Влияние дефицита и избытка железа на активность антиоксидантных ферментов и образование ферритина у растений хрустальной травки тема диссертации и автореферата по ВАК РФ 03.01.05, кандидат биологических наук Ешинимаева, Бэлигма Цыденжаповна

  • Ешинимаева, Бэлигма Цыденжаповна
  • кандидат биологических науккандидат биологических наук
  • 2010, Москва
  • Специальность ВАК РФ03.01.05
  • Количество страниц 122
Ешинимаева, Бэлигма Цыденжаповна. Влияние дефицита и избытка железа на активность антиоксидантных ферментов и образование ферритина у растений хрустальной травки: дис. кандидат биологических наук: 03.01.05 - Физиология и биохимия растений. Москва. 2010. 122 с.

Оглавление диссертации кандидат биологических наук Ешинимаева, Бэлигма Цыденжаповна

ВВЕДЕНИЕ.

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР.

1.1. Роль железа в жизнедеятельности растений.

1.2 Содержание и формы Fe в почвах и механизмы поступления в растения

1.3. Возможные последствия излишнего накопления Fe в растениях и механизмы поддержания его гомеостаза.

1.4. Ферритин: ультраструктурные особенности и функции в живых организмах.

1.4.1. Ферритины прокариот.

1.4.2. Ферритины животных.

1.4.3. Ферритины растений.

1.4.3.1. Особенности строения ферритина у растений по данным молекулярных исследований.

1.4.3.2. Биосинтез ферритина у растений.

1.4.3.3. Компартментация ферритина в клетках и тканях растений и регуляция образования ферритина по данным электронной микроскопии

1.4.3.4. Молекулярные механизмы регуляции биосинтеза ферритина.

1.4.3.5. Влияние избытка и дефицита железа на биосинтез ферритина.

1.4.3.6. Исследование биосинтеза и деградации ферритина в связи с развитием окислительного стресса.

ГЛАВА 2. ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЙ.

2.1. Объект и условия выращивания растений в водной культуре.

2.2. Методы биохимических анализов.

2.2.1. Определение содержания МДА.

2.2.2. Определение содержания перекиси водорода.

2.2.3. Определение активности СОД.

2.2.4. Определение активности пероксидазы.

2.2.5. Определение активности каталазы.

2.2.6. Определение содержания пролина.

2.2.7. Определение содержания белка в ферментных препаратах.

2.2.8. Приготовление проб для определения содержания общего железа.

2.2.9. Содержание хлорофилла (а + Ь).

2.2.10. Фиксация проб для электронно-микроскопических исследований

2.2.11. Проведение молекулярных анализов.

2.2.11.1. Выделение тотальной РНК фенол-хлороформным методом.

2.2.11.2. Очистка тотальной РНК от примесей ДНК.

2.2.11.3. Обратная транскрипция.

2.2.11.4. Подбор праймеров для проведения обратной полимеразной цепной реакции (ПЦР).

2.2.11.5. Условия проведения ПЦР-анализа.

2.2.11.6. Подготовка проб для секвенирования нуклеотидных последовательностей генов ферритина.

2.2.12. Проведение Вестерн-блоттинга для иммунодетекции ферритина.

2.2.12.1. Экстракция белков из тканей растения.

2.2.12.2. Проведение электрофореза в полиакриламидном геле.

2.2.13. Математическая обработка данных.

ГЛАВА 3. РАЗВИТИЕ ОКИСЛИТЕЛЬНОГО СТРЕССА И ОБРАЗОВАНИЕ ОТЛОЖЕНИЙ ФЕРРИТИНА В ЛИСТЬЯХ ХРУСТАЛЬНОЙ ТРАВКИ ПРИ ДЕЙСТВИИ ЗАСОЛЕНИЯ И РАЗЛИЧНЫХ ДОЗ ЖЕЛЕЗА.

3.1. Ответная реакция молодых растений на изменение содержания

Fe в питательной среде.

3.2. Ответная реакция взрослых растений на изменение содержания Fe3+ в среде выращивания в контрольных условиях и при засолении NaCl.

3.3. Дозовая зависимость изменения в листьях содержания железа и состояния окислительного стресса в пресных условиях и в присутствии NaCl.

3.4. Влияние дефицита и "избытка" Fe на состояние мембран, запасные включения и образование ферритина в пластидах в присутствии и в отсутствии в среде NaCl.

ГЛАВА 4. ВЛИЯНИЕ ОКИСЛИТЕЛЬНОГО СТРЕССА НА ЭКСПРЕССИЮ

ГЕНОВ И СОДЕРЖАНИЕ БЕЛКА ФЕРРИТИНА.

4.1 Идентификация генов ферритина, экспрессирующихся в листьях Mesembrianthemum crystallinum L.

4.2. Состояние экспрессии генов в листьях при дефиците железа и его избытке.

4.3. Влияние про-оксиданта параквата на экспрессию генов ферритина.

4.4. Влияние обработки листьев спермидином на экспрессию генов.

Рекомендованный список диссертаций по специальности «Физиология и биохимия растений», 03.01.05 шифр ВАК

Введение диссертации (часть автореферата) на тему «Влияние дефицита и избытка железа на активность антиоксидантных ферментов и образование ферритина у растений хрустальной травки»

Нарушение физиологических процессов у растений в условиях действия абиотических стрессов в значительной степени связано с повышенной генерацией активных форм кислорода (АФК). Неблагоприятные последствия развития окислительного стресса в данной работе рассматриваются в связи с нарушением в клетках гомеостаза Fe. В этих условиях в клетках может накапливаться в свободной форме каталитически активное двухвалентное Fe, которое в присутствии перекиси водорода может образовать самую токсичную форму АФК гидроксил радикал (ОН0). Нарушение гомеостаза Fe можно ожидать у растений, накапливающих в клетках избыточное количество этого металла или при его дефиците, а также в условиях активации окислительных реакций при действии абиотических факторов.

В настоящее время функциональная связь между нарушением гомеостаза Fe и окислительным стрессом рассматривается как новое направление при изучении биосинтеза и защитной роли Fe-содержащего белка ферритина (Briat et al., 2009). Настоящая диссертация посвящена исследованию состояния окислительного стресса при избытке и дефиците железа на фоне засоления и в контрольных условиях, а также влиянию этих факторов на ультраструктурные особенности ферритина и его содержание.

Актуальность проблемы. Fe — эссенциальный элемент для растений. Fe необходимо растениям для функционирования фотосинтеза и дыхания, в которых в качестве переносчиков электронов участвуют железосодержащие и железосерные белки такие как ферредоксин, цитохромы и другие. Как кофактор Fe входит в состав многих антиоксидантных ферментов (Fe-супероксиддисмутаза, пероксидазы, каталаза) и участвует в образовании предшественника хлорофилла.

Однако, ярко выраженная способность этого металла в восстановленной форме (Fe2+) вступать в реакции с кислородом с образованием гидроксил радикала (ОН°) — самого токсичного из всех форм АФК, создает необходимость у всех аэробных организмов, в том числе и у растений, поддерживать в клетках гомеостаз железа, не допускающий накопления его "каталитической" формы. Такое нарушение гомеостаза железа у растений может возникать в стрессорных условиях, индуцирующих окислительный стресс (Hernandes et al., 2001).

