Рецептор фактора роста эндотелия сосудов второго типа: получение рекомбинантного препарата, моноклональных антител и системы направленного транспорта тема диссертации и автореферата по ВАК РФ 03.01.04, кандидат биологических наук Корчагина, Анна Александровна

  • Корчагина, Анна Александровна
  • кандидат биологических науккандидат биологических наук
  • 2013, Москва
  • Специальность ВАК РФ03.01.04
  • Количество страниц 120
Корчагина, Анна Александровна. Рецептор фактора роста эндотелия сосудов второго типа: получение рекомбинантного препарата, моноклональных антител и системы направленного транспорта: дис. кандидат биологических наук: 03.01.04 - Биохимия. Москва. 2013. 120 с.

Оглавление диссертации кандидат биологических наук Корчагина, Анна Александровна

СПИСОК СОКРАЩЕНИЙ.

ГЛАВА I. ОБЗОР ЛИТЕРАТУРЫ.

Значение УЕОР112 для неопластического ангиогенеза и антиангиогенной терапии.

Рекомендованный список диссертаций по специальности «Биохимия», 03.01.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Рецептор фактора роста эндотелия сосудов второго типа: получение рекомбинантного препарата, моноклональных антител и системы направленного транспорта»

Структура рецепторов семейства УЕСР11.8

Биологические функции УЕСРКЛ.11

УЕСРЯ2 и его биологическая роль.12

Опухолевый ангиогенез.17

Ингибиторы УБОРЯ рецепторов в антиангиогенной терапии опухолей.21

Функциональное значение растворимых форм рецепторов.28

Резистентность опухолей к антиангиогенной терапии.31

Направленная доставка наноконтейнеров.36

Перспективы и заключение.38

Похожие диссертационные работы по специальности «Биохимия», 03.01.04 шифр ВАК

Заключение диссертации по теме «Биохимия», Корчагина, Анна Александровна

ВЫВОДЫ:

1. Клонирование в плазмиду рЕТ32а кДНК, кодирующей с I-III иммуноглобулин-подобные домены экстраклеточного фрагмента VEGFR2, позволило получить штамм E.coli Rosetta(DE3)pET32a/VEGFR2I-III продуцирующий VEGFR2i.m с выходом 13±2 мг/л.

2. Лиганд-рецепторный анализ, разработанный на основе непрямого твердофазного иммуноферментного анализа, позволяет определять VEGFR2 с пределом чувствительности 4±0,5 нг/мл.

3. Иммунизация мышей рекомбинантным препаратом VEGFR2I-III позволила получить В-лимфоциты селезенки, способные при слиянии с клетками миеломной культуры Sp2/0-Agl4 образовывать гибридные клетки, продуцирующие моноклональные антитела к VEGFR2I-III, характеризующиеся константой аффинности - 1,8±0,12*108 М"1.

4. Моноклональные антитела к VEGFR2 обладают способностью ингибировать миграцию глиомных клеток на 56±4% в тесте повреждения монослоя клеток глиомы С6 (wound healing test).

5. Ковалентная конъюгация моноклональных aHTH-VEGFR2 антител с блок-иономерными наногелями (диаметр 100±10 нм) на основе ПЭГ-б-ПМАК, объективно повышали специфичность их накопления в клетках интракраниальной опухоли при внутривенном введении.

Благодарности.

Автор выражает благодарность научному руководителю Владимиру Павловичу Чехонину за помощь на протяжении всей диссертационной работы, Наталье В. Нуколовой и Татьяне Сандаловой за помощь в работе с наногелями, Анне В. Леопольд за советы в наработке и очистке рекомбинантного УЕСРЯ2, Надежде Е. Волгиной за помощь в работе к культурой НиУЕС, Владимиру Павловичу Баклаушеву за помощь в освоении иммунохимических, Ольге Ивановне Гуриной и Сергею А. Шеину за помощь в освоении гибридомной технологии получения моноклональных антител, Мельникову Павлу за помощь в лазерной конфокальной микроскопии, Надежде Филипповне Гриненко за помощь в работе с культурами клеток, Клавдии Павловне Ионовой и сотрудникам вивария за помощь в работе с животными, Кристине В. Новиковой и Карине Ш. Кардашовой за помощь в работе с клетками глиомы Сб.

