Сканирующая зондовая микроскопия наноразмерных гетероструктур для полупроводниковых лазеров тема диссертации и автореферата по ВАК РФ 01.04.07, кандидат физико-математических наук Свиридов, Дмитрий Евгеньевич

  • Свиридов, Дмитрий Евгеньевич
  • кандидат физико-математических науккандидат физико-математических наук
  • 2011, Москва
  • Специальность ВАК РФ01.04.07
  • Количество страниц 97
Свиридов, Дмитрий Евгеньевич. Сканирующая зондовая микроскопия наноразмерных гетероструктур для полупроводниковых лазеров: дис. кандидат физико-математических наук: 01.04.07 - Физика конденсированного состояния. Москва. 2011. 97 с.

Оглавление диссертации кандидат физико-математических наук Свиридов, Дмитрий Евгеньевич

Введение.

Глава 1. Обзор литературы.

1.1 Контактный и полуконтактный режим работы атомно-силового микроскопа.

1.2 Визуализация слоев гетероструктур с квантовыми ямами в контактном и полуконтактном режиме работы атомно-силового микроскопа.

1.3 Метод сканирующей микроскопии сопротивления растекания.

1.4 Визуализация слоев гетероструктур с квантовыми ямами методом сканирующей микроскопии сопротивления растекания.

1.5 Влияние подсветки излучением встроенного в атомно-силовой микроскоп лазера на токовые измерения.

1.6 Выводы из обзора.

Глава 2. Исследование гетероструктур с квантовыми ямами и брэгговскими зеркалами в контактном и полуконтактном режиме сканирования.

2.1 Экспериментальная установка и методика исследования.

2.2 Визуализация слоев гетероструктур на сколах в контактном и полуконтактном режиме сканирования.

2.3 Моделирование рельефа, формирующегося на поверхности скола гетероструктур в результате релаксации внутренних упругих напряжений и оценка химического состава квантовых ям.

Глава 3. Исследование нелегированных гетероструктур с квантовыми ямами в режиме сканирующей микроскопии сопротивления растекания.

3.1 Получение изображения квантовых ям на сколах гетероструктур Са1пР/АЮа1пР и СаБ/гпЗЗе.

3.2 Влияние подсветки излучением с различным спектральным составом.

3.3 Локальные вольтамперные характеристики.

3.4 Механизм токопереноса в контактах зонда со слоями гетероструктур.

3.5 Оценка концентрации носителей в квантовых ямах Оа1пР/АЮа1пР и СаБ/г^е.

3.6 Механизм визуализации слоев гетероструктур на сколе в режиме сканирующей микроскопии сопротивления растекания.

Рекомендованный список диссертаций по специальности «Физика конденсированного состояния», 01.04.07 шифр ВАК

Введение диссертации (часть автореферата) на тему «Сканирующая зондовая микроскопия наноразмерных гетероструктур для полупроводниковых лазеров»

Современное развитие полупроводниковых приборов основывается на использовании наноразмерных гетероструктур, получаемых эпитаксиальны-ми методами роста. Для совершенствования технологии их создания и улучшения рабочих характеристик приборов на их основе необходимо точно, и по возможности быстро определить такие параметры гетероструктур как, шероховатость ростовой поверхности, толщины слоев, их химический состав и концентрацию носителей в них.

В работах [1-3] было показано, что в определенных случаях эти задачи могут быть решены на основе атомно-силовой микроскопии (АСМ) с помощью таких методов как контактная и полуконтакт'ная атомно-силовая микроскопия (КАСМ и ПАСМ), позволяющих измерять рельеф поверхности [4], а также метода сканирующей микроскопии сопротивления растекания (СМСР), измеряющего проводящие свойства поверхности [5].

Тем не менее, некоторые из этих параметров могут быть измерены и другими, более известными методами, такими, например, как сканирующая и просвечивающая электронная микроскопия. Однако, АСМ является более простым в применении методом, не требующим сложной процедуры приготовления образца и проведения измерений в вакууме.

Другие методы, такие как фотолюминесценция и рентгеноструктурный анализ, в отличие от АСМ, позволяют измерять усредненные по всей структуре свойства, и неспособны предоставить информацию с высоким пространственным разрешением о токах, носителях и потенциалах на нанометровом уровне, присущем современным квантово-размерным гетероструктурам.

