Моделирование атомных неоднородностей в квазикристаллах Al-Mn и твердых растворах Mn в благородных металлах методами теории функционала плотности тема диссертации и автореферата по ВАК РФ 01.04.07, кандидат физико-математических наук Бочаров, Павел Владимирович
- Специальность ВАК РФ01.04.07
- Количество страниц 156
Оглавление диссертации кандидат физико-математических наук Бочаров, Павел Владимирович
Введение.
Глава 1. Литературный обзор.
1.1. Некоторые нерешенные проблемы строения твердых растворов.
1.2. Эффекты гигантского магнитного момента и спинового стекла в твердых растворах.
1.3. Сущность явления квазикристаллов.
1.4. Физические свойства квазикристаллов.
1.4. Теоретическое описание атомной структуры квазикристаллов.
1.5. Политопный подход к описанию структуры квазикристаллов.
1.6. Магнетизм и электронная структура икосаэдрических кластеров алюминия с ионами Зс1-металлов.
1.7. Постановка задачи исследования.
Глава 2. Методика проведения исследований.
2.1. Общая информация.
2.2. Методы расчёта структуры и свойств нанокластеров.
2.3. Первопринципные методы расчёта.
2.4. Теория функционала плотности.
2.4.1. Происхождение.
2.4.2. Теория Томаса-Ферми.
2.4.3. Теорема Хоэнберга и Кона.
2.4.4. Самосогласованные уравнения Кона-Шэма.
2.4.5. Приближение локальной плотности (ЬОА).
2.4.6. Обобщенное градиентное приближение (вОА).
2.4.6. Алгоритм расчёта с помощью теории функционала локальной плотности, включающий самосогласованное определение электронных потенциалов и плотности.
2.5. Программные и аппаратные средства.
2.6. Построение структур.
Глава 3. Электронная структура квазикристаллов алюминий-марганец со свойствами спинового стекла.
3.1. Общая информация.
3.2. Результаты и обсуждение.
Глава 4. Электронная структура ГЦК-твердых растворов палладий-марганец и медь-марганец.
4.1. Общая информация.
4.2. Модель структуры.
4.3. Результаты и обсуждение.
Глава 5. Модели зон Г-П.
Рекомендованный список диссертаций по специальности «Физика конденсированного состояния», 01.04.07 шифр ВАК
Иерархические модели атомного строения икосаэдрических и кубических апериодических фаз: квазикристаллов2008 год, кандидат физико-математических наук Ха Тхань Лам
Особенности электронных, магнитных и колебательных состояний квазикристаллов и магнитных нанокластеров на основе переходных металлов2009 год, кандидат физико-математических наук Руденко, Александр Николаевич
Структура и фазовые превращения в квазикристаллообразующих и β-сплавах системы Al-Cu-Fe2009 год, доктор химических наук Шалаева, Елизавета Викторовна
Особенности тепловых и упругих свойств квазикристаллов при низких температурах2005 год, доктор физико-математических наук Черников, Михаил Альбертович
Рентгенографическое исследование расплавов алюминия с никелем и образующихся из них при кристаллизации твердых фаз1999 год, кандидат физико-математических наук Поляков, Александр Алексеевич
Введение диссертации (часть автореферата) на тему «Моделирование атомных неоднородностей в квазикристаллах Al-Mn и твердых растворах Mn в благородных металлах методами теории функционала плотности»
Актуальность работы. Металлические материалы, применяемые на практике в качестве конструкционных или функциональных (в частности магнитных, электропроводящих), всегда находятся в далеком от термодинамического равновесия состоянии, зачастую метастабильном. Такие состояния достигаются фиксацией некоторого однородного высокотемпературного состояния при нормальных температуре и давлении и последующим частичным возвратом в сторону равновесия при отогреве (традиционная схема закалки с отпуском). В таких состояниях используются стали, дисперсионно-твердеющие сплавы, в том числе жаропрочные, сплавы для постоянных магнитов (литые и спеченные), резистивные сплавы (нихромы), магнитомягкие сплавы систем железо-никель и железо-кремний, нанокристаллические сплавы типа Файнмет. Понятно, что управление свойствами существующих материалов и создание новых материалов с новыми повышенными свойствами или ранее недостижимой комбинацией свойств невозможно без подробного знания их структуры, в том числе и структуры на атомном уровне. Фиксируемыми при комнатной температуре неравновесными состояниями являются: пересыщенные твердые растворы (мартенсит в случае протекания при закалке полиморфного превращения), аморфные и квазикристаллические фазы. Эти состояния являются стартовыми при последующем формировании свойств на стадии отпуска. Однако, локальное атомное строение конденсированных фаз именно на этих стадиях исследовано в наименьшей степени.
Несмотря на гигантское число исследований распада пересыщенных твердых растворов на зонной стадии старения, локальное атомное строение самих зон Гинье-Престона (Г-П) неизвестно, имеются лишь весьма упрощенные, фактически одномерные модели их строения не для конкретных сплавов. Понятно поэтому, что существование, например, зон Гинье-Престона с октаэдрической огранкой, вообще не имеет объяснения.
Известна лишь связь усредненной формы зоны Гинье-Престона (сфера, диск, стержень) с уровнем энергии искажений из-за разницы атомных радиусов растворителя и растворенного компонента. Понятно, что из анализа энергии упругих искажений получить объяснение октаэдрической огранки невозможно. Многочисленные экспериментальные данные показывают в то же время, что состояние полностью однородного твердого раствора практически не достигается. В некоторых системах даже в области однофазного твердого раствора (нихром №-20%Сг, сплав с вертикальной магнитной памятью Со-20%Сг) сильные аномалии электрических и магнитных свойств в комбинации с эффектами диффузного рассеяния ясно указывают на существование неоднородностей твердого раствора. Локальное строение этих неоднородностей неизвестно, непонятно даже, откуда можно получить информацию о строении этих неоднородностей.