Список литературы диссертационного исследования кандидат биологических наук Корчагина, Анна Александровна, 2013 год

1. Norden A.D., Drappatz J., Wen P.Y. Antiangiogenic therapies for high-grade glioma // Nat. Rev. Neurol. — 2009. — Vol. 5(11). — P. 610-620

2. Jain R.K., di Tomaso E., Duda D.G., et al. Angiogenesis in brain tumours // Nat Rev Neurosci. — 2007. — Vol. 8(8).—P. 610-622

3. Lakka S.S., Rao J.S. Antiangiogenic therapy in brain tumors // Expert Rev Neurother. — 2008. — Vol. 8(10). — P. 1457-1473

4. Baeriswyl V., Christofori G. The angiogenic switch in carcinogenesis // Semin Cancer Biol. -2009.-Vol. 19(5).-P. 329-337

5. Holmes K., Roberts O.L., Thomas A.M., et a\. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition // Cell Signal. — 2007. — Vol. 19(10). — P. 2003-2012

6. Voss M.H., Hsieh J.J., Motzer R.J. Novel Approaches Targeting the Vascular Endothelial Growth Factor Axis in Renal Cell Carcinoma // Cancer Journal. 2013. - Vol. 19(4). - P. 299-306

7. Shibuya M. Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis // BMB Rep. 2008. - Vol. 41(4). - P. 278-286

8. Hicklin D.J., Ellis L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis // J Clin Oncol. 2005; 23: 1011-1027

9. Silva S.R., Bowen K.A., Rychahou P.G., et al. VEGFR-2 expression in carcinoid cancer cells and its role in tumor growth and metastasis // Int J Cancer. 2011. - Vol. 128(5). -P. 1045-1056

10. Smith N.R., Baker D., James N.H., et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers//Clin. Cancer Res. — 2010. — Vol. 16, —P. 3548-3561

11. Dales J.P., Garcia S., Carpentier S., et al. Prediction of metastasis risk (11 year follow-up) using VEGF-R1, VEGF-R2, Tie-2/Tek and CD 105 expression in breast cancer (n=905).// Br J Cancer. 2004. - Vol. 90(6). - P. 1216-1221

12. Seto T., Higashiyama M., Funai H., et al. Prognostic value of expression of vascular endothelial growth factor and its fit-1 and KDR receptors in stage I non-small-cell lung cancer // Lung Cancer. 2006. - Vol. 53(1). - P. 91-96

13. Ghosh S., Sullivan C.A., Zerkowski M.P. ,et al. High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer // Hum Pathol. 2008. - Vol. 39(12). - P. 1835-1843

14. Calvani M., Rapisarda A., Uranchimeg B., et al. Hypoxic induction of an HIF-lalpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells // Blood. -2006.- Vol. 107(7).-P. 2705-2712

15. Yang F., Jin C., Jiang Y.J., et al. Potential role of soluble VEGFR-1 in antiangiogenesis therapy for cancer // Expert Rev Anticancer Ther. — 2011. — Vol. 11(4). — P. 541-549

16. Chatterjee S., Heukamp L.C., Siobal M., et al. Tumor VEGF:VEGFR2 autocrine feedforward loop triggers angiogenesis in lung cancer // J Clin Invest. 2013. - Vol. 123(7). - P.3183

17. Zhou J., Atsina K.B., Himes B.T., et al. Novel delivery strategies for glioblastoma // Cancer J. — 2012. — Vol. 18(1). — P. 89-99

18. Wicki A., Rochlitz C., Orleth A., et al. Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth // Clin Cancer Res. — 2012. — Vol. 18(2). — P. 454-464

19. Miletic H., Niclou S.P., Johansson M., et al. Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms // Expert Opin. 2009; 13(4): 455-468

20. Wang F., Yamauchi M, Muramatsu M., et al. RACK1 regulates VEGF/Fltl-mediated cell migration via activation of a PI3-K/Akt pathway // J. Biol. Chem. — 2011. — Vol. 286(11). —P. 9097-9106

21. Bikfalvi A., Moenner M., Javerzat S., et al. Inhibition of angiogenesis and the angiogenesis/invasion shift // Biochem Soc Trans. — 2011. — Vol. 39(6). — P. 15601564

22. Liu W., Xu J., Wang M., et al. Tumor-derived vascular endothelial growth factor (VEGF)-a facilitates tumor metastasis through the VEGF-VEGFR1 signaling pathway // Int J Oncol. — 2011. — Vol. 39(5). — P. 1213-1220

23. Nagy J.A., Vasile E., Feng D., et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis // J Exp Med. — 2002.1. Vol. 196. —P. 1497-1506

24. Shojaei F., Ferrara N. Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies // Drug Resist. — 2008b. — Vol. 11, —P. 219-230

25. Jain R.K. Antiangiogenic therapy for cancer: current and emerging concepts // Oncology (Williston Park). — 2005. — Vol. 19(4 Suppl 3). — P. 7-16

