Стабилизация бактериальной формиатдегидрогеназы гидрофобизацией белковой глобулы методом направленного мутагенеза тема диссертации и автореферата по ВАК РФ 02.00.15, кандидат химических наук Рожкова, Александра Михайловна

  • Рожкова, Александра Михайловна
  • кандидат химических науккандидат химических наук
  • 1999, Москва
  • Специальность ВАК РФ02.00.15
  • Количество страниц 126
Рожкова, Александра Михайловна. Стабилизация бактериальной формиатдегидрогеназы гидрофобизацией белковой глобулы методом направленного мутагенеза: дис. кандидат химических наук: 02.00.15 - Катализ. Москва. 1999. 126 с.

Оглавление диссертации кандидат химических наук Рожкова, Александра Михайловна

I. ВВЕДЕНИЕ.

II. ОБЗОР ЛИТЕРАТУРЫ.

ГЛАВА 1. ОСНОВНЫЕ СВОЙСТВА, СТРУКТУРА И МЕХАНИЗМ ДЕЙСТВИЯ ЫАЕ)+-ЗАВИСИМОЙ ФОРМИАТДЕГИДРОГЕНАЗЫ.

1.1 Физико-химические свойства КАЕ)+-зависимых формиатдегидрогеназ из различных источников.

1.2 Сравнение аминокислотных последовательностей КА1)+-зависимых формиатдегидрогеназ.

1.3 Третичная структура КАГ)+-зависимой формиатдегидрогеназы из Pseudomonas sp. 101.

1.4 Практическое применение КАЕ)+-зависимой формиатдегидрогеназы.

1.5 Механизмы инактивации ФДГ при различных температурах.

ГЛАВА 2. СТАБИЛИЗАЦИЯ БЕЛКОВ МЕТОДАМИ БЕЛКОВОЙ ИНЖЕНЕРИИ.

2.1 Различные подходы к увеличению стабильности белков.

2.2 Анализ подходов к повышению стабильности белков с использованием методов белковой инженерии.

2.3 Повышение гидрофобности белковой глобулы.

2.4 Создание стабильных белков введением нескольких мутаций.

III. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

ГЛАВА 3. МАТЕРИАЛЫ И МЕТОДЫ.

3.1 Материалы.

3.2 Методы исследования.

IV. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ИХ ОБСУЖДЕНИЕ.

ГЛАВА 4. ГИДРОФОБИЗАЦИЯ а-СПИРАЛЕЙ.

4.1 Направленный мутагенез остатков Serl31, Serl60, Serl68, Serl84 и Ser228.

4.2 Двойные замены Serl31/160Ala и Serl84/228Ala.

4.3 Точечные замены Tyr62Phe и Tyrl65Phe.

4.4 Точечные замены Serl47Ala, Ser 147Val, Serl47Thr.

ГЛАВА 5. ВЫТЕСНЕНИЕ МОЛЕКУЛ ВОДЫ ИЗ ОБЛАСТЕЙ ГИДРОФОБНЫХ КОНТАКТОВ.

5.1 Точечная замена Ala294Val.

5.2 Замена Alai72Val.

5.3 Двойная замена Alai72/294Val.

ГЛАВА 6. ПОЛУЧЕНИЕ И СВОЙСТВА МНОГОТОЧЕЧНЫХ МУТАНТОВ.

6.1 Кинетические свойства мутантов ФДГ: Т4, Т5, Т6 и Ala294Val.

6.2 Исследование термоинактивации нативной ФДГ и мутантов Т4, Т5, Т6, Ala294Val в диапазоне температур Т = 60-70°С.

6.3 Количественный анализ степени аддитивности мутантов.

6.4 Температурная зависимость активности нативной ФДГ и ее мутантов Т4, Т5, Т6 и Ala294Val в диапазоне температур Т=25-45°С.

6.5 Применение стабилизирующих мутаций для очистки формиатдегидрогеназы.