Одним из уникальных механизмов, препятствующих проявлению токсичности Fe2+ при его избыточном образовании в клетках, может быть функционирование у всех живых организмов, за исключением дрожжей, желесо-держащего белка негеминовой природы ферритина, запасающего Fe в

Л I окисленной нетоксичной форме (Fe ). К настоящему времени гены, кодирующие белок ферритин, клонированы и охарактеризованы у ряда видов растений: кукурузы, гороха, сои, люпина, риса и арабидопсиса. У растений, отложения ферритины локализованы в пластидах (Парамонова и др., 2004, 2007), реже в митохондриях (Zancani et al., 2004) и отсутствует в цитоплазме. Структура ферритина в пластидах растений отличается от ферритинов животных и бактерий присутствием в минеральном ядре не только железа, но и фосфора в соотношении P:Fe (1:3) (Waldo et al., 1995). Главное отличие ферритина растений от животных состоит в том, что синтез ферритина у животных регулируется на трансляционном уровне, а у растений регуляция происходит на транскрипционном уровне в ответ на избыточное поступление железа в клетку (Arnaud et al., 2006; Briat et al., 2009). В поддержании гомеостаза Fe у растений участвует множество генов (43 гена у риса), включая гены

11 транспорта ZIP (транспортер Fe и Zn) и гены FRO, кодирующие Fe - хелат редуктазы оксидазы (Briat, 2008; Lemanceau et al., 2009). Исследование роли ферритина в детоксикации избытка Fe2+, катализирующего при накоплении в клетках супероксид-радикала и пероксида, образование самого токсичного АФК (гидроксил-радикала, ОН0), приобретает особую важность для поддержания гомеостаза железа у растений, в том числе подвергающихся стрессор-ному воздействию.

В природных условиях доступность Fe для растений в значительной степени зависит от рН почвенного раствора. Растения, произрастающие на известковых и засоленных почвах со значением рН>7, страдают от дефицита Fe, который визуально проявляется в виде хлороза у молодых листьев (Маг-schner and Romfeld, 1994). Избыток Fe чаще всего проявляется на почвах или водоемах, загрязненных различными производными железа (Domingues et al., 2009). В этом случае, растения страдают от избытка Fe и его токсичности, что проявляется в образовании некрозов на листьях (Peng et al., 1993; Kampfenkel et al., 1995; Liphadzi and Kirkham, 2006)

Однако долгое время образование отложений ферритина у растений в пластидах объясняли его ролью как запасного хранилища железа (Hyde et al., 1963). В последнее время изучение функций ферритина как у растений, так и животных, а также регуляции его синтеза указывает на существование возможной связи между этим белком и защитой от активных форм кислорода (АФК) (Briat et al., 2009; Ravet et al., 2009), что в равной степени затрагивает как устойчивость растений, произрастающих в стрессорных условиях, так и проявление болезни дефицита Fe у человека (Андреев, 2004; Theil et al., 2004). Такой подход рассматривается как новый взгляд на защитную роль ферритина при окислительном стрессе и значение этого белка в адаптивном ответе растений на абиотические стрессы.

Совокупность имеющихся в литературе данных позволяет предполагать, что в условиях действия абиотических факторов ферритин у растений может выполнять двоякую роль. Его образование в пластидах и других орга-неллах может служить запасным источником доступного железа для обеспечения жизнедеятельности растений в изменяющихся условиях питания растений железом, а с другой стороны, ферритин необходим для поддержания гомеостаза железа и защиты клеток от образования самого токсичного АФК (ОН° - гидроксил-радикала) при развитии окислительного стресса в условиях действия абиотических факторов.

Цель исследования. Цель настоящей работы - исследовать зависимость накопления ферритина в листьях факультативного галофита Mesembryanthe-тит crystallinum L. от содержания железа в питательном растворе и интенсивности окислительного стресса.

Задачи исследования:

1. Определить дозовую зависимость поглощения железа растениями М. crystallinum L. в контрольных условиях культивирования и в присутствии 300 мМ NaCl.

2. Исследовать основные биохимические параметры: активность антиокси-дантных ферментов (супероксидцисмутаза, пероксидаза), содержание пролина, хлорофилла и интенсивность перекисного окисления липидов (ПОЛ), характеризующие взаимосвязь между состоянием окислительного стресса и гомеостазом железа у галофита М. crystallinum, в зависимости от содержания железа, засоления и их совместного действия.

3. Изучить зависимость отложения ферритина и его ультраструктурные особенности в пластидах мезофилла листьев от содержания железа в контрольных условиях и при засолении с помощью электронной микроскопии.

4. Идентифицировать мРНК генов ферритина у хрустальной травки с помощью метода ОТ-ПЦР и секвенировать продукты ПЦР.

5. Оценить уровень экспрессии генов ферритина в листьях методом ОТ-ПЦР и Вестерн-блоттингом в зависимости от содержания железа и развития окислительного стресса.

6. Исследовать влияние про-оксиданта метилвиологена (параквата - PQ) — индуктора окислительного стресса в пластидах, и антиоксиданта полиамина спермидина (Спд) на экспрессию генов ферритина и содержание белка в листьях.

Научная новизна. Впервые проведено комплексное изучение образования ферритина у факультативного галофита Mesembryanthemum crystallinum L. (хрустальная травка) в зависимости от уровня железа в питательной среде и интенсивности окислительного стресса.

Показано, что внесение NaCl (300 мМ) в питательную среду резко сни

О I жало поступление железа (Fe -ЭДТА) в растения и предотвращало появление симптомов токсичности при его избытке (750-1000 мкМ). Впервые установлено, что адаптация растений М. crystallinum к засолению приводила к повышению устойчивости к избытку железа, что свидетельствует о проявлении кросс-адаптации к двум стресс-факторам. Впервые с помощью электронно-микроскопического анализа продемонстрирована прямая зависимость уровня отложений ферритина в мезофилле листьев от содержания в них железа и интенсивности окислительного стресса. В листьях М. crystallinum впервые установлена экспрессия не менее двух генов ферритина (McFerj, один из которых является ортологом гена AtFerl арабидопсиса и проявляет сходство по уровню экспрессии на окислительный стресс и избыток Fe.

Показано, что индукция паракватом (PQ) образования супероксид-радикала и перекиси водорода в листьях хрустальной травки повышала уровень мРНК генов ферритина и содержание белка. Напротив, спермидин (Спд), обладающий антиоксидантным свойством, тормозил экспрессию генов ферритина. Впервые экспериментально показано, что окислительный стресс индуцировал образование отложений ферритина в листьях хрустальной травки. Это указывает на антиокидантную роль ферритина, связывающего восстановленную форму железа (Fe24) — катализатора образования ОН0.

Теоретическая и практическая значимость. Детекция ферритина в листьях галофита М. crystallinum и способы регуляции его содержания могут использоваться при создании трансгенных растений со сверхэкспрессией ферритина. Теоретические обобщения и совокупность экспериментальных данных работы могут использоваться в курсах лекций для студентов биологических факультетов ВУЗов страны.

Апробация работы. Результаты работы докладывались на годичном собрании общества физиологов растений России, Международной конференции «Физико-химические основы структурно-функциональной организации растений», Екатеринбург (2008 г); годичном собрании общества физиологов растений России, Международной конференции «Физико-химические механизмы адаптации растений к антропогенному загрязнению в условиях крайнего Севера», Апатиты, Мурманская область (2009 г); Всероссийской конференции «Устойчивость организмов к неблагоприятным факторам внешней среды», Иркутск (2009 г).

Публикации. По материалам диссертации опубликовано и направлено в печать 6 печатных работ, из которых 1 — статья в журнале «Физиология растений».

Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, описания объекта и методов исследования, изложения полученных результатов и их обсуждения, заключения, выводов и списка литературы. Материалы диссертации изложены на 122 страницах машинописного текста и содержат 2 таблицы и 30 рисунков. Список цитируемой литературы включает 191 наименований, в т.ч. 172 иностранных.

Похожие диссертационные работы по специальности «Физиология и биохимия растений», 03.01.05 шифр ВАК

Заключение диссертации по теме «Физиология и биохимия растений», Ешинимаева, Бэлигма Цыденжаповна

выводы

1. Различное количество доступной формы Fe в питательной среде положительно коррелировало с содержанием железа в листьях и корнях молодых растений Mesembryanthemum crystallinum L. и изменяло в них интенсивность окислительного стресса, о чем судили по активности СОД, гваяколовой ПО, содержанию МДА, Н202 , хлорофилла и пролина.

2. Предварительное засоление NaCl (300 мМ) в течение двух недель повышало устойчивость взрослых растений к действию высоких концентраций железа (200- 1000 мкМ Fe -ЭДТА) путем ингибирования поступления Fe в листья, что свидетельствует о проявлении кросс-адаптации к двум стресс-факторам.

3. Установлено, что в листьях М. crystallinum экспрессируется не менее двух генов ферритина, один из них, вероятно, является ортологом гена AtFerl арабидопсиса.

4. Установлено, что уровень мРНК генов ферритина в листьях снижается при дефиците Fe и резко увеличивается при восстановлении питания растений железом. Увеличение содержания белка прямо пропорционально увеличению уровня мРНК, но сдвинуто по времени на несколько часов.

5. Обработка листьев паракватом (100 мкМ) повышала экспрессию генов ферритина и содержание белка, а обработка спермидином (1 мМ) снижала уровень мРНК как на фоне дефицита Fe, так и при возобновлении питания растений Fe.

6. Полученные результаты по действию параквата, как индуктора окислительного стресса, на экспрессию генов ферритина и спермидина, как антиок-сиданта, свидетельствуют в пользу проявления ферритином свойств "ловушки" токсичной формы железа.

Автор выражает благодарность к.б.н. Наталье Васильевне Парамоновой за совместную работу по электронной микроскопии; профессору J-F. Briat (Монпелье, Франция) за любезно предоставленные антитела.

Особую благодарность автор выражает своему научному руководителю, доктору биологических наук, профессору Нине Ивановне Шевяковой за научное руководство и помощь, оказанную при работе над диссертацией; искреннюю благодарность и глубокую признательность зав. лаборатории физиологических и молекулярных механизмов адаптации, член-корреспонденту РАН Владимиру Васильевичу Кузнецову за помощь в решении экспериментальных и других важных вопросов.

ЗАКЛЮЧЕНИЕ

Проведенные исследования показали, что у растений хрустальной травки различный статус доступной формы железа в питательной среде (комплекс Ре3+-ЭДТА) резко изменял интенсивность ПОЛ и активность антиоксидантных ферментов. В листьях онтогенетически взрослых растений, находящихся в фазе перехода на САМ-тип фотосинтеза, судя по активностям СОД, свободной формы гваяколовой ПО и содержанию пролина как "ловушки" АФК, окислительный стресс был наиболее интенсивным при совместном действии засоления и дефицита Fe. Об активации окислительного стресса свидетельствует также нарушение биосинтеза хлорофилла.

Гораздо менее выраженные изменения окислительного метаболизма в листьях хрустальной травки наблюдались при совместном действии засоления и Fe (18 мкМ Fe -ЭДТА). Однако в присутствии в среде NaCl в этих условиях снижение содержания хлорофилла в листьях было более выражено, чем при дефиците Fe, что можно объяснить торможением поступления железа в растения в условиях засоления и более активной тратой глутамата в биосинтезе пролина. Активность СОД - индикатора образования супероксид аниона, также понизилась в листьях в присутствии Fe по сравнению с условиями дефицита Fe.

Изменение содержания в листьях Н2О2 — продукта дисмутации супероксида, катализируемого СОД, и возможного регуляторного сигнала для экспрессии одного из генов ферритина, в значительной степени зависит от его транспорта на уровне организма.

Найденные с помощью электронной микроскопии скопления ферритина, контактирующие с крупными пластоглобулами в пластидах в варианте с 18 мкмоль Ре3+-ЭДТА в питательной среде свидетельствуют о стимулирующем действии этого металла на образование ферритина в условиях активного проявления окислительного стресса. Наряду с этим скопление крупных пластог-лобул, служащих резервом липидов и белков и контактирующих с феррити-новыми глобулами, может указывать на необходимость повышенного уровня

Fe в листьях для поддержания синтеза липидов в пластидах. О том, что экзогенная Н2О2 способна повышать экспрессию гена ферритина на уровне мРНК у растений, имеются данные литературы (Petit et al., 2001а). Следует подчеркнуть, что уровень накопления Н202у хрустальной травки (0.13 мкмоль/г сырой массы) в варианте 6 мкмоль Fe на фоне засоления отвечает гипотезе о ее сигнальной роли. Как недавно показано в нашей лаборатории (Kuznetsov et al., 2009) в корнях взрослых растений хрустальной травки в экстремальных условиях, вызвавших окислительный взрыв при введении экзогенного кадаверина, ингибирующее действие Н202 достигалось при содержании 40-80 мкмоль/г сырой массы.

Одной из NaCl-индуцируемых ответных реакций хрустальной травки является аккумуляция пролина, что долгое время связывалось с действием пролина в основном как осморегулятора. Однако высокое содержание пролина в корнях этого растения, обнаруженное нами при дефиците железа в отсутствие засоления, нельзя объяснить осморегуляторным действием этого защитного метаболита. Высокое содержание пролина в листьях и корнях при развитии окислительного стресса в варианте "контроль + NaCl", а также в листьях в варианте "дефицит Fe+NaCl" могла свидетельствовать в пользу выполнения им антиоксидантной функции, которая проявляется в стрессовых условиях у галофитов (Шевякова и др., 2009).

Слабо выраженные повреждения в пластидах, вызванные АФК, были также обнаружены у растений, произраставших в условиях дефицита Fe и в отсутствии засоления. При этом в обоих отмеченных выше случаях в пластидах не были обнаружены какие-либо скопления отложений ферритина. На этом основании можно высказать предположение, что при дефиците Fe, сопровождаемом окислительным стрессом, ферритин, образовавшийся при о I культивировании растений в течение 16 дней в присутствии Fe (6 мкМ Fe -ЭДТА), мог деградировать с освобождением каталитически активной "свободной" формы Fe . Тем более ранее (Парамонова и др., 2007) была обнаружена частичная деградация ферритина даже при нормальном содержании

Fe в среде и превращение его в фитосидерин в хлоропластах клеток обкладки, в сопровождающих клетках флоэмы и других паренхимных клетках тонких окончаний листьев хрустальной травки в условиях засоления, индуцирующего окислительный стресс. В этих исследованиях ферритин и фитосидерин обнаруживались также в ситовидных трубках, что могло свидетельствовать о способности Fe транспортироваться по растению в составе белкового комплекса. Из литературы по механизмам деградации ферритина в патологических случаях у человека следует, что ферритин в условиях повышенного образования супероксид аниона освобождал до 70% "свободного" Fe и становился источником "каталитического" Fe (Theil and Hase, 1993). В этом случае Fe усиливал супероксид-зависимую пероксидацию липидов, фосфо-липидов и окисление белков, что характерно при склерозе сосудов у человека (Connoly and Guerinot, 2002). То, что дефицит Fe ведет к повышению окислительного стресса в клетках, в результате снижения активности Fe-содержащих форм ПО и значительному увеличению в них содержания Н2О2, показано на примере растений подсолнечника (Ranieri et al., 2001).