Несмотря на огромное число работ по использованию атомно-силовой микроскопии в различных областях науки, относительно малое число работ посвящено исследованию данным методом полупроводниковых лазерных гетероструктур. В работах [2,6] метод СМСР применялся для определения концентрации носителей п и дрейфовой подвижности ¡л в квантовых ямах (КЯ) легированных гетероструктур. Для этого, однако, необходимо было использовать калибровочные измерения. Было показано, что визуализация слоев в этом режиме в основном определяется различием в концентрации носителей в КЯ и барьерах. Однако, полученные результаты справедливы лишь для сильно легированных структур.

КАСМ и ПАСМ также применялись при исследовании гетероструктур с КЯ. В работах [1,7] было показано, что визуализация различных слоев происходит за счет релаксации внутренних упругих напряжений на поверхности скола и окисления. Кроме этого в работе [8] был развит метод, позволяющий предоставлять количественную информацию о величине упругих напряжений в КЯ и их химическом составе.

Большинство работ выполнено для легированных структур на основе кремния и соединений АЗВ5. Практически не исследованы нелегированные гетероструктуры на основе соединений АЗВ5 и А2В6. Все вышесказанное определяет актуальность задачи исследования методами КАСМ, ПАСМ и СМСР нелегированных гетероструктур на основе соединений АЗВ5 и А2В6, применяемых при создании полупроводниковых лазеров с электронным и оптическим возбуждением.

Целью данной диссертационной работы являлось развитие методов КАСМ, ПАСМ и СМСР для измерения различных параметров полупроводниковых нелегированных гетероструктур на основе материалов АЗВ5 и А2В6, используемых при создании лазеров с продольной оптической и электронной накачкой. Для определения параметров гетероструктур, необходимо было исследовать механизм визуализации слоев на сколах и определить его зависимость от различных факторов. Так как до сих пор концентрация носителей в КЯ, в режиме СМСР, определялась на основе калибровочных измерений, важным было разработать математическую модель, учитывающую механизмы токопрохождения в контакте зонда со слоями гетероструктур.

Исследования проводились на зондовом микроскопе Solver Р-47 Pro компании НТ-МДТ (г. Зеленоград). Полученные результаты были использованы для оптимизации ростовых процессов и характеристик лазеров.

Похожие диссертационные работы по специальности «Физика конденсированного состояния», 01.04.07 шифр ВАК

Заключение диссертации по теме «Физика конденсированного состояния», Свиридов, Дмитрий Евгеньевич

Заключение

1. На сколах гетероструктур Оа0.4б1п0.54Р/(А1о.бОа0.4)о.51по.5Р и CdSZZnS0.07Se0.93» содержащих слабо окисляющиеся слои, контактным и полуконтактным методом сканирования был выявлен нанорельеф, сформированный релаксацией внутренних упругих напряжений на свободной поверхности. Проведен расчет данного нанорельефа на основе теории упругости в линейном и изотропном приближении, позволивший оценить химический состав квантовых ям.

2. Полуконтактным методом сканирования скола лазерной гетероструктуры с распределенными брэгговскими зеркалами AlAsZAlo.45Gao.55As были измерены толщины слоев, что позволило уточнить оптические характеристики зеркал и объяснить температурные зависимости характеристик лазера, изготовленного на ее основе. Установлено, что визуализация слоев обусловлена разной скоростью окисления слоев А1Аб и Alo.45Gao.55As.

3. Впервые методом сканирующей микроскопии сопротивления растекания было получено контрастное изображение квантовых ям на сколах нелегированных гетероструктур ОаШУАЮа1пР и CdSZZnS0.07Se0.93. Показано, что визуализация слоев происходит за счет различий в величине их удельного сопротивления и высоте барьера Шоттки, формирующегося при контакте зонда с ними.

4. Предложена модель растекания тока вблизи точечного контакта зонда с поверхностью скола гетероструктуры, учитывающая образование барьера Шоттки в области контакта зонда, и величину последовательного сопротивления растекания. Показано, что на вольтамперные характеристики точечного контакта оказывают влияние электрические характеристики второго контакта и гетероперехода между подложкой и активной областью гетероструктуры. Данная модель позволила оценить концентрацию носителей в КЯ Gao.51Ino.49P Z(Alo.7Gao.з)o.5lIno.49P значением 4-1015 см"3.