Подобная ситуация существует и в отношении квазикристаллов, т. е. объектов с некристаллографической икосаэдрической симметрией картин точечной дифракции электронов. Они были открыты в 1984 в сплавах системы алюминий-марганец после закалки из жидкого состояния. С тех пор диапазон систем сплавов, образующих квазикристаллические фазы, значительно расширился, он включает в себя сплавы на основе титана, циркония, магния, палладия, галлия и др. До сих пор проблема атомного строения квазикристаллических фаз остается нерешенной проблемой физики конденсированного состояния. Наиболее распространенным методом описания структур квазикристаллических фаз остается т. н. метод срезов и проекций 6-мерных кубических решеток. Этот чисто формальный математический прием позволяет объяснить происхождение икосаэдрической симметрии точечных картин дифракции электронов, но не дает реальных атомных позиций в структуре. Как ни странно, икосаэдрические квазикристаллы системы А1-Мп имеют нечто общее с обычными кристаллическими твердыми растворами, а именно в квазикристаллах А18оМп2о и АЬзМпгг обнаружены эффект т. н. гигантского магнитного момента (магнитный момент на ион марганца составляет 9—10 моментов изолированного иона) и поведение спинового стекла, когда указанные гигантские моменты при некоторой низкой температуре «замораживаются» в случайных ориентациях. Но эффекты гигантского момента и спинового стекла обнаружены в 70х годах прошлого века в обычных кристаллических твердых растворах ^-переходных металлов (Мп, Ее, Со, №) в благородных металлах (Аи, Рс1, Си), причем в области концентраций магнитной примеси, соответствующей однофазному твердому раствору (т. е. даже не пересыщенному закалкой состоянию). Общепринятое объяснение поведения спинового стекла основано исключительно на эффектах магнитной поляризации ^-электронов проводимости и косвенному обменному взаимодействию магнитных ионов между собой через поляризованные электроны проводимости (взаимодействие Рудермана-Киттеля-Касуя-Иосида). Другими словами, причиной эффектов гигантского момента и спинового являются взаимодействия исключительно в электронной подсистеме на фоне обычной бездефектной кристаллической решетки. Однако, в эксперименте параметры спинового стекла в квазикристаллах оказались зависимыми от симметрии кваз и кристалл а (икосаэдрической или декагональной), что указывает на возможную связь эффекта гигантского магнитного момента со строением ближнего атомного окружения. Поэтому можно предположить, что и в твердых растворах на основе благородных металлов явления гигантского момента и спинового стекла могут быть связаны с атомными неоднородностями, и эти твердые растворы лишь номинально можно считать однородными. В 90-годы прошлого века появилась иерархическая модель атомного строения квазикристалла, в которой квазикристалл собран из атомных кластеров, включающих скопления (кластеры) атомов марганца, находящихся в непосредственном контакте между собой. Модель хорошо согласуется с дифракционными данными, не использует формальных представлений о срезах 6-мерной кубической решетки, и использует давно установленные факты существования тетраэдрических и треугольных кластеров марганца, хрома, кобальта и других металлов в кристаллических структурах многих интерметаллидов. Например, тетраэдрические кластеры меди существуют в структуре у-латуни, и этому соединению соответствует максимум концентрационной зависимости диамагнитного момента и константы Холла в системе Си^п.
Поэтому основной целью работы явилась проверка высказанного выше предположения о происхождении гигантского магнитного момента квазикристаллов А1-Мп благодаря присутствию в их структуре треугольных и/или тетраэдрических кластеров марганца, и о присутствии подобных кластеров в номинально однородных кристаллических твердых растворах, проявляющих эффект гигантского магнитного момента. Основным инструментом проверки были выбраны компьютерные расчёты электронной плотности и магнитного момента указанных объектов в рамках теории функционала плотности. Для достижения этой цели было необходимо решить следующие задачи: разработать методику компьютерного расчёта электронной структуры треугольных и тетраэдрических кластеров переходных ■ металлов (Мп и Со), находящихся в икосаэдрической алюминиевой оболочке; ш выполнить расчёты электронной структуры и магнитного момента кластеров переходных металлов с алюминием; выполнить расчёты магнитного момента объединений треугольных и тетраэдрических кластеров, формирующих иерархическую структуру икосаэдрического и декагонального квазикристаллов А1-Мп; выполнить расчёты электронной структуры и магнитного момента некоторых кристаллических растворах с эффектом спинового стекла (Рс1-Мп, Си-Мп) с учетом присутствия в их структуре не только изолированных магнитных ионов, а также димеров (гантелей), треугольников и тетраэдров магнитного иона; провести сравнение с экспериментом полученных результатов; в случае подтверждения высказанного предположения разработать вероятные модели атомного строения зон Гинье-Престона основных форм, наблюдаемых в эксперименте (сфера, диск, стержень, октаэдр). Научная новизна полученных в работе результатов заключается в следующем: щ впервые в рамках теории функционала плотности выполнены компьютерные расчёты электронного строения и магнитного момента кластеров Зс1-переходного металла (Мп и Со) в икосаэдрической оболочке алюминии, объединений этих кластеров в структуру квазикристалла, и в кристаллических твердых растворов с ГЦК-решеткой на основе палладии и меди; явление гигантского магнитного момента икосаэдрических и декагональных квазикристаллов впервые объяснено присутствием в их структуре треугольных и тетраэдрических кластеров переходного металла (марганца) и объединением кластеров в иерархические стержни; впервые показано, что явление гигантского магнитного момента в твердых растворов марганца в палладии и меди обусловлено не только особенностями электронного строения, но и присутствием в их структуре энергетически стабильных кластеров магнитного иона, и исследованные номинально твердые растворы могут считаться твердыми коллоидными растворами; впервые построены модели внутреннего атомного строения зон Гинье-Престона, соответствующие основным наблюдаемым в эксперименте внешним формам этих зон (сфера, диск, стержень), а также ранее не объясненной формы зоны с октаэдрической огранкой. Практическая ценность работы определяется разработкой в ней структурных моделей образующихся в технически важных сплавах состояний: неоднородного твердого раствора, внутреннего строения зон Гинье-Престона и подтверждением модели иерархического строения квазикристаллических фаз, а также условий возникновения и/или изменения намагниченности в металлических фазах. Полученные модели указывают на возможность получения новых материалов с атомными кластерами и их иерархическими объединениями в структуры и являются составной частью научных основ строения наноматериалов.
