Моноклональные антитела к фактору роста эндотелия сосудов как векторы для доставки контейнерных систем в интракраниальную глиому C6 тема диссертации и автореферата по ВАК РФ 03.01.04, кандидат биологических наук Шеин, Сергей Александрович

  • Шеин, Сергей Александрович
  • кандидат биологических науккандидат биологических наук
  • 2012, Москва
  • Специальность ВАК РФ03.01.04
  • Количество страниц 125
Шеин, Сергей Александрович. Моноклональные антитела к фактору роста эндотелия сосудов как векторы для доставки контейнерных систем в интракраниальную глиому C6: дис. кандидат биологических наук: 03.01.04 - Биохимия. Москва. 2012. 125 с.

Оглавление диссертации кандидат биологических наук Шеин, Сергей Александрович

Список сокращений.

Актуальность.

Глава I. Обзор литературы: Фактор роста эндотелия сосудов как мишень противоопухолевой терапии.

Рекомендованный список диссертаций по специальности «Биохимия», 03.01.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Моноклональные антитела к фактору роста эндотелия сосудов как векторы для доставки контейнерных систем в интракраниальную глиому C6»

Функции VEGF.10

Роль VEGF в развитии опухолей.18

Бевацизумаб в клинических исследованиях.24

Механизмы резистентности.28

Опухолевые стволовые клетки.34

Иммунолипосомы для адресной доставки лекарств.35

Похожие диссертационные работы по специальности «Биохимия», 03.01.04 шифр ВАК

Заключение диссертации по теме «Биохимия», Шеин, Сергей Александрович

Выводы.

1. Модифицированный способ иммунизации мышей рекомбинантным препаратом VEGF-164 позволил получить В-лимфоциты селезенки, способные при слиянии с клетками миеломной культуры Sp2/0-Agl4 образовывать гибридные клетки, продуцирующие моноклональные анти-VEGF антитела изотипа G2a, характеризующиеся константой аффинности - 1,37±0,15х108 М"1. Полученные моноклональные анти-VEGF антитела способны специфично распознавать рекомбинантный и нативный VEGF в иммуноблот анализе, а также визуализировать VEGF-позитивные клетки.

2. Препарат моноклональных анти-VEGF антител, меченных флуорохромом Alexa Fluor 488 и введенных внутривенно, способен захватываются клетками интракраниальной глиомы и накапливаться в опухолевой ткани, визуализируясь в иммунофлуоресцентном анализе.

3. Терапия препаратом моноклональных анти-VEGF антител крыс с ортотопиче-ской глиомой С6 в концентрации 3 и 10 мг/кг при внутривенном введении не оказывает влияния на выживаемость экспериментальных животных и объем опухоли.

4. Конъюгация моноклональных анти-VEGF антител с магнитными наночастицами оксида железа (гидродинамический диаметр 90±5 нм), и холестерин- фосфатидилхолино-выми липосомами (210±10 нм) объективно повышает уровень их накопления в опухолевой ткани при внутривенном введении и качество визуализации глиом методами МРТ исследования в режиме SWI и флуоресцентного анализа.

5. Внутривенное введение крысам с интракраниальной глиомой С6 ПЭГилирован-ных липосом, конъюгированных с моноклональными анти-VEGF антителами (2,58±0,17 нмоль антител), приводит к их специфичному захвату клетками глиомы и реактивными астроцитами, а также позволяет визуализировать накопление в опухолевой ткани.

Благодарности.

Автор выражает искреннюю благодарность научным руководителям Владимиру Павловичу Чехонину и Ольге Ивановне Гуриной за неоценимую помощь на протяжении всей работы и ценные советы, Наталье В. Нуколовой за помощь в работе с липосомами, Максиму А. Абакумову за помощь в работе с наночастицами, Анне В. Леопольд за помощь в наработке и очистке рекомбинантного VEGF, Надежде Е. Волгиной за помощь в работе к культурой HUVEC, Карине ТУТ. Кардашовой за помощь в работе с гибридными клетками, Владимиру Павловичу Баклаушеву и Гаухар Маратовне Юсубалиевой за помощь в освоении иммунохимических и хирургических методов, Надежде Филипповне Гриненко за помощь в работе с культурами клеток, Клавдии Павловне Ионовой и сотрудникам вивария за помощь в работе с животными, Кристине В. Новиковой и Анне А. Корчагиной за помощь в работе по исследованию биологической активности антител in vitro, Михаилу В. Гуляеву за помощь в МРТ сканировании животных при антиангиогенной терапии, Мельникову Павлу за помощь в лазерной конфокальной микроскопии.

