Реализация алгоритмов управления на основе прогнозирующих моделей в системах каталитического крекинга нефти тема диссертации и автореферата по ВАК РФ 05.13.01, кандидат технических наук Пашаева, Бахар Адалят кызы

  • Пашаева, Бахар Адалят кызы
  • кандидат технических науккандидат технических наук
  • 2013, Москва
  • Специальность ВАК РФ05.13.01
  • Количество страниц 165
Пашаева, Бахар Адалят кызы. Реализация алгоритмов управления на основе прогнозирующих моделей в системах каталитического крекинга нефти: дис. кандидат технических наук: 05.13.01 - Системный анализ, управление и обработка информации (по отраслям). Москва. 2013. 165 с.

Заключение диссертации по теме «Системный анализ, управление и обработка информации (по отраслям)», Пашаева, Бахар Адалят кызы

ОБЩИЕ ВЫВОДЫ

В работе получены следующие основные научные и практические результаты:

1. Проведен анализ современных технологий управления на основе прогнозирующих моделей в перерабатывающей промышленности, в результате чего обоснована возможность применения подходов УПМ.

2. Разработаны типовые структуры систем управления на основе УПМ-подходов. Данные структуры позволяют применять УПМ-подходы в задачах управления системами ККН.

3. На основе исследований физико-химических свойств процесса разработана математическая модель ККН, которая послужила основой для дальнейшего создания редуцированной динамической модели, применяемой в задачах управления на основе прогнозирующих моделей.

4. Получена упрощенная динамическая модель процесса ККН. При разработке структуры данной модели был применен подход Хикка, модифицированный за счет расширения модели путем добавления возмущающих воздействий.

5. Разработана процедура синтеза УПМ-регулятора, которая предоставила возможность реализовывать алгоритмы управления на основе прогнозирующих моделей.

6. Реализован алгоритм управления установкой каталитического крекинга на основе УПМ-регулятора. Результаты моделирования системы управления ККН позволяют сделать вывод об эффективности применения УПМ-подхода.

7. Определены оптимальные параметры УПМ-регулятора. Исследовано влияние настроечных параметров на качество регулирования.

8. Подтверждена эффективность применения УПМ-регулятора для управления технологическим процессом ККН. Проведена апробация предложенных подходов к управлению технологическими процессами ККН. Разработанные алгоритмы использованы в системе управления установкой подготовки нефти УПН-500 (ЗАО НПФ «ИнСАТ»).

Список литературы диссертационного исследования кандидат технических наук Пашаева, Бахар Адалят кызы, 2013 год

1. Технология, экономика и автоматизация процессов переработки нефти и газа / С.А. Ахметов и др.; Под ред. С.А. Ахметова. Москва, 2005. 735 с.

2. Гаврилов А.И., Пашаева Б.А. Интеллектуальная система управления каталитическим крекингом нефти// Интеллектуальные системы: Труды девятого международного симпозиума/ Под ред. К.А.Пупкова (Воронеж). 2010. С. 637-641.

3. Гудвин Г.К., Требе С.Ф., Сальгадо М.Э. Модельное прогнозирующее управление // Проектирование систем управления (Гл. 23). Москва, 2004. С. 739-769.

4. Дорф Р., Бишоп Р. Современные системы управления (Пер. с англ. М. : Лаб. Базовых Знаний : ЮНИМЕДИАСТАЙЛ). 2002. 831 с.

5. Методы робастного, нейро-нечеткого и адаптивного управления / К.А. Пупков и др. (2. изд., стер.). М. : Изд-во МГТУ им. Н.Э. Баумана, 2002. 743с.

6. Вялых И. А. Разработка алгоритмов интеллектуализации системы управления реакторным блоком технологической установки каталитического крекинга на основе нечетких продукционных моделей: Дисс. . к.т.н. (05.13.06). Пермь, 2011. 137 с.

7. Михайлова П.Г. Разработка интеллектуальной системы поддержки принятия решений по управлению безопасностью химических производств : Дисс. . к.т.н. (05.13.01). Москва, 2006. 194 с.

8. Вохрышев В.Е. Синтез алгоритмов и систем автоматического управления с использованием в обратной связи экстремумов фазовых координат: Дисс. . д.т.н. (05.13.01). Самара, 2006. 314 с.

9. Cristian P. Comparison of PI and MPC for Control of Catalytic Cracking Process. Petroleum / Gas University of Ploiesti Bulletin, Technical Series. 2010. Vol. 62 Issue 4B. p.95-100.