Список литературы диссертационного исследования кандидат физико-математических наук Свиридов, Дмитрий Евгеньевич, 2011 год

1. F. Lelarge, О. Dehaese, E. Карой, С. Priester, Strain relaxation at cleaved surfaces studied by atomic force microscopy, Appl. Phys. A, 69, 347 (1999).

2. K. Maknys, O. Douheret, and S. Anand, Probing carriers in two-dimensional systems with high spatial resolution by scanning spreading resistance microscopy, Appl. Phys. Lett., 83(11), 2184 (2003).

3. H. Dumont, L. Auvray, J. Dazord, V. Souliere, Y. Monteil, and J. Bouix, Strain-induced surface morphology of slightly mismatched InxGai-xAs films grown on vicinal (100) InP substrates, J. Appl. Phys., 85(10), 7185 (1999).

4. А. А. Бухараев, Д. В. Овчинников, А. А. Бухараева, Заводская лаборатория, 5, 10 (1997).

5. М. Meuris, W. Vandervorst, and P. De Wolf, European Patent No. 90,201,853 filed July 9, 1990. U.S. Patent No. 5,585,734, filed December 17, 1996.

6. F. Giannazzo, V. Raineri, and F. Priolo, Drift mobility in quantum nanostruc-tures by scanning probe microscopy, Appl. Phys. Lett., 88, 43117 (2006).

7. Т. M. Smeeton, V. Bousquet, S. E. Hooper, M. Kauer, and J. Heffernan, Atomic force microscopy analysis of cleaved facets in Ill-nitride laser diodes grown on free-standing GaN substrates, Appl. Phys. Lett., 88, 041910 (2006).

8. J. H. Davies, D.M. Bruls, J.W.A.M Vugs, and, P.M. Koenraad, Relaxation of a strained quantum well at a cleaved surface, Journal of Appl. Phys., 91(7), 4171 (2002).

9. Ю. С. Бараш "Силы Ван-дер-Ваальса", M: "Наука", 1988, 344 с.

10. М. Saint Jean, S.Hudlet, C.Guthmann, J.Berger, Van der Waals and capacitive forces in atomic force microscopies, J. Appl. Phys., 86(9), 5245 (1999).

11. A. Buldum, S. Ciraci, С. Y. Fong, J. S. Nelson, Interpretation of long-range interatomic force, Phys. Rev. B, 59, 5120 (1999).

12. E. Meyer, H. Heinzelmann. Scanning Force Microscopy (SFM): Scanning Tunneling Microscopy. Vol. II / ed by R. Weisendanger and H. J. Guntherodt. -Berlin: Springer Verlag. 1992. p. 99-146.

13. P. Eyben, M. Xu, N. Duhayon, and W. Vandervorst, Scanning spreading resistance microscopy and spectroscopy for routine and quantitative two-dimensional carrier profiling, J. Vac. Sci. Technol. B, 20(1), 471 (2002).

14. F. Reinhardt, B. Dwir, and E. Kapon, Oxidation of GaAs/AlGaAs heterostructu-res studied by atomic force microscopy in air, Appl. Phys. Lett., 68 (22), 3168 (1996).

15. D. C. Hurley, J. A. Turner, Measurement of Poisson's ratio with contact-resonance atomic force microscopy, J. Appl. Phys., 102, 033509 (2007).

16. T. R. Albrecht, P. Grutter, D. Home, and D. Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys., 69, 668(1991).

17. Martin, Y., C. C. Williams, and H. K. Wickramasinghe, Atomic force microscope force mapping and profiling on a sub 100-A scale, J. Appl. Phys., 61, 4723 (1987).

18. Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surf. Sci., 290, L688 (1993).

19. L. M. Eng, K. D. Jandt, D. Descouts, A combined scanning tunneling, scanning force, frictional force, and attractive force microscope, Rev. Sci. Instrum., 65(2), 390 (1994).

20. D. Sarid, V. Elings, Review of scanning force microscopy, J. Vac. Sci. Technol. B., 9(2), 431 (1991).

21. F.J. Giessibl, Advances in atomic force microscopy, Rev. Mod. Phys., 75, 9492003).

22. J. E. Sader, S. P. Jarvis, Accurate formulas for interaction force and energy in frequency modulation force spectroscopy, Appl. Phys. Lett., 84(10), 18012004).

