Селективный синтез пероксидов из β-дикетонов, β,δ-трикетонов и H2O2 тема диссертации и автореферата по ВАК РФ 02.00.03, кандидат химических наук Ярёменко, Иван Андреевич

  • Ярёменко, Иван Андреевич
  • кандидат химических науккандидат химических наук
  • 2013, Москва
  • Специальность ВАК РФ02.00.03
  • Количество страниц 210
Ярёменко, Иван Андреевич. Селективный синтез пероксидов из β-дикетонов, β,δ-трикетонов и H2O2: дис. кандидат химических наук: 02.00.03 - Органическая химия. Москва. 2013. 210 с.

Оглавление диссертации кандидат химических наук Ярёменко, Иван Андреевич

ОГЛАВЛЕНИЕ

Введение

Глава 1. Перегруппировки органических пероксидов и родственные процессы (литературный обзор)

1.1. Введение

1.2. Именные перегруппировки органических пероксидов

1.2.1. Окисление по Байеру-Виллигеру (Baeyer-Villiger)

1.2.2. Окисление арилальдегидов или ацетофенонов по Дейкину (Dakin)

1.2.3. Перегруппировка Хока (Hock)

1.2.4. Перегруппировка Крите (Criegee)

1.2.5. Окисление фенолов персульфатами по Эльбсу (Elbs persulfate oxidation)

1.2.6. Перегруппировка Корнблюма - ДеЛаМаре (Kornblun-DeLaMare)

1.2.7. Перегруппировки Шенка (Schenck) и Смита (Smith)

1.2.8. Перегруппировка Виланда (Wieland)

1.3. Неименные перегруппировки органических пероксидов и родственные им процессы

1.3.1. Катализируемые протонными кислотами

1.3.2. Катализируемые кислотами Льюиса процессы распада пероксидов

1.3.3. Перегруппировки органических пероксидов в присутствии оснований

1.3.4. Фотохимические и термические перегруппировки органических пероксидов

1.3.5. Катализируемые металлами превращения пероксидов

1.4. Заключение

Глава 2. Селективный синтез пероксидов из р-дикетонов, р,5-трикетонов и Н2О2 (обсуждение результатов)

2.1. Введение

2.2. Фосфорномолибденовая и фосфорновольфрамовая кислоты - катализаторы синтеза мостиковых 1,2,4,5-тетраоксанов из Р-дикетонов и Н2О2

2.3. Селективный синтез циклических пероксидов из Р,8-трикетонов и Н2О2 с использованием катализаторов - сильных протонных кислот: h2so4, нсю4 и hbf4...ii8

2.4. Селективный синтез циклических пероксидов из р,8-трикетонов и Н2О2С использованием катализатора BF3'Et20

2.5. Модификация функциональных групп в трициклических монопероксидах

2.6. Три маршрута пероксидирования р,8-трикетонов под действием Н2О2: образование трициклических монопероксидов, тетраоксанов и озонидов

2.7. Антигельминтная активность мостиковых тетраоксанов и трициклических монопероксидов

2.8. Заключение

Глава 3. Экспериментальная часть

3.1. Характеристика использованных приборов и общих химических методов

3.2. Эксперимент к разделу 2.2 «Фосфорномолибденовая-и фосфорновольфрамовая кислоты - катализаторы синтеза мостиковых 1,2,4,5—тетраоксанов из р-дикетонов и Н202»

3.3. Эксперимент к разделам 2.3 «Селективный синтез циклических пероксидов из Р,5-трикетонов и Н2О2 с использованием катализаторов - сильных протонных кислот: Н2804, нсю4 и НВР4» и 2.4 «Селективный синтез циклических пероксидов из Р,5-трикетонов и Н2О2 с использованием катализатора ВБз^гО»

3.4. Эксперимент к разделу 2.5 «Модификация функциональных групп в трициклических монопероксидах»

3.5. Эксперимент к разделу 2.6 «Три маршрута пероксидирования р,5-трикетонов под действием НгСЬ: образование трициклических монопероксидов, тетраоксанов и озонидов»

Выводы

Список используемой литературы

Приложение А

Рекомендованный список диссертаций по специальности «Органическая химия», 02.00.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Селективный синтез пероксидов из β-дикетонов, β,δ-трикетонов и H2O2»

ВВЕДЕНИЕ

Химия органических пероксидов насчитывает более ста лет своей истории. На протяжении этого периода времени кетоны и альдегиды стали ключевыми реагентами в синтезе пероксидов благодаря своей доступности и легкости протекания реакции между углеродным атомом карбонильной группы и высоконуклеофильным атомом кислорода гидропероксидной группы. В диссертационной работе предложены подходы к пероксидированию Р-дикетонов и Р,8-трикетонов на основе их кислотно-катализированной реакции с пероксидом водорода.

Количество публикаций, связанных с получением пероксидов в реакции Н2О2 с монокетонами исчисляется сотнями [1], с дикетонами - приблизительно десятком [2,3,4,5,6], а с трикетонами - известен всего один пример, из 3-ацетипентан-2,4-диона с выходом 18% удалось получить трицикл с тремя пероксидными группами [7]. Предполагается, что с увеличением числа карбонильных групп резко возрастает количество продуктов реакции; по этой причине селективный синтез пероксидов на основе ди- и трикетонов изначально представляется трудно выполнимой задачей.

Начиная с 1990-ых годов, интенсивное развитие химии органических пероксидов в значительной степени связано с поиском соединений с высокой биологической активностью. Основным направлением является поиск веществ, обладающих активностью по отношению к возбудителям малярии и гельминтозов.

Ежегодно фиксируется 350-500 млн. случаев заражения людей малярией, из которых 1,3-3 млн. умирают ежегодно [8].

Резистентность возбудителя малярии, малярийного плазмодия, по отношению к таким традиционным препаратам как: хинин, хлорохин, мефлохин стимулирует к интенсивному поиску альтернативных препаратов.

Решение проблемы лечения малярии на настоящий момент заключается в использовании препаратов на основе природного пероксида Артемизинина и его полусинтетических аналогов - Артеметра, Артесуната и Дигидроартемизинина [9,10,11,12,13,14,15,16,17,18,19,20,21,22]. К сожалению, эти пероксиды обладают высокой стоимостью, что лимитирует их использование. В связи с этим ведется интенсивный поиск лекарственных веществ на основе синтетических органических пероксидов. В последние двадцать лет установлено, что пероксиды с более простой структурой обладают выраженной противомалярийной активностью.

Показано, что наиболее перспективными классами пероксидов, в некоторых случаях превосходящими Артемизинин, являются 1,2,4,5-тетраоксаны и озониды [23,24,25].

Выявление антигельминтной активности у органических пероксидов открыло новую область их применения, особенно для лечения гельминтозов вызываемых трематодами, например, шистосомами (Schistosoma), фасциолами (Fasciola) и эхиностомами (Echinostoma). Почти 800 млн. человек проживает в областях высокого риска поражения шистосомозом. Около 350 млн. человек, проживающих в 13 странах и на территориях, расположенных в Европейском регионе, Юго-Восточной Азии и Западной части Тихого океана подвержено риску заболеваний описторхозом и клонорхозом [26,27,28,29,30,31,32,33].

Новым направлением медицинской химии пероксидов является поиск веществ с противоопухолевой активностью. Это связано с тем, что у ряда природных пероксидов выявлено цитотоксическое действие на раковые клетки [34,35,36,37,38,39,40,41,42].

В промышленности органические пероксиды широко используются как инициаторы радикальной полимеризации непредельных мономеров, а также для сшивки каучуков, фторкаучуков, полиэтилена, сополимера этилена с пропиленом и т.д. [43,44,45,46,47,48,49,50,51,52].

Совокупный интерес к поиску новых лекарственных препаратов и производству инициаторов радикальной полимеризации стимулирует развитие методов синтеза пероксидов, в которых использование недорогих и доступных реагентов, кетонов и Н2О2 оценивается как наиболее важное звено в решении этой проблемы.

В настоящей работе были поставлены следующие основные цели:

1. Решение проблемы селективного синтеза пероксидов из Р-дикетонов, содержащих и не содержащих заместитель в а-положении.

2. Синтез мостиковых 1,2,4,5-тетраоксанов реакцией р-дикетонов с пероксидом водорода, катализированной гетерополикислотами.

3. Селективное пероксидирование Р,5-трикарбонильных соединений; получение ранее недоступных структурных типов органических пероксидов.

4. Синтез трициклических монопероксидов реакцией р,5-трикетонов с пероксидом водорода, катализированной протонными и апротонными кислотами.

5. Получение веществ с высокой антипаразитарной активностью.

Диссертация состоит из введения, трех глав, выводов и списка цитируемой

литературы. В первой главе обобщены литературные данные по перегруппировкам органических пероксидов и родственным им процессам за период 1990-2013 гг. Вторая глава посвящена обсуждению результатов проведенных исследований. В третьей главе приведены методики проведения эксперимента и аналитические данные полученных соединений.

Похожие диссертационные работы по специальности «Органическая химия», 02.00.03 шифр ВАК

Заключение диссертации по теме «Органическая химия», Ярёменко, Иван Андреевич

выводы

1. В химии органических пероксидов открыты простые подходы к циклическим пероксидам на основе реакции Р-дикетонов, Р,5-трикетонов с Н2О2, катализируемой неорганическими кислотами.

2. Обнаружен выраженный каталитический эффект фосфорномолибденовой (ФМК) и фосфорновольфрамовой (ФВК) кислот в реакции присоединения Н2О2 к Р-дикетонам, в результате селективно образуются бициклические пероксиды - 1,2,4,5-тетраоксаны.

3. Получен представительный ряд мостиковых тетраоксанов из незамещённых и замещённых по a-положению р-дикетонов, в том числе тетраоксаны с адамантильным фрагментом, показавшие высокую антипаразитарную активность.

4. Обнаружена уникальная реакционная способность Р,8-трикетонов в реакции с Н2О2: среди множества возможных путей их трансформации в определенных условиях реализуется преимущественно один. При использовании большого избытка катализатора: H2SO4, НСЮ4, HBF4 в растворе этилового спирта или BFj.EtiO в растворе диэтилового эфира, образуется преимущественно трициклический монопероксид за счет пероксидирования двух Р-карбонильных групп и превращения 8-карбонильной группы в кетальную.

5. Реакция р,8-трикетонов с эфирным раствором Н202 в ацетонитриле или хлористом метилене при участии ФМК или ФВК протекает по трем маршрутам: наряду с главным продуктом - трициклическим монопероксидом получаются тетраоксаны и озониды.

6. Показано, что все три цикла в трициклическом монопероксиде устойчивы к действию таких химических реагентов как тиета-хлорпербензойная кислота, этилхлорформиат, амины, щелочи, а также к нагреванию в кипящем этиловом спирте, что позволяет модифицировать функциональные группы, имеющиеся в этих соединениях.

7. Мостиковые тетраоксаны и трициклические монопероксиды, 60 образцов, были испытаны на антигельминтную активность, которая у некоторых соединений в испытаниях in vitro оказалась высокой. В настоящее время проводятся исследования in vivo полученных в работе пероксидов.

Список литературы диссертационного исследования кандидат химических наук Ярёменко, Иван Андреевич, 2013 год

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Ed. SwernD. // "Organic peroxides", N.Y., Wiley, vol. 1 1970, vol. 2 1971, vol. 3 1972.

2. Milas, N. A., Mageli, O. L., Golubovic, A., Arndt, R. W., Ho, J. C. J. J. Am. Chem. Soc. 1963, 85, 222-226

3. Rieche, A., Bischoff, C. II Chem. Ber. 1962, 95, 77-82.

4. Cocker, W, Grayson, D. H. II J. Chem. Soc. Perkin Trans. I 1975, 1347-1352.

5. Vinogradova, L. P., Zav'yalov, S. I. II Izvest. Akad. Nauk. S.S.S.R., Ser. Khim. 1961, 14821486 (Chem. Abs., 1962, 56, 338b).

6. Vinogradova, L. P., Zav'yalov, S. I. II Izvest. Akad. Nauk. S.S.S.R., Ser. Khim. 1961, 20502054 (Chem. Abs., 1962, 57, 12344c).

7. Rieche, A., Bischoff, C, Prescher, D. II Chem. Ber. 1964, 97, 3071-3075.

8. Vangapandu S., Jain M., Kaur K., Patil P., Patel S.R., Jain R. Recent Advances in Antimalarial Drug Development. // Med. Res. Rev. 2007, 27, 65-107.

9. Tolstikov, G.A., Tolstikov, A.G., Tolstikova, O.V. Natural peroxides. Chemistry and biological activity. // Russ. Chem. Rev. 1996, 65, 769-783.