V. ВЫВОДЫ.

Рекомендованный список диссертаций по специальности «Катализ», 02.00.15 шифр ВАК

Введение диссертации (часть автореферата) на тему «Стабилизация бактериальной формиатдегидрогеназы гидрофобизацией белковой глобулы методом направленного мутагенеза»

КАО+-зависимая формиатдегидрогеназа (ФДГ; КФ 1.2.1.2) метилотрофных бактерий Pseudomonas sp. 101 катализирует реакцию окисления формиат-иона до углекислого газа при сопряженном восстановлении NAD+ до NADH:

NAD+ + НСОО" NADH + С02

Этот фермент широко изучается с начала 70-ых годов. Реакция, катализируемая ФДГ, представляет собой самую простую реакцию среди NAD+-зависимых дегидрогеназ и является очень удобной моделью для выяснения основных закономерностей катализа переноса гидрид-иона в активном центре ферментов этого класса. Практическая ценность ФДГ связана с тем, что этот фермент - наилучший биокатализатор для системы регенерации NADH in situ [1, 2]. NADH используется в качестве кофермента более чем 700 дегидрогеназами. С помощью дегидрогеназ можно получать большое количество физиологически активных соединений (аминокислоты, стероиды и т.д.). Вследствие дороговизны самого кофермента для практической реализации этих процессов необходимо использовать систему регенерации NADH. Необратимость катализируемой реакции, широкий pH-оптимум активности, доступность фермента в больших количествах и его высокая стабильность делают ФДГ оптимальным ферментом для создания подобных систем. Несколько лет назад в нашей лаборатории был получен мутант ФДГ, специфичный к NADP+ [2], в результате чего стала возможной разработка на основе ФДГ системы регенерации NADPH.

Клонирование в нашей лаборатории гена ФДГ из бактерий Pseudomonas sp. 101 [3] и создание векторных конструкций, обеспечивающих эффективную экспрессию этого гена в клетках бактерий E.coli [4], позволили начать систематические направленные исследования по белковой инженерии фермента. В настоящее время в нашем распоряжении также имеются модели трехмерной структуры ФДГ для свободного фермента и тройного комплекса ФДГ-1ЧА1)+-азид (разрешение 1,8 и 2,0 Ä, соотвественно), полученные с помощью рентгеноструктурного анализа [5], что позволяет проводить моделирование и анализ аминокислотных замен в белковой глобуле.

Одним из важных направлений работы по изучению ФДГ из Pseudomonas sp. 101 является исследование взаимосвязи структуры и стабильности фермента. Это направление представляет большой интерес как с практической, так и с научной точек зрения. Получение высокостабильного мутанта ФДГ, сохраняющего каталитические свойства нативного фермента, позволит использовать ФДГ в системах, сопряженных с NAD+- и МА1)Р+-зависимыми ферментами из термофилов. Кроме того, увеличение термостабильности ФДГ может сильно упростить процедуру ее очистки.

Цель данной работы заключается в повышении термостабильности ФДГ из бактерий Pseudomonas sp. 101. Отличительной особенностью данного фермента является то, что он превосходит по своей стабильности все известные на сегодняшний день КАБ+-зависимые формиатдегидрогеназы из различных источников: бактерий [6-8], дрожжей [9-14], грибов [15, 16] и высших растений [17-21]. Поэтому широко распространенный метод стабилизации белков, основанный на сравнении аминокислотных последовательностей данного фермента и его гомологов из термофилов, в нашем случае не подходит. В связи с этим мы были вынуждены опираться исключительно на общие подходы стабилизации белков, которые только начинают формироваться благодаря накопленным в последние 10-15 лет экспериментальным данным. Подтверждение или опровержение этих принципов на примере ФДГ, безусловно, сделает вклад в дальнейшее становление теоретических основ стабилизации белков.

В представленной работе для повышения термостабильности ФДГ из Pseudomonas 101 используется один из общих методов стабилизации белков, основанный на оптимизации гидрофобных взаимодействий в белковой глобуле. Этот метод включает два подхода: 1) гидрофобизация а-спиралей белка, 2) вытеснение молекул воды из полостей белковой глобулы и заполнение этих полостей боковыми группами гидрофобных аминокислотных остатков.