В этой связи образование в пластидах ферритина при повышенном поступлении в растения железа может указывать на проявление им функции "скавенджера" образующегося в пластидах излишка железа. Роль ферритина в запасании Fe и поддержании его гомеостаза в растениях, не допускающих аккумуляции в клетках его токсической формы, рассматривается во многих работах (Gross et al.,2003).

При исследовании дозовой зависимости действия железа в диапазоне 6о I

1000 мкМ Fe -ЭДТА в составе хелатного комплекса было показано, что резкое неконтролируемое повышение эндогенного уровня железа происходило в листьях в контрольных условиях, начиная со 150 мкМ Fe, что повлекло нарушение проницаемости мембран из-за повышения интенсивности ПОЛ и появление признаков токсикоза железа. В то же время в условиях засоления (300 мМ NaCl) поступление Fe в растения ингибировалось во всем диапазоне его концентраций в питательной среде, что создавало более оптимальные условия для жизнедеятельности растений.

Совокупность полученных данных показала, что избыток железа, даже если оно интенсивно поступает в растения в доступной форме, может привести к сильным повреждениям. Впервые показано, что внесение NaCl (300 о ■ мМ) в питательную среду резко снижало поступление железа (Fe -ЭДТА) в растения и предотвращало появление симптомов токсичности при его избытке (750-1000 мкмоль). Этот эффект можно квалифицировать как проявление механизма кросс-адаптации, обнаруженного ранее (Кузнецов, 1990; Волков и др., 20066).

Вместе с тем, для получения более полной информации о взаимосвязи между накоплением ферритина и развитием окислительного стресса в стрес-сорных условиях необходимо было провести исследования по идентификации генов, отвечающих за синтез ферритина, и изучить изменения, происходящие на уровне мРНК и содержании белка в зависимости от окислительного стресса и содержания железа.

Способность Fe, важного для жизнедеятельности растений эссенциаль-ного металла, в восстановленной форме (Fe ) вступать в реакции с кислородом с образованием гидроксил радикала (ОН°), создает необходимость, поддерживать в клетках гомеостаз железа, не допускающий накопления этой формы. Такое нарушение гомеостаза железа у растений может возникать в стрессорных условиях, индуцирующих окислительный стресс, и в условиях загрязнения железом.

Одним из уникальных механизмов, препятствующих проявлению токсичности Fe2+ при его избыточном образовании в клетках, может являться функционирование желесодержащего белка негеминовой природы

Л I ферритина, запасающего Fe в окисленной нетоксичной форме (Fe ).

В проведенных исследованиях изучали зависимость накопления ферритина в листьях галофита Mesembryanthemum crystallinum L. от содержания железа, развития окислительного стресса у растений в условиях засоления и моделирования интенсивности окислительного стресса с помощью про-оксиданта параквата (PQ) и антиоксиданта спермидина.

Установлено, что усиление образования супероксид-радикала и перекиси водорода при обработке листьев PQ повышало экспрессию мРНК генов и содержание белка ферритина, а "тушение" АФК обработкой спермидином подавляло. Впервые установлено, что ферритин, связывая токсичную форму железа в условиях активации в растениях окислительного стресса и поступления избыточного железа, препятствует накоплению в клетках Fe24— катализатора образования ОН°, т.е. выступает как защитный фактор.

Список литературы диссертационного исследования кандидат биологических наук Ешинимаева, Бэлигма Цыденжаповна, 2010 год

1. Андреев Г.И. Ферритин как макер железодефицитной анемии и опухолевый маркер // Интернет-журнал Коммерческая биотехнология (www.chio.ru., публикация от 24.03.2004 г.)

2. Волков К. С. Адаптация к действию повышенных концентраций меди и цинка и возможность использования в фиторемедиации растений Mesembryanthemum crystallinum L. // Дисс. канд. биол. наук. Москва, 2006а.

3. Волков КС., Холодова В.П., Кузнецов Вл.В. Адаптация растений к засолению снижает токсический эффект меди // Доклады Академии наук. 20066. Т. 411. С.479-481

4. Голубкина Н.А. Флуорометрический метод определения селена // Журн. аналит. химии. 1995. Т. 50. С. 492-497.

5. Добровольский В.В. Биосферные циклы тяжелых металлов и регуля-торная роль почвы //Почвоведение. 1997. №4. С. 442-449.

6. Зайцев Г.Н. Математическая статистика в экспериментальной ботанике // Издательство «Наука». 1984.

7. Кузнецов Вл.В., Ракитин В.Ю., Садомов Н.Г., Дам Д.В., Стеценко Л.А., Шевякова Н.И. Участвуют ли полиамины в дистанционной передаче стрессорного сигнала у растений? // Физиология растений. 2002. 49: 136-147.

8. Кузнецов Вл.В., Рощупкин Б.В., Хыдыров Б. Т., Борисова Н.Н. Взаимодействие исходной и адаптивной устойчивости растений при засолении//ДАН АН СССР. 1990. 314: 509-512.

9. Кузнецов Вл.В., Шевякова Н.И. Пролин при стрессе: биологическая роль, метаболизм, регуляция // Физиология растений. 1999. 46: 321— 336.

10. Маджугина Ю.Г., Кузнецов Вл.В., Шевякова Н.И. Растения полигонов захоронения бытовых отходов мегаполисов как перспективные виды для фиторемедиации // Физиология растений. 2008. Т. 55. С. 1—11.

11. Никандров В. В. Неорганические полупроводники в биологических и биохимических системах: биосинтез, свойства и фотохимическая активность // Успехи биологической химии. 2000. Т.40. С. 357-396.

12. Парамонова Н.В., Шевякова Н.И., Кузнецов Вл.В. Ультраструктура хлоропластов и их запасных включений в первичных листьях Mesem-bryanthemum crystallinum при воздействии путресцина и NaCl // Физиология растений. 2004. Т. 51. с.99-109

13. Парамонова Н.В., Шевякова Н.И., Кузнецов Вл.В. Ультраструктурные особенности ферритина в листьях Mesembryanthemum crystallinum при стрессе // Физиология растений. 2007. Т.54.С.275-289

14. Радюкина Н. Я., Шашукова А. ВШевякова Н. И., Кузнецов Вл. В. Участие пролина в системе антиоксидантной защиты у шалфея при действии NaCl и параквата // Физиология растений. 2008. Т.55. №5. С. 721-730.

15. Радюкина H.JI., Карташов А.В., Иванов Ю.В., Шевякова Н.И., Кузне-ifoe Вл.В. Сравнительный анализ функционирования защитных систем у представителей галофитной и гликофитнй флоры в условиях прогрессирующкго засоления // 2007. Т.54. С. 902-912.

16. Шевякова Н.И., Бакулина Е.А., Кузнецов Вл.В. Антиоксидантная роль пролина у галофита хрустальной травки при действии засоления и параквата, инициирующих окислительный стресс // Физиология растений. 2009. Т.56. С. 736-742.

17. Шевякова Н.И., Ильина Е.Н., Кузнецов В.В. Полиамины повышают фиторемедиационный потенциал растений при очистке почв, загрязненных тяжелыми металлами // Докл. АН. 2008. 423: 714-717.