10. Robert A., Dechy-Cabaret O., Cazalles J., Meunier B. From Mechanistic Studies on Artemisinin Derivatives to New Modular Antimalarial Drugs. // Acc. Chem. Res., 2002, 35, 167-174.

11. Bathurst L, Hentschel C. Medicines for Malaria Venture: sustaining antimalarial drug development. //Trends in Parasitology. 2006, 22, 301-307.

12. Gelb M.H. Drug discovery for malaria: a very challenging and timely endeavor. // Current Opinion in Chemical Biology, 2007,11, 440-445.

13. Stocks P.A., Bray P.G., Barton V.E., Al-Helal M„ Jones M., Araujo N.C., Gibbons P., Ward S.A., Hughes R.H., Biagini G.A., Davies J., Amewu R., Mercer A.E., Ellis G., O^Neill P.M. Evidence for a Common Non-Heme Chelatable-Iron-Dependent Activation Mechanism for Semisynthetic and Synthetic Endoperoxide Antimalarial Drugs. // Angew. Chem. Int. Ed., 2007, 46, 6278-6283.

14. White N.J. Qinghaosu (Artemisinin): The Price of Success. // Science. 2008, 320, 330-334.

15. Rosenthal A.S., ChenX., Liu J.O., West D.C., Hergenrother P.J., Shapiro T.A., Posner G.H. Malaria-Infected Mice Are Cured by a Single Oral Dose of New Dimeric Trioxane Sulfones Which Are Also Selectively and Powerfully Cytotoxic to Cancer Cells. // J. Med. Chem., 2009, 52, 1198-1203.

16. Opsenica D.M., Solaja B.A. Antimalarial peroxides. // J. Serb. Chem. Soc. 2009, 74, 11551193.

17. Muregi F.W., Ishih A. Next-Generation Antimalarial Drugs: Hybrid Molecules as a New Strategy in Drug Design. // Drug Dev. Res. 2010, 71, 20-32.

18. Barton V., Ward S.A., Chadwick J., Hill A., O'Neill P.M. Rationale Design of Biotinylated Antimalarial Endoperoxide Carbon Centered Radical Prodrugs for Applications in Proteomics. // J. Med. Chem. 2010, 53, 4555-4559.

19. Fernández I., Robert A. Peroxide bond strength of antimalarial drugs containing an endoperoxide cycle. Relation with biological activity. // Org. Biomol. Chem., 2011, 9, 40984107.

20. Chadwick, J., Amewu, R. K, Marti, F., Garah, F. B.-E., Sharma, R., Berry, N. G., Stocks, P. A., Burrell-Saward, H., Wittlin, S., Rottmann, M., Brun, R., Taramelli, D., Parapini, S., Ward, S. A. and O'Neill, P. M. Antimalarial mannoxanes: hybrid antimalarial drugs with outstanding oral activity profiles and a potential dual mechanism of action. // Chem. Med. Chem., 2011,6, 1357-1361.

21. Slack R.D., Jacobine A.M., Posner G.H. Antimalarial Peroxides: Advances in Drug Discovery and Design. // Med. Chem. Commun., 2012, 3, 281-297.

22. Jefford C.W. Synthetic peroxides as potent antimalarials. News and views. // Curr. Top. Med. Chem., 2012,12, 373-399.

23. Ghorai P., Dussault P.H., Hu C. The Synthesis of spiro-Bisperoxyketals. // Org. Lett., 2008, 10, 2401-2404.

24. Dong Y, Chollet J., Matile H„ Charman S.A., Chiu F.C.K., Charman W.N., Scorneaux B„ Urwyler H., Santo Tomas J., Scheurer C., Snyder C., Dorn A., Wang X., Karle J.M., Tang Y., Wittlin S., Brun R., Vennerstrom J.L. Spiro and Dispiro-1,2,4-trioxolanes as Antimalarial Peroxides: Charting a Workable Structure-Activity Relationship Using Simple Prototypes. // J. Med. Chem., 2005, 48, 4953-4961.

25. O'Neill P.M., Amewu R.K., Nixon G.L., El Garah F.B., Mungthin M., Chadwick J., Shone A.E., Vivas L., Lander H., Barton V., Muangnoicharoen S., Bray P. G., Davies J., ParkB.K., Wittlin S., Brun R., Preschel M., Zhang K, Ward S.A. Identification of a 1,2,4,5-Tetraoxane Antimalarial Drug-Development Candidate (RKA182) with Superior Properties to the Semisynthetic Artemisinins. // Angew. Chem. Int. Ed., 2010, 49, 5693-5697.

26. Keiser J., Brun R., Fried B„ Utzinger J. Trematocidal Activity of Praziquantel and Artemisinin Derivatives: In Vitro and In Vivo Investigations with Adult Echinostoma caproni. // Antimicrobial Agents And Chemotherapy, 2006, 50, 803-805.

27. Keiser J., Utzinger J., Tanner M„ Dong Y., Vennerstrom J.L. The synthetic peroxide OZ78 is effective against Echinostoma caproni and Fasciola hepatica. // J. Antimicrob. Chemother., 2006, 58 (6), 1193-1197.

28. Keiser J., Utzinger J. Food-borne trematodiasis: current chemotherapy and advances with artemisinins and synthetic trioxolanes. // Trends in Parasitology. 2007, 23, 555-562.

29. Xiao S.-H., Keiser J., Chollet J., Utzinger J., Dong Y., Endriss Y., Vennerstrom J.L., Tanner M. In Vitro and In Vivo Activities of Synthetic Trioxolanes against Major Human Schistosome Species. // Antimicrobial Agents and Chemotherapy, 2007, 51 (4), 1440-1445.

30. Keiser J., Utzinger J. Artemisinins and synthetic trioxolanes in the treatment of helminth infections. // Current Opinion in Infectious Diseases, 2007, 20 (6), 605-612.

31. Keiser J., Veneziano V, Rinaldi L., Mezzino L., Duthaler U., Cringoli Gi. II Res. Vet. Sci. 2010, 88, 107-110.

32. Boissier J., Pórtela J, Pradines V, Coslédan F., Robert A., Meunier B. //Comptes Rendus Chimie, 2012,15, 75-78.

33. Keiser J., Ingram K, Vargas M., Chollet J., Wang X., Dong Y., Vennerstrom J.L. Antimicrob. Agents Chemother. 2012, 56, 1090-1092.

34. Kim, J., Park, E. J. II Curr. Med. Chem. Anticancer Agents 2002, 2,485-537.

35. Jiménez M.S., Garzón S.P., Rodriguez A.D. Plakortides M and N, Bioactive Polyketide Endoperoxides from the Caribbean Marine Sponge Plakortis halichondrioides. // J. Nat. Prod. 2003,66, 655-661.

36. Jung M., Kim К, Lee К, Park M. II Mini-Rev. Med. Chem. 2003, 3, 159-165.

37. Dembitsky V.M., Gloriozova T.A., Poroikov V. V. Novel Antitumor Agents: Marine Sponge Alkaloids, their Synthetic Analogs and Derivatives. // Mini-Rev. Med. Chem. 2005, 5, 319336.

38. TerzicN., Opsenica D., MilicD., Tinant В., Smith K.S., Milhous W.K., Solaja B.A. Hi. Med. Chem. 2007, 50,5118-5127.

39. Dembitsky V.M., Gloriozova T.A., Poroikov V V. Natural Peroxy Anticancer Agents. // Mini-Rev. Med. Chem. 2007, 7, 571-589.

40. Dembitsky V.M. Bioactive peroxides as potential therapeutic agents. // Eur. J. Med. Chem. 2008, 43, 223-251.

41. Zizak Z., Juranic Z., Opsenica D., Solaja B.A. II Investigational New Drugs 2009, 27, 432439.

42. Kumar N., Sharma M, S. RawatD. II Current Med. Chem., 2011,18, 3889-3928.

43. Ed. Ando W. II "Organicperoxides", N.Y., Wiley, 1992.

44. Mishra M.K., Yagci Y. II Handbook of Radical Vinyl Polymerization, CRC Press, 1998. (ISBN:0824794648).

45. Flory P.J. II Principles of Polymer Chemistry, Cornell University Press, 1953. (ISBN:0801401348).

46. Антоновский B.JI. II "Органические перекисные инициаторы", М., 1972.

47. Denisov Е.Т., Denisova T.G., Pokidova T.S. II Handbook of Free Radical Initiators, John Wiley & Sons, Inc., 2005. (ISBN: 9780471207535).

48. Антоновский B.JI., Хурсан C.JJ. II "Физическая химия органических пероксидов", М., 2003.

49. Рахимов А. И. II "Химия и технология органических перекисных соединений", М., 1979.

50. Антоновский B.JI. II "Прогресс в химии органических пероксидов", М., 1992.

51. Ed. Patai S. II 'The chemistry of peroxides", N.Y., Wiley, 1983.

52. Ed. Adam V. //"Peroxide chemistry", N.Y., Wiley-VCH, 2000.

53. March J. Advanced organic chemistry: reactions, mechanisms, and structure, 4th edn, J. Wiley & Sons, New York, 1992, pp. 1051-1057.

54. Яблоков B.A. Механизмы перегруппировки пероксидов. II Успехи химии, 1980, 17111729.

55. Renz М., MeunierB. 100 Years of Baeyer-Villiger Oxidations. // Eur. J. Org. Chem., 1999, 4, 737-750.

56. Davies A. G. The Schenck rearrangement of allylic hydroperoxides. // J. Chem. Res., 2009, 9, 533-544.

57. Syrkin Ya.K., Moiseev I.I. The mechanisms of some peroxide reactions. // Russ. Chem. Rev., 1960, 29, 193-214.

58. Ishmuratov G.Yu., Legostaeva Yu.V., Botsman L.P., Tolstikov G.A. Transformations of peroxide products of olefins ozonolysis. // Russ. J. Org. Chem., 2010, 46, 1593-1621.

59. Baeyer A., Villiger V. Einwirkung des Саго'sc hen Reagens auf Ketone. II Ber. Dtsch. Chem. Ges., 1899, 32, 3625-3633.

60. Baeyer A., Villiger V. Ueber die Einwirkung des Caro'schen Reagen s auf Ketone. II Ber. Dtsch. Chem. Ges., 1900, 33, 858-864.

61. Белов В.Н., Хейфиц Л.А., Вирезуб С.И. Реакции и методы исследования органических соединений, Госхимиздат: Москва, 1961, т. 10 с7-208.

62. Burton J.W., Clark J.S., Derrer S., Stork T.C., Bendall J.G., Holmes A.B. Synthesis of Medium Ring Ethers. The Synthesis of (+)-Laurencin. // J. Am. Chem. Soc., 1997,119 (32), 7483-7498.

63. Krow G. R. Organic Reactions, Paquette, L., Ed., John Wiley and Sons: New York, 1993, Vol. 43, pp 251-798.

64. Chida N.. Tobe Т., Ogawa S. Regioselective Baeyer-Villiger reaction of polyhydroxycyclohexanone derivatives. // Tetrahedron Lett., 1994, 35, 7249-7252.

65. Butkus E., Storicius S. Stereoselective Baeyer-Villiger oxidation of some bridged bicyclic diketones. //J. Chem. Soc., PerkinTrans. 1,2001,16, 1885-1888.

66. Doering W. von E., Speers L. The peracetic acid cleavage of unsymmetrical ketones. // J. Am. Chem. Soc., 195 0, 72(12), 5515-55 1 8.

67. McClure J.D., Williams P.H. Hydrogen peroxide-boron trifluoride etherate, a new oxidizing agent. II J. Org. Chem., 1962, 27, 24-26.

68. Carlqvist P., Eklund R., Hult R., Brinck T. Rational design of a lipase to accommodate catalysis of Baeyer-Villiger oxidation with hydrogen peroxide. // J. Mol. Model., 2003, 9, 164-171.

69. Yamabe S., Yamazaki S. The role of hydrogen bonds in Baeyer-Villiger reactions. // J. Org. Chem., 2007, 72, 3031-3041.

70. Bach R.D. The role of acid catalysis in the Baeyer-Villiger reaction. A theoretical study. // J. Org. Chem., 2012, 77, 6801-6815.

71. Hitomi Y., Yoshida H., Tanaka Т., Funabiki T. Mechanistic study on regioselective oxygenation reaction of 1,2-quinones with peroxybenzoic acids: Relevant to mechanisms of catecholdioxygenases. // J. Mol. Cat. A: Chem., 2006, 251, 239-245.

72. Hamann H-J., Bunge A., Liebscher J. Reaction of epoxyketones with hydrogen peroxide -ethane-1,1-dihydroperoxide as a surprisingly stable product. // Chem. Eur. J., 2008, 14, 6849-6851.

73. Gordon N.J., Evans, Jr. S.A. Acyl phosphates from acyl phosphonates. A novel Baeyer-Villiger rearrangement. //J. Org. Chem., 1993, 58, 4516-4519.