Основные положения и результаты, выносимые на защиту:
1. Результаты компьютерных расчётов электронного строения и магнитных моментов икосаэдрических кластеров, образующих структуру квазикристаллов, и объясняющих происхождение в квазикристаллах магнитного момента.
2. Результаты компьютерных расчётов электронного строения и магнитных моментов кристаллических твердых растворов на основе палладия и меди, содержащих кластеры ^¿/-металла (марганца), указывающие на неоднородный (коллоидный) характер этих растворов и связь явления гигантского магнитного момента с атомным строением твердого раствора.
3. Геометрическая модель внутреннего строения зон Гинье-Престона разных форм (сферической, дискообразной, стержневидной, октаэдрической).
Достоверность результатов исследований. Работа выполнена на современном научно-техническом уровне с использованием прогрессивных компьютерных методов" исследования — трёхмерного моделирования и расчётов свойств реальных твердых тел из первых принципов, позволяющих получать хорошие результаты практически без подгоночных параметров для достаточно сложных объектов. Выводы опираются на проведенные автором оригинальные и теоретически обоснованные исследования, которые отличающиеся убедительной достоверностью и воспроизводимостью.
Личный вклад автора. Подготовка и проведение моделирования структур и кластеров, а так же обработка и визуализация полученных результатов выполнены автором лично. Обобщение и формулировка научных выводов выполнена автором самостоятельно, а также в сотрудничестве с научными руководителями.
Апробация работы. Основные результаты и выводы, приведенные в диссертации, представлялись и докладывались на следующих конференциях:
Наукоёмкие технологии в приборо- и машиностроении и развитие инновационной деятельности в ВУЗе», Калуга, 2008;
Структурные основы модификации материалов методами нетрадиционных технологий (МНТ-Х)», Обнинск, 2009; «LAM XIV», Рим 2010;
Кристаллофизика XXI века, Москва 2010.
Публикации. Основные результаты диссертационной работы опубликованы в 6 научных работах, из них 3 в журналах по списку ВАК и 3 статьи в сборниках трудов конференций.
Объем и структура диссертации. Диссертационная работа состоит из введения, пяти глав, выводов по работе и библиографического списка. Общий объем диссертации составляет 156 страниц машинописного текста. Работа включает в себя 59 иллюстраций и одну таблицу.
Похожие диссертационные работы по специальности «Физика конденсированного состояния», 01.04.07 шифр ВАК
Генезис некоторых симметрийно обусловленных физических свойств квазикристаллов и механизмы структурного превращения квазикристалл-кристалл2002 год, доктор физико-математических наук Рошаль, Сергей Бернардович
Электронные и магнитные свойства икосаэдрических квазикристаллов2007 год, кандидат физико-математических наук Годонюк, Алексей Викторович
Влияние сильного s-d обмена на физические свойства манганитов и хромовых халькошпинелей2004 год, доктор физико-математических наук Абрамович, Анна Ивановна
Структурная устойчивость гидридов переходных металлов и квазикристаллов2011 год, кандидат физико-математических наук Белов, Максим Павлович
Фото- и магнитоиндуцированные эффекты в полумагнитных полупроводниках и квантоворазмерных структурах2000 год, доктор физико-математических наук Кусраев, Юрий Георгиевич
Заключение диссертации по теме «Физика конденсированного состояния», Бочаров, Павел Владимирович
Основные результаты и выводы
1. В рамках теории функционала плотности выполнены компьютерные расчёты электронной структуры и магнитного момента атомных кластеров, образуемых алюминием, палладием или медыо с 3 ¿/-переходными металлами, и составляющих структуры кристаллических интерметаллидов, икосаэдрических и декагональных квазикристаллов, а также неоднородных твердых растворов в гранецентрированной кубической решеткой.
2. расчёты магнитного момента икосаэдрических кластеров, содержащихся в кристаллических структурах интерметаллидов А1юМпз, А18Мп5, А11з(Сг,Мп)4814 показали усиление магнитного момента: магнитный момент кластера с тригональной симметрией Д;/, соответствует трем магнитным моментам единичного иона марганца (4,4 цв), момент кластера с тетраэдрической симметрией 71/ равен приблизительно 12 магнитным моментами единичного иона марганца (15,5 р®). Полученные значения магнитных моментов соответствуют треугольной и тетраэдрической конфигурациям марганцевых кластеров с непосредственными контактами Мп-Мп внутри икосаэдрической оболочки алюминия.
3. Магнитный момент икосаэдрических кластеров А1-Со с той же конфигурацией (интерметаллиды А15Со2, АЬоМпз) равен нулю.
4. Магнитный момент стержня, составленного из икосаэдрических кластеров в последовательности 71/ - Дм - 71/ согласно компьютерным расчётам оказался равным 20,5 цв- Эта величина позволяет объяснить явление гигантского магнитного момента икосаэдрических и декагональных квазикристаллов системы А1-Мп и в то же время подтверждает иерархическую модель сборки структуры квазикристаллов из кластеров с симметрией Дн, и 71/.
5. Компьютерные расчёты электронной структуры ГЦК-твердых растворов Си-Мп и Рс1-Мп, содержащих наряду с единичными ионами кластеры из 2, 3 и 4 ионов марганца, показали, что эффект гигантского магнитного момента, наблюдаемый в этих системах, обусловлен не только косвенным обменным взаимодействием магнитных ионов и ¿-¿/-поляризацией, но и геометрическим строением скоплений магнитных ионов растворенного компонента. При этом ионы кластеров марганца занимают позиции в узлах решетки растворителя.