Список литературы диссертационного исследования кандидат биологических наук Шеин, Сергей Александрович, 2012 год

1. Folkman J. Angiogenesis. Annu. Rev. Med. 2006; 57:1-18.

2. Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9(6):669-676.

3. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2002; 2(10):795-803.

4. Guiu S. et al. Bevacizumab/irinotecan. An active treatment for recurrent high grade gliomas: preliminary results of an ANOCEF Multicenter Study. Rev. Neurol. 2008; 164(6-7):588-594.

5. Norden A.D. et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 2008; 70(10):779-787.

6. Pope W.B., Lai A., Nghiemphu P., Mischel P., Cloughesy T.F. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 2006; 67(11): 1258— 1260.

7. Norden A.D., Drappatz J., Wen P.Y. Antiangiogenic therapies for high-grade glioma. Nat. Rev. Neurol. 2009; 5(11):610-620.

8. Narayana A. et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J. Neurosurg. 2009; 110(1): 173-180.

9. Nghiemphu P.L. et al. Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 2009; 72(14): 1217—1222.

10. Poulsen H.S. et al. Bevacizumab plus irinotecan in the treatment patients with progressive recurrent malignant brain tumours. Acta. Oncol. 2009; 48(l):52-58.

11. Zuniga R.M. et al. Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J. Neurooncol. 2009; 91(3):329-336.

12. Stupp R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009; 10(5):459-466.

13. Vredenburgh J.J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 2007; 25(30):4722^1729.

14. Batchelor T.T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007; 11(1):83-95.

15. Ferrara N., Carver-Moore K., Chen II. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380(6573):439-442.

16. Ferrara N. Vascular Endothelial Growth Factor as a target for anticancer therapy. The Oncologist 2004; 9:2-10.

17. Risau W. Mechanisms of angiogenesis. Nature 1997; 386(6626): 671-674.

18. Hanai J., Dhanabal M., Karumanchi S.A. et al. Endostatin causes Gl arrest of endothelial cells through inhibition of cyclin Dl. J Biol Chem. 2002; 277(19): 16464:16469.

19. Rosen L.S. Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control 2002; 9:36-44.

20. Robinson C.J., Stringer S.E. The splicevariants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sei. 2001; 114(5):853 -865.

21. Miletic H. et al. Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opin. 2009; 13(4):455-468.

22. Holmes K. et al. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007; 19(10):2003-2012.

23. Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997; 18(l):4-25.

24. Greenberg D.A., Jin K. From angiogenesis to neuropathology. Nature 2005; 438(7070):954 -959.

25. Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFRl/Flt-1): a dual regulator for angiogenesis. Angiogenesis 2006; 9(4):225-230.

26. Brown L.F., Detmar M., Claffey K. et al.Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic. Cytokine Exs. 1997; 79:233 -269.

27. Dvorak H.F., Brown L.F., Detmar M. et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, andangiogenesis. Am .J. Pathol. 1995; 146(5):1029 -1039.

28. Ferrara N. Molecular and biological properties of vascular endothelial growthfactor. J. Mol. Med. 1999; 77(7):527 -543.

29. Gerber H.P., Dixit V., Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and Al in vascular endothelial cells. J. Biol. Chem. 1998; 273(21):13313-13316.

30. Testa J.R., Bellacosa A. AKT plays a central role in tumorigenesis. Proc. Natl. Acad. Sci. USA. 2001; 98(20): 10983-10985.

31. Lefranc F., Brotchi J., Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apopto-sis. Journal of clinical oncology 2005; 23(10):2411-2422.

32. Soung Y.H., Lee J.W., Nam S.W. et al. Mutational analysis of AKT1, AKT2 and AKT3 genes in common human carcinomas. Oncology 2006; 70(4):285-289.

33. Lamalice L., Houle F., Huot J. Phosphorylation of Tyrl214 within VEGFR-2 triggers the recruitment of Nek and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF. J. Biol. Chem. 2006; 281(45):34009-34020.