II. ОБЗОР ЛИТЕРАТУРЫ.

Похожие диссертационные работы по специальности «Катализ», 02.00.15 шифр ВАК

Заключение диссертации по теме «Катализ», Рожкова, Александра Михайловна

V. выводы

1. Изучена возможность применимости метода гидрофобизации a-спиралей для повышения термостабильности бактериальной формиатдегидрогеназы из Pseudomonas 5/?. 101. Для этого получены одинарные мутанты Serl31Ala, Serl31Leu, Ser 160Ala, Serl60Val, SerlóOLeu, Serl68Ala, Serl84Ala, Ser228Ala, Serl47Ala, Serl47Ala, Serl47Thr, Serl47Val и изучены их кинетические свойства и термостабильность. Показано, что мутанты SerI31Ala, Ser 160Ala, Serl84Ala, Ser228Ala приводят к повышению термостабильности в 1,21, 1,24, 1,13 и 1,09 раза соответственно без изменения кинетических параметров. Мутант Serl47VaI приводит к стабилизации ФДГ при одновременном увеличении Км на порядок.

2. Получены двойные мутанты Serl31/160Ala, Serl84/228Ala, которые увеличивают стабильность ФДГ в 1,40 и 1,28 раза соответственно, а также получен мутант Т4, содержащий все четыре вышеприведенные мутации Ser-»Ala и увеличивающий термостабильность ФДГ в 1,7 раза (65°С).

3. Изучена возможность применения метода вытеснения воды из белковой глобулы для повышения термостабильности бактериальной формиатдегидрогеназы из Pseudomonas sp. 101. На основании анализа структуры белковой глобулы были получены одинарные мутанты Ala 172Val и Ala294Val, которые приводят к стабилизации ФДГ в 1,4 и 4,0 раза соответственно. Объединение этих мутаций в двойной мутант Ala 172/294Val обеспечивает стабилизацию ФДГ в 5 раз (63 °С).

4. Объединение положительных мутаций из п.п.2-3 в пятерной мутант Т5 (T4 + AIa294Val) и шестерной мутант Т6 (T4 + AIa294Val + AlaI72Val) привело к получению мутантов ФДГ по своей стабильности превосходящих фермент дикого типа при 65 °С в 6,7 и 9 раз, соответственно. Показано, что при объединении мутаций T4 + AIa294Val наблюдается абсолютная аддитивность стабилизирующих эффектов отдельных точечных мутаций.

5. Исследована температурная зависимость констант скорости инактивации нативной ФДГ и ее мутантов Т4, Т5 и Т6. Показано, что процесс термоинактивации может быть описан в соответствии с теорией активированного комплекса, а увеличение термостабильности обусловлено в основном увеличением энтропийной составляющей свободной энергии активации процесса термоденатурации фермента.

6. Изучены кинетические параметры мутантов и показано, что даже многоточечные мутанты не влияют на кинетические свойства ферментов.

Список литературы диссертационного исследования кандидат химических наук Рожкова, Александра Михайловна, 1999 год

1. Shaked, Z. and Whitesides, G.M. (1980) Enzyme-catalyzed organic synthesis: NADH regeneration by using formate dehydrogenase. J. Am. Chem. Soc., 102, p. 7104-7105.

2. Тишков, В.И. (1993) Структура, механизм действия и белковая инженерия NAD-зависимой формиатдегидрогеназы. Дисс. док. хим. наук, М., МГУ.

3. Egorov, A.M., Galkin, A.G. and Tishkov, V.I. (1990) Formate dehydrogenase gene cloning in Progress in recombinant DNA technology and application. Potosi, Missouri, USA.

4. Tishkov, V.I., Galkin, A.G., Fedorchuk, V.V., Savitsky, P.A., Rojkova, A.M., Gieren, H. and Kula, M.-R. (1999) Pilot Scale Production and Isolation of Recombinant NAD+-and NADP+-Specific Formate Dehydrogenases. Biotech. Bioeng., Accepted for public.

5. Lamzin, V.S., Dauter, Z., Popov, V.O., Harutyunyan, E.H. and Wilson, K.S. (1994) High resolution structure ofholo and apo formate dehydrogenase. J. Mol. Biol., 236, p. 759-785.

6. Asano, Y., Sekigawa, T., Inukai, H. and Nakazawa, A. (1988) Purification and properties of formate dehydrogenase from Moraxella sp. Strain C-l. J. Bacteriol., 7, p. 3189-3193.