6. В обеих системах (Си-Мп и Рс1-Мп) образованию кластеров примеси соответствует их энергетическая стабилизация, и по мере увеличения числа ионов марганца в кластере (димер, треугольник, тетраэдр) энергетический выигрыш возрастает.
7. В обеих системах магнитный момент единичного иона марганца составляет 3—4 момента изолированного иона марганца (4,2 цв для Си и 5 Цв для Рё), что соответствует экспериментальным данным по явлению гигантского момента в этих системах и подтверждает его общепринятые теоретические объяснения на основе косвенного обменного взаимодействия через поляризацию ¿-электронов проводимости.
8. В отношении магнитного момента системы Си-Мп и Рс1-Мп реагируют на образование кластеров по-разному. В димерах, треугольниках и тетраэдрах с прямыми контактами Мп-Мп величина магнитного момента на ион примеси снижается с увеличением числа атомов в кластере. В кластерах с промежуточным ионом растворителя в ребре (Мп-Рс1-Мп, Мп-Си-Мп, Мп-Рс1-Рс1-Мп и т.д.) магнитный момент на ион марганца растет с увеличением числа ионов в кластере в системе Рс1-Мп и снижается в системе Си-Мп. При этом момент на ион марганца в тетраэдре с ребром Мп-Рс1-Рс1-Мп больше, чем в тетраэдре с ребром Мп-Рё-Мп (7,2 и 5,05 Цв соответственно). Полученные результаты соответствуют опубликованным экспериментальным данным по магнитному поведению растворов Си-Мп и Рс1-Мп и объясняют наблюдаемую зависимость эффектов гигантского магнитного момента и спинового стекла для этих систем от концентрации, деформации и отжига.
9. Энергетическая стабильность кластеров марганца и соответствующий им магнитный момент позволяет считать, что эффекты гигантского магнитного момента и спинового стекла, наблюдаемые в однофазных областях твердого раствора диаграмм состояния Си-Мп и Рс1-Мп, являются проявлением состояния коллоидного твердого раствора этих номинально однородных твердых растворов.
10. Обнаруженная энергетическая стабилизация кластеров примеси позволила собрать трехмерные модели зон Гинье Престона любой из наблюдаемых форм, в том числе и зон с октаэдрической огранкой.
Список литературы диссертационного исследования кандидат физико-математических наук Бочаров, Павел Владимирович, 2012 год
1. Гинье А. Рентгенография кристаллов. M.-JL: Физматгиз, 1961. 604 с.
2. Келли А., Николсон Р. Дисперсионное твердение. М.: Металлургия, 1966. 300 с.
3. Буйнов H.H., Захарова P.P. Распад металлических пересыщенных твердых растворов. М.: Металлургия, 1964. 144 с.
4. Тяпкин Ю.Д., Гаврилова A.B. Старение сплавов // Итоги науки и техники. Металловедение и термическая обработка. // ВИНИТИ. 1974. Т.8. С.64-124.
5. Хачатурян А.Г. Теория фазовых превращений и структура твердых растворов. М.: Наука, 1974. 384 с.
6. Чуистов К.В. Старение металлических сплавов. Киев: Наукова думка, 1985.230 с.
7. Установщиков Ю.И. Выделение второй фазы в твердых растворах. М.: Наука, 1988. 172 с.
8. Чуистов К.В. Начальные стадии распада пересыщенных твердых растворов. I. Зоны и комплексы // Металлофизика и новейшие технологии. 1995. Т. 17, №5. С. 7-24.
9. Установщиков Ю.И., Пушкарев Б.Е. Упорядочение, расслоение и фазовые превращения в сплавах Fe-M // Успехи физических наук. 2006. Т. 176, №6. С. 611-621.
10. Gragg J.E., Jr., Cohen J.B. The structure of guinier-preston zones in aluminum-5 at.% silver//Acta Metallurgica. 1971. V. 19. P. 507-519.
11. Faceting of GP zones in an Al-Ag alloy / Alexander K.B. et al. // Acta Metallurgica. 1984. V. 32. P. 2241-2249.
12. Вайнштейн Б.К. Современная кристаллография. Симметрия кристаллов. Методы структурной кристаллографии. М.: Наука, 1979. Т. 1.384 с.
13. Guinier A. Heterogeneities in solid solutions // Solid State Physics. 1959. V. 9. P. 15-20.
14. Лившиц Б.Г., Крапошин B.C., Линецкий Я.Л. Физические свойства металлов и сплавов. М.: Металлургия, 1980. 320 с.
15. Жорин П.В., Крапошин B.C., Столяров В.Л. Особенности магнетронного напыления пленок сплава Со-20% Сг // Изв. Вузов. Черная металлургия. 1986. №9. С. 153- 154.
16. Магнетизм аморфных систем: Материалы Международного симпозиума / Под ред. Р. Леви, Р. Хасегава М.: Металлургия, 1981. 448 с.
17. Fisher К.Н., Hertz J.A. Spin Glasses. Cambridge (England): Cambridge University, 1991. 418 p.
18. Кинцель В. Спиновые стекла как модельные системы для нейронных сетей//Успехи физических наук. 1987.Т.152. С. 123-131.
19. Binder К., Yong А.Р. Spin glasses: Experimental facts, theoretical concepts, and open questions // Rev. Mod. Phys. 1986. V.58, №4. P. 801976.
20. Guy C.N., Howarth W. Spin glass behavior of the FCC solid solutions Pd-Mn // Proc. 2nd Int. Symp. on Amorphous Magnetism. New York, 1976. P. 137-144.
21. Chakravorty S., Panigrahy P., Beck P.A. Mictomagnetism in Pd-Cr and V-Mn Alloys // J. Appl. Phys. 1971. V. 42. P. 1698-1699.