74. Enders D., Geibel G., Osborne S. Diastereo- and enantioselective total synthesis of Stigmatellin A. // Chem. Eur. J. 2000, 6, 1302-1309.

75. Zhou G., Corey E.J. Short, Enantioselective total synthesis of Aflatoxin B2 using an asymmetric [3+2]-cycloaddition step. III. Am. Chem. Soc., 2005,127 (34), 11958-11959.

76. Iglesias-Arteaga M.A., Velazquez-Huerta G.A., Mendez-Stivalet J.M., Galano A., Alvarez-Idaboy J.R. The Baeyer-Villiger reaction of 23-oxosapogenins. // Arkivoc, 2005, vi, 109126.

77. Macias-Alonso M„ Morzycki J.W., Iglesias-Arteaga M.A. Studies on the BF3Et20 catalyzed Baeyer-Villiger reaction of spiroketalic steroidal ketones. // Steroids. 2011, 76, 317-323.

78. Nikaido M. Aslanian R., Scavo F., HelquistP. Acid-catalyzed oxidation ofbenzaldehydes to phenols by hydrogen peroxide. II J. Org. Chem., 1984, 49, 4740-4741.

79,

80.

81,

82,

83,

84,

85,

86

87,

88,

89,

90,

91

92,

93

94

Roy A., Reddy K.R., Mohanta P.K., Ila H., Junjappat, H. Hydrogen peroxide/boric acid: An efficient system for oxidation of aromatic aldehydes and ketones to phenols. // Synthetic Commun., 1999, 29, 3781-3791.

Goodman M.A., Detty M.R. Selenoxides as Catalysts for Epoxidation and Baeyer-Villiger Oxidation with Hydrogen Peroxide // Synlett, 2006, 7, 1100-1104.

ten Brink G.-J., Vis J.M., Arends I. W.C.E., Sheldon R.A. Selenium-catalyzed oxidation with aqueous hydrogen peroxide. 2. Baeyer -Villiger Reactions in Homogeneous Solution. // J. Org. Chem., 2001, 66, 2429-2433.

ten Brink G.-J., Vis J.M., Arends I. W.C.E., Sheldon R.A. Selenium catalysed oxidation with aqueous hydrogen peroxide. Part 3: Oxidation of carbonyl compounds under mono/bi/triphasic conditions. // Tetrahedron, 2002, 58, 3977-3983.

Ichikawa H., Usami Y., Arimoto M. Synthesis of novel organoselenium as catalyst of Bayer-Villiger oxidation with 30% H202. // Tetrahedron Lett. 2005, 46, 8665 - 8668. Fischer J., Hoelderich W.F. Baeyer-Villiger-oxidation of cyclopentanone with aqueous hydrogen peroxide by acid heterogeneous catalysis. // Appl. Catal. A. 1999, 180, 435 - 443. Jacobson S.E., Mares F., Zambri P.M. Biphase and triphase catalysis. Arsonated polystyrenes as catalysts in the Baeyer-Villiger oxidation of ketones by aqueous hydrogen peroxide. //J. Am. Chem. Soc. 1979,101, 6938-6946.

Jacobson S.E., Tang R., Mares F. Oxidation of cyclic ketones by hydrogen peroxide catalysed by Group 6 metal peroxo complexes. // J. Chem. Soc. Chem. Commun. 1978, 888889.

Del Todes co Frisone M., Pinna F., Strukul G. Lactonization of Cyclic Ketones with Hydrogen Peroxide Catalyzed by Platinum(II) Complexes. // Stud. Surf . Sci. Catal. 1991, 66, 405-410.

Gavagnin R., Cataldo M., Pinna F., Strukul G. Diphosphine-palladium and -platinum complexes as catalysts for the Baeyer-Villiger oxidation of ketones: effect of the diphosphine, oxidation of acyclic ketones, and mechanistic studies. // Organometallics, 1998,17, 661-667.

Bolm C., Schlingloff G., Weickhardt K. Optically Active Lactones from a Baeyer-Villiger-Type Metal-Catalyzed Oxidation with Molecular Oxygen. // Angew. Chem., Int. Ed. Engl. 1994, 33, 1848-1849.

Bolm C., Schlingloff G„ Bienewald F. Copper- and vanadium-catalyzed asymmetric oxidations. // J. Mol. Catal. A: Chem. 1997,117, 347-350.

Gusso A., Baccin C., Pinna F., Strukul G. Platinum-catalyzed oxidations with hydrogen peroxide: enantiospecific Baeyer-Villiger oxidation of cyclic ketones. // Organometallics 1994,13, 3442-3451.

Strukul G., Varagnolo A., Pinna F. New (old) hydroxo complexes of platinum(II) as catalysts for the Baeyer-Villiger oxidation of ketones with hydrogen peroxide. // J. Mol. Catal. A: Chem. 1997,117, 413-423.

Lopp M., Paju A., Kanger T., Pehk T. Asymmetric Baeyer-Villiger oxidation of cyclobutanones. // Tetrahedron Lett. 1996, 37, 7583-7586.

Strukul G. Transitions metal calalysis in the Baeyer-Villiger oxidation of ketones. // Angew. Chem. Int. Ed. 1998,37, 1198-1209.

95. Bernini R., Coratti A., Provenzano G., Fibrizi G., Tofani, D. Oxidation of aromatic aldehydes and ketones by H202/CH3Re03 in ionic liquids: a catalytic efficient reaction to achieve dihydric phenols. // Tetrahedron, 2005, 61, 1821-1825.

96. ReileL, Paju A., Muiirisepp A-M., Pehk T., Lopp M. Oxidation of cyclopentane-l,2-dione: a study with 180 labeled reagents. // Tetrahedron, 2011, 67 (33), 5942-5948.

97. Jogia A., Pajua A., Pehkb T., Kailasa T., Muiiriseppa A.-M., Kangera T, Lopp M. Asymmetric Synthesis of 2-Aryl-5-oxotetrahydrofuran-2-carboxylic Acids. // Synthesis, 2006,18, 3031-3036.

98. Paju A., Laos M., Jogi A., Pari M., Jaalaid R., Pehk T., Kangera T., Lopp M. Asymmetric synthesis of 2-alkyl-substituted 2-hydroxyglutaric acid y-lactones. // Tetrahedron Lett., 2006, 47,4491^1493.

99. Crudden C.M., Chen A.C., Calhoun L.A. A Demonstration of the Primary Stereoelectronic Effect in the Baeyer-Villiger Oxidation of a-Fluorocyclohexanones. // Angew. Chem., Int. Ed., 2000, 39, 2852-2855.

100. Berkessel A., Andreae M.R.M. Efficient catalytic methods for the Baeyer-Villiger oxidation epoxidation with hydrogen peroxide. // Tetrahedron Lett. 2001, 42, 2293 - 2295.

101. Berkessel A., Andreae M.R.M., Schmickler H., Lex J. Baeyer-Villiger oxidations with hydrogen peroxide in fluorinated alcohols: lactone formation by a nonclassical mechanism. // Angew. Chem. Int. Ed. 2002, 41, 4481 - 4484.

102. Xu S., Wang Z, Zhang X., Zhang X., Ding K Chiral Bransted Acid catalyzed asymmetric Baeyer-Villiger reaction of 3-substituted cyclobutanones by using aqueous H202. // Angew. Chem. Int. Ed. 2008, 47, 2840 - 2843.

103. Xu S., Wang Z, Li Y., Zhang X., Wang H., Ding K Mechanistic investigation of chiral phosphoric acid catalyzed asymmetric Baeyer-Villiger reaction of 3-substituted cyclobutanones with H202 as the oxidant. // Chem. Eur. J. 2010, 16, 3021 - 3035.

104. van Berkel W.J.H., Kamerbeek N.M., Fraaije M.W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts J. Biotechnol. 2006,124, 670-689.

105. Cernuchova P., Mihovilovic M. D. Microbial Baeyer-Villiger oxidation of terpenones by recombinant whole-cell biocatalysts—formation of enantiocomplementary regioisomeric lactones. // Org. Biomol. Chem. 2007, 5, 1715-1719.

106. Mihovilovic M. D., Muller B., Stanetty P. Monooxygenase-mediated Baeyer-Villiger oxidations. // Eur. J. Org. Chem. 2002, 22, 3711-3730.

107. Mazzini C., Lebreton J., Furstoss R. Flavin-catalyzed Baeyer - Villiger reaction of ketones: oxidation of cyclobutanones to y lactones using hydrogen peroxide. // J. Org. Chem. 1996, 61, 8-9.

108. Murahashi S., Ono S., Imada Y. Asymmetric Baeyer - Villiger reaction with hydrogen peroxide catalyzed by a novel planar-chiral bisflavin. // Angew. Chem. Int. Ed. 2002, 41, 2366-2368.

109. Schulz F., Leca F., Hollmann F. and Reetz M. T. Towards practical biocatalytic Baeyer-Villiger reactions: applying a thermostable enzyme in the gram-scale synthesis of optically-active lactones in a two-liquid-phase system. // Beilstein Journal of Organic Chemistry. 2005, 1: 10.

110. Terent'ev A.O., Chodykin S.V. New transformation of cycloalkanone acetals by peracids. a, co— dicarboxylic acids synthesis. // Centr. Eur. J. Chem., 2005, 3 (3), 417-431.

111. An G., Kim M„ Kim J.Y., Rhee H. Oxidation of aldimines to amides by m-CPBA and BF3 0Et2. // Tetrahedron Lett. 2003, 44, 2183-2186.

112. Dakin H.D. The oxidation of hydroxy derivatives of benzaldehyde, acetophenone, and related substances. // American Chemical Journal, 1909, 42(6), 477-498.

113. Hocking M.B., Shell B.B., Smyth T.A. Steric and pH effects on the rate of Dakin oxidation of acylphenols. // J. Org. Chem., 1982, 47, 4208-4215.

114. Varma S.R., Naicker KP. The Urea-hydrogen peroxide complex: Solid-state oxidative protocols for hydroxylated aldehydes and ketones (Dakin reaction), nitriles, sulfides, and nitrogen heterocycles. II Organic Lett., 1999, 1, 189-191.

115. Nakajima K, YamashitaA. II JP Patent 53009734, 1978.

116. Jung M.E., Lazarova T.I. Efficient synthesis of selectively protected L-dopa derivatives from L-tyrosine via Reimer-Tiemann and Dakin reactions. // J. Org. Chem., 1997, 62, 1553-1555.

117. Anand R., Maheswari R., Gore K.U., Chumbhale V. R. Selective alkylation of catechol with t-butyl alcohol over HY and modified HY zeolites. // Cat. Commun., 2002, 3, 321326.

118. Bjorsvik H.R., Liguori L., Minisci F. High selectivity in the oxidation of mandelic acid derivatives and in o-methylation of protocatechualdehyde: new processes for synthesis of vanillin, iso-vanillin, and heliotropin. // Org. Process Res. Dev., 2000,4, 534-543.

119. Clark G.S. Vanillin. // Perfum. Flav., 1990,15, 45-54.

120. AlamgirM., Mitchell P.S.R., Bowyer P.K, Kumar N., Black, D.S. (2008) Synthesis of 4,7-indoloquinones from indole-7-carbaldehydes by Dakin oxidation. // Tetrahedron, 2008, 64, 7136-7142.

121. Химия. Большой энциклопедический словарь/Гл. ред. И. JI. Кнунянц. — 2-е изд. — БСЭ, 1998 ISBN 5-85270-253-6 (БРЭ)

122. НоскН., Lang S. Autoxydation von Kohlenwasserstoffen, IX. Mitteil.: Uber Peroxyde von Benzol-Derivaten. // Ber. Dtsch. Chem. Ges., 1944, 77, 257-264.

123. Hock H„ Kropf H. Autoxylation von Kohlenwasserstoffen und die cumol-phenol -cynthese. //Angew. Chem., 1957, 69, 313-321.

124. Deno N.C., Billups W.E., Kramer K.E., Lastomirsky R.R. Rearrangement of aliphatic primary, secondary, and tertiary alkyl hydroperoxides in strong acid. // J. Org. Chem., 1970, 35 (9), 3080-3082.

125. Olah G.A.,. Parker D.G, Yoneda N. Superacid-Catalyzed Oxygenation of Alkanes. // Angew. Chem. Int. Ed. Engl., 1978, 17, 909-931.

126. Lange J.P., Breed A.J.M. Catalytic rearrangement of an aliphatic hydroperoxide. // Cat. Commun, 2002, 3, 25-28.

127. Fisher T.J., Dussault P.H. Fragmentation of chloroperoxides: Hypochlorite-mediated dehydration of hydroperoxyacetals to esters. // Tetrahedron Lett., 2010, 51, 5615-5617.

