Влияние семакса (AKTГ4-7-Pro-Gly-Pro) на нейрохимические характеристики серотонин-и дофаминергических систем мозга и оценка его нейропротекторной активности тема диссертации и автореферата по ВАК РФ 14.00.25, Еремин, Кирилл Олегович

  • Еремин, Кирилл Олегович
  • 2005, Москва
  • Специальность ВАК РФ14.00.25
  • Количество страниц 166
Еремин, Кирилл Олегович. Влияние семакса (AKTГ4-7-Pro-Gly-Pro) на нейрохимические характеристики серотонин-и дофаминергических систем мозга и оценка его нейропротекторной активности: дис. : 14.00.25 - Фармакология, клиническая фармакология. Москва. 2005. 166 с.

Оглавление диссертации Еремин, Кирилл Олегович

Список сокращений

ВВЕДЕНИЕ

ОБЗОР ЛИТЕРАТУРЫ

1. Общая характеристика веществ с ноотропной активностью

2. Пептиды группы АКТГ/МСГ (меланокортины)

2.1. Основные эффекты семакса и других аналогов АКТГ

2.1.1. Влияние на процессы памяти и обучения

2.1.2. Антиишемические и антигипоксические эффекты

2.1.3. Нейротрофические свойства

2.2. Возможные механизмы действия семакса и других 25 аналогов АКТГ

2.2.1. Меланокортиновая система

2.2.2. Ацетилхолинергическая система

2.2.3. Моноаминергические системы

3. Модели нейротоксического повреждения

3.1. Модель дофаминергической нейротоксичности, вызванной 6-гидроксидофамином

3.2. Модель дофаминергической нейротоксичности, вызванной 1 -метил-4-фенил-1,2,3,6-тетрагидро-пиридином

3.3. Модель дофаминергической нейротоксичности, вызванной d-амфетамином

3.4. Модель серотонинергической нейротоксичности, вызванной 5,7-дигидрокситриптамином

4. Нейропротекторные эффекты меланокортинов при нейротоксическом повреждении мозга

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

1. Характеристика экспериментальных животных

2. Определение тканевого содержания моноаминов и их метаболитов в структурах мозга методом ВЭЖХ

3. Определение внеклеточного содержания моноаминов и их метаболитов в стриатуме свободноподвижных крыс с использованием методики внутримозгового микродиализа и ВЭЖХ

4. Методика оценки скорости биосинтеза дофамина и серотонина в структурах мозга животных

5. Методика регистрации спонтанной двигательной активности мышей

6. Моделирование нейротоксического повреждения

6.1. Моделирование повреждения дофаминергических нейронов, вызванного 6-гидроксидофамином в мезенцефалических клеточных культурах in vitro

6.2. Моделирование повреждения дофаминергических нейронов, вызванного 1-метил-4-фенил-1,2,3,6-тетрагидропиридином in vivo

6.3. Моделирование повреждения дофаминергических нейронов, вызванного d-амфетамином in vivo

6.4. Моделирование повреждения серотонинергических нейронов, вызванного 5,7-дигидрокситриптамином in vivo

7. Фармакологические вещества и схемы введения

8. Статистическая обработка 69 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Глава 1. Влияние семакса на нейрохимические показатели серотонинергической нейропередачи в мозге животных

1.1. Тканевое содержание серотонина и его метаболита 5-ГИУК в структурах мозга мышей линии С57/Ы

1.2. Внеклеточное содержание метаболита серотонина 5-ГИУК в стриатуме мозга крыс Спрег-Доули

1.3. Скорость биосинтеза серотонина в структурах мозга мышей линии С57/Ы

Глава 2. Влияние семакса на нейрохимические параметры дофаминергической нейропередачи в мозге животных

2.1. Тканевое содержание дофамина и его метаболитов в структурах мозга мышей линии С57/Ы

2.2. Внеклеточное содержание дофамина и его метаболитов в стриатуме мозга крыс Спрег-Доули

2.3. Скорость биосинтеза дофамина в структурах мозга мышей линии С57/Ы

2.4. Потенцирование семаксом эффектов d-амфетамина на внеклеточное содержание дофамина и его метаболитов в диализатах стриатума крыс Спрег-Доули

2.5. Потенцирование семаксом стимулирующего эффекта d-амфетамина на локомоторную активность мышей линии С57/Ы

Глава 3. Оценка нейропротекторных эффектов семакса при моделировании нейротоксического повреждения

3.1. Модель дофаминергической нейротоксичности, вызванной 6-гидроксидофамином в мезенцефалических клеточных культурах in vitro

3.2. Модель дофаминергической нейротоксичности, вызванной 1 -метил-4-фенил-1,2,3,6-тетрагидро-пиридином in vivo

3.3. Модель дофаминергической нейротоксичности, вызванной d-амфетамином in vivo

3.4. Модель серотонинергической нейротоксичности, вызванной 5,7-дигидрокситриптамином in vivo

Рекомендованный список диссертаций по специальности «Фармакология, клиническая фармакология», 14.00.25 шифр ВАК

Введение диссертации (часть автореферата) на тему «Влияние семакса (AKTГ4-7-Pro-Gly-Pro) на нейрохимические характеристики серотонин-и дофаминергических систем мозга и оценка его нейропротекторной активности»

Одним из актуальных направлений современной нейропсихофармакологии является поиск и изучение веществ, стимулирующих когнитивные функции мозга, такие как внимание, познавательная деятельность, процессы обучения и памяти. Нарушения этих функций характерны для широкого круга неврологических и психических заболеваний, в том числе травматических повреждений мозга, цереброваскулярных расстройств, нейродегенеративных заболеваний центральной нервной системы, в частности, болезней Альцгеймера, Паркинсона и некоторых других. Для лечения когнитивных нарушений широкое применение получили ноотропные препараты, в том числе пирацетам и его аналоги [Воронина и Середенин, 1998]. Вместе с тем известно, что ноотропные средства не лишены ряда недостатков, в частности они оказались малоэффективными при лечении нарушений когнитивных функций, наблюдаемых при болезни Альцгеймера, шизофрении, некоторых психических и нейродегенеративных заболеваниях. Эти данные свидетельствуют о целесообразности поиска и создания новой генерации препаратов с ноотропной активностью. В связи с этим возникла необходимость создания и изучения механизма действия веществ, обладающих не только ноотропной, но и нейропротекторной активностью [Островская и соавт., 2002].

Известно, что в основе расстройств высших интегративных функций мозга, включая обучение и память, познавательную деятельность, может лежать нарушение функционирования важнейших нейромедиатрных систем мозга - глутаматергической, холинергической, ГАМК-ергической и других [Воронина и Середенин, 1998]. В настоящее время широкое распространение получили исследования направленные на создание эффективных модуляторов этих нейромедиаторных систем мозга.

Одним из оригинальных направлений нейробиологии и психофармакологии памяти и обучения явились исследования, показавшие важную роль пептидов семейства АКТГ/МСГ в регуляции мнестических процессов [de Wied, 1997]. Было показано, что некоторые из этих пептидов обладают также нейротрофическими и нейропротекторными свойствами [Darlington et al., 1996; Starowicz & Przewlocka, 2003]. Следует отметить, что меланокортины являются эндогенными веществами или их производными, образующимися в ЦНС, что, по-видимому, объясняет отсутствие у них выраженных побочных эффектов, низкую токсичность и хорошую переносимость. Хотя АКТГ и некоторые его аналоги проявляют ноотропные и нейропротекторные эффекты, в клинике они не нашли применения, что обусловлено, по-видимому, их недостаточно высокой стабильностью и, как следствие этого, короткой продолжительностью действия. В связи с этим предпринимались неоднократные попытки создания синтетических аналогов этих пептидов с более высокой устойчивостью к метаболической деградации эндогенными пептидазами организма. Одним из таких соединений явился аналог АКТГ 4-9 ORG 2766 (Met(02)-Glu-His-Phe-D-Lys-Phe-OH) с отсутствием гормональной активности и более выраженными эффектами на показатели памяти у животных по сравнению с АКТГ4-10 [de Wied, 1997]. ORG 2766 стал одним из эталонов при изучении эффектов аналогов АКТГ" на функции мозга. В ходе дальнейших модификаций структуры были получены более активные пептиды ORG 5042, НОЕ 427, которые проявляли активность также и при пероральном введении [Witter et al., 1975].

В совместных исследованиях Института молекулярной генетики РАН и кафедры физиологии человека и животных МГУ им.

М.В. Ломоносова было обнаружено, что модификация фрагмента АКТГ4-7 путем введения дополнительной аминокислотной последовательности Pro-Gly-Pro с С-конца молекулы приводит к значительному увеличению продолжительности действия пептида [Пономарева-Степная и соавт., 1984, 1986]. Результатом этих исследований явилось создание нового оригинального гептапептида -семакса (Met-Glu-His-Phe-Pro-Gly-Pro), обладающего широким спектром нейротропной активности [Ашмарин и соавт., 1997]. К настоящему времени препарат используется в клинике в качестве ноотропного средства для улучшения процессов обучения и памяти у человека [Ашмарин и соавт., 1997; Kaplan et al., 1996], в качестве нейропротекторного средства при комплексной терапии острого полушарного ишемического инсульта [Гусев и соавт., 1997, Мясоедов и соавт., 1999], в отдаленном периоде у больных с постгипоксической патологией мозга, страдающих мнестическими расстройствами [Алексеева и соавт., 1999], а также в офтальмологии при патологии зрительного нерва [Полунин и соавт., 2000; Курышева и соавт., 2001]. В последствии были обнаружены и другие эффекты семакса, такие как антиульцерогенный [Ашмарин, 2001; Иваников и соавт., 2002; Жуикова и соавт., 2002], анальгетический [Королева и соавт., 1996; Иванова и соавт., 2003] и антитромботический [Ашмарин и соавт., 1996, Ашмарин, 2001]. Таким образом, результаты приведенных исследований свидетельствуют о том, что семакс обладает широким профилем терапевтической активности и находит применение в разных областях медицины.

Вместе с тем, необходимо отметить, что механизмы, лежащие в основе терапевтических эффектов семакса при мнестических и нейродегенеративных расстройствах до настоящего времени остаются недостаточно изученными. В частности, это относится к механизмам взаимодействия семакса с нейромедиаторными системами мозга. Из литературы известно о наличии тесных анатомических и функциональных связей между меланокортиновой и моноаминергическими системами мозга [Florijn et al., 1993; Drago et al., 1999; Lindblom et al., 2001]. He вызывает сомнения также участие серотонинергической и дофаминергической систем мозга в процессах памяти и нейрональной пластичности [Кругликов и соавт., 1991; Раевский, 1998; Barros et al., 2003; Jay, 2003]. Несмотря на наличие у семакса антиишемических и антигипоксических свойств, нейропротекторная активность пептида на нейротоксических моделях повреждения мозга не исследовались. Таким образом, можно заключить, что нейрохимические механизмы как антиамнестического, так и нейропротекторного действия остаются до настоящего времени недостаточно изученными.