7. Galkin, A., Kulakova, L., Tishkov, V., Esaki, N. and Soda, K. (1995) Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10. Applied Microbiology and Biotechnology, 44(3-4), p. 479-483.

8. Iida, M., Kitamurakimura, K., Maeda, H. and Mineki, S. (1992) Purification and Characterization of a NAD+-Dependent Formate Dehydrogenase Produced by Paracoccus Sp. 12-A. Biosci. Biotech. andBiochem., 56(12), p. 1966-1970.

9. Kato, N., Kano, M., Tany, Y. and Ogata, K. (1974) Purification and choric characterization of formate dehydrogenase in methanol-utilizing yeast Kloeckera sp.2201. Agr. Biol. Chem, 38(1), p. 111-116.

10. Shutte, H., Flossdorf, J., Sahm, H. and Kula, M.-R. (1976) Purification and properties offormate dehydrogenase from Candida boidinii. Eur. J. Biochem., 62(1), p. 151-160.

11. Егорова, О.А., Авилова, T.B., Платоненкова, Jl.C. и Егоров, A.M. (1981) Выделение и свойства NAD-зависгмой формиатдегидрогеназы из метилотрофных дрожжей Candida methylica. Биохимия, 46(6), стр. 1119-1126.

12. Тишков, В.И., Галкин, А.Г. и Егоров, A.M. (1989) NAD-зависимая формиатдегидрогеназа метилотрофных дрожжей. Выделение и физико-химические свойства. Биохимия, 54(2), стр. 299-305.

13. Wou, С.Т., Patel, R.N., Laskin, A.L. and Barnabe, N. (1982) NAD-dependent formate dehydrogenase from methanol-grow Pichia pastor is NRRL Y-7556. Arch. Biochem. Biophys., 216(1), p. 296-305.

14. Izumi, Y., Kanzaki, H., Morita, S., Futazuka, H. and Yamada, H. (1989) Characterization of crystalline formate dehydrogenase from Candida methanolica. Eur. J. Biochem., 182, p. 333-341.

15. Saleeba, J.A., Cobbett, C.S. and Hynes, M.J. (1992) Characterisation of the amdA-regulated aciA gene of Aspergillus nidulans. Mol.Gen.Genet, 235, p. 349-358.

16. Chow, C.M. and RajBhandary, U.L. (1993) Developmental regulation of the gene for formate dehydrogenase in Neurospora crassa. J. Bacteriol, 175, p. 3703-3709.

17. Colas des Francs-Small, C., Ambard-Bretteville, F., Small, I.D. and Remy, R. (1993) Identification of a major soluble protein in mitochondria from nonphoto synthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiol., 102, p. 171-177.

18. Peacock, D. and Boulter, D. (1970) Kinetic studies of formate dehydrogenase. J. Biochem., 120(3), p. 763-769.

19. Ohyama, T. and Yamazaki, I. (1974) Purification and some properties of formate dehydrogenase. J. Biochem (Tokyo), 75(6), p. 77-85.

20. Allais, J. J., Louktibi, A. and Barati, J. (1983) Oxidation of methanol by the yeast Pichia pastoris. Purification and properties of the formate dehydrogenase. Agric. Biol. Chem., 47(11), p. 2547-2554.

21. Suzuki, K., Itai, R., Suzuki, K., Nakanishi, H., Nishizawa, N.K., Yoshimura, E. and Mori, S. (1998) Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by iron deficiency in barley roots. Plant Physiol., 116, p. 725-732.

22. Popov, V.O. and Lamzin, V.S. (1994) NAD+-dependentformate dehydrogenase. J. Biochem., 301, p. 625-643.

23. Karzanov, V.V., Bogatsky, Y.A., Tishkov, V.I. and Egorov, A.M. (1989) Evidence for the presence of a new NAD+-dependent formate dehydrogenase in Pseudomonas sp.101 cell grown on a molybdenum-containing medium. FEMS Microbiol. Letters, 60, p. 197-200.