128. Anderson G.H. Acid-catalyzed rearrangement of hydroperoxides. II. Phenylcycloalkyl hydroperoxides. // Can. J. Chem., 1967, 46, 1561-1570.

129. Chan Y.-Y., Zhu C., Leung H.K. Sensitized photooxygenation. 1. Reaction of singlet oxygen with 3,4-dihydro-dmethyi-2#-pyran-5-carboxylic acid ethyl ester, isolation of hydroperoxides and evidence of the transformation of one of them to dioxetane. // J. Am. Chem. Soc., 1985,107, 5274-5275.

130. Chan Y.-Y., Li X., Zhu C., Liu X., Zhang Y, Leung H.-K. Sensitized photooxygenation. 3. Mechanistic studies on the singlet oxygenation of 5,6-disubstituted 3,4-dihydro-2//-pyrans. //J. Org. Chem., 1990, 55, 5497-5504.

131. Kabalka G.W, Reddy N.K., Narayana C. Sodium perborate: a convenient reagent for benzylic hydroprroxide rearrangement. // Tetrahedron Lett., 1993, 34 (48), 7667-7668.

132. Boger D.L., Coleman R.S. Benzylic hydroperoxide rearrangement: observations on a viable and convenient alternative to the Baeyer-Villiger rearrangement. // J. Org. Chem., 1986, 51, 5436-5439.

133. Boger D.L., Coleman R.S. Further observations on the Lewis acid-catalyzed benzylic hydroperoxide rearrangement: use of a boron-trifluoride/ hydrogen peroxide preformed, aged reagent. //Tetrahedron Lett., 1987, 28, 1027-1030.

134. Brinkhorst J., Nara S.J., Pratt D.A. Hock cleavage of cholesterol 5a-hydroperoxide: an ozone-free pathway to the cholesterol ozonolysis products identified in arterial plaque and brain tissue. // J. Am. Chem. Soc., 2008,130, 12224-12225.

135. Takeuchi C., Galve R., Nieva J., Witter D.P., Wentworth A.D., Troseth R.P., Lerner R.A., Wentworth R., Jr. Pro atherogenic effects of the cholesterol ozonolysis products, Atheronal-A and Atheronal-B. // Biochemistry, 2006, 45, 7162-7170.

136. Criegee R. Ein neuer Weg in die Cyclodecanreihe. // Ber. Dtsch. Chem. Ges., 1944, 77, 722-726.

137. Hedaya, E., Winstein S. Ionic decomposition of 2-alkoxy-2-propyl per-p-nitrobenzoates baeyer-villiger-type reactions of a ketal and an orthoester// Tetrahedron Lett., 1962, 13, 563-567.

138. Hedaya E., Winstein S. The ionic decomposition of 2-substituted 2-propyl p-nitroperbenzoates. Migration to electron-deficient oxygen and anchimeric acceleration of peroxide-bond heterolysis. // J. Am. Chem. Soc., 1967, 89, 1661-1672.

139. Wistuba E., Riichardt C. Migration aptitudes of cyclic and polycyclic bridgehead groups in the Criegee rearrangement. // Tetrahedron Lett., 1981, 22, 3389-3392.

140. Schreiber S.L., Liew W.-F. Criegee rearrangement of a-alkoxy hydroperoxides a synthesis of esters and lactones that complements the Baeyer-Villiger oxidation of ketones. // Tetrahedron Lett., 1983, 24, 2363-2366.

141. Thomas S. Lillie and Robert C. Ronald. Solvolytic hydroperoxide rearrangements. Oxa bicyclic hemiketal peroxides from homoallylic and cyclopropylcarbinyl precursors// J. Org. Chem. 1985, 50, 5084-5088.

142. Goodman R.M., Kishi Y. Extension of the Criegee rearrangement: synthesis of enol ethers from secondary allylic hydroperoxides. // J. Org. Chem., 1994, 59, 5125-5127.

143. Ogibin Yu.N., Terent'ev A.O., Kutkin A.V., Nikishin G.I. A rearrangement of 1-hydroperoxy-2-oxabicycloalkanes into lactones of co-acyloxy(co-3)-hydroxyalkanoic acids related to the Criegee reaction. Tetrahedron Lett., 2002, 43, 1321-1324.

144. Krasutsky P.A., Kolomitsyn I.V., Kiprof P., Carlson R.M., Sydorenko N.A., Fokin A.A. A consecutive double-Criegee rearrangement using TFPAA: stepwise conversion of homoadamantane to oxahomoadamantanes. //J. Org. Chem., 2001, 66, 1701-1707.

145. Krasutsky P.A., Kolomitsyn I. V., Kiprof P., Carlson R.M., Fokin A.A. Observation of a stable carbocation in a consecutive Criegee rearrangement with trifluoroperacetic acid. // J. Org. Chem., 2000, 65, 3926-3933.

146. Krasutsky P.A., Kolomitsyn I. V., Krasutsky S.G., Kiprof P. Double- and triple-consecutive O-insertion into tert-butyl and triarylmethyl structures. // Org. Lett., 2004, 6, 2539-2542.

147. Borowski T., Siegbahn P.E.M. Mechanism for catechol ring cleavage by non-heme iron intradiol dioxygenases: A hybrid DFT study. // J. Am. Chem. Soc., 2006, 128, 1294112953.

148. Mendel S., Arndt A., Bugg T.D.H. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: Site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). // Biochemistry, 2004,43, 13390-13396.

149. Xin M., Bugg T.D.H. Evidence from mechanistic probes for distinct hydroperoxide rearrangement mechanisms in the intradiol and extradiol catechol dioxygenases. // J. Am. Chem. Soc., 2008,130, 10422-10430.

150. Srikrishna A., Reddy T.J. Enantiospecific synthesis of (+)-(liS',2i?,65)-l,2-dimethylbicyclo[4.3.0]nonan-8-one and (-)-7-epibakkenolide-A. // Tetrahedron, 1998, 54, 11517-11524.

151. Srikrishna A., Kumar P.P., Reddy T.J. Carvone based approaches to chiral functionalised C-ring derivatives of Taxanes. // Tetrahedron Lett., 1998, 39, 5815-5818.

152. Srikrishna A., Anebouselvy K. An enantiospecific approach to tricyclic sesquiterpenes Mayurone and Thujopsenes. // J. Org. Chem., 2001, 66, 7102-7106.

153. Srikrishna A., Gharpure S.J., Kumar P.P. A simple, enantiospecific approach to both enantiomers of la,25-dihydroxyvitamin D3 A-ring precursors from i?-carvone. // Tetrahedron Lett., 2000, 41, 3177-3180.

154. Srikrishna A., Anebouselvy K, Reddy T.J. An enantiospecific approach to thapsanes from R -carvone: synthesis of (-)-thaps-8-en-5-ol. // Tetrahedron Lett., 2000,41, 6643-6647.

155. Srikrishna A., Anebouselvy K. An enantiospecific approach to (+)-thaps-8(ll)-en-3-ol. // Tetrahedron Lett., 2002, 43, 2769-2771.

156. Srikrishna A., Mahesh K., An enantiospecific approach to irregular Ligusticum grayi sesquiterpenes: synthesis of cw-preisothapsa-2,8(12)-diene. // Synlett, 2011, 17, 25372540.

157. ElbsK. Ueber Nitrohydrochinon. // J. Prakt. Chem. 1893, 48, 179.

158. Behrman E.J. The Elbs and Boyland-Sims peroxydisulfate oxidations. // Beilstein Journal of Organic Chemistry, 2006, 2 (1), 22.

159. Behrman E. C., Chenb S., Behrman E. J. On the mechanism of the Elbs peroxydisulfate oxidation and a new peroxide rearrangement. // Tetrahedron Lett., 2002, 43, 3221-3224.

160. Capdevielle P., Maumy M. Ortho-hydroxylation selective des phenols: I - vers un modele chimique simple des tyrosinases. // Tetrahedron lett., 1982, 23, 1573-1576.

161. Sethna S.M. The Elbs persulfate oxidation. // Chem. Rev., 1951, 49, 91-101.

162. Kornblum N., DeLamare HE. The base catalyzed decomposition of a dialkyl peroxide. // J. Am. Chem. Soc., 1951, 73, 880-881.

163. Mete E„ Altundas R., Secen H. Studies on the Mechanism of Base-Catalyzed Decomposition of Bicyclic Endoperoxides. // Turk. J. Chem., 2003, 27, 145-153.

164. AkbulutN., Balci, M. A new and stereospecific synthesis of cyclitols: (1,2,4/3)-, (1,2/3,4)-, and (l,3/2,4)-cyclohexanetetrol. //J. Org. Chem., 1988, 53, 3338-3342.

165. Avery T.D., Taylor D.K., Tiekink, E.R.T. New route to diastereomerically pure cyclopropanes utilizing stabilized phosphorus ylides and y-hydroxy enones derived from 1,2-dioxines: Mechanistic investigations and scope of reaction. A Novel Synthesis of Functionalized Tetrahydrofurans by an Oxa-Michael/Michael Cyclization of y -Hydroxyenones. // J. Org. Chem., 2000, 65, 5531-5546.

166. Greatrex B.W., Kimber M.C., Taylor D.K., Tiekink, E.R.T. A novel synthesis of functionalized tetrahydrofurans by an oxa-michael/michael cyclization of y -hydroxyenones. J. Org. Chem., 2003, 68, 4239-4246.

167. Greatrex B.W., Taylor D.K., Tiekink E.R.T. a domino ring-opening/epoxidation of 1,2-dioxines. // J. Org. Chem., 2004, 69, 2580-2583.

168. Zhang X.J., Khan S.I., Foote C.S. Sensitized Photooxygenations of 3-Vinylindole Derivatives. // J. Org. Chem., 1993, 58, 7839-7847.

169. Schulte-Elte K.H., Willhalm B., Ohloff G. Eine neue Peroxidumlagerung: cis-4,5-Epoxy-2-pentenal aus l,4-Epidioxy-2-cyclopenten. // Angew. Chem., 1969, 81, 1045-1047.

170. Sengiil M.E, Ceylan Z., Balci M. Unusual triethylamine catalyzed rearrangement of bicyclic endoperoxides derived from substituted cycloheptatrienes. // Tetrahedron, 1997, 53, 10401-10408.

171. Russell G. A., Dodd J. R., Ku T., Tanger C., Chung C. S. C. Application of electron spin resonance spectroscopy to studies of valence isomerization. III. Aliphatic semidiones. XXVII. Radical anions derived from bicyclo[4.n.0]alk-3-ene-2,5-diones. // J. Am. Chem. Soc., 1974, 96, 7255-7265.

172. Oda M„ Kitahara Y. Photo-oxygenation of tropone. A convenient synthesis of 5-hydroxytropolone and tropolone. // Tetrahedron Lett. 1969,10, 3295-3296.

173. Dastan A., Balci M. Chemistry of dioxine-annelated cycloheptatriene endoperoxides and their conversion into tropolone derivatives: an unusual non-benzenoid singlet oxygen source. //Tetrahedron, 2006, 62, 4003-4010.

174. Coskun A., Giiney M., Dastan A., Balci M. Oxidation of some alkoxy-cycloheptatriene derivatives: unusual formation of furan and furanoids from cycloheptatrienes. // Tetrahedron, 2007, 63, 4944-4950.

175. Koc F., Cadirci E., Albayrak A., Halici Z., Hacimuftuoglu A., Suleyman H. Antiinflammatory activity of 2,5-dihydroxycyclohepta-2,4,6-trienone in rats. // Med Chem Res., 2010,19, 84-93.

176. AtasoyB., Balci M. Cycloaddition reactions of 5H-benzocycloheptene with singlet oxygen and with 4-phenyl-l,2,4-triazoline-3,5-dione, and the chemistry of the 5H-benzocycloheptene endoperoxides. // Tetrahedron, 1986, 42, 1461-1468.

177. Sengiil M.E., Ceylan Z., Balci M. Unusual triethylamine catalyzed rearrangement of bicyclic endoperoxides derived from substituted cycloheptatrienes. // Tetrahedron, 1997, 53, 10401-10408.

178. Balci M., Atasoy B. Cycloheptatriene-norcaradiene-equilibrium cycloaddition reactions of the 1.2-benzocycloheptatriene with singlet oxygen and 4-phenyl-1.2.4-triazolin-3.5-dione. // Tetrahedron Lett., 1984, 25, 4033-4036.

179. Gu X., Zhang W., Salomon R.G. Fragmentation of P-hydroxy hydroperoxides. // J. Org. Chem. 2012, 77, 1554-1559.

180. Stäben S.T., Xin L., Toste F.D. Enantioselective synthesis of y-hydroxyenones by chiral base-catalyzed Kornblum DeLaMare rearrangement. // J. Am. Chem. Soc., 2006, 128, 12658-12659.