Исходя из вышеизложенного, целью данной работы явилось изучение влияния семакса (AKTT4-7-Pro-Gly-Pro) на нейрохимические характеристики серотонин- и дофаминергических систем мозга, а также оценка возможной нейропротекторной активности пептида на моделях дофамин- и серотонинергической нейротоксичности в условиях in vitro и in vivo.

В соответствии с указанной целью, были поставлены следующие задачи:

1. Изучить влияние семакса на нейрохимические характеристики серотонинергических систем мозга животных: тканевое и внеклеточное содержание серотонина и его метаболита 5-гидроксииндолуксусной кислоты (5-ГИУК) в гипоталамусе и стриатуме мозга животных.

2. Исследовать эффекты семакса на нейрохимические параметры дофаминергической системы мозга: тканевое и внеклеточное содержание дофамина и его метаболитов 3,4-дигидроксифенилуксусной (ДОФУК) и гомованилиновой кислот (ГВК) в стриатуме, а также способность семакса модулировать психостимулирующее действие d-амфетамина.

3. Оценить возможную нейропротекторную активность семакса в нейрональной и нейро-глиальной культурах, полученных из эмбрионального среднего мозга крыс (Е16), при моделировании цитотоксического повреждения, обусловленного 6-гидроксидофамином (6-ОНДА) in vitro.

4. Оценить нейропротекторные свойства семакса на моделях дофаминергической нейротоксичности, вызванной 1-метил-4-фенил-1,2,3,6-тетрагидропиридином (МФТП) и d-амфетамином на мышах линии С57/Ы.

5. Изучить нейропротекторные свойства семакса на модели серотонинергической нейротоксичности, вызванной внутримозговым введением 5,7-дигидрокситриптамина (5,7-ДГТ) на мышах линии С57/Ы.

Научная новизна

При изучении эффектов семакса на нейрохимические показатели моноаминергических систем мозга впервые показано, что семакс вызывает активацию серотонинергических систем мозга, которая проявляется в повышении тканевого и внеклеточного содержания метаболита серотонина 5-ГИУК через 30 мин, 2 и 24 ч после введения пептида. В микродиализных исследованиях на свободноподвижных крысах обнаружено свойство семакса усиливать эффект d-амфетамина, проявляющийся в повышении внеклеточной концентрации дофамина в диализатах стриатума, что свидетельствует об усилении дофаминергической нейропередачи в этих условиях. Потенцирующее ; влияние семакса на психостимулирующие эффекты d-амфетамина проявляется также в экспериментах с регистрацией локомоторной ' активности мышей линии С57/Ы.

Впервые проведено исследование нейропротекторной активности семакса с использованием моделей дофамин- и серотонинергической нейротоксичности in vitro и in vivo. Выявлен цитопротекторный эффект семакса в нейро-глиальной культуре клеток мезенцефалона крыс (Е16) in vitro при их нейротоксическом повреждении 6-гидроксидофамином, который, однако, не проявляется в нейрональной культуре клеток, полученных из того же отдела мозга. На моделях дофамин- и серотонинергической нейротоксичности на мышах линии С57/Ы ex vivo выявлены умеренные нейропротекторные эффекты семакса в стриатуме при воздействии d-амфетамина (р<0,1) и 5,7-дигидрокситриптамина (р<0,05).

Научно-практическая значимость

Полученные в работе данные расширяют представления о нейрохимических и нейропротекторных свойствах семакса, а также вносят существенный вклад в понимание нейрохимических основ механизма действия семакса как оригинального нейротропного средства. | Результаты, полученные в диссертационной работе, раскрывают новый аспект механизма: действия , семакса. - его способность - усиливать -действие веществ, активирующих дофаминергическую передачу в мозге. Обнаружено также свойство семакса оказывать позитивное модулирующее влияние на серотонинергическую передачу в структурах мозга. Эти данные могут послужить основой для разработки новых стратегий терапии дофамин- и серотониндефицитных патологий центральной нервной системы. i I i

ОБЗОР ЛИТЕРАТУРЫ

Похожие диссертационные работы по специальности «Фармакология, клиническая фармакология», 14.00.25 шифр ВАК

Заключение диссертации по теме «Фармакология, клиническая фармакология», Еремин, Кирилл Олегович

выводы

1. Семакс (AKTT4-7-Pro-Gly-Pro) в дозе 0,15 мг/кг (в/б) вызывает повышение тканевого и внеклеточного содержания метаболита серотонина 5-гидроксииндолуксусной кислоты через 0,5, 2 и 24 ч после введения, что свидетельствует об активации серотонинергических систем мозга.

2. В дозе 0,6 мг/кг (в/б) семакс усиливает эффекты d-амфетамина на внеклеточное содержание дофамина в стриатуме мозга свободноподвижных крыс Спрег-Доули, а также на локомоторную активность мышей линии С57/Ы. Изменений в тканевом и внеклеточном содержании дофамина и его метаболитов ДОФУК и ГВК при действии семакса не наблюдается.

3. В опытах in vitro на нейро-глиальной культуре клеток (Е16) мезенцефалона крыс при моделировании нейротоксического повреждения 6-гидроксидофамином семакс (0,1 мкМ) оказывает цитопротекторный эффект, проявляющийся в увеличении числа дофаминергических нейронов.

4. При моделировании дофамин- и серотонинергической нейротоксичности на мышах линии С57/Ы семакс в дозах 0,15 и 0,6 мг/кг (в/б) проявляет умеренную нейропротекторную активность, частично ослабляя снижение тканевого содержания нейротрансмиттеров и их метаболитов в стриатуме, наблюдаемое при действии d-амфетамина и 5,7-дигидрокситриптамина.

ЗАКЛЮЧЕНИЕ

Поиск и изучение веществ, стимулирующих когнитивные функции мозга: внимание, познавательная деятельность, процессы обучения и памяти, а также обладающих нейропротекторными свойствами является, несомненно, одним из актуальных направлений современной фармакологии. Такие вещества находят широкое применение при лечении нарушений мнестических функций, наблюдающихся при целом ряде патологических состояний ЦНС, таких как травмы мозга, цереброваскулярные расстройства различного генеза (ишемия, инсульт), постгипоксические энцефалопатии, нейроинфекции, хронический алкоголизм, нейродегенеративные заболевания ЦНС. Несмотря на определенные успехи в лечении мнестических расстройств, следует признать, что применяемая при этих состояниях терапия в ряде случаев является недостаточно эффективной. Так, известно, что ноотропные препараты, в частности, пирацетам и его аналоги малоэффективны в терапии когнитивных расстройств при шизофрении, болезни Альцгеймера и некоторых других.

Наряду с многочисленными попытками использования препаратов, воздействующих на глутаматергические, холинергические и ГАМК-ергические системы мозга, с целью коррекции когнитивных нарушений, связанных с дисфункцией этих нейромедиаторных систем, в последние годы внимание исследователей было привлечено к другой группе нейромодуляторов -пептидам семейства АКТГ/МСГ, в частности АКТГ4-10 и его производным, лишенным гормональной активности [de Wied, 1997, Adan & Gispen, 2000]. Эти исследования показали, что пептиды указанной группы способны улучшать процессы памяти и обучения, однако в связи с метаболической нестабильностью и связанной с этим короткой продолжительностью действия эти пептиды не нашли клинического применения.

Одновременно группа исследователей из Института молекулярной генетики РАН и биологического факультета МГУ им. М.В. Ломоносова установили, что направленная химическая модификация молекулы АКТГ4-7, путем введения в ее структуру последовательности Pro-Gly-Pro с С-конца пептида позволяет получить соединение с высокой нейротропной активностью и достаточной длительностью фармакологического эффекта. Было установлено, что группировка Pro-Gly-Pro обеспечивает защиту молекулы пептида от метаболической деградации эндогенными пептидазами [Пономарева-Степная и соавт., 1984]. Указанный гептапептид получил название семакса, химически представляющего собой Met-Glu-His-Phe-Pro-Gly-Pro, и в настоящее время широко используется в клинике.

В большом числе экспериментальных и клинических работ, посвященных изучению фармакологических свойств пептида, было показано, что препарат обладает высокой ноотропной и нейропротекторной активностью [Ашмарин и соавт., 1997; Гусев и соавт, 1997; Мясоедов и соавт, 1999; Фадюкова и соавт., 2001 и др.]. Несмотря на большое число фактов, убедительно демонстрирующих терапевтические эффекты семакса при разных патологических состояниях, механизмы действия пептида, в частности, влияние на нейромедиаторные системы мозга остаются малоизученными. В связи с этим целью данного исследования явилось изучение влияния семакса (AKTT4-7-Pro-Gly-Pro) на нейрохимические характеристики серотонин- и дофаминергических систем мозга, а также оценка возможной нейропротекторной активности пептида на моделях дофамин- и серотонинергической нейротоксичности в условиях in vitro и in vivo.

При изучении влияния семакса на нейрохимические характеристики серотонинергических систем мозга было обнаружено, что пептид в дозе 0,15 мг/кг при однократном системном введении вызывает активацию серотонинергических процессов мозга. Так, тканевое содержание основного метаболита серотонина 5-гидроксииндолукустной кислоты (5-ГИУК) в гипоталамусе мышей линии С57/Ы повышалось через 30 мин и 2 ч, соответственно, на 16 и 30% по отношению к контролю (р<0,05). В то же время тканевое содержание серотонина в этих условиях не изменялось. Аналогичные эффекты в стриатуме обнаруживаются не только через 2 ч, но и через 24 ч после введения семакса, что согласуется с данными о длительном характере эффектов пептида [Ashmarin et al., 1995; Ашмарин и соавт., 1997].

Внеклеточный уровень метаболита серотонина 5-ГИУК в стриатуме свободноподвижных крыс Спрег-Доули в условиях микродиализного эксперимента постепенно повышался, достигая 180% по отношению к контролю (р<0,01) через 4 ч после введения пептида в дозе 0,15 мг/кг (в/б). Эксперименты с использованием ингибитора декарбоксилазы 1-ароматических аминокислот NSD 1015 не выявили значимого изменения скорости биосинтеза серотонина в структурах мозга in vivo.