23. A. San Paulo and R. Garcia, Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy, Phys. Rev. B, 64, 193411 (2001).

24. E. Meyer, H. Heinzelmann, D. Brodbeck, G. Overney, L. Howald, H. Hug, T. Jung, H.-R. Hidber, and H.-J. Guntherodt, Atomic resolution on the surface of LiF(OOl) by atomic force microscopy, J. Vac. Sci. Technol. B 9, 1329 (1990).

25. G. Meyer, and N. M. Amer, Optical-beam-deflection atomic force microscopy: The NaCl(lOO) surface, Appl. Phys. Lett., 56, 2100 (1990).

26. S. Kawaia and H. Kawakatsu, Atomically resolved amplitude modulation dynamic force microscopy with a high-frequency and high-quality factor cantilever, Appl. Phys. Lett., 89, 013108 (2006).

27. Hao Tang, X. Bouju, C. Joachim, C. Girard, and J. Devillers, Theoretical study of the atomic-force-microscopy imaging process on the NaCl(OOl) surface, J. Chem. Phys. 108 (1), 359 (1998).

28. M. R. Jarvis, Rubén Pérez, and M. C. Payne, Can Atomic Force Microscopy Achieve Atomic Resolution in Contact Mode?, Phys. Rev. B, 86(7), 1287 (2001).

29. F. J. Giessibl, and G. Binnig, True atomic resolution on KBr with a low-temperature atomic force microscope in ultrahigh vacuum, Ultramicroscopy 4244, 281 (1992).

30. F. Ohnesorge, and G. Binning, True atomic resolution by atomic force microscopy through repulsive and attractive forces, Science, 260, 1451 (1993).

31. T. Schimmel, T. Koch, J. Kuppers, and M. Lux-Steiner, True atomic resolution under ambient conditions obtained by atomic force microscopy in the contact mode, Appl. Phys. A: Mater. Sci. Process, 68, 399 (1999).

32. F. J. Giessibl, Theory for an electrostatic imaging mechanism allowing atomic resolution of ionic crystals by atomic force microscopy, Phys. Rev. B 45, 13 815 (1992).

33. S. P. Jarvis, H. Tolcumoto, and J. B. Pethica, Measurement and interpretation of forces in the atomic force microscope, Probe Microsc., 1, 65 (1997).

34. S. P. Jarvis, H. Yamada, H. Tokumoto, and J. B. Pethica, Direct mechanical measurement of interatomic potentials, Nature (London) 384, 247 (1996).

35. R. Erlandsson, L. Olsson, and P. Martensson, Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(l 1 l)(7x7), Phys. Rev. B 54, R8309 (1996).

36. C. Lavoie, T. Pinnington, E. Nodwell, T. Tiedje, R. S. Goldman, K. L. Kava-nagh, and J. L. Hutter, Relationship between surface morphology and strain relaxation during growth of InGaAs strained layers, Appl. Phys. Lett., 67, 3744 (1995).

37. X. Wallart, C. Priester, D. Deresmes, and F. Mollot, Interplay between segregation, roughness, and local strains in the growth of GaO.75InO.25P alloy, Appl. Phys. Lett., 77, 253 (2000).

38. B. Dwir, F. Reinhardt, and E. Kapon, Cross-sectional atomic-force microscopy of semiconductor nanostructures, J. Appl. Phys., 78(8), 4939 (1995).

39. H. Neddermeyer, Scanning tunneling microscopy of semiconductor surfaces, Rep. Prog. Phys., 59, 701(1996).

40. R. Pérez and P. Gumbsch, Directional Anisotropy in the Cleavage Fracture of Silicon, Phys. Rev. Lett., 84, 5347 (2000).

41. G. A. Wolff and J. D. Broder, Microcleavage, bonding character and surface structure in materials with tetrahedral coordination, Acta. Cryst., 12, 313 (1959).

42. W. Mónch, On the oxidation of III-V compound semiconductors, Surf. Sci., 168, 577 (1986).

43. G. Hollinger, R. Skheyta-Kabbani, M. Gendry, Oxides on GaAs and InAs surfaces: An x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers, Phys. Rev. B, 49, 11 159 (1994).

44. Y.M. Niquet, C, Priester, C. Gourgon, H. Mariette, Inhomogeneous strain relaxation in etched quantum dots and wires: From strain distributions to piezoelectric fields and band-edge profiles, Phys. Rev. B, 57, 14 850 (1998).