181. Paddock V.L., Phipps R.J., Conde-Angulo A., Blanco-Martin A., Giró-Mañas C., Martin L.J.,. White A.J.P, and Spivey A.C. (±)-trans,cis-4-Hydroxy-5,6-di-0-isopropylidenecyclohex-2-ene-l-one: Synthesis and Facile Dimerization to Decahydrodibenzofurans. // J. Org. Chem., 2011, 76 (5), 1483-1486.

182. Fujishima T., Kitoh F., Yano T., Irie R. Diastereo selective construction of new 5a-substituted carbaallose by exo-ß-selective conjugate addition to endo-exo cross-conjugated. Cyclohexadienone as key reaction. // Synlett, 2010,15, 2279-2282.

183. Erden I., Öcal N.. Song J., Gleason C., Gärtner C. Unusual endoperoxide isomerizations: a convenient entry into 2-vinyl-2-cyclopentenones from saturated fulvene endoperoxides. -Tetrahedron, 2006, 62, 10676-10682.

184. Wasserman H.H., Terao S. Enamine-singlet oxygen reactions. a-Diketones from intermediate amino dioxetanes. // Tetrahedron Lett., 1975, 21, 1735-1738.

185. Frimer A.A. The raction of singlet oxygen with Olefins: the question of mechanism. // Chem. Rev., 1979, 79, 359-387.

186. Hewton C.E, Kimber M.C., Taylor D.K. A one-pot synthesis of thiophene and pyrrole derivatives from readily accessible 3,5-dihydro-l,2-dioxines. // Tetrahedron Lett., 2002, 43, 3199-3201.

187. Rössle M., Werner T., Baro A., Frey W, Christoffers J. Formation of 1,4-Diketones by Aerobic Oxidative C-C Coupling of Styrene with 1,3-Dicarbonyl Compounds. // Angew. Chem . Int. Ed., 2004, 43 , 6547-6549.

188. Greatrex B.W., Jenkins N.F., Taylor D.K., Tiekink E.R.T. Base- and Co(II)-Catalyzed Ring-Opening Reactions of Perhydrooxireno[2,3-d][l,2]dioxines: An Efficient Route to 4-Hydroxy-2,3-epoxy-ketones. // J. Org. Chem. 2003, 68, 5205 -5210.

189. Zagorski M.G, Salomon R.G. Prostaglandin endoperoxides. 11. Mechanism of amine-catalyzed fragmentation of 2,3-dioxabicyclo[2.2.1]heptane. I I J. Am. Chem. Soc., 1980, 102, 2501-2503.

190. Zagorski M.G, Salomon R.G. Base-catalyzed fragmentation of 2,3-dioxabicyclo[ 2.2.1] heptane, the bicyclic peroxide nucleus of prostaglandin endoperoxides: large secondary deuterium kinetic isotope effects. //J. Am. Chem. Soc., 1984,106, 1750-1759.

191. Kawasumi M., Kanoh N.. Iwabuchi Y. Concise entry to both enantiomers of 8 oxabicyclo[3.2.1]oct-3-en-2-one based on novel oxidative etherification: formal synthesis of (ß)-sundiversifolide. // Org. Lett., 2011,13 (14), 3620-3623.

192. Nicolaou K.C., Totokotsopoulos S., Giguere D, Sun Ya-P., Sarlah D. Total synthesis of Epicoccin G. // J. Am. Chem. Soc., 2011,133, 8150-8153.

193. Buchanan G.S., Cole K.P., Tang Y., Hsung R.P. Total synthesis of (±)-Phomactin A. Lessons learned from respecting a challenging structural topology. // J. Org. Chem., 2011, 76, 7027-7039.

194. Kumar R.A., Maheswari C. U., Ghantasala S., Jyothi C., Reddy K.R. Synthesis of 3H-quinazolin-4-ones and 4H-3,l-benzoxazin-4-ones via benzylic oxidation and oxidative dehydrogenation using potassium iodide- tert-butyl hydroperoxide. // Adv. Synth. Catal., 2011,353, 401-410.

195. Schenck G.O, Neumiiller O., Eisfeld W. Herstellung reiner, kristallisierter Rhodizonsaure. //Angew. Chem., 1958,70,595.

196. Schenck G.O., Neumiiller O., Eisfeld W. Zur photosensibilisierten Autoxydation der Steroide: A5-Steroid-7a-hydroperoxyde und -7-ketone durch Allylumlagerung von A6-Steroid-5a-hydroperoxyden. // Justus Liebigs Ann. Chem., 1958, 618, 202-210.

197. Teng J.I., Kulig M.J., Smith L.L., Kan G„ van Lier J.E. Sterol metabolism. XX. Cholesterol 7.beta.-hydroperoxide. // J. Org. Chem., 1973, 38, 119-123.

198. Brill W.F. The allylic rearrangement of hydroperoxides: the allylperoxyl radical. // J. Chem. Soc., Perkin Trans. 2, 1984, 621-627.

199. Porter N.A., Zuraw P. The allylic rearrangement of hydroperoxides: oxygen entrapment of the proposed carbon radical intermediate. // J. Chem. Soc., Chem. Commun., 1985, 14721473.

200. Beckwith A.L.J., Davies A.G., Davison I.G.E., Maccoll A., Mruzek M.H. The mechanisms of the rearrangements of allylic hydroperoxides: 5a-hydroperoxy-3p-hydroxycholest-6-ene and 7a-hydroperoxy-3|3-hydroxycholest-5-ene. // Chem. Soc., Perkin Trans. 2, 1989, 7, 815-824.

201. Porter N.A., Wujek J.S. Allylic hydroperoxide rearrangement. .beta.-Scission or concerted pathway? // J. Org. Chem., 1987, 52, 5085-5089.

202. Davies A.G., Davison I.G.E. The rearrangements of allylic hydroperoxides derived from (+)-valencene. // J. Chem. Soc., Perkin Trans. 2, 1989, 7, 825, 830.

203. Porter N.A., Kaplan J.K., Dussault P.H. Stereoselective acyclic 3,2 peroxyl radical rearrangements. //J. Am. Chem. Soc., 1990,112, 1266-1267.

204. Porter N.A., Mills K.A., Caldwell S.E., Rubay G.R. The Mechanism of the [3,2] allylperoxyl rearrangement: A radical-dioxygen pair reaction that proceeds with stereochemical memory. // J. Am. Chem. Soc., 1994,116, 6697-6705.

205. Mills K.A., Caldwell S.E., Rubay G.R., Porter N.A. An allyl radical-dioxygen caged pair mechanism for cis-allylperoxyl rearrangements. // J. Am. Chem. Soc., 1992, 114, 96899691.

206. Lowe JR., Porter N.A. Preparation of an unsymmetrically labeled allylic hydroperoxide and study of its allylic peroxyl radical rearrangement. // J. Am. Chem. Soc., 1997, 119, 11534-11535.

207. Brill W.F. The Isolation and Rearrangement of Pure Acyclic Allylic Hydroperoxides. // J. Am. Chem. Soc., 1965, 87, 3286-3287.

208. Dussault P.H., Eary C.T., Woller K.R. Total Synthesis of the Alkoxydioxines (+)- and (-)-Chondrillin and (+)- and (-)-Plakorin via Singlet Oxygenation/Radical Rearrangement. // J. Org. Chem., 1999, 64, 1789-1797.

209. Dang H.-S., Davies A.G., Davison I.G.E., Schiesser C.H. Reactivities of some hydroperoxides toward allylic rearrangement and related reactions. // J. Org. Chem., 1990, 55, 1432-1438.

210. Avila D.V., Davies A.G., Davison I.G.E. Stereoselectivity in the formation and allylic rearrangement of 8a-methyl- and 8a-ethyl-l,2,3,4,4a,7,8,8a-octahydronaphthalenyl hydroperoxides. // J. Chem. Soc., Perkin Trans. 2, 1988,10, 1847-1852.

211. Dang H.-S., Davies A.G. Ene reactions of allylically stannylated cholestenes: singlet oxygenation of 7a-triphenylstannylcholest-5-en-3p-ol, and of 7a-triphenylstannyl- and 7a-

tributylstannyl-cholest-5-ene-3-one, and the rearrangement of 5a-tributylstannylperoxy-3ß-benzoyloxycholest-6-ene and of 7a-tributylstannylperoxy-3ß-benzoyloxycholest-5-ene. // J. Chem. Soc., Perkin Trans. 2, 1992, 7, 1095-1101.

212. Dang H.-S., Davies A.G., Schiesser C.H. Allylic hydroperoxides formed by singlet oxygenation of cholest-5-en-3-one.//J. Chem. Soc., Perkin Trans. 1, 1990, 3, 789-794.

213. Porter N. A. Organic Peroxides, ed. W. Ando, Wiley, Chichester, 1992.

214. Carless H. The formation and subsequent cyclisation of novel hydroperoxides from a 1,4-and a 1,5-diene. // Tetrahedron Lett., 1982, 23, 4735-4738.

215. Courtneidge J.L. Polyfunctional peroxides from tert-butyl hydroperoxide-loaded autoxidations of polyunsaturated substrates and an assessment of the rate constants for allylic peroxyl radical rearrangements and peroxyl radical ring closures. // J. Chem. Soc., Chem. Commun., 1992,17, 1270-1272.

216. Wieland. H. Über Triphenylmethyl-peroxyd. Ein Beitrag zur Chemie der freien Radikale. II Chem. Ber. 1911, 44, 2550-2556.

217. Ingold K.U., Smeu M, DiLabio G.A. Isomerization of triphenylmethoxyl and 1,1-diphenylethoxyl radicals. Revised assignment of the electron-spin resonance spectra of purported intermediates formed during the eerie ammonium nitrate mediated photooxidation of aryl carbinols. // J. Org. Chem., 2006, 71, 9906-9908.

218. DiLabio G.A., IngoldK.U., Lin S., Litwinienko G., Mozenson O., Mulder P., Tidwell T.T. Isomerization of triphenylmethoxyl: The Wieland free-radical rearrangement revisited a century later. // Angew. Chem. Int. Ed. 2010, 49 , 5982 -5985.

219. Terent'ev A.O., Platonov M.M., Kashin A.S., Nikishin G.I. Oxidation of cycloalkanones with hydrogen peroxide: an alternative route to the Baeyer-Villiger reaction. Synthesis of dicarboxylic acid esters. // Tetrahedron, 2008, 64, 7944-7948.

220. Payne G.B., Smith C.W. Reactions of hydrogen peroxide. III. Tungstic acid catalyzed hydroxylation of cyclohexene in nonaqueous media. // J. Org. Chem., 1957, 22, 16821685.

221. Hamann H.-J., Liebscher J. A novel outcome of the hydroperoxide rearrangement . // J. Org. Chem., 2000, 65, 1873-1876.

222. Hamann H.-J., Liebscher J. Primary geminal bishydroperoxides by hydroperoxide rearrangement. // Synlett 2001,1, 96-98.

223. Payne G.B. Novel rearrangement in the oxidation of 3-butylideneacetylacetone by hydrogen peroxide. // J. Org. Chem., 1959, 24, 1830-1832

224. Baumstark A.L., Vasquez P.C. Chen Y.-X. Synthesis and thermolysis of ketal derivatives of 3-hydroxy- 1,2-dioxolanes. // J. Org. Chem., 1994, 59, 6692-6696.

225. Reisinger C.M, Wang X., List B. Catalytic asymmetric hydroperoxidation of a, b-unsaturated ketones: an approach to enantiopure peroxyhemiketals, epoxides, and aldols. // Angew. Chem. Int. Ed., 2008, 47, 8112-8115.

226. Terent'ev A.O., Borisov D.A., Yaremenko I.A., Ogibin Y.N., Nikishin G.I. Oxidation of substituted ß-diketones with hydrogen peroxide: Synthesis of esters through the formation of bridged 1,2,4,5-tetraoxanes. // Synthesis, 2010, 7, 1145-1149.

227. Mace L.H., Shanmugham M.S., White J.D., Drew M.G.B. A new route to furanoeremophilane sesquiterpenoids. Synthesis of Senecio metabolites (±)-6-

hydroxyeuryopsin, (±)-1,10-epoxy-6-hydroxyeuryopsin, (±)-toluccanolide A and ( ±)-toluccanolide C. // Org. Biomol. Chem., 2006, 4, 1020-1031.

228. PuticA., StecherL., PrinzH., Miiller K. Structure-activity relationship studies ofacridones as potential antipsoriatic agents. 1. Synthesis and antiprolife rative activity of simple N-unsubstituted lOH-acridin- 9-ones against human keratinocyte growth. // Eur. J. Med. Chem., 2010, 45, 3299-3310.

229. Dussault P.H., Lee H.-J., Liu X. Selectivity in Lewis acid-mediated fragmentations of peroxides and ozonides: application to the synthesis of alkenes, homoallyl ethers, and 1,2-dioxolanes. // J. Chem. Soc., Perkin Trans. 1, 2000, 3006-3013.