18. Шевякова Н.И., Рощупкин Б.В., Парамонова Н.В., Кузнецов Вл.В. Стрессорный ответ клеток Nicotiana sylvestris L. На засоление и высокую температуру. 1. Аккумуляция пролина, полиаминов, бетаинов и Сахаров. // Физиология растений. 1994. Т.41 С. 558-565.

19. Шлык А.А. Определение хлорофиллов и каратиноидов в экстрактах зеленых листьев // Биохимические методы в физиологии растений. М.: Наука. 1971. С. 154-171.

20. Andrews SC, Arosio Р, Bottke Н, et al. Structure, function and evolution of ferritins // Journal of Inorganic Biochemistry. 1992.47: 161-174.

21. Andrews SC, Le Brun NE, Barynin V, Thomson A J, Moore GR., Guest JR., Harrison PM. Site-directed replacement of the coaxial heme ligands of bacterioferritin generates heme-free variants // The Journal of Biological Chemistry. 1995.270: 23268-23274.

22. Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis // FEMS Microbiology Reviews. 2003. 27: 215-237.

23. Arosio P, Ingrassia R, Cavadini P. Ferritins: a family of molecules for iron storage, antioxidation and more // Biochimica et Biophysica Acta. 2009. 1790(7):589-599.

24. Bates L.S., Waldren R.P., Teare I.D. Rapid Determination of Free Proline for Water Stress Studies I I Plant Soil. 1973. V. 39. P. 205-207.

25. Bauer P, Thiel T, Klatte M, Bereczky Z, Brumbarova T, Hell R, Grosse /. Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato // Plant Physiol. 2004. 136:4169^1183.

26. Beauchamp Ch., Fridovich I. Superoxide dismutase improved assays and an assay applicable to acrylamide gels // Analytical Biochemistry. 1971. 44: 276-287.

27. Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P. Differential regulation of Nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato // J Biol Chem. 2003. 278: 24697-24704.

28. Blokhina O., Virolainen E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: a review // Annals of Botany. 2003. 91: 179-194.

29. Blokhina O., Virolainen E., Fagerstedt К. V. Antioxidants. Oxidative Damage and Oxigen Deprivation Stress: Review // Ann. Bot. 2003. 91: 179194.

30. Bradford MM. A rapid and sensitive method for the quantitations of microgram quantities of protein utilizing the principle of protein dye binding // Analytical Biochemistry. 1976. 72: 248-254.

31. Brennan Т., Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear // Plant Physiol. 1997. 59: 411-416.

32. Briat JF, Fobis-Loisy I, Grignon N. Cellular and molecular aspects of iron metabolism in plants // Biology of the Cell. 1995. 84: 69-81.

33. Briat JF, Lobre'awc S, Grignon N, Vansuyt G. Regulation of plant ferritin synthesis: how and why // Cellular and Molecular Life Sciences. 1999. 56: 155-166.

34. Briat JF. Iron dynamics in plants // Advances in Botanical Research. 2008. 46: 137-180.

35. Саго A, Puntarulo S. Effect of in vivo iron supplementation on oxygen radical production by soybean roots // Biochimica et Biophysica Acta 1996. 1291:245-251.

36. Carrondo MA. Ferritins, iron uptake and storage from the bacterioferritin viewpoint // EMBO Journal. 2003.22: 1959-1968.

37. Cassanelli S, Moulis J. Sulfide is an efficient iron releasing agent for mammalian ferritins // Biochimica et Biophysica Acta. 2001. 1547: 74— 182.

38. Cassin G, Mari S, Curie C, Briat JF, Czernic P. Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine Journal of Experimental Botany. 2009 Vol. 60, № 4, pp. 1249-1259.

39. Chasteen ND. Ferritin: uptake, storage and release of iron // Metal Ions in Biological Systems. 1998. 35: 479-514.

40. Cheesman MR, Le Brun NE, Kadir FHA, et al. Haem and non-haem iron sites in Escherichia coli bacterioferritin: spectroscopic and model building studies // The Biochemical Journal. 1993. 292: 47-56.

41. Cheesman MR, Thomson AJ, Greenwood C, Moore GR, Kadir F. Bis-methionine axial ligation of haem in bacterioferritin from Pseudomonas aeruginosa//Nature. 1990. 346: 771-773.

42. Clarke SL, Vasanthakumar A, Anderson SA, et al. Iron-responsive degradation of iron-regulatory protein 1 does not require the Fe-S cluster // EMBO Journal. 2006. 25: 544-55з.

43. Cohen CK, Fox TC, Garvin DF, Kochian LV. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants // Plant Physiol. 1998. 116:1063-1072.

44. Connolly EL, Fett JP, Guerinot ML. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation // Plant Cell. 2002. 14:1347-1357.

45. Curie С, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL. Maize yellow stripe 1 encodes a membrane protein directly involved in Fe(III) uptake //Nature. 2001. 18:346-349.

46. Curie C., Alonso JM., Jean MLe, Ecker JR., Briat J-F. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport // Biochem J. 2000. P. 749-755.

47. Dajic Z. Salt stress salinity and tolerance mechanisms in plants. // Physiology and Molecular Biology of Stress Tolerance in Plants / Eds Madhava Rao K.V., Raghavendra A.S., Janardhan Reddy K. Dordrecht: Kluwer, 2006. P. 41-101.

48. De Domenico I, Vaughn MB, Li L. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome // EMBO Journal. 2006. 25: 5396-5404.

49. Dedk M, Horvath GV, Davletova S, Тдгдк K, Sass L, Vass I,. Barna B, Kiraly Z, Dudits D. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens // Nature Biotechnology. 1999. 17: 192-196.

50. Dellagi A, Rigault M, Segond D, Roux C, Kraepiel Y, Cellier F, Briat J-F, Gaymard F, Expert D. Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection. The Plant Journal. 2005. 43: 262-272.

51. Dominguez D.M, Santiago R. T. and Garcia F. С. Modulation of the anti-oxidative response of Spartina densiflora against iron exposure // Physi-ologia Plantarum 2009. V.136. P. 168-179.

52. Donlin, M. J.; Frey, R. F.; Putnam, C.; Proctor, J. K.; Bashkin, J. K. Analysis of iron in ferritin, the iron-storage protein // J. Chem. Educ. 1998. 75, 437-441.

53. Eckhardt U, Marques AM, Buckhout TJ. Two ironregulated cation transporters from tomato complement metal uptake-deficient yeast mutants // Plant Mol Biol. 2001. 45:437-448.

54. Eide D, Broderius M, Fett J, Guerinot ML. A novel ironregulated metal transporter from plants identified byfunctional expression in yeast // Proc Natl Acad Sci USA. 1996. 93:5624-5628.

55. Eng F. C., Barsalou A., Akutsu N., Mercier I., Zechel C., Mader S., White J. H. Different classes of coactivators recognize distinct but overlapping binding sites on the estrogen receptor ligand binding domain // J Biol Chem. 1998. 273: 28371-28377.

56. Esen A. A. Simple method for quantitative, semiquantitative, and qualitative assay of protein// Anal. Biochem. 1978. 89: 264-273.

57. Fillebeen C, Chahine D, Caltagirone A, Segal P, Pantopoulos K. A phos-phomimetic mutation at Ser-138 renders iron regulatory protein 1 sensitive to iron-dependent degradation // Molecular and Cellular Biology. 2003. 19: 6973-6981.

58. Fobis-Loisy I, London K, Lobre rawc S, Lebrun Mf Briat J-F. Structure and differential expression in response to iron and abscisic acid of two maize ferritin genes // European Journal of Biochemistry. 1995.231: 609-619.