34. Meadows K.N., Bryant P., Pumiglia K. Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J. Biol. Chem. 2001; 276(52):49289-49298.

35. Takahashi T., Yamaguchi S., Chida K. et al. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J. 2001; 20(11):2768-2778.

36. Shibuya M. Structure and function of VEGF/VEGF-receptor system involved in angio-genesis. Cell Struct. Funct. 2001; 26(l):25-35.

37. Rak J., Yu J.L., Klement G. et al. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J. Investig. Dermatol. Symp. Proc. 2000; 5(l):24-33.

38. Plate K.IL, Breier G., Weich H.A. et al W.Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359(6398):845 -848.

39. Shweiki D., Itin A., Neufeld G. et al. Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. J. Clin. Invest. 1993; 91(5):2235-2243.

40. Weidner N., Semple J.P., Welch W.R. et al. Tumor angiogenesis and metastasis— correlation in invasive breast carcinoma. N. Engl. J. Med. 1991; 324(l):l-8.

41. Du R. et al. HIFla induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008; 13(3):206-220.

42. Jain R.K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 2001; 7(9):987-989.

43. Jain R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307(5706):58-62.

44. I-Iolash J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284(5422): 1994-1998.

45. Poon R.T., Fan S.T., Wong J. Clinical implications of circulating angiogenic factors in cancer patients. J. Clin. Oncol. 2001; 19(4):1207-1225.

46. Millauer B., Shawver L.K., Plate K.H. et al. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367(6463):576-579.

47. Abramsson A., Berlin O., Papayan H. et al. Analysis of mural cell recruitment to tumor vessels. Circulation 2002; 105(1):112-117.

48. Harmey J.H., Bouchier-Hayes D. Vascular endothelial growth factor (VEGF), a survival factor for tumour cells: implications for anti-angiogenic therapy. Bioessays. 2002; 24(3):280-283.

49. Tran J., Master Z., Yu J.L. et al. A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc. Natl. Acad. Sci. USA. 2002; 99(7):4349-4354.

50. Toi M., Matsumoto T., Bando II. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol. 2001; 2(11):667-673.

51. Pegram M.D., Reese D.M. Combined biological therapy of breast cancer using monoclonal antibodies directed against HER2/neu protein and vascular endothelial growth factor. Semin. Oncol. 2002; 29:.29-37.

52. Nagy J.A., Benjamin L., Zeng IT. et al. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 2008; 11(2): 109 -119.

53. Bertolini F., Mingrone W., Alietti A. et al. Thalidomide in multiple myeloma, myelodysplastic syndromes and histiocytosis. Analysis of clinical results and of surrogate angiogenesis markers. Ann. Oncol. 2001; 12(7):987-990.

54. Iruela-Arispe M.L., Luque A., Lee N. Thrombospondin modules and angiogenesis. Int. J. Biochem. Cell Biol. 2004; 36(6):1070-1078.

55. D'Amato R.J., Loughnan M.S., Flynn E. et al. Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA. 1994; 91(9):4082-4085.

56. Chaux P., Moutet M., Faivre J. et al. Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab. Invest. 1996; 74(5):975-983.

57. Yoncheva K, Momekov G. Antiangiogenic anticancer strategy based on nanoparticulate systems. Expert Opin Drug Deliv. 2011 Aug;8(8): 1041-56.190

58. Kuesters GM, Campbell RB. Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. Nanomedicine (Lond). 2010 Feb;5(2): 181-92.191

59. Bergers G., Benjamin L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 2003; 3(6):401-410.

60. Lee C.G., Heijn M., di Tomaso E. et al. Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 2000; 60(19):5565-5570.

61. Pham C.D., Roberts T.P., van Bruggen N. et al. Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest. 1998; 16(4):225-230.

62. Brasch R., Pham C., Shames D. et al. Assessing tumor angiogenesis using macromolecu-lar MR imaging contrast media. J. Magn. Reson. Imaging. 1997; 7(l):68-74.

63. Caraglia M, De Rosa G, Salzano G, Santini D, Lamberti M, Sperlongano P, Lombardi A, Abbruzzese A, Addeo R. Nanotech revolution for the anti-cancer drug delivery through blood-brain-barrier. Curr Cancer Drug Targets. 2012 Mar; 12(3): 186-96.192

64. Zhou Q., Guo P., Gallo J. M. Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin. Cancer Res. 2008; 14(5): 1540-1549.