230. Murahashi S-I. Naota T., Miyaguchi N.. Noda S. Ruthenium-catalyzed oxidation of phenols with alkyl hydroperoxides. A novel, facile route to 2-substituted quinones. // J. Am. Chem. Soc., 1996, 118, 2509-2510.

231. Murahashi S-I., Miyaguchi N.. Noda S., Naota T., Fujii A., Inubushi Y., Komiya N. Ruthenium-catalyzed oxidative dearomatization of phenols to 4-(tert butylperoxy)cyclohexadienones: Synthesis of 2-substituted quinones from p-substituted phenols. // Eur. J. Org. Chem., 2011, 27, 5355-5365.

232. Mai D., Ray S., Sharma I. Direct access to 1,4-dihydroxyanthraquinones: the Hauser annulation reexamined with p-quinones. // J. Org. Chem., 2007, 72, 4981-4984.

233. Murahashi S-I., Fujii A., Inubushi Y., Komiya N. Synthesis of 2-substituted quinones, vitamin K3, and vitamin K1 from p-cresol. BF3-OEt2-catalyzed methyl migration of 4-tert-butyldioxycyclohexadienones. // Tetrahedron Lett., 2010, 51, 2339-2341.

234. O'Neill P.M.,Rawe S.L., Storr R.C., Ward S.A., Posner G.H. Lewis acid catalysed rearrangements of unsaturated bicyclic [2.2.n] endoperoxides in the presence of vinyl silanes, access to novel Fenozan BO-7 analogues. // Tetrahedron Lett., 2005, 3029-3032.

235. Afonso A. Rearrangement of a steroidal 14 P-hydroperoxide. Cleavage of ring D.//Can. J. Chem., 1970, 48, 691-693

236. Biloski A.J., Ganem B. Improved oxidation of amines with dibenzoyl peroxide. // Synthesis, 1983, 7, 537-538.

237. Phanstiel IV O., Wang Q.X., Powell D.H., Ospina M.P., Leeson B.A. Synthesis of secondary amines via n-(benzoyloxy)amines and organoboranes. // J. Org. Chem., 1999, 64, 803-806.

238. Nemchik A., Badescu V, Phanstiel IV O. N-(Benzoyloxy)amines: an investigation of their thermal stability, synthesis, and incorporation into novel peptide constructs. // Tetrahedron, 2003. 59, 4315-4325.

239. Yuan Yu., Ji X, Zhao D. Efficient oxidative cleavage of 1,3-dicarbonyl derivatives with hydrogen peroxide catalyzed by quaternary ammonium iodide. // Eur. J. Org. Chem., 2010, 5274-5278.

240. Kulinkovich O.G., Astashko D.A., Tyvorskii VI., Ilyina N.A. Synthesis of a,P -epoxy ketones from alkyl- and arylsubstituted cyclopropanols. // Synthesis, 2001,10, 1453-1455.

241. Jain A., Rodri'guez S„ Lo'pez I., Gonzalez F.V. Highly stereoselective epoxidation of O-protected 3-hydroxy-l-nitroalkenes. // Tetrahedron, 2009, 65, 8362-8366.

242. Lo 'pez I., Rodri 'guez S. Izquierdo J., Gonzalez F. V. Highly stereoselective epoxidation of a-Methyl-y-hydroxy-a,(3-unsaturated esters: rationalization and synthetic applications. // J. Org. Chem., 2007, 72, 6614-6617.

243. O'Neill P.M., Searle N.L., Raynes K.J., Maggs J.L., Ward S.A., Storr R.C., Park B.K., Posner G.H. A carbonyl oxide route to antimalarial yingzhaosu A analogues: Synthesis and antimalarial activity. // Tetrahedron Lett., 1998, 39, 6065-6068.

244. Bernat V., Andre C. Andre-Barres C. Weak chemiluminescence emission during base induced rearrangement of G-factors. // Org. Biomol. Chem., 2008, 6, 454-457.

245. Matsumoto M, Akimoto T., Matsumoto Y., Wtanabe N. Bicyclic dioxetanes bearing a 4-(benzoazol-2-yl)-3-hydroxy-phenyl moiety: chemiluminescence profile for base-induced decomposition in aprotic medium and in aqueous medium. // Tetrahedron Lett., 2005, 46, 6075-6078.

246. Hoshiya N.. Watanabe N.. Ijuin H.K., Matsumoto M. Synthesis of bicyclic dioxetanes bearing a 2-hydroxy-l,10-binaphthyl-5-yl moiety active toward intramolecular charge-transfer-induced chemiluminescent decomposition. // Tetrahedron, 2006, 62, 12424-12437.

247. Matsumoto M., Tinamura M., Akimoto T., Watanabe N., Ijuin H.K. Solvent-promoted chemiluminescent decomposition of a bicyclic dioxetane bearing a 4-(benzothiazol-2-yl)-3-hydroxyphenyl moiety. // Tetrhedron Lett., 2008, 49, 4170-4173.

248. Tanimura M., Watanabe N.. Ijuin H.K., Matsumoto M. Intramolecular Charge-Transfer-Induced Decomposition Promoted by an Aprotic Polar Solvent for Bicyclic Dioxetanes Bearing a 4-(Benzothiazol-2-yl)-3-hydroxyphenyl Moiety. // J. Org. Chem., 2011, 76, 902908.

249. Tanimura M., Watanabe N., Ijuin H.K., Matsumoto M. Base-induced chemiluminescent decomposition of bicyclic dioxetanes bearing a (benzothiazol-2-yl)-3-hydroxyphenyl group: a radiationless pathway leading to marked decline of chemiluminescence efficiency. // J. Org. Chem., 2012, 77, 4725-4731.

250. Matsumoto M., Takamido Y., Nomura K, Shiono T., Watanabe N.. Ijuin H.K. Marked difference in singlet-chemiexcitation efficiency between syn-anti isomers of spiro[l,2-dioxetane-3,10-dihydroisobenzofiiran] for intramolecular charge-transfer-induced decomposition. // Tetrahedron Lett., 2008, 49, 6145-6147.

251. Matsumoto M., Suzuki H., Sano Y., Watanabe N., Ijuin H.K. Rotamer-dependent chemiluminescence in the intramolecular charge-transfer-induced decomposition of bicyclic dioxetanes bearing a hydroxyaryl group. // Tetrahedron Lett., 2008, 49, 53725375.

252. Watanabe N., Sano Y., Suzuki H., Tanimura M., IJuin H.K, Matsumoto M. Synthesis of thermally stable acylamino-substituted bicyclic dioxetanes and their base-induced chemiluminescent decomposition. // J. Org. Chem., 2010, 75, 5920-5926.

253. Matsumoto M., Suzuki H., Watanabe N., Ijuin H.K, Tanaka J., Tanaka C. Crucial dependence of chemiluminescence efficiency on the syn/anti conformation for intramolecular charge-transfer-induced decomposition of bicyclic dioxetanes bearing an oxidoaryl group. // J. Org. Chem., 2011, 76, 5006-5017.

254. Watanabe N.. Kikuchi M„ Maniwa Y., Ijuin H.K, Matsumoto M. Synthesis of sulfanyl-, sulfinyl-, and sulfonyl-substituted bicyclic dioxetanes and their base-induced chemiluminescence. // J. Org. Chem., 2010, 75, 879-884.

255. Boyd J.D., Foote C.S., Imagawa D.K Synthesis of l,2:3,4-diepoxides by catalyzed rearrangement of 1,4-endoperoxides. // J. Am. Chem. Soc., 1980,102, 3641-3642.

256. Celik M., Akbulut N.. Balci M. Synthesis and chemistry of endoperoxides derived from 3,4-dihydroazulen-l(2 h )-one: an entry to cyclopentane-anellated tropone derivatives. // Helvetica Chimica Acta, 2000, 83, 3131-3138.

257. Giiney M., Ceylan Z.Q, Dastan A., Balci M. Substituent effects of the cycloaddition reaction of 7-substituted 5 H-benzocycloheptenes with singlet oxygen and the chemistry of the benzocycloheptene endoperoxides. // Can. J. Chem., 2005, 83, 227-235.

258. Demuth M.R., Garrett P.E., White J.D. Synthesis of (+-)-crotepoxide, (+-)-epicrotepoxide, and (+-)-isocrotepoxide. // J. Am. Chem. Soc., 1976, 98, 634-635.

259. Van Tamelen E.E., Taylor E.G. Total synthesis of stemolide. // J. Am. Chem. Soc., 1980, 102, 1202-1203.

260. Maheshwari K.K., De Mayo P., Wiegand D. Photochemical rearrangement of diene endoperoxides. // Can. J. Chem., 1970, 48, 3267-3268.

261. Wilson R.M., Rekers J.W. Decomposition of bicyclic endoperoxides: an isomorphous synthesis of frontalin via l,5-dimethyl-6,7-dioxabicyclo[3.2.1]octane. // J. Am. Chem. Soc., 1981,103, 206-207.

262. Carless H.A.J., Atkins R., Fekarurhobo G.K. Thermal and photochemical reactions of unsaturated bicyclic endoperoxides. // Tetrahedron Lett., 1985, 26, 803-806.

263. Dastan A., Balci M. Chemistry of dioxine-annelated cycloheptatriene endoperoxides and their conversion into tropolone derivatives: an unusual non-benzenoid singlet oxygen source. // Tetrahedron, 2006, 62, 4003-4010.

264. Schulte-Elte K.H., Willhalm B., Ohloff G. A new peroxide rearrangement: c/s-4,5-epoxy-2-pentanal from l,4-epidioxy-2-cyclopentene. // Angew. Chem. Int. Ed., 1969, 8, 985-986.

265. Erden I., Xu F.-P., Drummond J., Alstad R. Chemistry of singlet oxygen. Synthesis of functionalized cyclopentenones from saturated fulvene endoperoxides. // J. Org. Chem., 1993,58, 3611-3612.

266. Erden I., Xu F.-P., Cao W.-G. Sigmatropic Shifts in Allene Oxide Rearrangements: First General Route to [3,4] Shifts in Aliphatic Systems. // Angew. Chem. Int. Ed. Engl., 1997, 36, 1516-1518.

267. Germola F., Iesce M.R., Buonerba G. Dye-sensitized photooxygenation of furanosyl furans: synthesis of a new pyridazine c-nucleoside. // J. Org. Chem., 2005, 70, 6503-6505.

268. Scarpati R., Iesce M.R., Cermola F„ Guitto A. l-Alkoxy-2,3,7-trioxabicyclo[2.2.1]hept-5-enes: bicyclic monoperoxy ortho esters as useful synthons for multifunctional compounds. // Synlett., 1998,1, 17-25.

269. Iesce M.R., Cermola F., Lorenzo F.De., Orabona I., Graziano M.L. Photosensitized Oxidation of Furans. A Novel Thermal Rearrangement of Suitably Substituted Alkoxyfuran Endoperoxides via Neighboring-Group Mechanism: Synthesis and Reactivity of the First Functionalized 2-Oxetanyl Hydroperoxides. // J. Org. Chem., 2001, 66, 47324735.

270. Matsumoto M., Murakami H., WatanabeN. Thermal decomposition of l-(aminophenyl)-5-tert-butyl-4,4-dimethyl-2,6,7-trioxabicyclo[3.2.0]heptanes: unusual O-O bond cleavage competing with normal fragmentation of 1,2-dioxetanes. // Chem. Commun., 1998, 23192320.

271. Matsumoto M., Sano Y., Watanabe N.. Ijuin H.K. The first synthesis of thermally stable acylamino-substituted 1,2-dioxetanes. // Chem. Lett., 2006, 35, 882-883.

272. Turner J., Herz W. Fe(II)-induced decomposition of epidioxides derived from a-phellandrene. //J. Org. Chem., 1977, 42, 1895-1900.

273. Turner J., Herz W. Fe(II)-induced decomposition of unsaturated cyclic peroxides derived from butadienes, a simple procedure for synthesis of 3-alkylfurans. // J. Org. Chem., 1977, 42, 1900-1904.

274. Posner G.H., Tao X., Cumming J.N., Klinedinst D., Shapiro T. A. Antimalarially potent, easily prepared, fluorinated endoperoxides. // Tetrahedron Lett. 1996, 37, 7225-7228.

275. Suzuki M, Ohtake H., Kameya Y., Hamanaka N., Noyori. R. Ruthenium(II)-catalyzed reactions of 1,4-epiperoxides. // J. Org. Chem. 1989, 54, 5292-5302.

276. Kamata M., Satoh C., Kim H.-S., Wataya Y. Iron(II)-promoted rearrangement of 1,4-diaryl-2,3-dioxabicyclo[2.2.2]oct-5-enes: a mechanism distinct from that postulated previously. // Tetrahedron Lett., 2002, 43, 8313-8317.