24. Egorov, A.M., Avilova, T.V., Dickov, M.M., Popov, V.O., Rodionov, Y.V. and Berezin, I.V. (1979) NAD-dependent formate dehydrogenase from Methylotrophic bacterium strain 1. Purification and characterization. Eur.J.Biochem., 99(2), p. 569576.

25. Babel, W. and Mothes, G. (1980) Rolle der formiat dehydrogenase in "Serin-weg"-bacterien. Z. Allg. Microbiol., 20(3), p. 167-175.

26. Mezentsev, A., Lamzin, V., Tishkov, V., Ustinnikova, T. and Popov, V. (1997) Effect of pH on kinetic parametrs of NAD+-dependent formate dehydrogenase. Biochem.J., 321, p. 475-480.

27. Родионов, В. (1981) Метаболизм формиата у микроорганизмов. Успехи микробиологии. 16, стр. 104-138.

28. Dijken, J.P., Oostra-Demkes, G.J., Otto, R. and Harder, W. (1976) S-Formyl glutathion: the substrate for formate dehydrogenase in methanol-utilizing yeasts. Arch. Microbiol., 111(1), p. 187-192.

29. Тишков, В.И., Галкин, А.Г. и Егоров, A.M. (1991) NAD-зависимая формиатдегидрогеназа метилотрофных бактерий Pseudomonas sp.101: клонирование, экспрессия и изучение структуры гена. Докл. АН СССР, 317(3), стр. 345-348.

30. Hourton-Cabassa, С., Ambart-Bretteville, F., Moreau, F., Davy de Virville, J., Remy, R. and Colas des Francs-Small, C. (1998) Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant. Phisiol., 116, p. 627-635.

31. Tishkov, V.I., Galkin, A.G., Marchenko, G.N., Tsygankov, Y.D. and Egorov, A.M. (1993) Formate dehydrogenase from methylotrophic bacterium Pseudomonas sp.101: gene cloning and expression in Escherichia coli. Biotechnol. Biochem. Appl., 18, p. 201-207.

32. Allen, S.J. and Holbrook, J.J. (1995) Isolation, sequence and overexpression of the gene encoding NAD-dependent formate dehydrogenase from the methylotrophic yeast Candida methylica. Gene, 162, p. 99-104.

33. Hollenberg, C.P. and Janowicz, Z. DNA-molecules coding for FMDH control regions and structured gene for a protein having FMDH-activity and their uses, in European Patent Application. 1989.

34. Kutsenko, K.S., Korolev, S.V., Lamzin, V.S. and Popov, V.O. (1994) Internal symmetry of the tertiary structure of NAD-dependent formate dehydrogenase from Pseudomonas sp 101. Molecular Biology, 28(3 Part 2), p. 415-419.

35. Клячко, H.JI., Вакула, С.В., Гладышев, В.Н., Тишков, В.И. и Левашов, А.В. (1997)- Формиатдегидрогеназа в системе обращенных мицелл: регуляция каталитической активности и олигомерного состава фермента. Биохимия, 62(12), р. 1691-1695.

36. Dalziel, L. (1975) Kinetics and mechanism of nicotinamide nucleotide-linked dehydrogenases. P. Boer edr. ed. Enzymes. N.Y. Pergamon Press. Vol. 11, P. 1-60.

37. Ruppert, R., Herrmann, S. and Stechman, E. (1988) J. Chem. Soc. Chem. Commun., p. 1150-1151.

38. Kometani, Т., Morita, Y., Furui, H., Yoshii, H. and Matsuno, R. (1994) NAD(P)H Regeneration Using Ethanol as an Energy Source in Baker's Yeast-Mediated Bioreduction. Journal of Ferment. andBioeng., 77(1), p. 13-16.

39. Wong, C.-H. and Whitesides, G. (1994) Enzymes in organic chemistry, Oxford: Elsevier Science Ltd.

40. Seelbach, K., Riebel, В., Hummel, W, Kula, M.-R., Tishkov, V., Egorov, A., Wandrey, C. and Kragl, U. (1996) A novel, effecient regenerating method ofNADPH using a new formate dehydrogenase. Tetrahedron Letters, 37(8), p. 1377-1380.