Механизмы, с помощью которых семакс вызывает активацию серотонинергической системы до настоящего времени не выяснены. Обнаружено, что многие серотонинергические ядра могут коэкспрессировать меланокортиновые (МС) рецепторы [Adan & Gispen, 1997]. С другой стороны, наличие у семакса свойств антагониста меланокортиновых МС4 и МС5 рецепторов [Adan et al., 1994] позволяет предположить, что изменение активности меланокортиновой системы при действии семакса может модулировать активность серотонинергических процессов, в частности, вызывать их активацию. Данное предположение подтверждается результатами работы [Chaki et al., 2003 а] в которой обнаружено, что антагонист МС4 рецепторов MCL0129, проявляющий свойства антидепрессанта, может повышать активность серотонинергических систем мозга. Эффекты исследуемого пептида на серотонинергические системы мозга позволяют предположить у семакса наряду с известными ноотропными свойствами, наличие других центральных эффектов, в частности антидепрессантного действия. Так, известно, что семакс проявляет анальгетические свойства в эксперименте [Иванова и соавт., 2003] и в клинике [Королева и соавт., 1996].

При исследовании влияния семакса на нейрохимические характеристики дофаминергической системы стриатума выраженных эффектов пептида обнаружено не было. Так семакс при однократном введении в дозах 0,15 и 0,6 мг/кг (в/б) не изменял тканевое содержание дофамина и его метаболитов в стриатуме мышей линии С57/Ы. Не было также обнаружено изменений внеклеточных уровней дофамина и его метаболитов ДОФУК и ГВК в стриатуме свободноподвижных крыс Спрег-Доули при введении семакса в дозах 0,15 и 0,6 мг/кг (в/б). Эксперименты с использованием ингибитора декарбоксилазы 1-ароматических аминокислот NSD 1015 также не выявили значимых изменений скорости биосинтеза дофамина in vivo.

В условиях хронического (1 нед) введения семакса в дозе 0,6 мг/кг (в/б) наблюдается достоверное снижение тканевого содержания дофамина и ДОФУК на 15% и 25% по отношению к контролю, соответственно. Эти изменения могут быть обусловлены как замедлением оборота дофамина, так и изменениями в аффинности или плотности дофаминовых рецепторов.

Можно предположить, что эффекты семакса на дофаминергические системы мозга, в основном, проявляются в условиях ее гипер- и/или гипоактивности. В наших экспериментах было обнаружено, что семакс оказывает потенцирующее действие на дофаминергические системы стриатума, активированные d-амфетамином. Так, d-амфетамин в дозе 5 мг/кг (в/б) вызывал значительное повышение внеклеточного уровня дофамина в стриатуме свободноподвижных крыс Спрег-Доули с максимумом через 20-40 мин после введения. Максимальные пиковые концентрации дофамина в диализате достигали уровня 20 пмоль/мл, что приблизительно в 20 раз выше базального уровня. При предварительном введении семакса в дозе 0,6 мг/кг (в/б) за 20 мин до d-амфетамина внеклеточный уровень дофамина оказался достоверно более высоким по сравнению с эффектами одного d-амфетамина (ANOVA, р<0,05). Максимальные внеклеточные концентрации дофамина при комбинированном введении препаратов достигали уровня 36-38 пмоль/мл, что приблизительно в 1,8-2 раза выше соответствующих пиковых уровней дофамина при введении только d-амфетамина.

С целью дальнейшего анализа потенцирующего эффекта пептида были выполнены эксперименты по оценке влияния семакса и d-амфетамина при их совместном применении на локомоторную активность мышей линии С57/Ы, которая, как известно, связана с высвобождением дофамина в стриатуме и прилежащем ядре. Обнаружено, что при комбинированном применении семакса (0,6 мг/кг, в/б) и d-амфетамина (2 мг/кг, в/б) наблюдалось достоверное (р<0,05) повышение локомоторной активности мышей по сравнению с животными, которым вводили только d-амфетамин. Так, d-амфетамин в дозе 2 мг/кг (в/б) вызывал значительное увеличение двигательной активности мышей, которая достигала уровня 182±18% по сравнению с показателями предыдущей посадки (р<0,01). В то время, как локомоторная активность животных при последовательном введении семакса и d-амфетамина достигала уровня 261 ±30% по сравнению с соответствующими данными предыдущей посадки, что значимо (р<0,05) отличается от эффектов одного психостимулятора.

Представляется логичным предположить, что эффекты взаимодействия семакса и d-амфетамина могут быть следствием изменений пластичности дофаминергических систем мозга, в частности, нигростриатной и мезолимбической. Молекулярная природа таких изменений до настоящего времени остается неясной. Вместе с тем, логично предположить участие в этих процессах нейротрофических факторов. Так, в последнее время получены убедительные доказательства вовлечения нейротрофических факторов в модуляцию дофаминергической нейропередачи в мозге. Показано, например, что BDNF дозозависимо усиливает высвобождение дофамина в мезенцефалической культуре нейронов in vitro [Blochl & Sirrenberg, 1996]. Известно, что эффекты BDNF опосредуются специфическими рецепторами тирозинкиназы В (TrkB) [Minichiello et al., 1999, 2002; Postigo et al., 2002], которые коэкспрессируются, в частности, на дофаминергических нейронах черной субстанции [Blochl & Sirrenberg, 1996]. Все эти данные свидетельствуют о том, что BDNF может модулировать дофаминергическую передачу в мозге через TrkB рецепторы. Обнаружено, что предварительное введение антител к BDNF или к TrkB в прилежащее ядро вызывает дозозависимое снижение внеклеточного уровня дофамина в прилежащем ядре, а также локомоторной активности крыс Спрег-Доули в условиях гиперактивации дофаминергической системы, вызванной метамфетамином [Narita et al., 2003].

В недавних исследованиях выявлено, что семакс стимулирует экспрессию нейротрофических факторов BDNF и NGF как в глиальной культуре клеток in vitro [Shadrina et al., 2001], так и в некоторых структурах мозга крыс in vivo [Долотов и соавт., 2003].

Таким образом, в связи с вышесказанным, мы предполагаем, что потенцирование семаксом психостимулирующих эффектов d-амфетамина, вероятнее всего, связано с активацией экспрессии нейротрофических факторов BDNF и NGF [Shadrina et al., 2001; Долотов и соавт., 2003], что проявляется в изменении пластичности дофаминергической нейропередачи. Конкретным следствием этих изменений является усиление процесса высвобождения дофамина и, соответственно, большая выраженность поведенческих эффектов психостимулятора.

Далее были изучены нейропротекторные свойства семакса на моделях нейротоксического повреждения in vitro и in vivo. Повреждение дофаминергических нейронов вызывали воздействием специфического нейротоксина 6-ОНДА на первичные нейрональные и нейро-глиальные культуры клеток in vitro, полученные из эмбрионального мозга крыс Вистар. 6-ОНДА в концентрациях 2 и 5 мкМ через 24 ч вызывал гибель, соответственно, 30 и 80% ТГ-иммунореактивных нейронов. При предварительном за 30 мин или за 24 ч добавлении семакса (0,1 и 1 мкМ) к нейрональной культуре клеток повышения выживаемости дофаминергических нейронов обнаружено не было. Однако, в нейро-глиальной культуре клеток среднего мозга крыс Вистар семакс (0,1 мкМ), добавленный за 30 мин до 6-ОНДА (5 мкМ), значительно (р<0,05) повышал выживаемость дофаминергических нейронов (+30% по сравнению с контролем).

Полученные результаты свидетельствуют о существенной роли глиального окружения в поддержании жизнеспособности дофаминергических нейронов в присутствии семакса в условиях 6-ОНДА-вызванного повреждения. Выявленные в наших опытах цитопротекторные эффекты пептида, могут быть обусловлены повышением уровня нейротрофических факторов, таких как NGF, BDNF [Shadrina et al., 2001; Долотов и соавт., 2003] и GDNF, которые обладают выраженными нейропротекторными свойствами и могут препятствовать гибели дофаминергических нейронов [Spina et al., 1992; Eggert et al., 1999; Kawamata et al., 2003].

При моделировании повреждения дофамин- и серотонинергических систем мозга мышей линии С57/Ы in vivo с помощью специфических нейротоксинов (МФТП, d-амфетамин, 5,7-ДГТ) был обнаружен умеренный нейропротекторный эффект семакса в дозе 0,6 мг/кг (в/б) в условиях его хронического введения. Так, семакс уменьшал снижение тканевого содержания дофамина, ДОФУК и серотонина в стриатуме, вызванное введением d-амфетамина (5 мг/кг х 4, в/б) и 5,7-ДГТ (50 мкг, в латеральный желудочек мозга), соответственно. Однако, в условиях МФТП-вызванного повреждения дофаминергических нейронов стриатума защитный эффект пептида не проявлялся, что, по-видимому, может быть обусловлено преимущественно некротическим характером гибели нейронов в данных условиях [Choi et al., 1999 a, b; Soldner et al., 1999; Lotharius et al., 1999]. Можно предположить, что выявленные нами эффекты пептида связаны с активацией нейротрофических факторов, в частности NGF и BDNF [Shadrina et al., 2001; Долотов и соавт., 2003], которые, как было недавно показано, предупреждают гибель нейронов на различных моделях нейротоксического повреждения мозга [Spina et al., 1992; Eggert et al., 1999; Kawamata et al., 2003].

Список литературы диссертационного исследования Еремин, Кирилл Олегович, 2005 год

1. Алексеева Г.В., Боттаев Н.А., Горошкова В.В. Применение семакса в отдаленном периоде у больных с постгипоксической паталогией мозга. Анестезиология и реаниматология, 1999, (1), 40-43.

2. Аринова А.А. Влияние серотонина на болевую чувствительность и ноцицептивные реакции артериального давления. Экспериментальная и клиническая фармакология, 1994,57(2), 11-13.

3. Арушанян Э.Б. Стимуляторы психических процессов. Ставроп мед акад, Ставрополь, 2003, 304 с.

4. Ашмарин И.П., Каменский А.А., Шелехов С.Л. Действие фрагмента адренокортикотропного гормона АКТГ(4-10) на обучение белых крыс приположительном подкреплении. Доклады академии наук СССР, 1978, 240(5), 1245.

5. Ашмарин И.П., Ляпина JI.A., Пасторова В.Е. Модуляция гемостатических реакций in vitro и in vivo представителями семейств регуляторных пептидов. Вестник Российской академии медицинских наук, 1996, (6), 50-57.

6. Ред.: Ашмарин И.П., Стукалов П.В., Ещенко Н.Д. Биохимия мозга. С-Пб, изд. С-Петербургского университета, 1999,328 с.

7. Ашмарин И.П. Прогнозируемые и неожиданные физиологические эффекты олигопептидов (глипролинов, аналогов АКТГ4.10, тафцина, и тиролиберина). Российский физиологический журнал им И.М.Сеченова, 2001, 87(11), 14711476.

