190-1198.

295. Olivieri S. et al. Ceruloplasmin oxidation, a feature of Parkinson's disease CSF, inhibits ferroxidase activity and promotes cellular iron retention // J. Neurosci. Off. J. Soc. Neurosci. 2011. Vol. 31, № 50. P. 18568-18577.

296. American Diabetes Association. 2. Classification and diagnosis of diabetes // Diabetes Care. 2015. Vol. 38, № Supplement 1. P. S8-S16.

297. American Diabetes Association. Diagnosis and classification of diabetes mellitus // Diabetes Care. 2006. Vol. 29 Suppl 1. P. S43-48.

298. Neelofar K., Ahmad J. An overview of in vitro and in vivo glycation of albumin: a potential disease marker in diabetes mellitus // Glycoconj. J. 2017. Vol. 34, № 5. P. 575-584.

299. Selvin E. et al. Fructosamine and glycated albumin and the risk of cardiovascular outcomes and death // Circulation. 2015. Vol. 132, № 4. P. 269-277.

300. Barnaby O.S. et al. Comparison of modification sites formed on human serum albumin at various stages of glycation // Clin. Chim. Acta Int. J. Clin. Chem. 2011. Vol. 412, № 3-4. P.277-285.

301. Paudel G. et al. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana // J. Exp. Bot. 2016. Vol. 67, № 22. P. 6283-6295.

302. Cawley G.C., Talbot N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation // J. Mach. Learn. Res. 2010. Vol. 11, № Jul. P. 20792107.

303. Vinale F. et al. Development of a stable isotope dilution assay for an accurate quantification of protein-bound N(epsilon)-(1-deoxy-D-fructos-1-yl)-L-lysine using a (13)C-labeled internal standard // J. Agric. Food Chem. 1999. Vol. 47, № 12. P. 5084-5092.

304. Kuzyk M.A. et al. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma // Mol. Cell. Proteomics MCP. 2009. Vol. 8, № 8. P. 1860-1877.

305. Gillette M.A., Carr S.A. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry // Nat. Methods. 2013. Vol. 10, № 1. P. 28-34.

306. Sivertsen A. et al. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin // BMC Struct. Biol. 2014. Vol. 14. P. 4.

307. Laudano A.P., Doolittle R.F. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences // Biochemistry. 1980. Vol. 19, № 5. P. 1013-1019.

308. Muñoz Eva M., Linhardt Robert J. Heparin-binding domains in vascular biology // Arterioscler. Thromb. Vasc. Biol. 2004. Vol. 24, № 9. P. 1549-1557.

309. Nikoulin I.R., Curtiss L.K. An apolipoprotein E synthetic peptide targets to lipoproteins in plasma and mediates both cellular lipoprotein interactions in vitro and acute clearance of cholesterol-rich lipoproteins in vivo. // J. Clin. Invest. 1998. Vol. 101, № 1. P. 223234.

310. Brasseur R. et al. Synthetic model peptides for apolipoproteins. I. Design and properties of synthetic model peptides for the amphipathic helices of the plasma apolipoproteins // Biochim. Biophys. Acta. 1993. Vol. 1170, № 1. P. 1-7.

311. Mishra V.K., Anantharamaiah G.M. High-resolution structural studies elucidate antiatherogenic and anti-inflammatory properties of peptides designed to mimic amphipathic a-helical domains of apolipoprotein A-I: // Nat. Prod. Commun. 2019. Vol. 14, № 5. P. 1-10.

312. Parker C.E. et al. Mass-spectrometry-based clinical proteomics--a review and prospective // The Analyst. 2010. Vol. 135, № 8. P. 1830-1838.

313. Liu Z., He H. Synthesis and applications of boronate affinity materials: from class selectivity to biomimetic specificity // Acc. Chem. Res. American Chemical Society, 2017. Vol. 50, № 9. P. 2185-2193.

314. Sharma A., Paliwal K.K. Linear discriminant analysis for the small sample size problem: an overview // Int. J. Mach. Learn. Cybern. 2015. Vol. 6, № 3. P. 443-454.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.