59. Foyer CH, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria // Physiol Plant 2003.119:355-364.

60. Galy B, Ferring D, Minana B, et al. Altered body iron distribution and mi-crocytosis in mice deficient in iron regulatory protein 2 (IRP2) // Blood. 2005.106: 2580-2589.

61. Gaymard F, Boucherez J, Briat JF. Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid // The Biochemical Journal 1996.318: 67-73.

62. Gross J., Stein R.J., Fett-Neto A.G., Fett J.P. Iron homeostasis related genes in rice // Genetics and Molecular Biology. 2003. V.26. P.477-497.

63. Guerinot ML. The ZIP family of metal transporters // Biochim Biophys Acta. 2000. 1465:190-198.

64. Guerinot ML., Yi Y. Iron nutrition, noxious and readily available // Plant Physiology. 1994. 104: 815-820.

65. Hantke K. Iron and metal regulation in bacteria // Current Opinion in Microbiology. 2001. 4: 172-177.

66. Harrison P.M., Arosio. P. The ferritins: molecular properties, iron storage function and cellular regulation // Biochim. Biophys. Acta. 1996. 1275: 161-203.

67. Heath R.L., Packer L. Photoperoxidation in isolated cloroplasts. Kinetics and stoichiometry of fatty acid peroxidation // Archives of Biochem. and Biophys. 1968. 125: 189-198.

68. Hernandes J.A. Ferrer M-A., Jimenez A., Barcelo A-R., Francisca S. Antioxidant systems and 02"/H202 production in the apoplast of pea leaves, its relation with salt-induced necrotic lesions in minor veims // Plant Physiol., 2001. V.127, P. 817-831.

69. Higuchi K., Kanazawa K., Nishizawa N.K., Mori S. The role of nico-tianamine synthase in response to Fe nutrition status in Gramineae // Plant Soil. 1996. 178: 171-177.

70. Hintze KJ, Theil EC. DNA and mRNA elements with complementary responses to hemin, antioxidant inducers, and iron control ferritin-L expression // Proceedings of the National Academy of Sciences of the USA. 2005. 102: 15048-15052.

71. Hyde BB, Hodge AJ, Kahn A, Birnstiel ML. Studies on phytoferritin. I. Identification and localization // Journal of infrastructure Research. 1963. 59: 248-258.

72. Ilari A, CeciP, Ferrari D, Rossi GL, Chiancone E. Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core // The Journal of Biological Chemistry. 2002. 277: 37619-37623.

73. Ilari A, Stefanini S, Chiancone E, Tsernoglou D. The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site // Nature Structural Biology. 2000.7: 38-43

74. Izuhara M, Takamune К, Takata R. Cloning and sequencing of an Escherichia coli K12 gene which encodes a polypeptide having similarity to the human ferritin H subunit // Molecular General Genetics. 1991. 225: 510-513.

75. Jin W, Takagi H, Pancorbo B, Theil EC. 'Opening' the ferritin pore for iron release by mutation of conserved amino acids at interhelix and loop sites // Biochemistry. 2001.40: 7525-7532.

76. Johnson JL, Norcross DC, Arosio P, Frankel RB, Watt GD. Redox reactivity of animal apoferritins and apoheteropolymers assembled from recombinant heavy and light human chain ferritins // Biochemistry 1999. 38: 4089-4096.

77. Kampfenkel K, Van Montagu M, Inze D. Effects of iron excess on Nico-tiana plumbaginifolia plants (implications to oxidative stress) // Plant Physiology. 1995. 107: 725-735.

78. Kampfenkel K, Van Montagu M, Inze D. Effects of iron excess on Nico-tiana plumbaginifolia plants (implications to oxidative stress) // Plant Physiology. 1995.107: 725-735.

79. Kampfenkel K, Van Montagu M., Inze D. Effects of iron excess on Nico-tiana plumbaginifolia pints//Plant. Physiol. 1995. 107: 725-735

80. Kaplan J, McVey Ward D, Crisp RJ, Philpott CC. Iron-dependent metabolic remodeling in S. cerevisiae // Biochimica et Biophysica Acta. 2006. 1763: 646-651.

81. Keech AM, Le Brim NE, Wilson MT, Andrews SC, Moore GR, Thomson AJ. Spectroscopic studies of cobalt (II) binding to Escherichia coli bacterioferritin // The Journal of Biological Chemistry. 1997. 272: 422-429.

82. Kidane TZ, Sauble E, binder MC. Release of iron from ferritin requires lysosomal activity // American Journal of Physiology: Cell Physiology 2006. 291: C445-C455.

83. Kim S, Ponka P. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis // Blood Cells Molecular Diseases. 2002. 29: 400-410.

84. Kim S, Wing SS, Ponka P. S-nitrosylation of IRP2 regulates its stability via the ubiquitin-proteasome pathway // Molecular and Cellular Biology. 2004. 24: 330-337.

85. Kim SA., Punshon Т., Lanzirotti A., Li L., Alonso JM., Ecker JR., Kaplan J., Guerinot ML. Localization of Iron in Arabidopsis Seed Requires the Vacuolar Membrane Transporter VIT1 // Science. 2006. 314: 1295-1298.

86. Kimata Y, Theil EC. Posttranscriptional regulation of ferritin during nodule development in soybean // Plant Physiology. 1994. 104: 263-270.

87. Ко MP, Huang PY, Huang JS, Barker KR. The occurrence of phytoferritin and its relationship to effectiveness of soybean nodules // Plant Physiology. 1987. 83: 299-305.

88. Kosegarten H, Hoffmann B, Rroco E, Grolig F, Glusenkamp K-H, Mengel K. Apoplastic pH and Felll reduction in young sunflower (Helianthus an-nuus) roots // Physiol Plant. 2004. 122: 95-106.

89. Kuznetsov VI. V, Shevyakova N.I. Polyamines and plant adaptation to saline environments // Desert Plants. 2010. P. 261-298.

90. Kuznetsov VI. V, Shevyakova N.I. Polyamines and stress tolerance of plants // Plant Stress. Global Science Books. 2007. 1: 50-71.

91. Kuznetsov VI.V., Stetsenko LA., Shevyakova N.I. Exogenous Cadaverine Induces Oxidative Burst and Reduces Cadaverine Conjugate Content in the Common Ice Plant // J. Plant Physiol. 2008. 166: 40-51.

92. Laemmli UK Cleavage of structural proteins during the assembly of the head of bacteriophage T4 //Nature. 1970. 227(5259): 680-685.

93. Lanquar V, Lelievre F, Bolte S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron // EMBO Journal. 2005. 24: 4041^1051.

94. Laulhere JP, Laboure AM, Briat JF. Mechanism of the transition from plant ferritin to phytosiderin // The Journal of Biological Chemistry 1989. 264: 3629-3635.

95. Laulhere JP, Laboure AM, Briat JF. Photoreduction and incorporation of iron into ferritins // The Biochemical Journal 1990. 269: 79-84.

96. Le Brun NE, Andrews SC, Guest JR, Harrison PM, Moore GR, Thomson A J. Identification of the ferroxidase centre of Escherichia coli bacterioferritin // The Biochemical Journal. 1995. 312: 385-392.

97. Le Dily F., Huault C., Gaspar Th., Billard J.P. Gabaculine as a tool to investigate the polyamine biosynthesis pathway in habituated callus of Beta vulgaris (L.). Plant Growth Regul. 1993. 18: 221-223.