65. Bao S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006; 66(16):7843-7848.

66. Calabrese C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007; 11(1):69—82.

67. Marx J. Cancer research. Obstacle for promising cancer therapy. Science 2002; 295(5559): 1444.

68. Yu J.L., Rak J.W., Coomber B.L. et al. Effect of p53 status on tumor response to antiangiogenic therapy. Science 2002; 295(5559): 1526-1528.

69. Wedam S.B., Low J.A., Yang S.X. et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J. Clin. Oncol. 2006; 24(5):769-777.

70. Hurwitz H., Fehrenbacher L., Novotny W. et al. Bevacizumab plus irinotecan, fluoroura-cil, and leucovorin for the treatment of metastatic colorectal cancer. N. Engl. J. Med. 2004; 350(23):2335-2342.

71. Gomez-Manzano C., Holash J., Fueyo J. et al. VEGF Trap induces antiglioma effect at different stages of disease. Neuro Oncol. 2008; 10(6):940-945.

72. Samoto K., Ikezaki K., Ono M., et al.Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res. 1995; 55(5):1189 -1193.

73. Brown L.F., Berse B., Jackman R.W. et al. Expression of vascular permeability factor (vascular endothelial growth factor) and it sreceptors in breast cancer. Hum. Pathol. 1995; 26(1):86 -91.

74. Kunkel P. et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res. 2001; 61(18):6624-6628.

75. Lucio-Eterovic A.K., Piao Y., de Groot J.F. Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin. Cancer Res. 2009; 15(14):4589-4599.

76. Paez-Ribes M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009; 15(3):220—231.

77. Iwamoto F.M. et al. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 2009; 73(15):1200-1206.

78. Ebos J.M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009; 15(3):232-239.

79. Erber R. et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J. 2004; 18(2):338—340.

80. Zagzag D. et al. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab. Invest. 2006; 86(12): 1221—1232.

81. Rubin J.B. et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl. Acad. Sci. USA. 2003; 100(23): 13513-13518.

82. Singh S.K., Clarke I.D., Terasaki M. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003; 63(18):5821 -5828.

83. Singh S.K., Hawkins C., Clarke I.D. et al. Identifi cation of human brain tumour initiating cells. Nature 2004; 432(7015):396 -401.

84. Galli R., Binda E., Orfanelli U. et al. Isolation and characterization of tumorigenic, stemlike neural precursors from human glioblastoma. Cancer Res. 2004; 64(19):7011 -7021.

85. Sakariassen P.O., Prestegarden L., Wang J. et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc. Natl. Acad. Sci. USA. 2006; 103(44): 16466 -16471.

86. Salhia B, Angelov L, Roncari L, Wu X, Shannon P, Guha A. Expression of vascular endothelial growth factor by reactive astrocytes and associated neoangiogenesis. Brain Res. 2000 Nov 10;883(l):87-97.

87. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008 Aug;8(8):592-603.

88. Mizukami Y, et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1 a-deficient colon cancer cells. Nature Med 2005;11:992-997.

89. Darland DC, et al. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev. Biol 2003;264:275-288.

90. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G. PDGFRP+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nature Cell Biol 2005;7:870-879.

91. Soda Y, Marumoto T, Friedmann-Morvinski D et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4274-80.

92. Wu FT, Stefanini MO, Mac Gabhann F, Kontos CD, Annex BH, Popel AS. A systems biology perspective on sVEGFRl: its biological function, pathogenic role and therapeutic use. J Cell Mol Med. 2010 Mar;14(3):528-52.

93. Kamba T, Tarn BY, Hashizume H et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature // Am J Physiol Heart Circulatory Physiol. 2006. -290.-P. 560-76.

94. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis // J Clin Oncol. 2005. - 23. - P. 1011-27.

95. Ping YF, Yao XH, Jiang JY et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol. 2011 Jul;224(3):344-54.

96. Keunen O, Johansson M, Oudin A et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA. 2011 Mar l;108(9):3749-54.

97. Jain RK, di Tomaso E, Duda DG et al. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007 Aug;8(8):610-22.

98. Wang R, Chadalavada K, Wilshire J et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010 Dec 9;468(7325):829-33.

99. Ricci-Vitiani L, Pallini R, Biffoni M et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010 Dec 9;468(7325):824-8.