10. Mihaela I., Mircea V. C., Paul S. A. Retrofit Design of Heat Exchanger Network of a Fluid Catalytic Cracking Plant and Control Based on MPC// In Computers and Chemical Engineering, 2012, P. 168-175.

11. Cristina P., Cristian P. New approach in modelling, simulation and hierarchical control of the fluid catalytic cracking process // Revista de Chimie (Bucharest), 2010. Vol. 61, Issue 4. P. 419-426

12. Varga A., Fasol K.H. A new square-root balancing-free stochastic truncation model reduction algorithm// In Prepr. of 12th IF AC World Congress (Sydney, Australia). 1993. Vol. 7. P. 153-156.

13. Varga A. A schur method for computing coprime factorizations with inner denominators and applications in model reduction// In Process American Control Conference. (San Francisco, CA). 1993. P. 2130-2131.

14. Varga A. Balancing-free square-root algorithm for computing singular perturbation approximations// In Proc. of 30th IEEE CDC (Brighton, UK). 1991. P. 1062-1065.

15. Varga A. Coprime factors model reduction based on accuracy enhancing techniques // In Systems Analysis, Modelling and Simulation, 1993. Vol. 11. P. 303311.

16. Varga A. Efficient minimal realization procedure based on balancing// In Prepr. of IMACS Symp. on Modelling and Control of Technological Systems. 1991. Vol. 2. P. 42-47.

17. Fadhil A. D. Decoupling Control of Fluid Catalytic Cracking Unit. // Journal of

18. Chemistry & Chemical Engineering. 2011. Vol. 5 Issue 1. P. 12-19.

19. Zheng A. and Morari A. Robust stability of constrained model predictive control// In Proc. American Control Conference. 1993. P. 379-383.

20. Pandimadeui G., Indumathi P., Selvakumar V. Design of Controllers for a Fluidized Catalytic Cracking Process// Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers. 2010. Part A, Vol. 88, Issue 7. P. 875-880.

21. Errazu A.F., DeLasa H.I., Sarti F. A Fluized Bed Catalytic cracking Regenerator model, Grid Effects// Canadian Journal of Chemical Engineering. 1979. P. 191-199.

22. Dynamic modelling and nonlinear model predictive control of a Fluid Catalytic Cracking Unit/ R. Roman at al.// In Selected Papers from the 17th European Symposium on Computer Aided Process Engineering held (Bucharest, Romania). 2007. P. 605-617.

23. Krishna A.S., Parkin E.S. Modeling the regenerator in commercial cracking plant.// Chem. Eng. Prog. 1985. P.57-62.

24. Coleman B., J. Babu J. Techniques of Model-Based Control// Pretice Hall PTTr. 2002. 576p.

25. Pashayeva B. Mathematical model of the fluid catalytic cracking for work in testing control systems for the cracking plant/ PCI (Baku, Azerbaijan). 2010. Vol.1. P. 328-331.

26. Moore B.C. Principal component analysis in linear system: controllability, observability and model reduction// IEEE Trans. Autom. Control. 1981. P. 17-32.

27. Loeblein C., Perkins J.D. Structural Design for On-line Process Optimization: Application to a Simulated FCC// AlChe Journal. 1999, Vol 45, P.970-985.

28. Mircea C., Agachi S., Marimoiu V. Simulation and Model Predictive Control of a UOP Fluid Catalytic Cracking// Chemical Engineering and Processing. 2003. Vol. 42. 67p.

29. Garcia C.E., Morari M. Internal model control: A unifying review and some newresults// Ind. Eng. Chem. Proc. Des. Dev. 1982, P.308-323.

30. Rao C.V., Wright S.J., Rawlings J.B. Application of interior-point methods to model predictive control// Journal of Optimization Theory and Applications. 1998. P.723-757.

31. Leineweber D.B. Efficient reduced SKQ methods for the optimization of chemical processes described by large sparse DAE models. (PhD thesis, University Heidelberg, Germany). 1998, 167p.

32. Karthika V., Brijet Z., Bharathi N. Design of Optimal Controller for Fluid Catalytic Cracking Unit // Procedia Engineering. 2012. Vol. 38. P.l 150-1160.

33. Prett D.M., Gillette R.D. Optimization and constrained multivariable control of a catalytic cracking unit// In Proceedings of the Joint Automatic Control Conference. 1980. P.76-89.