8. Волков А.В., Муравьев О.В., Мишарина Г.В. Возможности терапии постреанимационного процесса с помощью регуляторных пептидов после 10 и 15 минут остановки сердца. Анестезиология и реаниматология, 1996, (5), 67-70.

9. Воронина Т.А. Новые направления поиска ноотропных препаратов. Вестник российской академии медицинских наук. 1998 а, (11), 16-21.

10. Воронина Т.А., Середенин С.Б. Ноотропные препараты, достижения и новые проблемы. Экспериментальная и клиническая фармакология, 1998 б, 61(4), 3-9.

11. Гецова В.М., Орлова Н.В., Фоломкина А.А., Незавибатько В.Н. Влияние аналога АКТГ на процессы обучения и памяти у крыс. Журнал высшей нервной деятельности, 1988, 38(6), 1041-1046.

12. Глазова Н.Ю., Левицкая Н.Г., Андреева Л.А., Каменский А.А., Мясоедов Н.Ф. Ноотропные эффекты нового аналога фрагмента АКТГ(5-10) -гексапептида AKTr(5-7)PGP. Доклады академии наук, 1999,367(1), 137-140.

13. Гривенников И.А., Долотов О.В., Гольдина Ю.И. Факторы пептидной природы в процессах пролиферации, дифференцировки и поддержания жизнеспособности клеток нервной системы млекопитающих. Молекулярная биология, 1999,33(1), 120-126.

14. Жуйкова С.Е., Сергеев В.И., Самонина Г.Е., Мясоедов Н.Ф. Влияние семакса на индометациновое язвообразование у крыс и один из возможных механизмов его действия. Бюллетень экспериментальной биологии и медицины, 2002,133(6), 665-667.

15. Иваников И.О., Брехова М.Е., Самонина Г.Е., Мясоедов Н.Ф., Ашмарин И.П. Опыт применения пептида семакс при лечении язвы желудка. Бюллетень экспериментальной биологии и медицины, 2002,133-134(7), 83-84.

16. Иванова Д.М., Левицкая Н.Г., Андреева Л.А., Алфеева Л.Ю., Каменский А.А., Мясоедов Н.Ф. Влияние семакса на болевую чувствительность животных в различных экспериментальных моделях. Доклады академии наук, 2003,388(3), 416-419.

17. Королева М.В. Мейзеров Е.Е., Незавибатько В.Н., Каменский А.А., Дубынини В.А., Яковлев Ю.Б. Изучение анальгетического действия препарата семакс. Бюллетень экспериментальной биологии и медицины, 1996,122(11), 527-529.

18. Кост Н.В., Соколов О.Ю., Габаева М.В., Гривенников И.А., Андреева Л.А., Мясоедов Н.Ф., Зозуля А.А. Ингибиторное действие семакса и селанка на энкефалиндеградирующие ферменты сыворотки крови человека. Биоорганическая химия, 2001,27(3), 180-183.

19. Кругликов Р.И., Орлова Н.В., Гецова В.М. Содержание норадреналина и серотонина в симметричных отделах мозга крыс в норме, при обучении и введении пептидов. Журнал высшей нервной деятельности, 1991,41(2), 359363.

20. Кудрин B.C., Сергеева С.А., Красных Л.М., Мирошниченко И.И., Грехова Т.В., Гайнетдинов P.P. Влияние бромантана на дофамин- исеротонинергические системы мозга крыс. Экспериментальная и клиническая фармакология, 1995, 58(4), 8-11.

21. Курышева Н.И., Шпак А.А., Иойлева Е.Э., Галантер Л.И., Нагорнова Н.Д., Шубина Н.Ю., Слышалова Н.Н. "Семакс" в лечении глаукоматозной оптической нейропатии у больных с нормализованным офтальмотонусом. Вестник офтальмологии, 2001,117(4), 5-8.

22. Левицкая Н.Г., Себенцова Е.А., Глазова Н.Ю., Воскресенская О.Г., Андреева Л.А., Алфеева Л.Ю., Каменский А.А., Мясоедов Н.Ф. Исследование нейротропной активности продуктов ферментативной деградации семакса. Доклады академии наук, 2000,372(2), 268-271.

23. Лысенко А.В., Ускова Н.И., Островская Р.У., Гудашева Т.А., Воронина Т.А. Дипептидный ноотроп ГВС-111 предотвращает накопление продуктов перекисного окисления липидов при иммобилизации. Экспериментальная и клиническая фармакология, 1997, 60(5), 15-18.

24. Машковский М.Д. Лекарственные сердства, Харьков «Торсинг», 13-е изд, 1997, т. 1, стр. 108.

25. Мясоедов Н.Ф., Скворцова В.И., Насонов Е.Л., Журавлева Е.Ю., Гривенников И.А., Арсеньева Е.А., Суханов И.И. Изучение механизмов нейропротективного действия семакса в остром периоде ишемического инсульта. Журнал неврологии и психиатрии, 1999,5, 15-19.

26. Новоселов И.А., Раевский К.С. Влияние различных подтипов дофаминовых рецепторов на локомоторную активность мышей линии C57BL, обусловленную введением психостимуляторов. Экспериментальная и клиническая фармакология, 2003, 66(6), 11-15.

27. Островская Р.У., Гудашева Т.А., Воронина Т.А., Середенин С.Б. Оригинальный ноотропный и нейропротективный препарат ноопепт. Экспериментальная и клиническая фармакология, 2002,65(5), 66-72.

28. Полунин Г.С., Нуриева С.М., Баяндин Д.Л., Шеремет Н.Л., Андреева Л. А. Определение терапевтической эффективности нового отечественного препарата "Семакс" при заболеваниях зрительного нерва. Вестник офтальмологии, 2000,116(1), 15-18.

29. Пономарева-Степная М.А., Незавибатько В.Н., Антонова JI.B., Андреева JI.A., Алфеева Л.Ю., Потаман В.Н., Каменский А.А., Ашмарин И.П. Аналог АКТГ4-10 стимулятор обучения пролонгированного действия. Химико-фармацевтический журнал, 1984, (7), 790-795.

30. Пономарева-Степная М.А., Бахарев В.Д., Незавибатько В.Н., Андреева Л.А., Алфеева Л.Ю., Потаман В.Н. Сравнительные исследования аналогов АКТГ4-10 — стимуляторов обучения и памяти. Химико-фармацевтический журнал, 1986 а, (6), 667-670.

31. Пономарева-Степная М.А., Порункевич Е.А., Скуиньш А.А., Незавибатько В.Н., Ашмарин И.П. Гормональная активность аналога АКТГ4-10 -стимулятора обучения пролонгированного действия. Бюллетень экспериментальной биологии и медицины, 1986 б, 101(3), 267-268.

32. Раевский К.С., Сотникова Т.Д., Гайнетдинов P.P. Дофаминергические системы мозга: рецепторная гетерогенность, функциональная роль, фармакологическая регуляция. Успехи физиол. наук, 1996,27(4), 3-30.

33. Раевский К.С. Функциональная роль и фармакологическая модуляция дофаминергических систем мозга. Вестник РАМН, 1998, (8), 19-24.

34. Сафарова Э.Р., Шрам С.И., Гривенников И.А., Мясоедов Н.Ф. Трофическое действие ноотропных пептидных препаратов церебролизина и семакса на культивируемые клетки феохромоцитомы крысы. Бюллетень экспериментальной биологии и медицины, 2002,133(4), 462-465.

35. Сафарова Э.Р., Шрам С.И., Золотарев Ю.А., Мясоедов Н.Ф. Влияние пептида семакса на выживаемость культивируемых клеток феохромоциотомы крысы при окислительном стрессе. Бюллетень экспериментальной биологии и медицины, 2003, 135(3), 309-313.

36. Хугаева В.К., Александрии В.В. Зависимость терапевтического эффекта пептидного препарата семакс от степени тяжести ишемии мозга. Бюллетень экспериментальной биологии и медицины, 1997, 124(7), 39-42.

37. Шабанов П.Д., Лебедев А.А., Мещеров Ш.К. Дофамин и подкрепляющие системы мозга. Лань, Санкт-Петербург, 2002,208 с.

38. Яковлева Е.В., Кузенков B.C., Федоров В.Н., Скворцова В.И., Кошелев В.Б., Гусев Е.И., Ашмарин И.П. Исследование эффективности семакса при глобальной ишемии мозга in vivo. Бюллетень экспериментальной биологии и медицины, 1999,127(8), 172-174.

39. Яснецов В.В., Крылова И.Н., Попов В.М. Коррекция ноотропами нарушений процессов обучения и памяти вызванных некоторыми экстремальными воздействиями. Экспериментальная и клиническая фармакология, 1996, 59(3), 20-23.

40. Яснецов В.В., Крылова И.Н., Проворнова Н.А. Фармакологическая коррекция нарушений мнестических функций, вызванных гипоксией и ишемией, у крыс. Авиакосмическая и экологическая медицина, 1998, 32(1), 55-60.

41. Яснецов В.В., Правдивцев В.А., Крылова И.Н., Козлов С.Б., Проворнова Н.А., Иванов Ю.В., Яснецов Вик.В. Влияние ноотропов на импульсную активность нейронов коры большого мозга. Экспериментальная и клиническая фармакология, 2001,64(6), 3-6.

42. Яснецов Вик. В., Проворнова Н.А. Метод воспроизведения амнезии у мышей с помощью комплексного экстремального воздействия. Экспериментальная и клиническая фармакология, 2003, 66(3), 66-68.

43. Abad F., Maroto R., Lopez M.G., Sanchez-Garcia P., Garcia A.G. Pharmacological protection against the cytotoxicity induced by 6-hydroxydopamine and H202 in chromaffin cells. Eur J Pharmacol, 1995, 293(1), 55-64.

44. Abdel-Malek Z.A. Melanocortin receptors: their functions and regulation by physiological agonists and antagonists. Cell Mol Life Sci, 2001, 58(3), 434-441.

45. Adan R.A.H., Cone R.D., Burbach J.P.H., Gispen W.H. Differential effects of melanocortin peptides on neural melanocortin receptors. Mol Pharmacol., 1994 a, 46(6), 1182-1190.

46. Adan R.A.H., Oosterom J., Ludvigsdottir G., Brakkee J.H., Burbach J.P.H., Gispen W.H. Identification of antagonists for МСЗ, MC4 and MC5 receptors. Eur J Pharmacol, 1994 b, 269(3), 331-337.

47. Adan R.A.H., Gispen W.H. Brain melanocortin receptors: from cloning to function. Peptides, 1997,18(8), 1279-1287.

48. Adan R.A.H., Gispen W.H. Melanocortins and the brain: from effects via receptors to drug tartgets. European journal of pharmacology, 2000, 405(1-3), 1324.