22. Metastable giant moments in Gd-implanted GaN, Si and Sapphire / X. Wang et al. // J. Supercond. Nov. Magn. 2011. V. 24. P. 2123-2128.
23. Вонсовский C.B. Магнетизм. M.: Наука, 1971. 1032 с.
24. Coey J.M.D. Magnetism and Magnetic Materials. New York: Cambridge University Press, 2009. 618 p.
25. Buschow K.H.J., de Boer F.R. Physics of Magnetism and Magnetic Materials. New York: Kluwer Academic Publishers, 2004. 182 p.
26. Limited ferromagnetism and other magnetic properties of Pd-Mn alloys / Coles B.R. et al. //J. Phys. F: Metal Phys. 1975. V. 5. P.565-574.
27. ASM Handbook. Alloy Phase Diagrams. USA: ASM International, 1992.V. 3.P. 317.
28. ASM Handbook. Alloy Phase Diagrams. USA: ASM International, 1992.V. 3.P. 202.
29. Kouvel J.S. A ferromagnetic-antiferromagnetic model for copper-manganese and related alloys // Phys. Chem. Solids. 1963. V. 24. P. 795822.
30. Kouvel J.S. The ferromagnetic-antiferromagnetic properties of copper-manganese and silver-manganese alloys // J. Phys. Chem. Solids. 1961. V. 21. P. 57-70.
31. Boerstoel B.M., Zwart J. J., Hansen J. The specific heat of dilute palladium-manganese alloys; critical behavior and magnetic-field dependence //Physica. 1972. V. 57. P. 397-420.
32. Williams G., Loram J.W. Electron-magnon scattering in dilute Pd-Mn at low temperatures // Solid State Communications. 1969. V. 7. P. 1261-1265.
33. Giant moment and ferromagnetism in dilute Pd(Mn) alloys / W.M. Star et al. // Physical Review. 1975. V. 12. P. 2690-2709.
34. Nieuwenhuys G.J. Magnetic behaviour of cobalt, iron and manganese dissolved in palladium // Adv. in Physics. 1975. V. 24. P. 515-591.
35. Tustison R.W. Effect of plastic deformation on mictomagnetism in Cu75Mn25 // Solid State Communications. 1976. V. 19. P. 1075-1078.
36. Magnetization study of the I-Al8oMn2o and T-AbxMn22 quasicrystalline phases / D.P. Yang et al. // Journal of Magnetism and Magnetic Materials. 1992. V. 109. P. 1-6.
37. Metallic phase with long range orientational order and no translational symmetry / Shechtman D. et al. // Phys. Rev. Lett. 1984. V. 53. P. 19511953.
38. Bendersky L. Quasicrystal with One-Dimensional Translational Symmetry and a Tenfold Rotation Axis // Phys. Rev. Letters. 1985. V. 55. P. 14611463.
39. Ranganathan S., Chattopadhyay K. Quasicrystals //Annu. Rev. Mater. Sei. 1991. V. 21. P. 437-462.
40. Steurer W. Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals //Zeitschrift fur Kristallographie. 2004. Bd. 219. S. 391-446.
41. Steurer W. Present state of knowledge on quasicrystals // Applied Crystallography. 2004. V.19. P. 254-259.
42. Schaefer R.J., Bendersky L.A. Metallurgy of Quasicrystals // Boston: Academic Press Inc., 1988. V.l. P. 111-139.
43. Janot C. Quasicrystals. New York: Cambridge University Press, 1994. 2nd edition. 423 p.
44. Icosahedral quasicrystal of a melt quenched Al-Mn alloy observed by high resolution microscopy / K. Hiraga et al. // Sei. Rep. Res. Inst. Tohoku Univ. 1985. V. 32. P. 309-314.
45. AIMn quasicrystal aggregates with icosahedral morphology symmetry / H.U. Nissen et al. // Phil. Mag. 1988. V. 57. P. 587-597.
46. The phase diagrams and structures of the ternary AlCuFe system in the vicinity of the icosahedral region / F. Faydot et al. // Mater. Sei, Eng. 1991. V.133. P. 383-387.
47. Production of single Al64Cu23Fei3 icosahedral quasicrystal with the Czochralski method / Y. Yokoyama et al. // Mater. Sei. Eng. 2000. V. 294. P. 68-73.
48. A stable binary quasicrystal / A.P. Tsai et al. // Nature. 2000. V.408. P. 537-538.
49. Evidence of a stable binary CdCa quasicrystalline phase / Z. Jiang et al. //Appl. Phys. Lett. 2001. V.78. P.1856-1857.
50. Gregson P.J., Court S.A. Grain boundary precipitation of I-phase in 8090 alloy sheet (Al-2,33%Li-l,16%Cu-0,80%Mg-0,06%Zr) // Scripta Metallurgica et Materialia. 1994. V. 30. P. 1359 -1363.
51. Cassada W.A., Shiflet G.J., Starke E.A. Grain boundary precipitates with five-fold diffraction symmetry in an Al-Li-Cu alloy // Scripta Metallurgica. 1986. V. 20. P. 751-756.
52. Kelton K.F. Crystallization of liquids and glasses to quasicrystals // Journal of Non-Crystalline Solids. 2004. V. 335. P. 253-258.
53. Fukamichi K. Magnetic properties of quasicrystals // Springer Ser. SolidState Sei. 1999. V. 126. P. 295-326.
54. Vedmedenko E.Y. Magnetic ordering in quasicrystals // Modern Physics Letters B. 2005. V. 19. P. 1367-1385.
55. High Resistivity and Diamagnetism in AlPdMn Icosahedral Phase / P. Lanco et al. // Europhys. Lett. 1992. V.18. P. 227- 232.
56. The distinction between the magnetic properties of quasicrystalline and amorphous Al85.xPdi5Mnx alloys / Y. Hattori et al. // J. Phys. Condens. Matter. 1994. V. 6. P. 10129-10140.