45. R.R. LaPierre, Т. Okada, В.J. Robinson, G.C. Weatherly, Spinodal-lilce decomposition of InGaAsP/(100) InP grown by gas source molecular beam epitaxy, J. Crystal Growth 155,1 (1995).

46. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970), Sec. 148.

47. K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985), Sec. 2.5.

48. D. M. Bruls, Ph.D. thesis, Direct profiling of III/V semiconductor nanostructures at the atomic level by cross-sectional Scanning Tunneling Microscopy, Eindhoven: Technische Universiteit Eindhoven, 2003.

49. J. Fleig, K. Krischer, Y. V. Pleskov, H. H. Strehblow: Advances in electrochemical science and engineering vol. 8, ed. by Richard C. Alkire. Wiley - VCH Verlag GmbH & Co: 2002. p. 374.

50. P. De Wolf, J. Snauwaert, T. Clarysse, W. Vandervorst, and L. Hellemans, Characterization of a point-contact on silicon using force microscopy-supported resistance measurements, Appl. Phys. Lett., 66, 1530 (1995).

51. G. Koley, J. Liu, and К. C. Mandal, Investigation of CdZnTe crystal defects using scanning probe microscopy, Appl. Phys. Lett., 90, 102121 (2007).

52. R. Holm, Electric Contacts Handbook, 3rd edition, Springer-Verlag, Berlin, p. 17(1958).54. http://www.nanosensors.com/ diamondcoatedsensors.html

53. T. Hantschel, P. Niedermann, T. Trenkler, and W. Vandervorst, Highly conductive diamond probes for scanning spreading resistance microscopy, Appl. Phys. Lett, 76, 1603 (2000).56. http://www.ntmdt-tips.com/catalog/diamond cond/products/DCP20 15.html

54. P. De Wolf, T. Clarysse, W. Vandervorst, L. Hellemans, Ph. Niedermann, and W. Hanni, Cross-sectional nano-spreading resistance profiling, J. Vac. Sci. Technol. B, 16, 355 (1998).

55. JI. Д. Ландау и E.M. Лившиц. Теория упругости. Москва, "Наука", 1987.

56. P. De Wolf, T. Clarysse and W. Vandervorst, Quantification of nanospreading resistance profiling data, J. Vac. Sci. Technol. B. 16(1), 320 (1997).

57. P. De Wolf, Ph.D. thesis , University of Leuven, Belgium, 142 (1998).

58. Б. JI. Шарма, P. К. Пурохит, Полупроводниковые гетеропереходы: Пер. с анг.// Под ред. Ю.В.Гуляева. М.: Советское Радио, 1979. 227с.

59. Y. Martin, David W. Abraham, and H. Kumar Wickramasinghe, High-resolution capacitance measurement and potentiometry by force microscopy, Appl. Phys. Lett., 52, 1103 (1988).

60. Hao Yin, Tianxin Li, Wenjuan Wang, Weida Hu, Le Lin, and Wei Lu, Scanning capacitance microscopy investigation on InGaAs/InP avalanche photodiode structures: Light-induced polarity reversal, Appl. Phys. Lett., 95, 093506 (2009).

61. M. N. Chang, C. Y. Chen, W. J. Huang, and Т. C. Cheng, Approach to nonpho-toperturbed differential capacitance measurements: A front-wing cantilever, Appl. Phys. Lett., 87, 023102 (2005).

62. Buh G H, Kopanski J J, Marchiando J F, Birdwell A G, and Kuk Y, Factors influencing the capacitance-voltage characteristics measured by the scanning capacitance microscope, J. Appl. Phys., 94(4) 2680 (2003).

63. G. H. Buh and J. J. Kopanski, Atomic force microscope laser illumination effects on a sample and its application for transient spectroscopy, Appl. Phys. Lett., 83, 2486 (2003).

64. J. Smoliner and W. Brezna, An intercepted feedback mode for light sensitive spectroscopic measurements in atomic force microscopy, Rev. Sci. Instrum., 78, 106104 (2007).

65. M. N. Chang and C. Y. Chen, M. J. Yang, С. H. Chien, Photovoltaic effect on the conductive atomic force microscopic characterization of thin dielectric films, Appl. Phys. Lett., 89, 133109 (2006).

66. V. Yu. Bondarev, V. I. Kozlovsky, and Ya. K. Skasyrsky, Laser cathode-ray tube with a monolithic laser screen, Quantum electronics, 37(9), 853 (2007).