49. Afanas'ev I.I., Anderzhanova E.A., Kudrin V.S., Rayevsky K.S. Effects of amphetamine and sydnocarb on dopamine release and free radical generation in rat striatum. Pharmacol Biochem Behav, 2001,69(3-4), 653-658.

50. Aloyo V.J., Spruyt В., Zwiers H., Gispen W.H. Peptide induced excessive grooming behaviour: the role of opiate receptors. Peptides, 1983,4(6), 833-836.

51. Anderzhanova E., Rayevsky K.S., Saransaari P., Riitamaa E., Oja S. Effects of sydnocarb and d-amphetamine on the extracellular of amino acids in the rat caudate-putamen. Eur J Pharmacol, 2001,428(1), 87-95.

52. Anderzhanova E., Rayevsky K.S., Saransaari P., Oja S. Effect of sulpiride on the amphetamine-induced changes in extracellular dopamine, DOPAC and hydroxyl radical generation in the rat striatum. Neurochemical research, 2003, 28(8), 12411248.

53. Andrew R., Watson D.G., Best S.A., Midgley J.M., Wenlong H., Petty R.K. The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal control. Neurochem Res., 1993, 18(11), 11751177.

54. Antonawich F.J., Azmitia E.C., Strand F.L. Rapid neurotrophic actions of an ACTH/MSH(4-9) analogue after nigrostriatal 6-OHDA lesioning. Peptides, 1993, 14(6), 1317-1324.

55. Antonawich F.J., Azmitia E.C., Kramer H.K., Strand F.L. Specificity versus redundancy of melanocortins in nerve regeneration. Ann N Y Acad Sci., 1994, 739, 60-73.

56. Antonawich F.J., Miller G., Rigsby D.C., Davis J.N. Regulation of ischemic cell death by glucocorticoids and adrenocorticotropic hormone. Neuroscience. 1999, 88(1), 319-325.

57. Asanuma M., Hirata H., Cadet J.L. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice. Neuroscience, 1998, 85(3), 907-917.

58. Ashmarin I.P., Nezavibatko V.N., Levitskaya N.G., Koshelev V.B., Kamensky A. A. Design and investigation of an АСТЩ4-10) analogue lacking d-amino acids and hydrophobic radicals. Neuroscience research communications, 1995, 16(2), 105-112.

59. Attella M.J., Hoffman S.W., Pilotte M.P., Stein D.G. Effects of BIM-22015, an analog of ACTH4-10, on functional recovery after frontal cortex injury. Behav Neural Biol., 1992,57(2), 157-166.

60. Bardin L., Bardin M., Lavarenne J., Eschalier A. Effect of intrathecal serotonin on nociception in rats: influence of the pain test used. Exp Brain Res., 1997, 113(1), 81-87.

61. Bardin L., Schmidt J., Alloui A., Eschalier A. Effect of intrathecal administration of serotonin in chronic pain models in rats. Eur J Pharmacol., 2000,409(1), 37-43.

62. Barros D.M., Izquierdo L.A., Medina J.H., Izquierdo I. Pharmacological findings contribute to the understanding of the main physiological mechanisms of memory retrieval. Curr Drug Target CNS Neurol Disord., 2003,2(2), 81-94.

63. Bashkatova V, Kraus M, Prast H, Vanin A, Rayevsky K, Philippu A. Influence of NOS inhibitors on changes in ACH release and NO level in the brain elicited by amphetamine neurotoxicity. Neuroreport, 1999, 10(15), 3155-3158.

64. Berke J.D., Hyman S.E. Addiction, dopamine, and the molecular mechanisms of memory. Neuron, 2000,25(3), 515-532.

65. Bezard E., Imbert C., Deloire X., Bioulac В., Gross C.E. A chronic MPTP model reproducing the slow evolution of Parkinson's disease: evolution of motor symptoms in the monkey. Brain Res., 1997,766(1-2), 107-112.

66. Blochl A., Sirrenberg C. Neurotrophic stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors. J Biol Chem, 1996, 271(35), 21100-21107.

67. Bloom F.E., Algeri S., Groppetti A., Revuelta A., Costa E. Lesions of central norepinephrine terminals with 6-OH-dopamine: biochemistry and fine structure. Science, 1969,166(910), 1284-1286.

68. Boireau A., Dubedat P., Bordier F., Репу C., Miquet J.M., Durand G., Meunier M., Doble A. Riluzole and experimental parkinsonism: antagonism of MPTP-induced decrease in central dopamine levels in mice. Neuroreport, 1994, 5(18), 2657-2660.

69. Bohus В., Kovacs G.L., Greven H.M., De Wied D. Oxytocin, vasopressin and memory: opposite effects on consolidation and memory processes. Brain Research, 1978, 157(2), 414-417.

70. Bohus В., Conti L., Kovacs G.L., Versteeg D.H.G. Modulation of memory processes by neuropeptides (interaction with transmitter systems. In: Marsan C.A., Matthies H. (Eds.). Neuronal plasticity and memory formation. Raven Press, NY, 1982,75-87.

71. Borisenko G.G., Kagan V.E., Hsia C.J., Schor N.F. Interaction between 6-hydroxydopamine and transferrin: "Let my iron go". Biochemistry, 2000, 39(12), 3392-3400.

72. Bowyer J.F., Davies D.L., Schmued L., Broening H.W., Newport G.D., Slikker W., Holson R.R. Further studies if the role of hyperthermia in methamphetamine neurotoxicity. J Pharmacol Exp Ther, 1994,268(3), 1571-1580.

73. Bowyer J.F., Peterson S.L., Rowntree R.L., Tor-Agbidye J., Wang G.J. Neuronal degeneration in rat forebrain resulting from d-amphetamine induced convulsions is dependent upon severity and age. Brain Res, 1998, 809(1), 77-90.

74. Bowyer J.F. Neuronal degeneration in the limbic system of weanling rats exposed to saline, hyperthermia or d-amphetamine. Brain Res, 2000, 885(2), 166-171.

75. Brassen S., Adler G. Short-term Effects of Acetylcholinesterase Inhibitor Treatment on EEG and Memory Performance in Alzheimer Patients: an Open, Controlled Trial. Pharmacopsychiatry, 2003, 36(6), 304-308.

76. Cadet J.L., Ordonez S.V., Ordonez J.V. Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2. Synapse, 1997, 25(2), 176-184.

77. Chaillet P., Coulaud A., Fournie-Zaluski M.C., Gacel G., Roques B.P., Costentin J. Pain control by endogenous enkephalins is mediated by mu opioid receptors. Life Sci., 1983,33, Suppl 1,685-688.

78. Chaki S, Ogawa S, Toda Y, Funakoshi T, Okuyama S. Involvement of the melanocortin MC4 receptor in stress-related behavior in rodents. Eur J Pharmacol., 2003 b, 474(1), 95-101.

79. Chen W., Kelly M.A., Optiz-Araya X., Thomas R.E., Low M.G., Cone R.D. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell, 1997, 91(6), 789-798.

80. Chhajlani V., Wikberg J.E. Molecular cloning and expression of the human melanocyte hormone receptor cDNA. FEBS letters, 1992,309(3), 417-420.

81. Chhajlani V., Muceniece R., Wikberg J.E. Molecular cloning of a novel human melanocortin receptor. Biochemical and biophysical research communications, 1993,195(2), 866-873.

82. Chhajlani V. Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochemistry and molecular biology international, 1996, 38(1), 73-80.

83. Chia L.G., Ni D.R., Cheng F.C., Ho Y.P., Kuo J.S. Intrastriatal injection of 5,7-dihydroxytryptamine decreased 5-HT levels in the striatum and suppressed locomotor activity in C57BL/6 mice. Neurochemical Research, 1999, 24(6), 719722.

84. Choi W.S., Yoon S.Y., Oh Т.Н., Choi E.J. O'Malley K.L., Oh Y.J. Two distinct mechanism are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS and JNK. J Neurosci Res, 1999 b,57(l), 86-94.

85. Christensen A., Arnt J., Hyttel J., Larson J., Svenson O. Pharmacological effects of a specific dopamine D1 antagonist SCH23390 in comparison with neuroleptics. Life Sci., 1984, 34(16), 1529-1540.

86. Clark D., White F.J. D1 dopamine receptor the search for the function: a critical evaluation of the D1/D2 dopamine classification and its functional implications. Synapse, 1987,1(4), 347-388.

87. Clarkson E.D., Edwards-Prasad J., Freed C.R., Prasad K.N. Immortalized dopamine neurons: a model to study neurotoxicity and neuroprotection. Proc Soc Exp Biol Med, 1999,222(2), 157-163.

88. Clausing P., Bowyer J.F. Time course of brain temperature and caudate/putamen microdialysate levels of amphetamine and dopamine in rats after multiple doses of d-amphetamine. Ann NY Acad Sci., 1999, 890,495-504.

89. Courtney M.J., Akerman K.E.O., Coffey E.T. Neurotrophins protect cultured cerebral granule neurons against the early phase of cell death by a two-component mechanism. J Neurosci, 1997, 17(11), 4201-4211.

90. Cohen G., Heikkila R.E. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem, 1974,249(8), 2447-2452.

91. D'Amato R.J., Alexander G.M., Schwartzman R.J., Kitt C.A., Price D.L., Snyder S.H. Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature, 1987 b, 327(6120), 324-326.

92. Darlington C.L., Gilchrist D.P.D., Smith P.F. Melanocortins and lesion-induced plasticity in the CNS: a review. Brain Research Reviews, 1996,22(3), 245-257.

93. Date I., Felten D.L., Felten S.Y. Long-term effect of MPTP in the mouse brain in relation to aging: neurochemical and immunocytochemical analysis. Brain Res., 1990,519(1-2), 266-276.

94. Datta P.C., King M.G. Alpha-melanocyte-stimulating hormone and behavior. Neurosci Biobehav Rev. 1982, 6(3), 297-310.

95. Davidson C., Gow A.J., Lee Т.Н., Ellinwood E.H. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Brain Res Rev, 2001, 36(1), 1-22.

96. Davis G.C., Williams A.C., Markey S.P., Ebert M.H., Caine E.D., Reichert C.M., Kopin I.J. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res, 1979, 1(3), 249-254.

97. Decker D.E., Althaus L.S., Buxser S.E., Von Voigtlander P.F., Ruppel P.L. Competetive irreversible inhibition of dopamine uptake by 6-hydroxydopamine. Res Commun Chem Pathol Pharmacol, 1993, 79(2), 195-208.