57. Yamamoto A. Crystallography of Quasiperiodic Crystals // Acta Cryst. 1996. V. 52. P. 509-560.
58. Penrose R. Pentaplexity: a class of non-periodic tilings of the plane //Eureka. 1978. V. 39. P. 16-22.
59. Socolar J.E.S., Steinhardt P.J. Quasicrystals II. Unit-cell configurations //Phys. Rev. B. 1986. V. 34. P. 617-647.
60. Danzer L., Papadopolos Z., Talis A. Full equivalence between Socolar's tilings and the (A,B,C,K)-tilings leading to a rather natural decoration // Int. J. Modern Phys. B. 1993. V. 7. P. 1379-1386.
61. An electron microscopic study of quasicrystals in a quaternary alloy: Mg32(Al,Zn,Cu)49 / N.K. Mukhopadhyay et al. // Scripta Metallurgica. 1986. V. 20. P. 525-528.
62. Robinson A.L. Where Are the Atoms in the Icosahedral Phase? // Science. 1986. V. 233. P. 1260-1262.
63. An approach to the structure of quasicrystals: a single crystal X-ray and neutron diffraction study of the R-Al5CuLi3 phase / M. Audier et al.J //PhysicaB. 1988. V. 153. P.136-142.
64. Tamura N., Guyot P., Verger-Gaugry J.L. High resolution Electron Microscopy Image simulation on the Я-АЬСиЫз icosahedral approximant phase // Phil. Mag. 1992. V.65. P.311 -319.
65. Воробьев H.H. Числа Фибоначчи. M.: Наука, 1992. 220 с.
66. Dmitrienko V. Е. Cubic approximants in quasicrystal structures // J. Phys. France. 1990. V.51. P.2717-2732.
67. Dmitrienko V.E. New approaches to the construction of quasicrystals and their cubic approximants // J. Non-Crystalline Solids. 1993. V.153. P. 150154.
68. Niizeki K. Theory of 'self-similarity' of periodic approximants to a quasilattice // J. Phys. A: Math. Gen. 1991. V. 24. P. 4873-4887.
69. Niizeki K. The space groups of orthorhombic approximants to the icosahedral quasilattice // J. Phys. A: Math. Gen. 1992. V. 25. P. 18431854.
70. Пирсон У. Кристаллохимия и физика металлов и сплавов. М.: Мир, 1977. 4.1 420 с.
71. Шуберт К. Кристаллические структуры двухкомпонентных фаз. М.: Металлургия, 1971. 563 с.
72. Shoemaker D.P., Shoemaker C.B. Icosahedral Coordination in metallic crystals. Boston: Academic Press Inc., 1988. V. 1. P. 1-57.
73. Frank F.C. Supercooling of liquids // Proc. Roy. Soc. London Ser. A. 1952. V. 215. P. 43-46.
74. Coxeter H.S.M. Regular polytopes // New York: Dover , 1983. V. 84, №3. P. 466-470.
75. Конвей Дж., Слоэн Н. Упаковки шаров, решетки и группы. М.: Мир, 1990. Т. 1,2. 791 с.
76. Kleman М., Sadoc J.F. A tentative description of the crystallography of amorphous solids // J. Physique Lett. 1979. V. 40. P. 569-574.
77. Kleman M. Curved crystals, defects and disorder // Advances in Physics. 1989. V. 38. P. 605-667.
78. Sadoc J. F. Mosseri R. Aperiodicity and Order // Boston: Academic Press Inc., 1988. V. l.P. 163-189.
79. Sadoc J.F., Charvolin J. Crystal structures built from highly symmetrical units // J. Phys. I.France. 1992. V.2. P.845-859.
80. Синтез, кристаллическая структура и свойства CsBi2F7:Nd" / Р.К. Расцветаева и др. // Кристаллография. 1996. Т. 41, №3. С. 444449.
81. Крапошин B.C. Сборка икосаэдрического квазикристалла из иерархических атомных кластеров // Кристаллография. 1996. Т. 41, №3. С. 395-404.
82. Крапошин B.C. Сборка икосаэдрического квазикристалла из иерархических атомных кластеров. Дескагональная симметрия // Кристаллография. 1999. Т. 44, №6. С. 995-1006.
83. Model for the transformation of an icosahedral phase into a B2 crystalline phase / V.S. Kraposhin et al. // J. Phys.: Condens. Matter. 2008. V. 20. P. 235215.
84. Reddy B.V., Khanna S.N. Effect of geometry on magnetism in small antiferromagnetic clusters // Physical Review B. 1992. V. 45. P. 1010310106.
85. Coulon V., de Reuse F.A., Khanna S.N. Effect of icosahedral and cuboctahedral symmetries on the electronic and magnetic structure of MnAln //Phys. Rev. B. 1993. V. 43. P. 814-828.
86. Hauser J. Magnetic properties of various crystalline phases and amorphous Al-Si-Mn and Al-Mn alloys // Phys. Rev. B. 1986. V. 34. P. 4674-4678.
87. Cooper M., Robinson К. The crystal structure of the ternary alloy a(AlMnSi) Mn3SiAl9 // Acta Cryst. 1966. V. 20. P. 614-617.
88. Robinson K. The structure of p(AlMnSi) Mn3SiAl9 // Acta Cryst. 1952. V. 5. P. 397-403.
89. Magnetism of Al-Mn quasicrystals / Liu Feng et al. // Phys. Review B. 1993. V. 48. P. 1295-1298.
90. Pederson M.R., Reuse F., Khanna S.N. Magnetic transition in Mn„ (n=2-8) clusters //Phys. Rev. B, 1998. V. 58. P. 5632- 5636.
91. Reddy B.V., Khanna S.N., Dunlap B.I. Giant magnetic moments in 4d clusters // Phys. Rev. Letters. 1993. V. 70. P. 3323- 3326.
92. Electronic structure and magnetism of Rh„ (/7=2-13) clusters / Reddy B.V. et al. // Phys. Rev. B. 1999. V. 59. P. 5214-5222.