34. Constrained model predictive control: Stability and optimality/ MayneD.Q. at al.// Automatica. 2000. P.789-814.

35. Lee E., Groves F.R. Mathematical model of the fluzed bed catalytic cracking plant// Trans Soc. Comp. Sim. 2. 1985. P. 219-236.

36. Mosca E. Optimal, predictive and adaptive control// Information and System Science Series. Prentice Hall, Englewood Cliffs (New Jersey). 1994, 714p.

37. Karthika V., Brijet Z., Bharathi N. Design of Optimal Controller for Fluid Catalytic Cracking Unit //In International conference on modelling optimization and computing, Procedia Engineering. 2012. P.l 150-1160.

38. Camacho E.F., Bordons C. Model predictive control. Springer. (London). 1999. 653p.

39. Pandimadevi G., Indumathi P., Selvakumar V. Design of Controllers for a

40. Fluidized Catalytic Cracking Process// In Chemical Engineering Research and Design. 2009. P.875-880.

41. Bristol E.H. On a new measure of interactions for multivariable control// IEEE trans. Automat. Control. 1996. AC-11. P. 133-134.

42. Rohit R., Rangaiah G.P., Lakshminarayanan S. Data analysis, modeling and control performance enhancement of an industrial fluid catalytic cracking unit// In: Chemical Engineering Science.2007. Vol. 62, Issue 7. P. 1958-1973.

43. Receding horizon control and discontinuous state feedback stabilization/ E.S. Meadows// Int. J. Contr. 1995. P.1217-1229.

44. De Nicolao G., Magni L., and Scattolini R. On the robustness of receding-horizon control with terminal constraints// IEEE Transactions on Automatic Control. 1996. P.451^153.

45. Martin G. and Johnston D. Continuous model-based optimization// In Process Optimization Conference (Houston, Texas). 1998. P.426-432.

46. Method and apparatus for modelling dynamic and steady-state processes for prediction, control and optimization/G. Martin at al. .US Patent, 1998.

47. Chen H., Allgower F. Maximal yield control of nonlinear chemical reactors// In Proc. 1st IF AC YAC'95 (Beijing, China). 1995. P. 764-769.

48. Chen H., Scherer C.W., Allgower F. A robust model predictive control scheme for constrained linear systems// In 5th IFAC Symposium on Dynamics and Control of Process Systems, DYCOPS-5 (Korfu).1998. P. 60-65.

49. Genceli H., Nikolaou M. Design of robust constrained model predictive controllers with volterra series// AIChE J. 1995. Vol. 41, Issue 9. P.2098-2107.

50. Genceli H., Nikolaou M. Robust stability analisys of constrained LI-norm model predictive control// AIChE J., 1993, Vol. 39, Issue 12. P. 1954-1965.

51. Cristina P., Cristian P. Increase the catalytic cracking process efficiency by implementation an optimal control structure. Case study// In 21st European Symposium on Computer Aided Process Engineering, Computer Aided Chemical

52. Engineering. 2010. P.477-481.

53. Multivariable Control of a Fluidized Catalytic Cracking Process under Full and Partial Combustion Modes/ Han In-Su. Riggs at al.// AIChE J. 2002. Vol. 35 Issue 9. P.830-839.

54. Quadratic programming in model predictive control for large scale systems /J.Buijs// In Proc. IF AC World Congress (Barselona, Spain). 2002. P.968-976.

55. Kadam J., Schlegel M., Marquardt W. Integrated dynamic optimization and control applied to the Bayer process// In HHYOnWorkshop materials (Dusseldorf, Germany). 2003. 240p.

56. Nocedal J., Wright S.J. Numerical optimization// Springer Series in Operations Research. 1999. 176p.

57. Model predictive heuristic control: Applications to industrial processes/ Richalet J. //Automatica. 1978. Vol. 14. P.413-428.

58. Rawlings J.B., Muske K.R. The stability of constrained receding horizon control// IEEE Transactions on Automatic Control. 1993. Vol. 38, Issue 10. P. 15121516.

59. Rawlings J.B., Meadows E.S., Muske K.R. Nonlinear model predictive control: A tutorial and survey// In Proc. IF AC Advanced Control of Chemical Processes (Kyoto, Japan). 1994. P. 185-197.

60. Rawlings J.B. Tutorial: Model predictive control technology// In Proc. American Control Conference (San Diego, California). 1999. P. 662-676.