100. Ellis LM, Hicklin DJ. Pathways mediating resistance to vascular endothelial growth factor-targeted therapy. Clin Cancer Res. 2008 Oct 15;14(20):6371-5.

101. Robey RB, Hay N. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009 Feb;19(l):25-31.

102. Ali MM, Janic B, Babajani-Feremi A et al. Changes in vascular permeability and expression of different angiogenic factors following anti-angiogenic treatment in rat glioma. PLoS One. 2010 Jan 15;5(l):e8727.

103. Ferrara N., Kerbel R. Angiogenesis as a therapeutic target // Nature. 2005. - 438. - P. 967-74.

104. Wen P.Y., Kesari S. Malignant gliomas in adults // N. Engl. J. Med. 2008. - 359. - P. 492-507.

105. Yung W. et al. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse // Br. J. Cancer. 2000. - 83. - P. 588-93.

106. Taylor TE, Furnari FB, Cavenee WK. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets. 2012 Mar; 12(3): 197-209.196

107. Senger DR, Galli SJ, Dvorak AM et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid // Science. 1983. - 219. - P. 983-5.

108. Leung DW, Cachianes G, Kuang WJ, et al.Vascular endothelial growth factor is a secreted angiogenic mitogen // Science. 1989. - 246. - P. 1306 -9.

109. Lambrechts D, Storkebaum E, Carmeliet P. VEGF: necessary to prevent motoneuron degeneration, suffi cient to treat ALS? // Trends Mol Med. 2004. - 10. - P. 275 -82.

110. Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring // Nature. 2005. - 436. - P. 193 -200.

111. Asahara T, Takahashi T, Masuda H et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells // EMBO J. 1999. - 18. -P. 3964-72.

112. Gabrilovich D, Ishida T, Oyama T et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo // Blood. 1998. - 92. - P.- 4150-66.

113. Pekala P, Marlow M, Heuvelman D et al. Regulation of hexose transport in aortic endothelial cells by vascular permeability factor and tumor necrosis factor-alpha, but not by insulin // J Biol Chem. 1990. - 265. - P. 18051 -4.

114. Mechtcheriakova D, Schabbauer G, Lucerna M et al. Specificity, diversity and convergence in VEGF and TNF-alpha signaling events leading to tissue factor up-regulation via EGR-1 in endothelial cells // FASEB J. 2001. - 15. - P. 230-42.

115. Barleon B, Sozzani S, Zhou D et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1 // Blood. 1996. -87.-P. 3336-43.

116. Pepper MS, Ferrara N, Orci L et al. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells // Biochem Biophys Res Commun. 1991. - 181. - P. 902-6.

117. Mandriota SJ, Seghezzi G, Vassalli JD et al. Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells // J Biol Chem. 1995. - 270. - P. 9709-16.

118. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angi-ogenesis // Am J Physiol Cell Physiol. 2001. - 280. - P. 1358-66.

119. Zachary I. Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor//Am J Physiol Cell Physiol. -2001. -280. -P.1375-86.

120. Unemori EN, Ferrara N, Bauer EA et al. Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells // J Cell Physiol. 1992. - 153. - P. 557-62.

121. Pupa SM, Menard S, Forti S et al. New insights into the role of extracellular matrix during tumor onset and progression // J Cell Physiol. 2002. - 192. - P. 259-67.

122. Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene. 1999 Apr l;18(13):2221-30.

123. Songyang Z, Shoelson SE, Chaudhuri M et al. SH2 domains recognize specific phosphopeptide sequences. Cell. 1993 Mar 12;72(5):767-78.

124. Hamerlik P, Lathia JD, Rasmussen R et al. Autocrine VEGF-VEGFR2-Neuropilin-l signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med. 2012 Mar 12;209(3):507-20.

125. Cohen T, Nahari D, Cerem LW, et al. Interleukin 6 induces the expression of vascular endothelial growth factor // J Biol Chem. 1996. - 271. - P. 736-41.

126. Pertovaara L, Kaipainen A, Mustonen T, et al. Vascular endothelial growth factor is induced in response to transforming growth factor- ß in fi broblastic and epithelial cells // J Biol Chem. 1994. - 269. - P. 6271 -4.