93. Spin configuration of Gdi3 clusters / D.P. Pappas et al. // Phys. Rev. Letters. 1996. V. 76. P. 4332-4335.
94. Liu Feng, Khanna S.N., Jena P. Magnetism in small vanadium clusters //Phys. Rev. B. 1991. V.43. P. 8179-8182.
95. Koch W., Max C. A Chemist's Guide to Density Functional Theory. Weinheim: Wiley-VCH, 2001. P. 300.
96. Chelikowsky J. R,, Louie S. G. Quantum Theory of Real Materials. Boston: Kluwer Press, 1996. P. 348.
97. Alfe D., Gillan M.J., Price G.D. Melting curve of iron at Earth's core 110. Highlights of Condensed-Matter Theorypressures from ab initio calculations //Nature. 1999. V. 401. P. 462.
98. Thomas L.H. The calculation of atomic fields // Proc. Cambridge Philos. Soc. 1926. V. 23. P. 542.
99. Зиненко В.И., Сорокин Б.П., Турчин П.П. Основы физики твердого тела. М.: Изд-во физ.-мат. лит., 2001. 336 с.
100. Kohanoff J., Gidopoulos N.I. Density Functional Theory: Basics, New Trends and Applications // Handbook of Molecular Physics and Quantum Chemistry. Chichester: John Wiley & Sons, 2003. Vol. 2. P. 532-568.
101. Jones R.O., Gunnarsson О. The density functional formalism, its applications and prospects // Rev. Mod. Phys. 1989. V. 61. P. 689.
102. March N.H. Thomas-Fermi approximation in quantum mechanics // Adv. Phys. 1957. V. 6. P. 1.
103. March N.H. Thomas-Fermi and related theories of atoms and molecules //Theor. Chem.: A Specialists Periodic Report. 1981. V. 4. P. 92.
104. Lieb E.H., Simon B. Tomas-Fermi Theory Revisited // Phys. Rev. Lett. 1973. V. 31. P. 681.
105. Lieb E.H. The stability of matter // Rev. Mod. Phys. 1976. V. 48. P. 553.
106. Lieb E.H. Thomas-Fermi and related theories of atoms and molecules //Rev. Mod. Phys. 1981. V. 53. P. 603.
107. Кон В. Электронная структура вещества — волновые функции и функционалы плотности // УФН. 2002. Т. 172, № 3. С. 336.
108. Kohn W., Sham L.J. Self-Consistent equations including exchange and correlation effects // Phys. Rev. 1965. V. 140. P. A1133.
109. Hohenberg P., Kohn W. Inhomogeneous Electron Gas // Ibid. 1964. V. 136. P. 864.
110. Kohn W. Highlights of Condensed-Matter Theory. Amsterdam: North-Holland, 1985. P. 4.
111. Лундквист С., Марч H. Теория неоднородного электронного газа. М.: Мир, 1987. 400 с.
112. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients / M.C. Payne et al.J // Rev. Mod. Phys. 1992. V. 64, №4. P. 1045.
113. Wigner E.P. Effects of the electron interaction on the energy levels of electrons in metals // Trans. Faraday. Soc. 1938. V. 34. P. 678.
114. Ceperly D.M. Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions // Phys. Rev. 1978. V. 18. P. 3126.
115. Ceperly D.M., Alder B.J. Ground state of the electron gas by a stochastic method //Phys. Rev. Lett. 1980. V. 45. P. 566.
116. Perdew J. P., Zunger A. Self-interaction correction to density-functional approximations for many-electron systems // Phys. Rev. 1981. V. B23. P. 5048.
117. Cottenier S. Density Functional Theory and the family of (L)APW-methods: a step-by-step introduction. Belgium: Instituut voor Kernen Stralingsfysica, 2002. 97 p.
118. Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory // Comp. Phys. Commun. 1999. V. 119. P. 67.
119. Perdew J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas // Phys. Rev. 1986. V. B33. P. 8822.
120. Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy // Phys. Rev. 1992. V. B45. P. 13244.
121. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. V. 77. P. 3865.
122. Asada T., Terakura K. Generalized-gradient-approximation study of the magnetic and cohesive properties of bcc, fee, and hep Mn // Phys. Rev. 1993. V. 47. P. 15992.
123. Eder M., Moroni E. G., Hafner J. Structure and magnetic properties of thin Mn/Cu(001) and CuMn/Cu(100) films // Surf. Sci. 1999. V. 423, №1. P. 244.
124. Perez-Jorda J.M., Becke A. D. A density-functional study of van der Waals forces: rare gas diatomics // Chem. Phys. Lett. 1995. V. 233. P. 134.
125. Chelikowsky J.R. The Pseudopotential-Density Functional Method (PDFM) Applied to Nanostructures // J. Phys. D: Appl. Phys. 2000. V. 33. P. 33.
126. Mydosh I.A. Spin Glasses, an experimental introduction. London: Taylor and Francis, 1993. 129 p.
127. Parisi G. The order parameter for spin glasses: a function on the interval 0-1//J. Phys. A: Math. 1980. Gen. 13. P. 1101-1112.
128. Kraposhin V.S. Assembly of an Icosahedral Quasicrystal from Hierarchic Atomic Clusters//Crystallographic reports. 1996. V.41. P.371-380.
129. Kraposhin V.S. Assembly of an Icosahedral Quasicrystal from Hierarchic Atomic Clusters: Decagonal Symmetry // Crystallographic reports. 1999. V. 44. P. 927-937.
130. Sadoc J.-F., Mosseri R. The E8 lattice and quasicrystals // J. Non-Cryst. Solids. 1993. V. 153/154. P. 247-252.
131. Ferromagnetism in icosahedral Al-Mn-Si alloys / Dunlap R.A. et al. //Phys. Rev. B. 1989. V. 39. P. 4808-4811.
132. Yokoyama Y., Inoue A. Ferromagnetic Mn-Based Decagonal Alloys at Room Temperature // Japan. J. Appl. Phys. 1996. V. 35. P. 3533-3534.