26. Jain R.K. A new target for tumor therapy // N Engl J Med. 2009 Jun 18;360(25):2669-71

27. Sounni N.E., Noel A. Targeting the tumor microenvironment for cancer therapy // Clin Chem. — 2013. — Vol. 59(1). — P. 85-93

28. Caraglia M., De Rosa G., Salzano G., et al. Nanotech revolution for the anti-cancer drug delivery through blood- brain-barrier // Curr Cancer Drug Targets. — 2012. — Vol. 12(3). —P. 186-196

29. Zhan C., Lu W. The blood-brain/tumor barriers: challenges and chances for malig-nant gliomas targeted drug delivery // Curr Pharm Biotechnol. — 2012. — Vol. 13(12). — P. 2380-2387

30. Rahimi N. Vascular endothelial growth factor receptors: molecular mechanisms of activation and therapeutic potentials // Exp. Eye Res. — 2006. — Vol. 83(5). — P. 10051016.

31. Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors// Nat Med.2003. — Vol. 9(6). — P. 669-676

32. Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor // Endocr Rev. — 1997. — Vol. 18(1). — P. 4-25

33. Li H., Cao W., Chen Z., et al. The antiangiogenic activity of a soluble fragment of the VEGFR extracellular domain // Biomed Pharmacother. 2013 - Epub ahead of print.

34. Heldin C.H, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor // Physiol Rev. — 1999. — Vol. 79(4). — P. 1283-1316

35. Shibuya M. Role of VEGF-Flt receptor system in normal and tumor angiogenesis. Adv. Cancer Res // — 1995. — Vol. 67. — P. 281 -316

36. Ruch C., Skiniotis G„ Steinmetz M.O., et al. Structure of a VEGF-VEGF receptor complex determined by electron microscopy // Nat.Struct. Mol. Biol. — 2007. — Vol. 14(3). —P. 249-250

37. Stuttfeld E., Ballmer-Hofer K. Structure and function of VEGF receptors // IUBMB Life.2009. —Vol. 61(9). — P.915-92

38. Kappert K, Peters K.G., Böhmer F., et al. Tyrosine phosphatases in vessel wall signaling // Cardiovasc. Res. — 2005. — Vol. 65(3). — P. 587-598

39. Ewan L.C., Jopling H.M., Jia H., et al. Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells // Traffic. — 2006. — Vol. 7(9). — P. 1270-1282

40. Gampel A., Moss L., Jones M.C., et al. VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment // Blood. — 2006.

41. Vol. 108(8). —P. 2624-2631

42. Fugues S., Koch S., Gualandi L., et al. Vascular endothelial growth factors and receptors: Anti-angiogenic therapy in the treatment of cancer // Molecular Aspects of Medicine. — 2011, —Vol. 32. —P. 88-111

43. Jakobsson L., Kreuger J., Holmborn K, et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis // Dev Cell. — 2006. — Vol. 10(5). — P. 625-634

44. Grosskreutz C. L., Anand-Apte B., Duplaa C., et al. Vascular endothelial growth factor-induced migration of vascular smooth muscle cells in vitro // Microvasc. Res. — 1999.1. Vol. 58(2). —P. 128-136

45. Sawano A., Iwai S., Sakurai Y., et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans // Blood. — 2001. —Vol. 97(3). — P. 785-791

46. Hiratsuka, S., Minowa, O., Kuno, J., et al. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice // Proc. Natl. Acad. Sei. USA. 1998 Vol. 95(16). P. 9349-9354

47. Justiniano S.E., Elavazhagan S., Fatehchand K., et.al. FcyR-induced soluble VEGFR-1production inhibits angiogenesis and enhances efficacy of anti-tumor antibodies // J Biol

48. Chem. — 2013. — Epub ahead of print.103

49. Taylor A.P., Leon E., Goldenberg D.M. Placental growth factor (P1GF) enhances breast cancer cell motility by mobilising ERK1/2 phosphorylation and cytoskeletal rearrangement // Br. J. Cancer. — 2010. — Vol.l03(l). — P. 82-89

50. Wey J.S., Fan F., Gray M.J., et al. Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines // Cancer. — 2005. — Vol. 104. —P. 427-438

51. Lyden D., Hattori K., Dias S., et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumour angiogenesis and growth // Nature Med. — 2001 — Vol. 7. —P. 1194-1201

52. Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis // J Biochem Mol Biol. — 2006. — Vol. 39(5). — P. 469-478

53. Meyer R.D., Mohammadi M, Rahimi N. A single amino acid substitution in the activation loop defines the decoy characteristic of VEGFR1/FLT-1 IIJ Biol Chem. — 2006. — Vol. 281, —P. 867-875