98. Deng X., Cai N.S., McCoy M.T., Chen W., Trush A., Cadet J.L. Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology, 2002,42(6), 837-845.

99. Dodel R.C., Du Y., Bales K.R., Ling Z.D., Carvey P.M., Paul S.M. Caspase-3-like proteases and 6-hydroxydopamine induced neuronal cell death. Brain Res Mol Brain Res, 1999, 64(1), 141-148.

100. Drago F., Contarino A., Busa L. The expression of neuropeptide-induced excessive grooming behavior in dopamine D. and D2 receptor deficient mice. European Journal Pharmacology, 1999,365(2-3), 125-131.

101. Dray S.M., Taylor A.N. ACTH4-10 enhances retention of conditioned taste aversion learning in infant rats. Behav Neural Biol., 1982,35(2), 147-158.

102. Eggert K., Schlegel J., Oertel W., Wurz C., Krieg J.C., Vedder H. Glial cell line-derived neurotrophic factor protects dopaminergic neurons from 6-hydroxydopamine toxicity in vitro. Neurosci Lett, 1999,269(3), 178-182.

103. Emilien G., Maloteaux J.M., Geurts M., Hoogenberg K., Cragg S. Dopamine receptors physiological understanding to therapeutic intervention potential. Pharmacol Ther., 1999, 84(2) 133-156.

104. Ernberg M, Lundeberg T, Kopp S. Effect of propranolol and granisetron on experimentally induced pain and allodynia/hyperalgesia by intramuscular injection of serotonin into the human masseter muscle. Pain, 2000, 84(2-3), 339-346.

105. Escola L., Michelet Т., Macia F., Guehl D., Bioulac В., Burbaud P. Disruption of information processing in the supplementary motor area of the MPTP-treated monkey: a clue to the pathophysiology of akinesia? Brain, 2003, 126(Pt 1), 95114.

106. Fan W., Boston B.A., Kesterson R.A., Hruby V.J., Cone R.D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature, 1997,385(6612), 165-168.

107. Fekete M., De Wied D. Dose-related facilitation and inhibition of passive avoidance behavior by the ACTH 4-9 analog (ORG 2766). Pharmacol Biochem Behav. 1982 a, 17(2), 177-182.

108. Fekete M., De Wied D. Potency and duration of action of the ACTH 4-9 analog (ORG 2766) as compared to ACTH 4-10 and D-Phe7. ACTH 4-10 on active and passive avoidance behavior of rats. Pharmacol Biochem Behav. 1982 b, 16(3), 387-392.

109. Fekete M, Bohus B, de Wied D. Comparative effects of ACTH-related peptides on acquisition of shuttle-box avoidance behavior of hypophysectomized rats. Neuroendocrinology, 1983,36(2), 112-118.

110. Fekete M., Van Ree J.M., De Wied D. The ACTH-(4-9) analog ORG 2766 and desgIycinamide9-(Arg8)-vasopressin reverse the retrograde amnesia induced by disrupting circadian rhythms in rats. Peptides, 1986,7(4), 563-568.

111. Feldman R.S., Meyer J.S., Quenzer L.F. Principles of neuropsychopharmacology. Sinauer Associates, Inc., Sunderland, Massachusetts, USA, 1997.

112. Fleckenstein A.E., Hanson G.R. Impact of psychostimulants on vesicular monoamine transporter function. Eur J Pharmacol, 2003,479(1-3), 283-289.

113. Florijn W.J., Holtmaat J.G.D., De Lang H., Spierenburg H., Gispen W.H., Versteeg D.H.G. Peptide induced grooming bahavior and caudate nucleus dopamine release. Brain Research, 1993,625(1), 169-172.

114. Fonck C., Baudry M. Rapid reduction of ATP synthesis and lack of free radical formation by MPP+ in rat brain synaptosomes and mitochondria. Brain Res, 2003, 975(1-2), 214-221.

115. Franke H, Grosche J, Illes P, Allgaier C. 5,7-Dihydroxytryptamine~a selective marker of dopaminergic or serotonergic neurons? Naunyn Schmiedebergs Arch Pharmacol, 2002,366(4), 315-318.

116. Franklin K.B.J., Paxinos G. The mouse brain in stereotaxic coordinates. Academic Press, San Diego, California, USA, 1997.

117. Gantz I., Miwa H., Konda Y., Shimoto Y., Tashiro Т., Watson S.J., DelValle J., Yamada T. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. Journal of biological chemistry, 1993, 268(20), 1517415179.

118. Gee C.E., Chen C.L.C., Roberts J.L., Thompson R., Watson S.J. Identification of proopiomelanocortin neurons in the rat hypothalamus by in situ cDNA-mRNA hybridization. Nature, 1983,306(5941), 374-376.

119. Giordano J, Gerstmann H. Patterns of serotonin- and 2-methylserotonin-induced pain may reflect 5-HT(3) receptor sensitization. Eur J Pharmacol., 2004,483(2-3), 267-269.

120. Gispen W.H., Adan R.A. Melanocortins and the treatment of nervous system disease. Potential relevance to the skin? Ann N Y Acad Sci., 1999, 885,342-9.

121. Gispen W.H., Wiegant V.M., Greven H.M., De Wied D. The induction of excessive grooming in the rat by intraventricular application of peptides derived from ACTH: structure-activity studies. Life Science, 1975, 17(4), 645-652.

122. Goettl V.M., Huang Y., Hackshaw K.V., Stephens R.L. Jr. Reduced basal release of serotonin from the ventrobasal thalamus of the rat in a model of neuropathic pain. Pain, 2002, 99(1-2), 359-366.

123. Gold P.E. Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem., 2003, 80(3), 194-210.

124. Golembiowska K., Zylewska A. Agonists of Al and A2a adenosine receptors attenuate methamphetamine-induced overflow of dopamine in rat striatum. Brain Res, 1998, 806(2), 202-209.

125. Good P.F., Olanow C.W., Perl D.P. Neuromelanine-containing neurons of the substancia nigra accumulate iron and aluminum in Parkinson's disease: a LAMMA study. Brain Res., 1992, 593(2), 343-346.

126. Gough В., Imam S.Z., Blough В., Slikker W. Jr, Ali S.F. Comparative effects of substituted amphetamines (PMA, MDMA, and METH) on monoamines in rat caudate: a microdialysis study. Ann N Y Acad Sci, 2002, 965,410-420.

127. Greven H.M., De Wied D. Structure and behavioural activity of peptides related to corticotropin and lipotrophin. In: D. de Wied and P.A. van Keep (Eds.) Hormones and the brain, MTP Press, Lancaster, 1980,115-127.

128. Griffon N., Mignon V., Facchinetti P., Diaz J., Schwartz J.C., Sokoloff P. Molecular cloning and characterization of the rat fifth melanocortin receptor. Biochem Biophys Res Commun., 1994,200(2), 1007-1014.

129. Hefco V., Yamada K., Hefco A., Hritcu L., Tiron A., Nabeshima T. Role of the mesotelencephalic dopamine system in learning and memory processes in the rat. Eur J Pharmacol, 2003,475(1-3), 55-60.

130. Heikkila F., Cohen G. Further studies on the generation of hydrogen peroxide by 6-hydroxydopamine. Potentiation by ascorbic acid. Mol Pharmacol, 1972, 8(2), 241-248.

131. Herz R.C., Kasbergen C.M., Versteeg D.H., De Wildt D.J. The effect of the adrenocorticotropin-(4-9) analogue, ORG 2766, and of dizolcipine (MK-801) on infarct volume in rat brain. Eur J Pharmacol, 1998, 346(2-3), 159-165.

132. Hirsch E.C., Brandel J.P., Galle P., Javoy-Agid F., Agid Y. Iron and aluminum increase in the substantia nigra of patients with Parkinson's disease: an X-ray microanalysis. J Neurochem, 1991, 56(2), 446-451.

133. Hjorth S., Carlsson A. In vivo receptor binding, neurochemical and functional studies with the dopamine D-l receptor antagonist SCH23390. J Neural Transm., 1988,72(2), 83-97.

134. Hock F.J. Drug influences on learning and memory in aged animals and humans. Neuropsychobiology. 1987, 17(3), 145-160.

135. Hock F.J., Gerhards H.J., Wiemer G., Usinger P., Geiger R. Learning and memory processes of an ACTH4-9 analog (ebiratide; Hoe 427) in mice and rats. Peptides, 1988,9(3), 575-581.

136. Holmes A., Murphy D.L., Crawley J.N. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry, 2003,54(10), 953-959.

137. Horvath K.M., Meerlo P., Felszeghy K., Nyakas C., Luiten P.G. Early postnatal treatment with ACTH4-9 analog ORG 2766 improves adult spatial learning but does not affect behavioural stress reactivity. Behav Brain Res. 1999, 106(1-2), 181-188.

138. Hoskins J.A., Davis L.J. The acute effect on levels of catecholamines and metabolites in brain, of a single dose of MPTP in 8 strains of mice. Neuropharmacology, 1989,28(12), 1389-1397.

139. Isomae K., Morimoto S., Hasegawa H., Morita K., Kamei J. Effects of T-82, a novel acetylcholinesterase inhibitor, on impaired learning and memory in passive avoidance task in rats. Eur J Pharmacol., 2003,465(1-2), 97-103.

140. Jackson-Lewis V., Jakowec M., Burke R.E., Przedborski S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Neurodegeneration, 1995,4(3), 257-269.

141. Jay T.M. Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol, 2003, 69(6), 375-390.

142. Jellinger K., Linert L., Kienzl E., Herlinger E., Youdim M.B. Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson's disease. J Neural Transm Suppl, 1995,46,297-314.

143. Jones S.R., Gainetdiov R.R., Wightman R.M., Caron M.G. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J. Neurosci., 1998,18(6), 1979-1986.

144. Kaplan A.Ya., Kochetova A.G., Nezavibathko V.N., Rjasina T.V., Ashmarin I.P. Synthetic ACTH Analogue semax displays nootropic-like activity in humans. Neuroscience research communications, 1996,19(2), 115-123.

145. Kapur S, Remington G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry, 1996,153(4), 466-476.

146. Kawamata T, Yamaguchi T, Shin-ya К, Hon Т. Divergence in signaling pathways involved in promotion of cell viability mediated by bFGF, NGF, and EGF in PC 12 cells. Neurochem Res, 2003,28(8), 1221-1225.

147. Konig N., Wilkie M.B., Lauder J. Dissection of monoaminergic neuronal groups from embryonic rat brain. In: A dissection and tissue culture manual of the nervous system. Eds.: Shahar A., De Vellis J., Vernadakis A., Haber B. Wiley-Liss, NY, 1989,26-29.