127. Tsai JC, Goldman CK, Gillespie GY. Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF // J Neurosurg. 1995. - 82. -P. 864 -73.

128. Li CY, Shan S, Huang Q et al. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models // J Natl Cancer Inst. 2000. - 92. - P. 143-7.

129. Stefanik D. F., Rizkalla L. R., Soi A., Goldblatt S. A., Rizkalla W. M. Acidic and basic fibroblast growth factors are present in glioblastoma multiforme // Cancer Res. 1991. - 51. - P. 5760-5.

130. Reiss Y., Machein M., Plate K. The role of angiopoietins during angiogenesis in gliomas //Brain Pathol.-2005,- 15.-P. 311-7.

131. Shih A. H., Holland E. C. Platelet-derived growth factor (PDGF) and glial tumorigenesis // Cancer Lett. 2006. - 232. - P. 139-47.

132. Charalambous C. et al. Interleukin-8 differentially regulates migration of tumorassociated and normal human brain endothelial cells // Cancer Res. 2005. - 65. - P. 10347-54.

133. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011 May 19;473(7347):298-307.

134. Brown JM. Tumor microenvironment and the response to anticancer therapy // Cancer Biol Ther. 2002. - 1. - P. 453-8.

135. List AF. Vascular endothelial growth factor signaling pathway as an emerging target in hematologic malignancies // The Oncologist. -2001. -6. P. 24-31.

136. Lee JC, Chow NH, Wang ST et al. Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients // Eur J Cancer. 2000. - 36. - P. 748-53.

137. Tokunaga T, Oshika Y, Abe Y et al. Vascular endothelial growth factor (VEGF) mRNA isoform expression pattern is correlated with liver metastasis and poor prognosis in colon cancer // Br J Cancer. 1998. - 77. - P. 998-1002.

138. Plate KH. Mechanisms of angiogenesis in the brain // J Neuropathol Exp Neurol. 1999. -58.-P. 313-20.

139. Shen BQ, Lee DY, Gerber HP et al. Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro // J Biol Chem. 1998. - 273. - P. 29979-85.

140. Saito H, Tsujitani S, Ikeguchi M et al. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue // Br J Cancer. 1998. - 78. - P. 1573-7.

141. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells // Nat Med. 1996. - 2. - P. 1096-103.

142. Kerbel RS. Clinical trials of antiangiogenic drugs: opportunities, problems, and assessment of initial results // J Clin Oncol. 2001. - 19. - P. 45-51.

143. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer // Curr Opin Genet Dev. 2005. - 15. - P. 102-11.

144. Willett CG, Boucher Y, di Tomaso E et al. Direct evidence that the VEGF-specific antibody bevaeizumab has antivascular effects in human rectal cancer // Nat Med. 2004. - 10. - P. 145-7.

145. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases // Nature. 2000. - 407. -P. 249-57.

146. Tong RT, Boucher Y, Kozin SV et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors // Cancer Res. 2004. - 64. - P. 3731-6.

147. Kim KJ, Li B,Winer J et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo // Nature. 1993. - 362. - P. 841-4.

148. Bao S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response // Nature. 2006. - 444. - P. 756-60.

149. Rich J. N. Cancer stem cells in radiation resistance // Cancer Res. 2007. - 67. - P. 8980^1.

150. Gilbertson R. J., Rich J. N. Making a tumour's bed: glioblastoma stem cells and the vascular niche // Nat. Rev. Cancer. 2007. - 7. - P. 733-6.

151. Folkins C. et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors // Cancer Res. -2007. 67. - P. 3560-4.

152. Eyler C. E., Rich J. N. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis // J. Clin. Oncol. 2008. - 26. - P. 2839^15.

153. Nagpal S, Harsh G, Recht L. Bevacizumab improves quality of life in patients with recurrent glioblastoma. Chemother Res Pract. 2011;2011:602812.140

154. Vredenburgh J. J. et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma // Clin. Cancer Res. 2007. - 13. - P. 1253-9.

155. Wagner S. A. et al. Update on survival from the original phase II trial of bevacizumab and irinotecan in recurrent malignant gliomas // J. Clin. Oncol. 26 (May 20 Suppl.), abstract 2021 (2008).