41. Wong, C.-H. and Whitesides, G. (1981) J. Am. Chem. Soc, 103, p. 4890-4899.

42. Wong, C.-H. and Whitesides, G. (1982) J. Org. Chem, 47, p. 2816-2818.

43. Carrea, G, Bovara, R, Longhi, R. and Barani, R. (1984) Enzyme Microb.Technol, 6, p. 307-311.

44. Ohno, T, Suzuki, M. and Horiuchi, T. (1994) Specific amplification of NADH using NADH kinase in a reaction mixture containing excess NAD+. Biosci. Biotechnol. Biochem, 58, p. 976-977.

45. Wichmann, R., Wandrey, С., Buchmann, A.F. and Kula, M.-R. (1981) Continuos enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(P)H regeneration. Biotech. Bioeng., 23, p. 2789-2802.

46. Nobuyoshi, N., Tanizawa, K., Tanaka, H. and Soda, K. (1988) Enantioselective synthesis of various D-amino aside by a multi-enzyme system. J. Biotechnol., 8, p. 243248.

47. Cordes, A. and Kula, M.-R. (1994) Large-scale purification of formate dehydrogenase. Methods In Enzymology, 228, p. 600-608.

48. Corbier, C., Clermont, S., Billard, P., Skarzynski, Т., Branlant, C., Wonacott, A. and Branlant, G. (1990) Probing the Coenzyme Specificity of Glyceraldehyde-3-Phosphate Dehydrogenases by Site-Directed Mutagenesis. Biochemistry, 29(30), p. 7101-7106.

49. Scrutton, N.S., Berry, A. and Perham, R.N. (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature, 343(4), p. 38-43.

50. Bocanegra, J.A., Scrutton, N.S. and Perham, R.N. (1993) Creation of NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. J. Biochemistry, 32(11), p. 2737-2740.

51. Nishiyama, M, Birctofit, J.J. and Berry, T. (1993) Alteration of coenzyme specifity of malate dehydrogenase from Thermus flavus by site-directed mutagenesis. J. Biolog. Chem, 268(7), p. 4656-4660.

52. Simon, L.M, Kotorman, M. and Szajani, B. (1994) Coenzyme Production Using Immobilized Enzymes .2. Factors Affecting the Continuous Production of NADP(+). Enzyme and Microbial Technology, 16(3), p. 236-239.

53. Диков, M.M, Карулин, А, Осипов, А.П. и Егоров, A.M. (1979) Изучение методом аналитического изотахофореза изменений структуры формиатдегидрогеназы при ее инактивации. Биоорган, химия, 5(8), стр. 12171221.

54. Березин, И.В, Клячко, Н.Л, Левашов, А.В, Мартинек, К, Можаев, В.В. and Хмельницкий, Л. (1987) Иммобилизованные ферменты. Биотехнология, Москва, Высшая Школа, Vol. 7.

55. Дебабов, В.Г. and Лившиц, В.А. (1988) Современные методы создания промышленных штаммов микроорганизмов. Биотехнология, Москва, Высшая школа, Vol. 2.

56. Arnold, F. (1996) Directed evolution: creating biocatalysts for the future. Chem. Engineer. Sci, 51(23), p. 5091-5102.

57. Landridge, J. (1968) J. Bacteriol, 96, p. 1711-1717.

58. Lee, B. and Vasmatzis, G. (1997) Stabilization of protein structures. Curr. Opin. Biotechnol, 8, p. 423-428.

59. Daniel, R.M. (1996) The upper limits of enzyme thermal stability. Enzyme and Microbial Technology, 19(1), p. 74-79.

60. Akanuma, S, Yamagishi, A, Tanaka, N. and Oshima, T. (1998) Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution. Protein Science, 7(3), p. 698-705.

61. Щелкунов, С.Н. (1994) Генетическая инженерия. Новосибирск: Новосибирский Университет.

62. Van Den Burg, B, Dijkstra, B, Vriend, G, Van Der Vinne, B, Venema, G. and Eijsink, V. (1994) Protein stabilization by hydrophobic interactions at the surface. Eur. J. Biochem, 220, p. 981-985.