148. Koplik E.V., Gryzunov Y.A., Dobretsov G.E. Blood albumin in the mechanisms of individual resistance of rats to emotional stress. Neurosci Behav Physiol, 2003, 33(8), 827-32.

149. Kramer B.C., Goldman A.D., Mytilineou C. Glial cell derived neurotrophic factor promotes the recovery of dopamine neurons damaged by 6-hydroxydopamine in vitro. Brain Research, 1999, 851(1-2), 221-227.

150. Kryzhanovsky G.N., Kucheryanu V.G., Pozdnyakov O.M., Kladkevich E.B., Krupina N.A., Nikushkin E.V., Oomura Y. Effects of fibroblast growth factors on MPTP-induced parkinsonian syndrome in mice. Pathophysiology, 1997,4, 59-67.

151. Kumar R., Agarwal M.L., Seth P.K. Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem, 1995, 64(4), 1703-1707.

152. Kuida K. Caspase-9. The international of biochemistry and cell biology, 2000, 32(2), 121-124.

153. Kurosaki R, Muramatsu Y, Watanabe H, Michimata M, Matsubara M, Imai Y, Araki T. Role of dopamine transporter against MPTP (l-methyl-4-pheny 1-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Metab Brain Dis., 2003, 18(2), 139146.

154. Lamensdorf I., Finberg J.P. Reduced striatal tyrosine hydroxylase activity is not accompanied by change in responsiveness of dopaminergic receptors following chronic treatment with deprenyl. Neuropharmacology, 1997,36(10), 1455-1461.

155. Langston J.W., Irwin I., Langston E.B., Forno L.S. Pargyline prevents MPTP-induced parkinsonism in primates. Science, 1984,225(4669), 1480-1482.

156. Lezcano N.E., De Barioglio S.R., Celis M.E. alpha-MSH changes cyclic AMP levels in rat brain slices by an interaction with the D1 dopamine receptor. Peptides, 1995,16(1), 133-137.

157. Li P., Nijhawan D., Budihardjo I., Srinivasula S.M., Ahmad M., Alnemri E.S., Wang X. Cytochrome С and dATP-dependent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997, 91(4), 479-489.

158. Lindblom J., Opmane В., Mutulis F., Mutule I., Petrovska R., Klusa V., Bergstrom L, Wikberg J.E.S. The MC4 receptor mediates a-MSH induced release of nucleus accumbens dopamine. Neuroreport, 2001, 12(10), 2155-2158.

159. Lipska BK, Jaskiw GE, Arya A, Weinberger DR. Serotonin depletion causes long-term reduction of exploration in the rat. Pharmacol Biochem Behav. 1992, 43(4), 1247-1252.

160. Ljubic-Thibal V., Diksic M., Hamel E., Raison S., Pujol J.F., Weissmann D. Ipsilateral alterations in tryptophan hydroxylase activity in rat brain after hypothalamic 5,7-di-hydroxytryptamine lesion. Brain Res., 1996, 724(2), 222-231.

161. Lotharius J, Dugan L.L., O'Malley K.L. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci, 1999, 19(4), 1284-1293.

162. Lyness S.A., Zarow C., Chui H.C. Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging, 2003,24(1), 1-23.

163. Mailman R.B., Schulz D.W., Lewis M.H., Staples L., Rollema H., Dehaven D.L. SCH-23390: a selective D1 dopamine antagonist with potent D2 behavioral actions. Eur J Pharmacol., 1984,101(1-2), 159-160.

164. Marks D.L., Butler A.A., Turner R., Brookhart G., Cone R.D. Differential role of melanocortin receptor subtypes in cachexia. Endocrinology, 2003, 144(4), 15131523.

165. Melega W.P., Williams A.E., Schmitz D.A., DiStefano E.W., Cho A.K. Pharmacokinetic and pharmacodynamic analysis of the actions of D-amphetamine and D-methamphetamine on the dopamine terminal. J Pharmacol Exp Ther, 1995, 274(1), 90-96.

166. Metodiewa D., Dunford H.B. Peroxidase-promoted oxidation and peroxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine. A new pathway for its metabolic degradation. Mol Cell Biochem., 1992,112(1), 35-44.

167. Miller H.H., Shore P.A., Clarke D.E. In vivo monoamine oxidase inhibition by d-amphetamine. Biochem Pharmacol, 1980,29(10), 1347-1354.

168. Minichiello L, Korte M, Wolfer D, Kuhn R, Unsicker K, Cestari V, Rossi-Arnaud C, Lipp HP, Bonhoeffer T, Klein R. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 1999,24(2), 401-414.

169. Minichiello L., Calella A.M., Medina D.L., Bonhoeffer Т., Klein R., Korte M. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron, 2002, 36(1), 121-137.

170. Missale C., Nash S. R., Robinson S. W., Jaber M., Caron M.G. Dopamine receptors: from structure to function. Physiol. Rev., 1998, 78(1), 189-225.

171. Miyashita Т., Reed J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 1995, 80(2), 293-299.

172. Molloy A.G., Waddington J.L. Dopaminergic behavior stereospecifically promoted by the D1 agonist R-SK & F38393 and selectively blocked by the D1 antagonist SCH23390. Psychopharmacology (Berl.), 1984, 82(4), 409-410.

173. Morelli M, Di Chiara G. Catalepsy induced by SCH 23390 in rats. Eur. J. Pharmacol, 1985,117(2), 179-185.

174. Morley J.E., Flood J.F. Neuropeptide Y and memory processing. Ann. New York Acad Sci, 1990,611,226-231.

175. Mountjoy K.G., Robins L.S., Mortrud M.T., Cone R.D. The cloning of a family of genes that encode the melanocortin receptor. Science, 1992, 257(5074), 12481251.

176. Mountjoy K.G., Mortrud M.T., Low M.J., Simerley R.B., Cone R.D. Cloning and functional characterization of a melanocortin receptor (MC4-R) localized in neuroendocrine and autonomic circuitry in the brain. Mol. Endocrinol., 1994, 8(10), 1298-1308.

177. Nabeshima T, Yamada K. Neurotrophic factor strategies for the treatment of Alzheimer disease. Alzheimer Dis Assoc Disord, 2000,14 Suppl 1, S39-46.

178. Narita M., Aoki K., Takagi M., Yajima Y., Suzuki T. Implication of brain-derived neurotrophic factor in the release of dopamine and dopamine-related behaviors induced by methamphetamine. Neuroscience, 2003,119(3), 767-775.

179. Nicholson A.N., Stone B.M., Jones S.J. Studies on the possible central effects in man of a neuropeptide (ACTH 4-9 analogue). Eur J Clin Pharmacol, 1984, 27(5), 561-565.

180. Nieto M.M., Wilson J., Walker J., Benavides J., Fournie-Zaluski M.C., Roques B.P., Noble F. Facilitation of enkephalins catabolism inhibitor-induced antinociception by drugs classically used in pain management. Neuropharmacology, 2001,41(4), 496-506.

181. O'Donohue T.L., Dorsa D.M. The opiomelanotropinergic neuronal and endocrine systems. Peptides, 1982, 3(3), 353-395.

182. Oishi Т., Hasegawa E., Murai Y. Sulfhydryl drugs reduce neurotoxicity of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in the mouse. J Neural Transm Park Dis Dement Sect, 1993,6(1), 45-52.

183. Ollmann M.M., Wilson B.D., Yang Y.K., Kerns J.A., Chen Y., Gantz I., Barsh G.S. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science, 1997,278(5335), 135-138.

184. Oo T.F., Kholodilov N., Burke R.E. Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci, 2003,23(12), 5141-5148.

185. Packard M.G., White N.M. Dissociation of hippocampus and caudate nucleus memory systems by post-training intracerebral injections of dopamine agonists. Behav Neurosci, 1991,105(2), 295-306.

186. Paxinos G., Watson C. The rat brain stereotaxic coordinates, 2-nd edn., Academic Press, Sydney, 1986.

187. Pepeu G., Spignoli G. Nootropic drugs and brain cholinergic mechanisms. Prog Neuropsychopharmacol Biol Psychiatry, 1989, 13 Suppl., S77-88

188. Perez V., Unzeta M. PF 9601N N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine., a new MAO-B inhibitor, attenuates MPTP-induced depletion of striatal dopamine levels in C57/BL6 mice. Neurochem Int., 2003,42(3), 221-229.

189. Pifl C., Giros В., Caron M.G. Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism-inducing neurotoxin l-methyl-4-phenylpyridinium. J Neurosci., 1993,13(10), 4246-4253.

190. Pitsikas N. Spruijt B.M., Algeri S., Gispen W.H. The ACTH/MSH (4-9) analog Org2766 improves retrieval of information after a fimbria fornix transection. Peptides, 1990,11(5), 911-914.

191. Porter C.C., Totaro J.A., Stone C.A. Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice. J Pharmacol Exp Ther, 1963,140, 308-316.

192. Postigo A., Calella A.M., Fritzsch В., Knipper M., Katz D., Eilers A., Schimmang Т., Lewin G.R., Klein R., Minichiello L. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev, 2002, 16(5), 633645.

193. Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord, 1998,13, Suppl 1,35-38.

194. Ramaekers F., Rigter H., Leonard B.E. Parallel changes in behaviour and hippocampal monoamine metabolism in rats after administration of ACTH-analogues. Pharmacol Biochem Behav, 1978, 8(5), 547-551.

195. Ramsay R.R., Singer T.P. Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J Biol Chem, 1986,261(17), 7585-7587.

196. Rigter H., Van Riezen H., De Wied D. The effects of ACTH- and vasopressin-analogues on C02-induced retrograde amnesia in rats Physiol Behav. 1974, 13(3), 381-388.

197. Rigter H., Riezen H.V. Anti-amnesic effect of ACTH4-10: its independence of the nature of the amnesic agent and the behavioral test. Physiol Behav. 1975, 14(5), 563-566.

198. Rigter H., Janssens-Elbertse R, Van Riezen H. Reversal of amnesia by an orally active ACTH 4-9 analog (Org 2766). Pharmacol Biochem Behav. 1976, 5(Suppl 1), 53-58.

199. Rijzingen I.M.S., Gispen W.H., Spruijt B.M. The АСТЩ4-9) analog ORG 2766 and recovery after brain damage in animal models a review. Behavioural Brain Research, 1996, 74(1-2), 1-15.

200. Rohrbacher J., Krieglstein K., Honerkamp S., Lewen A., Misgeld U. 5,7-Dihydroxytryptamine uptake discriminates living serotonergic cells from dopaminergic cells in rat midbrain culture. Neurosci Lett, 1995,199(3), 207-210.