156. Wachsberger P. R. et al. VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma // Int. J. Radiat. Oncol. Biol. Phys. 2007. - 67. - P. 1526-37.

157. Cao Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands // Sci. Signal.-2009.-2.-P. rel.

158. Lamszus K., Kunkel P., Westphal, M. Invasion as limitation to anti-angiogenic glioma therapy // Acta Neurochir. Suppl. 2003. - 88. - P. 169-77.

159. Chi A. S., Norden A. D., Wen P. Y. Antiangiogenic strategies for treatment of malignant gliomas // Neurotherapeutics. 2009. - 6. - P. 513-26.

160. Lakka SS, Rao JS. Antiangiogenic therapy in brain tumors. Expert Rev Neurother. 2008 0ct;8(10): 1457-73.

161. Hendriksen EM, Span PN, Schuuring J et al. Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model. Microvasc Res. 2009 Mar;77(2):96-103. Epub 2008 Dec 7.

162. Hadjipanayis CG, Van Meir EG. Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med. 2009 Nov;15(l l):519-30.

163. Cina C, Maass K, Theis M et al. Involvement of the cytoplasmic C-terminal domain of connexin43 in neuronal migration. J Neurosci. 2009 Feb 18;29(7):2009-21.

164. Sciume G, Santoni A, Bernardini G. Chemokines and glioma: invasion and more. J Neuroimmunol. 2010 Jul 27;224(l-2):8-12.

165. Ignatova TN, Kukekov VG, Laywell ED,et al. Pluman cortical glial tumors contain neural stem-like cells expressing astroglialand neuronal markers in vitro // Glia. 2002. - 39. - P. 193 -206.

166. Hemmati PID, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors // Proc Natl Acad Sci USA. -2003. 100. - P. 15178 -83.

167. Fischer I, Cunliffe CII, Bollo RJ et al. High-grade glioma before and after treatment with radiation and Avastin: initial observations. Neuro Oncol. 2008 Oct;10(5):700-8.

168. Folkins C, Shaked Y, Man S et al. Glioma tumor stem-like cells promote tumor angio-genesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res. 2009 Sep 15;69(18):7243-51.

169. Roodink I, Leenders WP. Targeted therapies of cancer: angiogenesis inhibition seems not enough. Cancer Lett. 2010 Dec 18;299(1):1-10.

170. Auf G, Jabouille A, Guerit S et al. Inositol-requiring enzyme lalpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A. 2010 Aug 31; 107(35): 15553-8.

171. Lee SL, Rouhi P, Dahl Jensen L et al. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci USA. 2009 Nov 17; 106(46): 19485-90.

172. Rapisarda A, Hollingshead M, Uranchimeg B et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther. 2009 Jul;8(7): 1867-77.

173. Wu X, Northcott PA, Dubuc A et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature. 2012 Feb 15;482(7386):529-33.

174. Chodobski A, Chung I, Kozniewska E et al. Early neutrophilic expression of vascular endothelial growth factor after traumatic brain injury. Neuroscience. 2003;122(4):853-67.

175. Narayana A, Gruber D, Kunnakkat S, Golfinos JG, Parker E, Raza S, Zagzag D, Eagan P, Gruber ML. A clinical trial of bevacizumab, temozolomide, and radiation for newly diagnosed glioblastoma. J Neurosurg. 2012 Feb;l 16(2):341-5.

176. Kuczynski EA, Patten SG, Coomber BL. VEGFR2 expression and TGF-(3 signaling in initial and recurrent high-grade human glioma. Oncology. 2011 ;81(2): 126-34.

177. Jakobsen JN, Hasselbalch B, Stockhausen MT, Lassen U, Poulsen HS. Irinotecan and bevacizumab in recurrent glioblastoma multiforme. Expert Opin Pharmacother. 2011 Apr;12(5):825-33.

178. Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK. CXCL12 (SDFlalpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res. 2011 Apr 15;17(8):2074-80. Epub 2011 Feb 24.

179. Liu W, Xu J, Wang M, Wang Q, Bi Y, Han M. Tumor-derived vascular endothelial growth factor (VEGF)-a facilitates tumor metastasis through the VEGF-VEGFR1 signaling pathway. Int J Oncol. 2011 Nov;39(5): 1213-20.