67. V. I. Kozlovskii, B. M. Lavrushin, Y. K. Skasyrsky and M. D. Tiberi, Vertical-external-cavity surface-emitting 625-nm laser upon optical pumping of an In-GaP/AlGalnP nanostructure with a Bragg mirror, Quantum Electron., 39(8), 731 (2009).

68. J. E. Sader, J. W. M. Chon and P. Mulvaney, Calibration of rectangular atomic force microscope cantilevers, Rev. Sci. Instrum., 70(10), 3967 (1999).

69. M. S. Hunter and P. Fowle, Natural and Thermally Formed Oxide Films on Aluminum, J. Electrochem. Soc., 103(9), 482 (1956).

70. Yi Yanga, D. Z. Shen, J. Y. Zhanga, X. W. Fana, Z. H. Zhena, X. W. Zhaoa, D. X. Zhaoa and Y. N. Liub, The formation process of self-assembled CdSe quantum dots below critical thickness, J. Cryst. Growth, 220(3), 286 (2000).

71. B. P. Zhang, D. D. Manh, K. Wakatsuki, and Y. Segawa, Features of nanometer scale islands on CdSe/ZnSe surfaces, Appl. Phys. Lett., 77, 3950 (2000).

72. I. Suemune, K. Yoshida, H. Kumano, T. Tawara, A. Ueta and S. Tanaka, II-VI quantum dots grown by MOVPE, J. Cryst. Growth, 248, 301 (2003).

73. Adachi Sadao, Properties of group IV, III-V and II-VI semiconductors (John Willey & Sons, LTD, Chichester, 2005).

74. C. Besikci and M. Razeghi, Electron transport properties of Gao.51Ino.49P for device applications, IEEE Transactions on electron devices, 41(6), 1066 (1994).

75. S. F. Yoon, K. W. Mah and H. Q. Zheng, Transport and photoluminescence of silicon-doped GalnP grown by a valved phosphorus cracker cell in solid source molecular beam epitaxy, J. Appl. Phys., 85 (10) 7374 (1999).

76. A. Bulashevich, V. F. Mymrin, S. Yu. Karpov, D. M. Demidov and A. L. Ter-Martirosyan, Effect of free-carrier absorption on performance of 808 nm Al-GaAs-based high-power laser diodes, Semicond. Sci. Technol., 22, 502 (2007).

77. P. Samori, F. Cicoria, STM and AFM studies on (bio)molecular systems: unravelling the nanoworld, (Topics in current chemistry vol. 285 318 p., Springer 2008). p. 168.

78. M. Werner, О. Dorsch, Н. U. Baerwind, E. Obermeier, L. Haase, W. Seifert, A. Ringhandt, C. Johnston, S. Romani, H. Bishop, and P. R. Challcer, Charge transport in heavily B-doped poly crystalline diamond films, Appl. Phys. Lett., 64, 595 (1994).

79. Э. X. Родерик, Контакты металл полупроводник; Пер. с англ./ Под ред. Г. В. Степанова. - М.: Радио и связь, 1982. - 208 е., ил.

80. Н. К. Henisch, Semiconductor contacts: an approach to ideas and models (Clarendon Press, Oxford, 1984) 377 p.

81. J. Osterman, A. Hallen, and S. Anand, Carrier profiling of Al-doped 4H-SiC by scanning spreading resistance microscopy, Appl. Phys. Lett., 81, 3004 (2002).

82. N. D. Jäger, Ph. Ebert, K. Urban, R. Krause-Rehberg, and E. R. Weber, Scanning tunneling microscopy and spectroscopy of semi-insulating GaAs, Phys. Rev. B, 65, 195318 (2002).

83. С. Зи, Физика полупроводниковых приборов в 2-х книгах; Пер. с англ./ Под ред. Р. А. Сурис. М.: Мир, 1984. - 843 е., ил.

84. М. S. Yeganeh, J. Qi, and A. G. Yodh, M. C. Tamargo, Interface quantum well states observed by three-wave mixing in ZnSe/GaAs heterostructures, Phys. Rev. Lett, 68, 3761 (1992).

85. V. Kazukauskas, M. Grün, St. Petillon, A. Storzum, and C. Klingshirn, Experimental observation of two-dimensional electron gas in the CdS quantum wells of CdS/ZnSe heterostructures, Appl. Phys. Lett, 74, 395 (1999).6)

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.