201. Sahin H.A., Gurvit I.H., Bilgic В., Hanagasi H.A., Emre M. Therapeutic effects of an acetylcholinesterase inhibitor (donepezil) on memory in Wernicke-Korsakoff's disease. Clin Neuropharmacol., 2002,25(1), 16-20.

202. Sawaguchi Т., Goldman-Rakic P.S. D2 dopamine receptors in prefrontal cortex: involvement in working memory. Science, 1991,251(4996), 947-950.

203. Schioth H.B., Muceniece R., Wikberg J.E.S., Chhajlani V. Characterisation of melanocortin receptor subtypes by radioligand binding analysis. Eur J Pharmacol, 1995,288(3), 311-317.

204. Schioth H.B., Muceniece R., Mutulis F., Bouifrouri A.A., Mutule I., Wikberg J.E. Further pharmacological characterization of the selective melanocortin 4 receptor antagonist HS014: comparison with SHU9119. Neuropeptides, 1999, 33(3), 191196.

205. Schmued L.C., Bowyer J.F., Methamphetamine exposure can produce neuronal degeneration in mouse hippocampal remnants. Brain Res., 1997,759(1), 135-140.

206. Schloss P., Williams D.C. The serotonin transporter: a primary target for antidepressant drugs. J Psychopharmacol, 1998,12(2), 115-121.

207. Sedelis M., Hofele K., Auburger G.W., Morgan S., Huston J.P., Schwarting R.K. MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet., 2000, 30(3), 171-182.

208. Sengstock G.J., Olanow C.W., Dunn A.J., Arendash G.W. Iron induces degeneration of nigrostriatal neurons. Brain Res Bull, 1992,28(4), 645-649.

209. Sengstock G.J., Olanow C.W., Dunn A.J., Barone S. Jr., Arendash G.W. Progressive changes in striatal dopaminergic markers, nigral volume, and rotational behavior following iron infusion into the rat substantia nigra. Exp Neurol, 1994,130(1), 82-94.

210. Senoh S., Creveling C.R., Udenfriend S., Witkop B. Chemical, enzymatic and metabolic studies on the mechanism of oxidation of dopamine. J Am Chem Soc, 1959,81,6236-6240.

211. Sershen H., Mason M.F., Reith M.E., Hashim A., Lajtha A. Effect of amphetamine on l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice. Neuropharmacology, 1986,25(8), 927-930

212. Shimodozono M, Kawahira К, Kamishita T, Ogata A, Tohgo S, Tanaka N. Reduction of central poststroke pain with the selective serotonin reuptake inhibitor fluvoxamine. Int J Neurosci., 2002,112(10), 1173-1181.

213. Silva N.L., Mariani A.P., Harrison N.L., Barker J.L. 5,7-Dihydroxytryptamine identifies living dopaminergic neurons in mesencephalic cultures. Proc Natl Acad Sci USA, 1988, 85(19), 7346-7350.

214. Slivka A., Cohen G. Hydroxyl radical attack on dopamine. J Biol Chem, 1985, 260(29), 15466-15472.

215. Smeyne M., Goloubeva O., Smeyne R.J. Strain-dependent susceptibility to MPTP and MPP(+)-induced parkinsonism is determined by glia. Glia, 2001, 34(2), 7380.

216. Smolnik R., Molle M., Fehm H.L., Born J. Brain potentials and attention after acute and subchronic intranasal administration ofACTH 4-10 and desacetyl-alpha-MSH in humans. Neuroendocrinology, 1999,70(1), 63-72.

217. Staal R.G., Sonsalla P.K. Inhibition of brain vesicular monoamine transporter (VMAT2) enhances l-metyl-4-phenylpyridinium neurotoxicity in vivo in rat striata. J Pharmacol Exp Ther, 2000,293(2), 336-342.

218. Starowicz К., Przewlocka В. The role of melanocortins and their receptors in inflammatory processes, nerve regeneration and nociception. Life Sciences, 2003, 73(7), 823-847.

219. Strand F.L., Zuccarelli L.A., Williams K.A., Lee S.J., Lee T.S., Antonawich F.J., Alves S.E. Melanotropins as growth factors. Ann NY Acad Sci, 1993, 680, 29-50.

220. Strand F.L. David and Goliath the slingshot that started the neuropeptide revolution. Eur J Pharmacol., 2000,405(1-3), 3-12.

221. Stein L., Wise C.D. Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by endogenous 6-hydroxydopamine. Res Publ Assoc Res Nerv Ment Dis., 1972, 50,298-314.

222. Stumm G., Schlegel J., Schafer Т., Wurz C., Mennel H.D., Krieg J.C., Vedder H. Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. FASEB J., 1999,13(9), 1065-1072.

223. Tabatabaie Т., Goyal R.N., Blank C.L., Dryhurst G. Further insights into the molecular mechanisms of action of the serotonergic neurotoxin 5,7-dihydroxytryptamine. J Med Chem, 1993,36(2), 229-236.

224. Tetrud J.W., Langston J.W., Garbe P.L., Ruttenber A.J. Mild parkinsonosm in persons exposed to l-methyl-4-phenyl-l,2,3,6,-tetrahydropyridine (MPTP). Neurology, 1989, 39(11), 1483-1487.

225. Thiboutot D., Sivarajah A., Gilliland K., Cong Z., Clawson G. The melanocortin 5 receptor is expressed in human sebaceous glands and rat preputial cells. J Invest Dermatol., 2000, 115(4), 614-619.

226. Traber J., Klein H.R., Gispen W.H. Actions of antidepressant and neuroleptic drugs on ACTH- and novelty-induced behavior in the rat. Eur J Pharmacol., 1982, 80(4), 407-414.

227. Treseder S.A., Rose S., Summo L., Jenner P. Commonly used L-amino acid decarboxylase inhibitors block monoamine oxidase activity in the rat. J Neural Transm, 2003, 110(3), 229-238.

228. Trimmer P.A., Smith T.S., Jung A.B., Bennett J.P. Jr. Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration, 1996, 5(3), 233-239.

229. Undie A.S., Friedman E. Differences in the cataleptogenic actions of SCH23390 ad selected classical neuroleptics. Psychopharmacol., 1988,96(3), 311-316.

230. Ungerstedt U. 6-Hydroxydopamine induced degeneration of central monoamine neurons. Eur J Pharmacol, 1968,5(1), 107-110.

231. Ungerstedt U. Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand Suppl., 1971, 367,49-68.

232. Uretsky N.J., Iversen L.L. Effects of 6-hydroxydopamine on catecholamine containing neurons in the rat brain. J Neurochem, 1970,17(2), 269-278.

233. Von Frijtag J.C., Croiset G., Gispen W.H., Adan R.A., Wiegant V.M. The role of central melanocortin receptors in the activation of hypothalamus-pituitary-adrenal-axis and the induction of excessive grooming. Br J Pharmacol, 1998, 123(8), 1503-1508.

234. Vos P.E., Bluemink G.J., Wolterink G., Van Ree J.M. The ACTH-(4-9) analogue ORG 2766 facilitates denervation supersensitivity after a unilateral 6-OHDA lesion of the corpus striatum in rats. Neuropeptides, 1991,19(4), 271-279.

235. Vos P.E., Steinbusch H.W., Van Ree J.M. Reinnervation after destruction of the dopaminergic system in the rat nucleus accumbens: a quantitative immunohistochemical analysis. Neurosci Lett., 1996,207(1), 21-4.

236. Vos P.E., Steinbusch H.W., Ronken E., Van Ree J.M. Short and long term plasticity after lesioning of the cell body or terminal field area of the dopaminergic mesocorticolimbic system in the rat. Brain Res., 1999, 831(1-2), 237-247.

237. Wachtel S.R., Brooderson R.J., White F.J. Parametric and pharmacological analyses of the enhanced grooming response elicited by the D1 dopamine receptor agonist SKF38393 in the rat. Psychopharmacology (Berl.), 1992,109(1-2), 41-48.

238. Wallach D., Boldin M., Varfolomeev E., Beyaert R., Vandenabeele P., Fiers W. Cell death induction by receptors of the TNF family: towards a molecular understanding. FEBS Letters, 1997,410(1), 96-106.

239. Wan F.J., Lin H.C., Huang K.L., Tseng C.J., Wong C.S. Systemic administration of d-amphetamine induced long-lasting oxidative stress in the rat striatum. Life Sciences, 2000, 66(15), PL 205-212.

240. Wan R, Diamant M, de Jong W, de Wied D. Differential effects of ACTH4-10, DG-AVP, and DG-OXT on heart rate and passive avoidance behavior in rats. Physiol Behav. 1992,51(3), 507-513.

241. Wang W., Dow K.E., Riopelle R.J., Ross G.M. The common neurotrophin receptor p75NTR enhances the ability of PCI 2 cells to resist oxidative stress by a trkA-dependent mechanism. Neurotox Res, 2001,3(5), 485-499.

242. Wiegant V.M., Colbern D., van Wimersma Greidanus T.J., Gispen W.H. Differential behavioural effects of ACTH 4-10 and D-Phe7. ACTH 4-10. Brain Res Bull, 1978, 3(2), 167-170.

243. Wiemer G., Gerhards H.J., Hock F.J., Usinger P., Von Rechenberg W., Geiger R. Neurochemical effects of the synthetic ACTH4-9-analog HOE 427 (Ebiratide) in rat brain. Peptides, 1988, 9(5), 1081-1087.

244. Witter A., Greven H.M., De Wied D. Correlation between structure behavioral activity and rate of biotransformation of some ACTH 4-9 analogs. J Pharmacol. Exp. Ther., 1975,193(3), 853-860.

245. Wolf М.Е., Xue С.J., Li Y., Wavak D. Amphetamine increases glutamate efflux in the rat ventral tegmental area by a mechanism involving glutamate transporters and reactive oxygen species. J Neurochem, 2000, 75(4), 1634-1644.

246. Wullner U., Loschmann P.A., Schulz J.B., Schmid A., Dringen R., Eblen F., Turski L., Klockgether T. Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurons. Neuroreport, 1996, 7(4), 921-923.

247. Yamamoto B.K., Zhu W. The effects of methamphetamine on the production of free radicals and oxidative stress. The Journal of Pharmacology And Experimental Therapeutics, 1998,287(1), 107-114.

248. Zhang J., Graham D.G., Montine T.J., Ho Y.S. Enhanced N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice deficient in CuZn-superoxide dismutase or glutathione peroxidase. J Neuropathol Exp Neurol, 2000, 59(1), 5361.

249. Zuddas A., Fascetti F., Corsini G.U., Piccardi M.P. In brown Norway rats, MPP+ is accumulated in the nigrostriatal dopaminergic terminals but it is not neurotoxic: a model of natural resistance to MPTP toxicity. Exp Neurol., 1994,127(1), 54-61.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.