133. Jones H. The Theory of Alloys in the y-Phase // Proc. Roy. Soc. London. 1934. V. 144. P. 225-234.
134. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. 1996. V. 54. P. 11169.
135. Blochl P.E. Projector augmented-wave method // Phys. Rev. B. 1994. V.24. P. 17953.
136. Kraposhin V.S., Bazhanov D.I., Bocharov P.V. On the origin of the giant magnetic moment of the Al-Mn quasicrystals // Eur. Phys. J. Web of Conferences. 2011. V.15. Art. 3012.
137. Лившиц Б.Г., Равдель М.П. Электрическое сопротивление сплавов NiaFe содержащих молибден // Доклады АН СССР. 1953. Т.93. С.1033.
138. Warlimont Н., Aubauer Н. The short-range-order structure of-phase Cu-Al alloys //Z. Metallkunde. 1973. H. 64. S. 484.
139. Linde J.O. Coarsening Behavior of Co Precipitates in Cu-Co Alloys //Helvecia Physica Acta. 1968. V. 41. P. 1007-1015.
140. Гинье А. Неоднородные металлические твердые растворы. М.: Издательство иностранной литературы, 1962. 158 с.
141. Limited ferromagnetism and other magnetic properties of Pd-Mn alloys / B.R. Coles et al. //J . Phys. F: Metal Phys. 1975. V. 5. P. 565-574.
142. Nieuwenhuys G.J., Verbeek B.H. On the magnetic ordering in palladium-manganese dilute alloys // J. Phys. F: Metal Phys. 1977. V. 7. P. 14971503.
143. Borie В., Sparks C.J. The short-range structure of copper-16 at.% aluminum // Acta Crystallographica. 1964. V. 17. P. 827-835.
144. Matsubara E., Cohen J.B. Local atomic arrangements in the solid solution Al-1.7 at.% Cu, at 793 К//Acta Metallurgica. 1983. V. 31. P. 2129-2135.
145. Заматурин М.И. Исследование твердых растворов лития в алюминии // Труды Ленинградского политехнического института. 1955. №180. С. 5-12.
146. Witte А.М, Jeitschko W. Zeitschrift fur Naturforschung // Chemical Sciences. 1996. Bd. 51(2). S. 249.
147. Benbow E.M. From paramagnetism to spin glasses: magnetic studies of single crystal intermetallic. Tallahassee: Florida State University, 2008. P. 107.
148. Fasiska E.J., Jeffrey G.A. On the Cementite Structure // Acta Cryst. 1965. V. 19. P. 463-471.
149. Fornasini M.L., Pani M. Ba5Ga6: a phase with octahedral clusters of gallium//Journal of Alloys and Compounds. 1994. V. 205. P. 179-181.
150. Bruzzone G., Fornasini M.L., Merlo F. Crystal structure of ErCd3 and itsisomorphous compounds//J. Less-Common Met. 1978. V. 60. P. 59-63.
151. Sevov S.C., Corbett J.D. A remarkable hypoelectronic indium cluster in K8Inu //Inorganic Chemistry. 1991. V. 30. P. 4875-4877.
152. Belin С., Ling R. Stable clusters in the condensed state and some possibilities for gas phase clusters // J. Solid State Chem. 1982. V.45. P.290-292.
153. Stohr J., Schafer H. The In-Li (Indium-Lithium) System // Rev. Chim. Min. 1982. V.19. P.122-127.
154. Крапошин B.C., Талис А.Д., Панкова M.H. Политолный топологический подход к описанию мартенситного превращения // Металловедение и термическая обработка металлов. 1999. №.8. С. 23-28.
155. Kraposhin V.S., Talis A.L., Dubois J.M. Structural realization of the polytope approach for the geometrical description of the transition of a quasicrystal into a crystalline phase // J. Phys. Condens. Matter. 2002. V. 14. P. 8987- 8996.
156. An application of a polytope (4D-polyhedron) concept for the description of polymorphic transitions: iron martensite and solid. oxygen //V.S. Kraposhin et aL. //J.Phys. IY France. 2003. V. 112. P. 119-122.
157. Крапошин B.C., Сильченков А.Д. Чем отличается мартенситное превращение от нормального? // Металловедение и термическая обработка металлов. 2008. № 11. С. 28-36.
158. Крапошин B.C., Сильченков А.Д. Кристаллографический механизм перлитного превращения в системе железо-углерод // Проблемы черной металлургии и металловедения. 2009. №2. С.55-64.
159. Кластерная модель образования несоразмерной фазы в сплавах системы титан-железо / B.C. Крапошин и др. // Металловедение и термическая обработка металлов. 2004. №6. С. 29-35.
160. Крапошин B.C., Талис А.Л., Ван Яньцзин. Геометрическая модель полиморфных превращений в титане и цирконии // МиТОМ. 2005. №9. С. 8-16.
161. Kraposhin V.S., Talis A.L., Wang Y.J. Description of polymorphic transformations of Ti and Zr in the framework of the algebraicgeometry //Materials Science and Engineering A. 2006. V. 438-440. P. 85-89.
162. Кластерная модель образования несоразмерной фазы в сплавах системы титан-железо / B.C. Крапошин и др. // МиТОМ. 2004. №6. С. 29-35.
163. Kraposhin V.S., Talis A.L., Samoylovitch M.I. Axial (helical) substructures determined by the root lattice E8 as generating clusters of the condensed phases // Journal of Non-Crystalline Solids. 2007. V. 353. P. 3279-3284.
164. Bernal J.D. The structure of liquids // Proc. Roy. Soc. London Ser. 1964. V. 280. P. 299-322.
165. Nyman H., Carroll C.E., Hyde B.G. Rectilinear rods of face-sharing tetrahedra and the structure of P-Mn // Zeitschrift fur Kristallographie. 1991. Bd. 196. S. 39-46.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.