277. Baran A., Bekarlar M., Aydin G., Nebioglu M, Sahin E., Balci M. Synthesis of bishomoinositols and an entry for construction of a substituted 3-oxabicyclo[3.3.1]nonane skeleton. // J. Org. Chem., 2012, 77, 1244-1250.

278. Ozen R., Kormali F., Balci M., Atasoy B. Rearrangement of unsaturated cyclic peroxides obtained by photooxygenation of 2,3-dimethylene-7-oxabenzonorbornene and 2,3-dimethylene-l,4-etheno-l,2,3,4-tetrahydrohaphthalene. // Tetrahedron, 2001, 57, 75297535.

279. Coskun A., Guney M., Dastan A., Balci M. Oxidation of some alkoxy-cycloheptatriene derivatives: unusual formation of furan and furanoids from cycloheptatrienes. // Tetrahedron, 2007, 63,4944-4950.

280. Sutbeyaz Y., Secen H, Balci M. Cobalt (II) tetraphenylporphyrin catalyzed decomposition of bicyclic endoperoxides. // J. Org. Chem., 1988, 53, 2312-2317.

281. Suzuki M., Ohtake H., Kameya Y., Hamanaka N., Noyori R. Ruthenium(II)-catalyzed reactions of 1,4-epiperoxides. //J. Org. Chem., 1989, 54, 5292-5302.

282. Durie A.J., Slawin A.M.Z., Lebl T,, Firsch P., O^Hagan D. Synthesis and structure of all-^«-1,2,3,4-tetrafluorocyclohexane. // Chem. Commun., 2011, 47, 8265-8267.

283. Barbarow J.E., Miller A.K, Trauner D. Biomimetic synthesis of Elysiapyrones A and B. // Org. Lett., 2005, 7, 2901-2903.

284. Sar A., Lindeman S., Donaldson W.A. De novo synthesis of polyhydroxyl aminocyclohexanes. // Org. Biomol. Chem., 2010, 8, 3908-3917.

285. Miller A.K, Trauner D. Mining the tetraene manifold: Total synthesis of complex pyrones from Placobranchus ocellatus. // Angew. Chem. Int. Ed., 2005, 44, 4602-4606.

286. Suzuki M., Oda Y„ Noyori R. Palladium (0) catalyzed reaction of 1,3-diene 1,4-epiperoxides. // Tetrahedron Lett., 1981, 22, 4413-4416.

287. Suzuki M., Oda Y„ Hamanaka N„ Noyori R. Palladium (0) catalyzed reactions of 1,4-epiperoxides. // Heterocycles, 1990, 30, 517-535.

288. Terent'ev A.O., Borisov D.A., Chernyshev V.V., Nikishin G.I. Facile and selective procedure for the synthesis of bridged 1,2,4,5-tetraoxanes, Strong acids as cosolvents and catalysts for addition of hydrogen peroxide to P-diketones. // J. Org. Chem., 2009, 74, 3335-3340.

289. SallesL., Aubry C., Thouvenot R., Robert F., Doremieux-Morin C., Chottard G., Ledon H., Jeannin Y., Bregeault J.M. 31P and 183W NMR Spectroscopic Evidence for novel peroxo

species in the "H3fPW12O40j.cntdot.yH2O/H2O2" system. Synthesis and X-ray structure of tetrabutylammonium (.mu.-Hydrogen phosphato)bis(.mu.-peroxo)bis(oxoperoxotungstate) (2-): A catalyst of olefin epoxidation in a biphase medium. // Inorg. Chem., 1994, 33, 871— 878.

290. Duncan D.C., Chambers R.C., Hecht E., Hill C.L. Mechanism and dynamics in the H3[PWi204oj-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of {P04[W0(02)2]4}3-. H J. Am. Chem. Soc., 1995,117, 681-691.

291. Howarth O.W. Oxygen-17 NMR study of aqueous peroxotungstates. // Dalton Trans., 2004, 476-481.

292. Ingram K., Yaremenko I.A., Krylov I.B., Hof er L., Terent 'ev A.O., Keiser J. Identification of antischistosomal leads by evaluating bridged 1,2,4,5-tetraoxanes, alphaperoxides and tricyclic monoperoxides. // J. Med. Chem., 2012, 55, 8700-8711.

293. Li Y., Hao H.-D., Wu Y. Facile ring-opening of oxiranes by H2O2 catalyzed by phosphomolybdic acid. // Org. Lett., 2009,11, 2691-2694.

294. Hao H.-D., Li Y., Han W.-B., Wu Y. A Hydrogen Peroxide Based Access to Qinghaosu (Artemisinin). // Org. Lett., 2011,13, 4212-4215.

295. Li Y„ Hao H.-D., Zhang Q., Wu Y. A broadly applicable mild method for the synthesis of gem-diperoxides from corresponding ketones or 1,3-dioxolanes. // Org. Lett., 2009, 11, 1615-1618.

296. Yon X., Chen J., Zhu Y.-T., Qiao C. Phosphomolybdic acid catalyzed synthesis of 1,2,4,5-tetraoxanes. // Synlett, 2011,19, 2827-2830.

297. Li D., Schröder K., Bitterlich B., Tse M. K., Beller M. Iron-catalyzed hydroxylation of b-ketoesters with hydrogen peroxide as oxidant. // Tetrahedron Lett., 2008, 49, 5976-5979.

298. Abu-Omar M. M., Espenson J. H. Oxidations of cyclic b-diketones catalyzed by methylrhenium trioxide. // Organometallics, 1996, 15, 3543-3549.

299. Yu Yuan, Xiang Ji, Dongbo Zhao. Efficient oxidative cleavage of 1,3-dicarbonyl derivatives with hydrogen peroxide catalyzed by quaternary ammonium iodide // Eur. J. Org. Chem., 2010, 27, 5274-5278

300. Aubry C., Chottard G., Platzer N., Bregeault J.M., Thouvenot R., Chauveau F, Huet C., Ledon H. Reinvestigation of epoxidation using tungsten-based precursors and hydrogen peroxide in a biphase medium. // Inorg. Chem., 1991, 30, 4409-4415.

301. Milas N.A., Mageli O.L., Golubovic A., Arndt R.W., Ho J.C.J. Studies in Organic Peroxides. XXIX.. The Structure of Peroxides Derived from 2,4-Pentanedione and Hydrogen Peroxide // J. Am. Chem. Soc., 1963, 85, 222-226.

302. Lin H„ Suslick K.S. A colorimetric sensor array for detection of triacetone triperoxide vapor. //J. Am. Chem. Soc., 2010,132, 15519-15521.

303. Félix-Rivera H., Ramírez-Cedeño ML., Sánchez-Cuprill R.A., Hernández-Rivera S.P. Triacetone triperoxide thermogravimetric study of vapor pressure and enthalpy of sublimation in 303-338 K temperature range. // Thermochimica Acta, 2011, 514, 37-43.

304. HockH., Lang S. Autoxydation von Kohlenwasserstoffen, IX. Mitteil.: Über Peroxyde von Benzol-Derivaten. // Ber. Dtsch. Chem. Ges., 1944, B77, 257-264.

305. Jordan W., van Barneveld H., Gerlich O., Boymann M.K., Ullrich J. in Ullmann's Encyclopedia of Industrial Organic Chemicals, ed. Gerhartz, W. Wiley-VCH, Weinheim, 1985, vol. A9, pp. 299-312,

306. Nakamura R., Obora Y., Ishii Y. Selective one-pot synthesis of various phenols from diarylethanes. // Chem. Commun., 2008, 29, 3417-3419.

307. Swern D., Ed., Organic peroxides, Vol. 2, Wiley-Interscience, New York, 1971.

308. Rieche A., Bischoff C. Alkylperoxyde, XXX. Peroxyde Von Diketonen, I. Peroxyde des Acetylacetons. // Chem. Ber., 1962, 95, 77-82.

309. Cocker W., Grayson D.H. Reactions of some dicarbonyl compounds. Part III. Oxidation of some ß-diketones with alkaline hydrogen peroxide. // J. Chem. Soc. Perkin Trans. I, 1975, 1347-1352.

310. Vinogradova L.P., Zav'yalov S.I. II Izvest. Akad. Nauk. S.S.S.R., Ser. Khim., 1961, 14821486 (Chem. Abs., 1962, 56, 338b).

311. Vinogradova L.P., Zav'yalov S.I. II Izvest. Akad. Nauk. S.S.S.R., Ser. Khim., 1961, 20502054 (Chem. Abs., 1962, 57, 12344c).

312. Vinogradova L.P., Rudenko B.A., Zav'yalov S.I. II Izvest. Akad. Nauk. S.S.S.R., Ser. Khim., 1962, 1436-1441 (Chem. Abs., 1963, 58, 2378g).

313. Rieche A., Eberhard S., Brand F. Isolierung von Dibenzyläther-hydroperoxid aus den Peroxygenaten von Benzylalkohol und Dibenzyläther. II Liebigs. Ann. Chem., 1969, 725, 93-98.

314. Opsenica D., Pocsfalvi G., Milhous W.K., Solaja B.A. Antimalarial peroxides: the first intramolecular 1,2,4,5-tetraoxane. //J. Serb. Chem. Soc., 2002, 67, 465-471.

315. Rieche, A., Bischoff, C., Prescher, D. Alkylperoxyde, XXXV. Peroxyde des Triacetylmethans „Triacetylmethanperoxyd". // Chem. Ber., 1964, 97, 3071-3075.

316. Zmitek K., Zupan M., Stavber S., Iskra J. The Effect of Iodine on the Peroxidation of Carbonyl Compounds. // J. Org. Chem., 2007, 72, 6534 - 6540.

317. Terent'ev A.O., Kutkin A. V, Platonov M.M., Ogibin Yu.N., Nikishin G.I. A new method for the synthesis of bishydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes. // Tetrahedron Lett., 2003, 44, 7359 - 7364.

318. Jefford C.W., Li Y„ Jaber A., Boukouvalas J. A New Method for the Synthesis of gem-Dihydroperoxides. // Synth. Commun., 1990, 20, 2589 - 2596.

319. Kocienski P.J. Protecting Groups, Thieme, New York, 2003.

320. Zmitek K„ Zupan M., Stavber S., Iskra J. Iodine as a Catalyst for Efficient Conversion of Ketones to gem-Dihydroperoxides by Aqueous Hydrogen Peroxide // Org. Lett., 2006, 8, 2491-2494.

321. Azarifar D., Khosravi K., Soleimanei F. Stannous Chloride Dihydrate: A Novel and Efficient Catalyst for the Synthesis of gem-Dihydroperoxides from Ketones and Aldehydes. // Synthesis, 2009, 15, 2553 - 2556.

322. Baeyer A., Villiger V. Einwirkung des Caro'schen Reagens auf Ketone. II Ber. Dtsch. Chem. Ges., 1899, 32, 3625-3633.

323. Baeyer A„ Villiger V. Ueber die Einwirkung des Caro'schen Reagens auf Ketone. II Ber. Dtsch. Chem.Ges., 1900, 33, 858-864.

324. Krow, G.R. Organic Reactions, Paquette, L., Ed., John Wiley and Sons: New York, 1993, Vol. 43, pp 251-798.

325. Renz M., Meunier B. 100 Years of Baeyer-Villiger Oxidations. II Eur. J. Org. Chem., 1999, 4, 737-750.

326. Belov V.N., Heyfitz L.A., Virezub S.I. Reaczii I Metodi issledovaniya organicheskich soedineniy, Goshimizdat, Moscow, 1961, Vol. 10, 7-208

327. Criegee R. Eine oxydative Spaltung von Glykolen (II. Mitteil, über Oxydationen mit Blei(IV)-salzen). //Ber. Dtsch. Chem. Ges., 1931, 64, 260-266,

328. Criegee R. Ein neuer Weg in die Cyclodecanreihe. // Ber. Dtsch. Chem. Ges., 1944, 77, 722-726

329. Michailovici M.L. Intramolecular Oxidative Cyclization of Alcohols with Lead Tetraacetate. // Synthesis, 1970, 5, 209-224.

330. Ogibin Yu.N., Terent'ev A.O., Kutkin A.V., Nikishin G.I. A rearrangement of 1-hydroperoxy-2-oxabicycloalkanes into lactones of co-acyloxy(a)-3)-hydroxyalkanoic acids related to the Criegee reaction. Tetrahedron Lett., 2002, 43, 1321-1324.

331. Terent'ev A.O., Krivykh O.V., Krylov I.B., Ogibin Yu.N., Nikishin G.I. A new property of geminal bishydroperoxides: hydrolisis with the removal of hydroperoxide groups to form of a ketone. Russian Journal of General Chemistry. // Russ. J. Gen. Chem., 2010, 80, 16671671.