63. Vogt, G, Woell, S. and Argos, P. (1997) Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269(4), p. 631-643.

64. Menendez-Arias (1989) Engineering protein thermal stability. Sequence statistic point to residue substitutions in a-helices. J.Mol.Biol, 206, p. 397-406.

65. Gekko, K, Kunori, Y, Takeuchi, H, Ichihara, S. and Kodama, M. (1994) Point mutations at Glycine-121 of Escherichia coli dihydrofolate reductase: important roles of a flexible loop in the stability and function. J. Biochem, 116, p. 34-41.

66. Huang, W, Petrosino, J, Hirsch, M, Shenkin, P. and Palkill, T. (1996) Amino acid sequence determinants ofb-lactamase. Structure and Activity.

67. Cannio, R., Rossi, M. and Bartolucci, S. (1994) A few amino acid substitutions are responsible for the higher thermostability of a novel NAD(+) -dependent bacillar alcohol dehydrogenase. Eur. J of Biochem., 222(2), p. 345-352.

68. Feller, G., Zekhnini, Z., Lamottebrasseur, J. and Gerday, C. (1997) Enzymes from cold-adapted microorganisms The class C beta-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5. Eur. J. of Biochem., 244(1), p. 186-191.

69. Matthews, B.W. (1993) Structural and Genetic Analysis of Protein Stability. Annual Review of Biochemistry, 62, p. 139-160.

70. Ishikawa, K., Kimura, S., Kanaya, S., Morikawa, K. and Nakamura, H. (1993) Structural Study of Mutants of Escherichia-Coli Ribonuclease HI with Enhanced Thermostability. Protein Engineering, 6(1), p. 85-91.

71. Brunet, A., Huang, E., Huffine, M., Loeb, J., Weltman, R. and Hecht, M. (1993) The role of turns in the structure of an a-helical protein. Nature, 364, p. 355-358.

72. Gokhale, R, Agarwala, S, Francies, V, Santi, D. and Balaram, P. (1994) Thermal stabilization of thymidylate Syntase by Engineering two disulfide bridges across the dimer interface. J. Mol. Biol, 235, p. 80-94.

73. Hendsch, Z.S, Jonsson, T, Sauer, R.T. and Tidor, B. (1996) Protein stabilization by removal of unsatisfied polar groups: Computational approaches and experimental tests. Biochemistry, 35(24), p. 7621-7625.

74. Szilagyi, A. and Zavodszky, P. (1995) Structural basis for the extreme thermostability of D-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima: Analysis based on homology modelling. Protein Engineering, 8, p. 779-789.

75. Tanner, J.J, Hecht, R.M. and Krause, K.L. (1996) Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 2.5 angstrom resolution. Biochemistry, 35, p. 2597-2609.

76. Akanuma, S, Qu, C.X, Yamagishi, A, Tanaka, N. and Oshima, T. (1997) Effect of polar side chains at position 172 on thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus. FEBS Letters, 410(2-3), p. 141-144.

77. White, P, Squirrell, D, Arnaud, P, Lowe, C. and Murray, J. (1996) Improved thermostability of the North American firely luciferase: saturation mutagenesis at position 354. J. Biochemistry, 319, p. 343-350.

78. Goward, C.R., Miller, J., Nicholls, D.J., Irons, L.I., Scawen, M.D., Obrien, R. and Chowdhry, B.Z. (1994) A single amino acid mutation enhances the thermal stability of Escherichia coli malate dehydrogenase. Eur. J. of Biochem., 224(1), p. 249-255.

79. Blaber, M., Zhang, X.J. and Matthews, B.W. (1993) Structural Basis of Amino Acid alpha-Helix Propensity. Science, 260, p. 1637-1640.

80. Shih, P. and Kirsch, J. (1995) Designe and structural analysis of engineered thermostable chicken lysozyme. Protein Science, 4, p. 2063-2072.

81. Rose, G.D., Gezelowitz, A.R., Lesser, G.J., Lee, R.H. and Zehfus, M.H. (1985) Science, 229, p. 834-838.

82. Arnone, M.I., Birolo, L., Pascarella, S., Cubellis, M.V., Bossa, F., Sannia, G. and Marino, G. (1997) Stability of aspartate aminotransferase from Sulfolobus solfataricus. Protein Engineering, 10(3), p. 237-248.