61. Pohlezn J.B. How operational variables affect fluid catalytic cracking// Oil and Gas Journal. April 1, 1983. P.46-58.

62. Lee J.H., Cooley B. Recent advances in model predictive control and other related areas// In J.C. Kantor, C.E. Garcia, and B. Carnahan, editors, Fifth International Conference on Chemical Process Control, AIChE and CACHE. 1997. P. 201-216.

63. Lee J.H., Ricker N.L. Extended kalman filter based nonlinear model predictivecontrol// Ind. Eng. Chem. Res., Vol. 33. 1994. P.1530-1541.

64. Lee J.H., Yu Z.H. Worst-case formulations of model predictive control for systems with bounded parameters// Automatica. 1997. Vol. 33, Issue 5. P.763-781.

65. Maciejowski J.M. Predictive control with constraints// Prentice Hall. 2002. 617p.

66. Qin J.S., Badgwell T.A. An overview of nonlinear model predictive control applications// In F. Allgower and A. Zheng, editors, Nonlinear model predictive control (Birkhauser). 2000. Vol. 26. 305p.

67. Towards integrated dynamic real-time optimization and control of industrial processes/J.V. Kadam at al.// In I.E. Grossmann and C.M. McDonald, editors, Proc. FOCAPO. 2003. P. 593-596.

68. Glover K. All optimal Hankel-norm approximations of linear multivariable systems and their 11-error bounds// Int. J. Control. 1974. Vol.39. P. 1115-1193.

69. Muske K.R., Rawlings J.B. Model predictive control with linear models// AIChE Journal. 1993. Vol. 39 Issue 2. P.262-287.

70. Magni L. Nonlinear receding horizon control: Theory and Application. PhD thesis (Universif a degli Studi di Pavia).1998. 175p.

71. Chisci L.L., Lombardi A., Mosca E. Dual receding horizon control of constrained discrete-time systems// European Journal of Control. 1996. Vol.2. P.278-285.

72. Santos L.O., Oliveira N.M.C., Biegler L.T. Reliable and efficient optimization strategies for nonlinear model predictive control// In Proc. Of the IF AC Symposium DYCORD+95 (Helsingor, Denmark). 1995. P. 33-38.

73. Lasdon L.S., Waren A.D. GRG2 User's Guide. Department of Computer and Information Science (Cleveland State University, Cleveland, Ohio). 1986. 267p.

74. Caracotsios M., Stewart W.E. Sensitivity analysis of initial value problems with mixed odes and algebraic equations// Computers and Chemical Engineering. 1985. Vol. 9. P.359-365.

75. Hovd M., Skogestad S. Controllability analysis for the fluid catalytic cracking process// AIChE Annual Meeting. 1991. P. 768-775.

76. Hovd M., Skogestad S. Use of frequensy-dependent RGA for control system alaysis, structure selection and design// Sumbitted to Automatica.1991, P. 127-149.

77. Ramachandran R., Rangaiah G.P., Lakshminarayanan S. Data analysis, modeling and control performance enhancement of an industrial fluid catalytic cracking unit// In Chemical Engineering Science. 2006. Vol., 62 Issue 7. P. 1958-1973.

78. Morari M., Lee J.H. Model predictive control: Past, present and future// In Proceedings of PSE/Escape '97 (Trondheim, Norway). 1997. P.687-696.

79. Safonov M.G., Chiang R.Y. A schur method for balanced-truncation model reduction// IEEE Trans. Autom. Control. 1989. Vol. 34. P.729-733.

80. Tombs M.S., Postlethwaite I. Truncated balanced realization of a stable nonminimal state-space system// Int. J. Control, 1987, Vol.46, P.1319-1330.

81. Cristea M.V., Agachi S.P., Marinoiu V. Simulation and model predictive control of a UOP fluid catalytic cracking unit //Chemical Engineering and Processing. 2003. Vol. 42, Issue 2. P. 67-91.

82. Alvarez-Ramirez J., Valencia J., Puebla H. Multivariable control configurations for composition regulation in a fluid catalytic cracking unit// Chemical Engineering Journal.2004. Vol. 99, Issue 3. P. 187-201.

83. Oliveira N.M.C., Biegler L.T. Constraint handling and stability properties of model predictive control// AIChE J. 1994, Vol. 40. P.l 138-1155.

84. Crosdidier P., Morari M., and Holt B.R. Closed loop properties from steady stategain information// Ind. Eng. Chem. Fundam., 9185, Vol. 24. P.221-235.