332. Terent'ev A.O., Kutkin A.V., Platonov M.M., Vorontsov I.I, Antipin M.Y., Ogibin Yu.N., Nikishin G.I. Synthesis of peroxide compounds by the BF3-catalyzed reaction of acetals and enol ethers with H202 // Russ. Chem. Bull., 2004, 53, 681-687.

333. Zhang Q., Jin H.-X., Liu H.-H., Wu Y.-K. Synthesis of a nitro analogue of plakoric acid. // Chin. J. Chem., 2006, 24, 1190-1195.

334. Zhang Q., Li Y., Wu Y.-K. Synthesis of a l,2,7,8-Tetraoxa-spiro[5.5]undecane. // Chin. J. Chem., 2007, 25, 1304-1308.

335. Terent'ev A.O., Platonov M.M., Kashin A.S., Nikishin G.I. Oxidation of cycloalkanones with hydrogen peroxide: an alternative route to the Baeyer-Villiger reaction. Synthesis of dicarboxylic acid esters. // Tetrahedron, 2008, 64, 7944-7948.

336. Terent'ev A.O, Boyarinova K.A., Nikishin G.I. Oxidation of alkenes with hydrogen peroxide, catalyzed by boron trifluoride. Synthesis of vicinal methoxyalkanols. // Russ. Journal Gen. Chem., 2008, 78, 592-596.

337. Terent'ev A.O., Kutkin A.V., Platonov M.M., Starikova Z.A., Ogibin Yu.N., Nikishin G.I. Synthesis of l,l'-bishydroperoxydi(cycloalkyl) peroxides by homocoiipling of 11-15-membered gem-bis(hydroperoxy)cycloalkanes in the presence of boron trifluoride. // Russ. Chem. Bull., 2005, 54, 1214-1217.

338. Terent'ev A.O., Kutkin A.V., Starikova Z.A., Antipin M.Yu., Ogibin Yu.N., Nikishin G.I. New preparation of 1,2,4,5-Tetraoxanes. // Synthesis, 2004,14, 2356-2366.

339. Hamann H.-J., Hecht M., Bunge A., Gogol M., Liebscher J. Synthesis and antimalarial activity of new 1,2,4,5-tetroxanes and novel alkoxy-substituted 1,2,4,5-tetroxanes derived from primary gem-dihydroperoxides. // Tetrahedron Lett., 2011, 52, 107-111.

340. Terent'ev A.O., Platonov M.M., Sonneveld E.J., P es char R., Chernyshev V.V., Starikova Z.A., Nikishin G.I. New Preparation of 1,2,4,5,7,8-hexaoxonanes. // J. Org. Chem., 2007, 72, 7237-7243.

341. Chang M.-Y., Lin C.-H., Chen Y.-L., Hsu R.-T., Chang C.-Y. BF3-promoted synthesis of spiroindenyl heterocycles. // Tetrahedron Lett., 2010, 51, 3154-3158.

342. Chang M.-Y., Lin C.-H., Chen Y.-L., Chang C.-Y., Hsu R.-T. BF3-Promoted Synthesis of Diarylhexahydrobenzo[f]isoquinoline. // Org. Lett., 2010, 12 (6), 1176-1179.

343. Chang M.-Y., Wu T.-C, Lin S.-T. BF3-OEt2-mediated Rearrangement of (4-Phenylpiperidin-4-yl)-arylmethanoIs. // J. Chin. Chem. Soc., 2008, 55, 468-473.

344. Wamser C.A. Equilibria in the System Boron Trifluoride—Water at 25°. // J. Am. Chem. Soc., 1951,73, 409-416.

345. Adam. W, Biancafort L. Reaction of a-Peroxy Lactones with C, N, P, and S Nucleophiles: Adduct Formation and Nucleophile Oxidation by Nucleophilic Attack at and Biphilic Insertion into the Peroxide Bond. // J. Org. Chem., 1997, 62, 1623 - 1629.

346. Clennan E.L., Heah P.C. Bicyclic dioxaphosphoranes. 2. Spectral properties indicative of a Karplus relationship in phosphoranes. // J. Org. Chem., 1982, 47, 3329 - 3331.

347. Clennan E.L., Heah P.C. Interaction of triphenylphosphine with 2,3-dioxabicyclo[2.2.ljheptanes. // J. Org. Chem., 1981, 46, 4105 - 4107.

348. Baumstark A.L., Vasquez P.C. Reaction of tetramethyl-l,2-dioxetane with phosphines: deuterium isotope effects. // J. Org. Chem., 1984, 49, 793 - 798.

349. Terent'ev A.O., Platonov M.M., KrylovI.B., Chernyshev V.V., Nikishin G.I. Synthesis of 1-Hydroperoxy-l'-Alkoxyperoxides by the Iodine-Catalyzed Reactions of Geminal Bishydroperoxides with Acetals or Enol Ethers. // Org. Biomol. Chem., 2008, 6, 44354441.

350. Ito T., Tokuyasu T., Masuyama A., Nojima M., McCullough K.J. Synthesis of novel macrocyclic peroxides by bis(sym-collidine)iodine (I) hexafluorophosphate-mediated cyclization of unsaturated hydroperoxides and unsaturated alcohols. // Tetrahedron, 2003, 59, 525-536.

351. Dussault P.H., Lee I.Q. Peroxycarbenium-mediated carbon-carbon bond formation: synthesis of peroxides from monoperoxy ketals. // J. Am. Chem. Soc., 1993, 115, 64586459.

352. Dussault P.H., Eary C.T. Palladium-Mediated Carbon-Carbon Bond Forming Reactions as a New Method for the Synthesis of Peroxides and Hydroperoxides. // J. Am. Chem. Soc., 1998, 120, 7133-7134.

353. Dussault P.H., Lee H.J., Niu Q.J. Peroxycarbenium-Mediated C-C Bond Formation: Synthesis of Cyclic Peroxides from Monoperoxyketals. // J. Org. Chem., 1995, 60, 784785.

354. Terent'ev A.O., Borisov A.M., Platonov M.M., Starikova Z.A., Chernyshev V.V., Nikishin G.I Reaction of Enol Ethers with the I2-H202 System: Synthesis of 2-Iodo-l-methoxyhydroperoxides and Their Deperoxidation and Demethoxylation to 2-Iodoketones. // Synthesis, 2009, 24, 4159-4166.

355. Dussault P.H., Zope U.R. Diastereoselectivity of Additions to Chiral Carbonyl Oxides. // J. Org. Chem., 1995, 60, 8218-8222.

356. Wuts P.G.M., Greene T.W. Greene's Protective Groups in Organic Synthesis, 4th Edition, 2006.

357. Torok D.S., Figueroa J.J., Scott W.J. 1,3-Dioxolane formation via Lewis acid-catalyzed reaction of ketones with oxiranes. // J. Org. Chem., 1993, 58, 7274-7276.

358. Vyvyan J.R., Meyer J. A., Meyer K.D. Conversion of Epoxides to 1,3-Dioxolanes Catalyzed by Tin(II) Chloride. // J. Org. Chem., 2003, 68, 9144-9147.

359. Sprague J.M., Beckham L.J., Adkins H. Preparation of 1,3-Diketones by the Claisen Reaction. // J. Am. Chem. Soc., 1934, 56, 2665-2668.

360. Swamer F. W., Hauser C.R. Claisen Acylations and Carbethoxylations of Ketones and Esters by Means of Sodium Hydride. // J. Am. Chem. Soc., 1950, 72, 1352-1356.

361. Kon'kov S.A.. Moiseev I.K. Synthesis of pyrazoles and pyrazolones from 1,3- and 1,4-diketones of the adamantane series. // Russ. J. Org. Chem., 2009, 45, 1824-1828. Zh. Org. Khim., 2009, 45, 1828-1831.

362. Ringuet M., Girard D., Chapados C. Vibrational and electronic spectra of new liposoluble metalloporphyrins in a nonpolar noncoordinating solvent. // Can. J. Chem., 1991, 69, 1070-1079.

363. Kalaitzakis D., Rozzell J.D., Smonou I., Kambourakis S. Synthesis of Valuable Chiral Intermediates by Isolated Ketoreductases: Application in the Synthesis of a-Alkyl-p-hydroxy Ketones and 1,3-Diols. // Adv. Synth. Catal., 2006, 348, 1958-1969.

364. Климочкин Ю.Н., Тилли T.C., Моисеев И.К. Адамантилирование ацетилацетона. // Журн. орган, химии, 1988, 24(8), 1780-1781

365. Jeffery J.C., Kurek S.S., McCleverty J.A., Psillakis E., Richardson R.M., Ward M.D., Wlodarczyk A. Syntheses of 4-benzyl-3,5-dimethylpyrazolylborato complexes of molybdenum and tungsten nitrosyls: molecular structure of [Mo(CO)2(NO){HB(3,5-Me2-4-PhCH2C3N2)3}], a complex with an 'inverted' bowl-like structure. // J. Chem. Soc., Dalton Trans.,1994,17, 2559-2564.

366. Thirupathi P., Kim S.S. Fe(C104)3-xH20-Catalyzed direct C-C bond forming reactions between secondary benzylic alcohols with different types of nucleophiles. // Tetrahedron, 2010, 66, 2995-3003.

367. Khera R.A., Ullah I., Ahmad R., Riahi A., Hung N.T., Sher M., Villinger A., Fischer C„ Langer P. Synthesis of functionalized triarylmethanes by combination of FeC13-catalyzed benzylations of acetylacetone with [3+3] cyclocondensations.// Tetrahedron, 2010, 66, 1643-1652.

368. Bertogg A., Hintermann L., Huber D.P., TI3rseghini M., Sanna M., Togni A. Substrate Range of the Titanium TADDOLate Catalyzed Asymmetric Fluorination of Activated Carbonyl Compounds. // Helv. Chim. Acta., 2012, 95, 353^103.

369. Gree R., Park H., Paquette L.A. Regio- and stereoselective 1,2 Wagner-Meerwein shifts during trifluoroacetic acid catalyzed isomerization of unsymmetrically substituted tricyclo[3.2.0.02,4]heptanes. // J. Am. Chem. Soc., 1980,102, 4397^1403.

370. Zhiheng H., Huanrong L., Zhiping L. Iodine-Mediated Synthesis of 3H-Indoles via Intramolecular Cyclization of Enamines. // J. Org. Chem., 2010, 75, 4636-4639.

371. Gogoi P., Kotipalli Т., Indukuri K, Bondalapati S., Saha P., Saikia A.K Application of a novel 1,3-diol with a benzyl backbone as chiral ligand for asymmetric oxidation of sulfides to sulfoxides. // Tetrahedron Lett., 2012, 53, 2726-2729.

372. Milas N.A., Mageli O.L., Golubovic A., Arndt R.W., Ho J.C.J. Studies in Organic peroxides. XXIX. The Structure of peroxides derived from 2,4-pentanedione and hydrogen peroxide. // J. Am. Chem. Soc. 1963, 85, 222-226.

373. Rieche A., Bischoff C. Alkylperoxyde, XXX. Peroxyde Von Diketonen, I. Peroxyde des Acetylacetons. //Chem. Ber. 1962, 95, 77-82.

374. Gottlieb H.E., Kotlyar V., and Nudelman A. NMR chemical shifts of common laboratory solvents as trace impuritie. II J. Org. Chem., 1997, 62, 7512-7515.

375. Christoffers J. Novel chemoselective and diastereoselective iron(2I)-catalysed Michael reactions of 1,3-dicarbonyl compounds and enones. // J. Chem. Soc., II3rkin Trans. 1, 1997,21,3141-3149.

376. Bartoli G., Bosco M., Bellucci M. C., Marcantoni E., Sambri L., Torregiani E. Cerium(2I) Chloride Catalyzed Michael Reaction of 1,3-Dicarbonyl Compounds and Enones in the Presence of Sodium Iodide Under Solvent-Free Conditions. // Eur. J. Org. Chem., 1999, 3, 617-620.

377. Shirakawa S., Shimizu S. Hydrogen-Bond-Promoted C-C Bond-Forming Reaction: Catalyst-Free Michael Addition Reactions in Ethanol. // Synlett, 2007, 20, 3160-3164.

378. Das B., Krishnaiah M., Veeranjaneyulu B., Ravikanth B. A simple and efficient synthesis of gem-dihydroperoxides from ketones using aqueous hydrogen peroxide and catalytic eerie ammonium nitrate. // Tetrahedron Lett., 2007, 48, 6286-6289.

379. Tada N.. Cui L., Okubo H., Miura T., Itoh A. An Efficient Synthesis of gem-Dihydroperoxides with Molecular Oxygen and Anthracene under Light Irradiation. // Adv. Synth. Cat., 2010, 352, 2383-2386.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.