180. Fan F, Samuel S, Gaur P, Lu J, Dallas NA, Xia L, Bose D, Ramachandran V, Ellis LM. Chronic exposure of colorectal cancer cells to bevacizumab promotes compensatory pathways that mediate tumour cell migration. Br J Cancer. 2011 Apr 12; 104(8): 1270-7.

181. Bikfalvi A, Moenner M, Javerzat S, North S, Hagedorn M. Inhibition of angiogenesis and the angiogenesis/invasion shift. Biochem Soc Trans. 2011 Dec;39(6): 1560-4.

182. Mackey JR, Kerbel RS, Gelmon KA, McLeod DM, Chia SK, Rayson D, Verma S, Collins LL, Paterson AH, Robidoux A, Pritchard KI. Controlling angiogenesis in breast cancer: A systematic review of anti-angiogenic trials. Cancer Treat Rev. 2012 Feb 22.

183. Чехонин В.П., Баклаушев В.П., Юсубалиева Г.М., Павлов К.А., Ухова О.В., Турина О.И. Моделирование и иммуногистохимический анализ глиомы С6 in vivo. Клеточные технологии в биологии и медицине 2007, № 2, с. 65-73.

184. Ogunshola ОО, Stewart WB, Mihalcik V, Solli T, Madri JA, Ment LR. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res. 2000 Jan 3;119(l):139-53.

185. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992 359(6398):843-5.

186. Parthymou A, Lampropoulou Е, Mikelis С, Drosou G, Papadimitriou Е. Heparin affin regulatory peptide/pleiotrophin negatively affects diverse biological activities in C6 glioma cells. Eur J Cell Biol. 2008 Jan;87(l): 17-29.

187. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5.

188. Perrie Y, Frederik PM, Gregoriadis G. Liposome-mediated DNA vaccination: the effect of vesicle composition. Vaccine. 2001 Apr 30;19(23-24):3301-10.

189. Shi N, Pardridge WM. Noninvasive gene targeting to the brain. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7567-72.

190. Jo J, Schiff D, Purow B. Angiogenic inhibition in high-grade gliomas: past, present and future. Expert Rev Neurother. 2012 Jun;12(6):733-47.

191. Чехонин В.П., Рябухин И.А., Турина О.И., Дмитриева Т.Б., Шепелева И.И., Бабич Т.Н. Моноклональные анти-GFАР-антитела: получение, характеристика и иммунофер-ментный анализ. Бюллетень экспериментальной биологии и медицины, 2001.-N 8.-С.188-191.

192. Renart J, Reiser J, Stark GR. Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci USA. 1979 Jul;76(7):3116-20.

193. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54.

194. Beatty JD, Beatty BG, Vlahos WG. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods. 1987 Jun 26; 100(1-2): 173-9.

195. Yoncheva, K.; Momekov, G. Antiangiogenic anticancer strategy based on nanoparticulate systems. Expert Opin Drug Deliv. 2011, 8(8), 1041-1056.

196. Duggan, S. T.; Keating, G. M. Pegylated liposomal doxorubicin: a review of its use in metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi's sarcoma. Drugs. 2011, 71(18), 2531-2558.

197. Lingappa, M.; Song, H.; Thompson, S.; Bruchertseifer, F.; Morgenstern, A.; Sgouros, G. Immunoliposomal delivery of 213Bi for alpha-emitter targeting of metastatic breast cancer. Cancer Res. 2010 70(17), 6815-6823.

198. Kullberg, M.; Mann, K.; Anchordoquy, T. J. Targeting Her-2+ Breast Cancer Cells with Bleomycin Immunoliposomes Linked to LLO. Mol Pharm. 2012, Jun 4.

199. Feng, B.; Tomizawa, K.; Michiue, H.; Han, X. J.; Miyatake, S.; Matsui, H. Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo. Biomaterials. 2010, 31(14), 4139-4145.

200. Nayak, T. K.; Garmestani, K.; Baidoo, K. E.; Milenic, D. E.; Brechbiel, M. W. PET imaging of tumor angiogenesis in mice with VEGF-A targeted 86Y-CHX-A"-DTPA-bevacizumab. Int J Cancer. 2011, 128(4), 920-926.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.