85. Scokaert P.O.M., Mayne D.Q., and Rawlings J.B. Suboptimal model predictive control (feasibility implies stability)// IEEE Transactions on Automatic Control 1999. Vol. 44, Issue 3. P.648-654.

86. Keyser R. A gentle introduction to model based predictive control// In EC-PADI2 Int. Conference on Control Engineering and Signal Processing (Peru). 1998. P.65-69.

87. Soeterboek R. Predictive control: A unified approach// Prentice-Hall Inc. (New York). 1992. 326p.

88. Newell R.B., Lee P.L. Applied process control. A case study// Prentice Hall. 1989. 421p.

89. Huang Y., Reklaitis G.V., Venkatasubramanian V. A heuristic extended Kalman filter based estimator for fault identification in a fluid catalytic cracking unit. // Industrial & Engineering Chemistry Research. 2003. Vol. 42, Issue 14. P. 33613371.

90. Fluid Catalytic Cracking (FCC) Process Modeling, Simulation, and Control/ Carla I. C. at al.// Industrial & Engineering Chemistry Research. 2012. Vol. 51 Issue l.P. 1-29.

91. Bitmead R.R., Gevers M.,Wertz V. Adaptive optimal control, the thinking man's GPC// Prentice Hall, Englewood Cliffs (New Jersey). 1990. 506p.

92. Mehrotra S. On the implementation of a primal-dual interior point method// SIAM J. Optim. 1992. Vol. 2, Issue 1. P.575-601.

93. Skogestad S. and Postlethwaite I. Multivariable feedback control// Wiley. 1996. 560p.

94. Weiland S., Stoorvogel A.A., Tyounov A. End-point parameterization and guaranteed stability for a model predictive control scheme// Proc. IEEE Conference on Decision and Control (Orlando, Florida). 2001. P. 4832-4837.

95. Dynamic modeling and nonlinear model predictive control of a Fluid Catalytic

96. Cracking Unit / Raluca R. at al. // Computers & Chemical Engineering.2009. Vol. 33, Issue 3.P.605-617.

97. Hammarling S.J. Numerical solution of the stable, non-negative definite Lyapunov equation// IMA J. Numerical Analysis. 1982. Vol. 2. P.303-323.

98. Qin S.J., Badgwell T.A. An overview of industrial model predictive control technology// AIChE Symposium Series: Fifth Int. Conf. on Chemical Process Control. 1997. Vol. 316. P. 232-256.

99. Wright S.J. Applying new optimization algorithms to model predictive control// Chemical Process Control: Assessment and New Directions for Research, AIChE Symposium Series 316. 1997. P. 147-155.

100. Wright S.J. Primal-dual interior-point methods. SIAM (Philadelphia). 1997. 167p.

101. Santos V.M.L., Carvalho F.R., Souza Jr M.B. Predictive control based on neural networks: an application to a fluid catalytic cracking industrial unit // Brazilian Journal of Chemical Engineering. 2000. Vol. 17, Issue 4-7. P. 897-899.

102. Weekman V. A Model of Catalytic Cracking Conversion in Fixed, Moving and Fluid-Bed Reactors// Industrial and Engineering Chemistry Process Desing and Development. 1968. 90p.

103. Weekman V., Nace D.M. Kinetics of Catalytic Cracking Selectivity in Fixed Moving and Fluid bed reactors// AIChE Journal. 1970. 397p.

104. Bequette W. Process Control Modeling Desing and Simulation // Pretice Hall PTTr. 2003. 564p.

105. Fred Ramirez W. Process control and identification// Academic Press (New York, NY). 1994. 498p.

106. Kwon W.H., Pearson A.E. A modified quadratic cost problem and feedback stabilization of a linear system// IEEE Transactions on Automatic Control. 1977. Vol. 22, Issue 5. P.838-842.

107. Kwon W.H. Advances in predictive control: Theory and application. In Proceedings of first Asian Control Conference (Tokyo). 1994. P.76-79.

108. Liu Y., Anderson B.D.O. Singular perturbation approximation of balanced systems// Int. J. Control. 1989. Vol. 50. P.1379-1405.

109. Shah Y.T., Huling G.P., Paraskos J.A., MCKinney J.D. A kinetic model for an adibatic transfer line catalytic cracking reactor//IECPDD. 1977. Vol. 16. P.89-94.