98. Lee JW, Helmann JD. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation // Nature. 2006. 440: 363-367.

99. Lemanceau P, Bauer P, Kraemer S, Briat JF. Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes // Plant Soil. 2009. 321: 513-535.

100. Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF. Ferritin gene transcription is regulated by iron in soybean cell cultures // Proceedings of the National Academy of Sciences of the USA. 1991. 88: 8222-8226.

101. Levi S, Santambrogio P, Cozzi A, et al. The role of the L-chain in ferritin iron incorporation: studies of homo and heteropolymers. Journal of Molecular Biology. 1994. 238: 649-654.

102. Li L., ChengX., LingH.O. Isolation and characterization of Fe(III)-chelate reductase gene LeFrol in tomato // Plant Molecular Biology. 2004. 54: 125-136.

103. Lindsay WL. Chemical reactions in soil that affect iron availability to plants. A quantitative approach // In: Abadia J, ed. Iron nutrition in soils and plants. Dordrecht: Kluwer Academic Publishers. 1995. P: 7-14.

104. Ling HQ, Bauer P, Keller B, Ganal M. The fer gene encoding a bHLH transcriptional regulator controls development and physiology in response to iron in tomato // ProcNatl Acad Sci USA. 2002. 99: 13938-13943.

105. Liphadzi M.S. and Kirkham M.B. Physiological effects of heavy metals on plant growth and function // Plant-Environment Interactions. Bingru Huang. 2006. Taylor a. Francis Group. P: 243-269.

106. Lipinski P., Drapier JC. Interplay between ferritin metabolism, reactive oxygen species and nitric oxide // JBIC. 1997. 2: 559-566.

107. Liu XS, Patterson LD, Miller MJ, Theil EC. Peptides selected for the protein nanocage pores change the rate of iron recovery from the ferritin mineral // The Journal of Biological Chemistry. 2007. 282: 31821-31825.

108. Lobreaux S, Briat JF. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development // The Biochemical Journal. 1991. 274: 601-606.

109. Lobreaux S, Hardy T, Briat JF. Abscisic acid is involved in the iron-induced synthesis of maize ferritin I I EMBO Journal. 1993. 12: 651-657.

110. Lobreaux S, Massenet O, Briat JF. Iron induces ferritin synthesis in maize plantlets // Plant Molecular Biology. 1992b. 19:563-575.

111. Lobreaux S, Yewdall S, Briat JF, Harrison PM. Amino acid sequence and predicted three-dimensional structure of pea seed ferritin // The Biochemical Journal. 1992a. 288: 931-939.

112. Maehly А. С. and Chance B. The assay of eatalases and peroxidases // In: Methods of Biochemical Analysis, Glick, D. (eds.). Interscience, New York, 1954. P: 357-408.

113. Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis // Plant Soil 1994. 159: 89-102.

114. Marschner H, Romheld V. Strategies of plants for acquisition of iron // Plant Soil. 1994. 165: 261-274.

115. Masuda T, Goto F, Yoshihara T, et al. Construction of homo- and heter-opolymers of plant ferritin subunits using an in vitro protein expression system // Protein Expression and Purification. 2007. 56: 237-246.

116. Masuda T, Goto F, Yoshihara T. A novel plant ferritin subunit from soybean that is related to a mechanism in iron release // The Journal of Biological Chemistry. 2001.276: 19575-19579.

117. Matysik J., Alia, Bhalu В., Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants // Curr. Sci. 2002. 82: 525-532.

118. Meyron-Holtz EG, Ghosh MC, Ixvai K, et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis // EMBO Journal. 2004. 23: 386-395.

119. Murgia I, Delledonne M, Soave C. Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis // The Plant Journal. 2002. 30: 521—528.

120. Murgia I, Vazzola V, Tarantino D, et al. Knock-out of ferritin AtFerl causes earlier onset of age-dependent leaf senescence in Arabidopsis. Plant Physiology and Biochemistry. 2007. 45: 898-907.

121. Navarre DA, Wendehenne D, Durner J, Noad R, Klessig DF. Nitric oxide modulates the activity of tobacco aconitase I I Plant Physiology. 2000. 122: 573-582.

122. Nili X, Narasimhan ML, Salzman RA, Bresson RA, Hasegawa PM. NaCl regulation of plasma membrane H+-ATPase gene expression in a glyco-phyte and a halophyte // Plant Physiol. 1993. 103: 713-718.

123. Niu X., Narasimham ML., Salzman R.A., Bressan R.A., and Hasegawa P.M. NaCl regulation of plasma membrane H+-ATPase Gene expression in a glycophyte and a halophyte // Plant Physiol. 1993. 103: 713-718.

124. Nozoye Т., Inoue H, Takahashi Met al. The expression of iron homeosta-sis-related genes during rice germination // Plant Mol. Biol. 2007. 64: 3547.

125. Ogo Y, Itai RN, Nakanishi H et al The rice bHLH protein 0sIR02 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions // Plant J. 2007. 51: 366-377.

126. Ogo Y, Kobayashi T, Itai R.N. et al. A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants // JBC. 2008. 283: 1340713417.

127. Ogo, Y, Itai RN, Nakanishi H et al. Isolation and characterization of IR02, a novel iron-regulated bHLH transcription factor in graminaceous plants // J. Exp. Bot. 2006. 57: 2867-2878.

128. Pekker I, Tel-Or E, Mittler R. Reactive oxygen intermediates and glutathione regulate the expression of cytosolic ascorbate peroxidase during iron-mediated oxidative stress in bean // Plant Molecular Biology. 2002. 49: 429-438.

129. Peng XX, Yamauchi M. Ethylene production in rice bronzing leaves induced by ferrous ion // Plant Soil. 1993. 149: 227-234.

130. Peng, X.X. and M. Yamauchi. Ethylene production in rice bronzing leaves by ferrous iron // Plant Soil. 1993. 149: 227-234.

131. Petit JM, Briat JF, Lobreaux S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family // The Biochemical Journal. 2001a. 359: 575-582.

132. Pianelli K., Mari S., Marques L., Lebrun M., Czernic P. Nicotianamine Over-accumulation Confers Resistance to Nickel in Arabidopsis thaliana II Transgenic Res. 2005. 14: 739-748.

133. Pich A, Manteujfel R, Hillmer S, Scholz G, Schmidt W. Fe homeostasis in plant cells: Does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? // Planta. 2001. 213: 967-976.

134. Ponnamperuma FN, Bradfield R, Peech M. Physiological disease of rice attributable to iron toxicity //Nature. 1955. 175: 275-279.

135. Proudhon P, Briat JF, Lescure AM. Iron induction of ferritin synthesis in soyabean cell suspensions // Plant Physiology. 1989. 90: 586—590.

136. Ragland M, Briat JF, Gagnon J, Laulhere JP, Massenet O, Theil EC. Evidence for conservation of ferritin sequences among plants and animals and for a tr ansit peptide in soybean // The Journal of Biological Chemistry. 1990.265: 18339-18344.

137. Ragland M, Theil EC. Ferritin (mRNA, protein) and iron concentrations during soybean nodule development // Plant Molecular Biology. 1993. 21: 555-560.

138. Ranieri A., Castagna A., BaldanB., Soldatini GF. Iron deficiency differently affects peroxidase isoforms in sunflower // Journal of Experimental Botany. 2001. 354: 25-35.

139. Ravet K, Touraine В, Boucherez J, Briat JF, Gaymard F, Cellier F. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis // The Plant Journal. 2009. 57: 400-412.