83. Petukhov, M., Kil, Y., Kuramitsu, S. and Lanzov, V. (1997) Insights into thermal resistance of proteins from the intrinsic stability of their alpha-helices. Proteins -Structure Function and Genetics, 29(3), p. 309-320.

84. Declerck, N., Joyet, P., Trosset, J.Y., Gamier, J. and Gaillardin, C. (1995) Hyperthermostable mutants of Bacillus licheniformis alpha-amylase: Multiple amino acid replacements and molecular modelling. Protein Engineering, 8(10), p. 1029-1037.

85. Kajiyama, N. and Nakano, E. (1993) Thermostabilization of Firefly Luciferase by a Single Amino Acid Substitution at Position-217. Biochemistry, 32(50), p. 1379513799.

86. Jackson, S.E., Moracci, M., elMasry, N., Johnson, C.M. and Fersht, A.R. (1993) Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry, 32, p. 11263-11269.

87. Березин, И.В. and Мартинек, К. (1977) Основы физической химии ферментативного катализа. Москва, Из-во "Высшая Школа".

88. Aoshima, М. and Oshima, Т. (1997) Stabilization of Escherichia coli isopropylmalate dehydrogenase single amino acid substitution. Protein Engineering, 10, p. 249-254.

89. Declerck, N., Machius, M., Chambert, R., Wiegand, G., Huber, R. and Gaillardin, C. (1997) Hyperthermostable mutants of Bacillus licheniformis alpha-amylase: Thermodynamic studies and structural interpretation. Protein Engineering, 10(5), p. 541-549.

90. Ohage, E.C, Graml, W., Walter, M.M, Steinbacher, S. and Steipe, B. (1997) betaTurn propensities as paradigms for the analysis of structural motifs to engineer protein stability. Protein Science, 6(1), p. 233-241.

91. Anderson, D.E, Hurley, J.H, Nicholson, H, Baase, W.A. and Matthews, B.W. (1993) Hydrophobic Core Repacking and Aromatic-Aromatic Interaction in the Thermostable Mutant of T4 Lysozyme Ser 117->Phe. Protein Science, 2(8), p. 12851290.

92. Chen, Y.W, Fersht, A.R. and Henrick, K. (1993) Contribution of Buried Hydrogen Bonds to Protein Stability The Crystal Structures of 2 Barnase Mutants. Journal of Molecular Biology, 234(4), p. 1158-1170.

93. Шабарова, З.А, Богданов, А.А. и Золотухин, A.C. (1994)Химические основы генетической инженерии. Учеб. пособие. Москва: Изд-во МГУ.

94. Kunkel, Т.А. (1985) Rapid and efficient site-directed mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA, 82, p. 488-492.

95. Manniatis, T, Fritch, E.F. and Sambrook, J. (1982) Molecular cloning: a laboratory manual. N.Y.: Cold Spring Harbor.

96. Sanger, F, Nicklen, S. and Coulson, A.R. (1977) DNA seguencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74(12), p. 5463-5467.

97. Тишков, В.И, Березин, И.В, Егоров, A.M., Вайткявичус, Р.К, Кадушвичус, В, Глемжа, А.А, Галкин, А.Г. and Петкявичене, Р.И. Выделение NAD+-зависимой формиатдегидрогеназы, Академия наук СССР. 1988, СССР.

98. Степанов, В.М. (1996) Молекулярная биология. Структура и функции белков. Москва, Из-во "Высшая Школа".

99. Фершт, Э. (1980) Структура и механизм действия ферментов. Москва, Из-во "Мир".

100. Чанг, Р. (1980) Физическая химия с приложениями к биологическим системам. Москва, Из-во "Мир".

101. Ruiz, J.L, Ferrer, J, Camacho, M. and Bonete, J.M. (1998) NAD-specific glutamate dehydrogenase from Thermus thermophilus HB8: purification and enzymatic properties. FEMS Microbiol. Letters, 159, p. 15-20.

102. Корниш-Боуден, E. (1976) Основы ферментативной кинетики. Москва, Из-во "Мир", гл. 6, стр. 160.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.