140. Reif DW. Ferritin as a source of iron for oxidative damage // Free Radic Biol Med. 1992. 12(5): 417-427.

141. Ridge I., Osborne D.J. Role of peroxidase when hydroxyproline-rich protein in plant cell wall is increased by ethylene // Nature, 1971. 229: 205208.

142. Robinson NJ., Procter СМ., Connolly EL., Guerinot ML. A ferric-chelate reductase for iron uptake from soils //Nature. 1999. 397: 694-697.

143. Romheld V., Midler C., Marschner H. Localization and capacityof proton pumps in roots of intact sunflower plants // Plant Physiol. 76: 603-606.

144. Rouault ТА, Klausner R. Iron-sulfur clusters as biosensors of oxidants and iron // Trends in Biochemical Sciences. 1996. 21: 174-177.

145. Sammarco MC, Ditch S, Banerjee A, Grabczyk E. Ferritin L and H sub-units are differentially regulated on a post-transcriptional level // The Journal of Biological Chemistry. 2008. 283: 457S-45S7.

146. Santos С. V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves // Sci. Hort. 2004. 103: 93-99.

147. Savino G., Briat J-F., Lobreaux S. Inhibition of the Iron-induced ZmFerl Maize Ferritin Gene Expression by Antioxidants and Serine/Threonine Phosphatase Inhibitors // The Journal of Biological Chemistry. 1997. 272 (52): 33319-33326.

148. Sayers DE., Theils EC., Rennick FJ. Iron(III) in the complex with horse spleen apoferritin observed by X-ray absorption spectroscopy // The Journal of biological chemistry. 1983. 258(23): 14076-14079.

149. SeckbackJJ. Ferreting out the secrets of plant ferritin: a review // Journal of Plant Nutrition. 1982. 5: 369-394.

150. Shi H, Bencze KZ, Stemmler TL, Philpott CC. A cytosolic iron chaperone that delivers iron to ferritin // Science. 2008. 320: 1207-1210.

151. Smith JL. The physiological role of ferritin-like compounds in bacteria // Critical Reviews in Microbiology. 2004. 30: 173-185.

152. Stephani K, Weichart D, Hengge R. Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli // Molecular Microbiology. 2003. 49: 1605-1614.

153. Takahashi M., Terada Y., Nakai I., Nakanishi H., Yoshimura E., Mori S., Nishizawa NK. Role of Nicotianamine in the Intracellular Delivery of Metals and Plant Reproductive Development // Plant Cell. 2003. 15: 12631280.

154. Tarantino D, Petit JM, Lobre'aux S, Briat JF, Soave C, Murgia I. Differential involvement of the IDRS cis-element in the developmental and environmental regulation of the AtFerl ferritin gene from Arabidopsis // Planta. 2003. 217: 709-716.

155. Theil E.C., Briat J.-F. Plant ferritin and non-hem iron nutrition in humans // HarvestPlus Technical Monograph 1. Washington, DC and Cali: Int. Food Polici Res. Inst, and Int. Center Tropical Agricult. (CIAT), 2004. 1: 1-13.

156. Theil EC, Hase T. Plant and microbial ferritins. In: Barton LL, Hemings В eds. Iron chelation in plants and soil microorganisms // New York, NY: Academic Press. 1993. P: 133-156.

157. Theil EC, Matzapetakis M, Liu X. Ferritins: iron/oxygen biominerals in protein nanocages // Journal of Biological Inorganic Chemistry. 2006. 11: 803-810.

158. Theil EC. Coordinating responses to iron and oxygen stress with DNA and mRNA promoters: the ferritin story // Biometals. 2007. 20: 513-521.

159. Theil EC. Ferritin: At the Crossroads of Iron and Oxygen Metabolism // J. Nutr. 2003. 133: 1549-1553.

160. Theil EC. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms // Annu. Rev. Biochem. 1987. 56: 289315.

161. Toledano MB, Kumar C, Le Moan N, Spector D, Tacnet F. The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis // FEBS Letters. 2007. 581:3598-3607.

162. Torti FM, Torti SV. Regulation of ferritin genes and protein // Blood. 2002. 99:3505-3516.

163. Touati D, Jacques M, Tardat B, Bouchard L, Despied S. Lethal oxidative damage and mutagenesis are generated by iron in fur mutants of Escherichia coli: protective role of superoxide dismutase // Journal of Bacteriology. 1995. 177: 2305-2314.

164. Touati D. Iron and oxidative stress in bacteria // Archives in Biochemistry and Biophysics. 2000. 373: 1-6.

165. Towin, H; Staehlin Т., Gordon J. Electrophoretic transfer of proteins from polyacrilamide gels to nitrocellulose sheets // Proceedings of the National Academy of Sciences USA. 1979. 76: 4350-4354.

166. Truty J, Malpe R, Linder MC. Iron prevents ferritin turnover in hepatic cells // The Journal of Biological Chemistry. 2001. 276: 48775-48780.

167. Van Wuytswinkel О, Briat JF. Conformational changes and in vitro core formation modifications induced by site directed mutagenesis of the specific amino terminus (EP) of pea seed ferritin // The Biochemical Journal 1995. 305: 959-965.

168. Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat JF. Iron homeostasis alteration in transgenic tobacco overexpressing ferritin // The Plant Journal. 1999. 17: 93-97.

169. Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth // Plant Cell. 2002. 6: 1223-33.

170. Vert G., Briat JF., Curie C. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals // Plant Physiology. 2003. 132: 796-804.

171. Von WN., Marschner H., Romheld V. Roots of iron-efficient maize also absorb phytosidyrofore-chelated zinc//Plant Physiology. 1996. Ill: 11191125.

172. Wade VJ, Treffry A, Laulhe >e JP, et al. Structure and composition of ferritin cores from pea seed // Biochimica et Biophysica Acta. 1993. 1161: 91-96.

173. Waldo GS, Wright E, Wang ZH, Briat JF, Theil EC, Sayers DE. Formation of the ferritin iron mineral occurs in plastids: an X-ray absorption spectroscopy study. Plant Physiology. 1995. 109:797-802.

174. Wang J, Fillebeen C, Chen G, Biederbick A, Lill R, Pantopoulos K. Iron-dependent degradation of apo-IRPl by the ubiquitin-proteasome pathway // Molecular and Cellular Biology. 2007. 7: 2423-2430.

175. War drop A J, Wicks RE, Entsch B. Occurrence and expression of members of the ferritin gene family in cowpeas // The Biochemical Journal. 1999. 337: 523-530.

176. Waters В M., Blevins DG., Eide DJ. Characterization of FRO 1, a Pea Fer-ric-Chelate Reductase Involved in Root Iron Acquisition // Plant Physiol. 2002. 129: 85-94.

177. Winter K., Holtum J. A. M. Environment or Development? Lifetime Net CO2 Exchange and Control of the Expression of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum II Plant Physiology. 2007. 143: 98-107.

178. Zancani M., Peresson C., Biroccio A., Federici G., Urbani A., Murgia I., Soave C., Micali F., Vianello A., Macri F. Evidence for the presence of ferritin in plant mitochondria // Eur. J. Biochem. 2004. 271: 3657-3664.

179. Zer H, Peleg I, Chevion M. The protective effect of desferoxamine on paraquat-treated pea (Pisum sativum) // Physiologia Plantarum. 1994. 92: 437-442.

180. Zhao G, Ceci P, Ilari A, et al. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells: a femtin-like DNA-binding protein of Escherichia coli // The Journal of Biological Chemistry. 2002. 277: 27689-27696.if 0

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.