54. Rahimi N., Dayanir V., Lashkari K. Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR1) modulates mitogenic activity of VEGFR2 in endothelial cells IIJ Biol Chem. — 2000. —Vol. 275(22). —P. 16986-16992

55. Autiero M., Waltenberger J., Communi D., et al. Role of P1GF in the intra- and intermolecular cross talk between the VEGF receptors Fltl and Flkl // Nat Med. — 2003. —Vol. 9. — P. 936-943

56. Cleaver O., Melton D.A. Endothelial signaling during development // Nat Med. — 2003. — Vol. 9. —P. 661-668

57. Podar K., Anderson K.C. The pathophysiologic role of VEGF in hematologicmalignancies: therapeutic implications // Blood. — 2005. — Vol. 105. — P. 1383-1395104

58. Plate K.H., Breier G., Millauer B., et al. Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis // Cancer. Res. — 1993. — Vol. 53(23). — P. 5822-5827

59. Dias S., Hattori K., Zhu Z, et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration // J Clin Invest. — 2000. — Vol. 106(4). — P. 511521

60. Waldner M.J., Wirtz S., Jefremow A., et al. VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer // J. Exp. Med. — 2010. — Vol. 207. — P. 2855-2868

61. Shalaby F., Rossant J., Yamaguchi T.P., et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice //Nature. — 1995. — Vol. 376. — P. 62-66

62. Fuh G., Li B., Crowley C., et al. Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor // J. Biol. Chem. — 1998. — Vol. 273. —P. 11197-11204

63. McColl B.K., Baldwin M.E., Roufail S., et.al. Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D // J. Exp. Med. — 2003. — Vol. 198. — P. 863868

64. Pan Q., Chanthery Y., Liang W.C., et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth // Cancer Cell. — 2007. — Vol. 11(1). — P. 53-67

65. Soker S., Miao H. Q., Nomi M., et al. VEGF 165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF 165-receptor binding // J. Cell Biochem. — 2002. — Vol. 85(2). — P. 357-368

66. Blume-Jensen P., Hunter T. Oncogenic kinase signaling // Nature. — 2001. — Vol. 411 — P. 355-365

67. Dougher-Vermazen M, Hulmes J.D., Bohlen P., et.al. Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor // Biochem. Biophys. Res. Commun. — 1994. — Vol. 205(1). — P. 728-738

68. Singh A.J., Meyer R.D., Band H., et al. The carboxyl terminus of VEGFR-2 is required for PKC-mediated down-regulation // Mol. Biol. Cell. — 2005. — Vol. 16(4). — P. 2106-2118

69. Brunei A., Bonni A., Zigmond M.J.,et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor // Cell — 1999. — Vol. 96(6). — P. 857868

70. Cantley L.C. The phosphoinositide 3-kinase pathway // Science. — 2002. — Vol. 296. — P. 1655-1657

71. Dieterle A.M., Bohler P., Keppeler H. PDK1 controls upstream PI3K expression and PIP3 generation // Oncogene. — 2013.— Epub ahead of print.

72. LoPiccolo J., Granville C.A., Gills J.J., et al. Targeting Akt in cancer therapy // Anticancer Drugs. — 2007. — Vol. 18(8). — P. 861-874

73. Soldi R., Mitola S., Strasly M., et al. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2 // EMBO J. — 1999. — Vol. 18(4). — P.882-892

74. Takahashi T., Ueno H., Shibuya M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells // Oncogene. — 1999. — Vol. 18(13). — P. 2221 -2230

75. Montenegro C.F., Salla-Pontes C.L., Ribeiro J.U., et al. Blocking avp3 integrin by a recombinant RGD disintegrin impairs VEGF signaling in endothelial cells // Biochimie.2012—Vol. 94(8). —P. 1812-1820

76. Liao H.J., Kume T., McKay C.,et al. Absence of erythrogenesis and vasculogenesis in Plcgl-deficient mice// J. Biol. Chem. — 2002 — Vol. 277(11). — P. 9335-9341

77. Lawson N.D., Mugford J.W., DiamondB.A., et al. Phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development // Genes Dev. —2003. —Vol. 17(11). —P. 1346-1351

78. Shu X., Wu W., Mosteller R.D., et al. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases // Mol. Cell Biol. — 2002. — Vol. 22(22). — P. 7758-7768

79. Holmqvist K, Cross M., Riley D., et al. The Shb adaptor protein causes Src-dependent cell spreading and activation of focal adhesion kinase in murine brain endothelial cells // Cell. Signal. —2003.— Vol. 15(2). —P. 171-179

80. Lamalice L., Houle F., Jourdan G., et al. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38 // Oncogene.2004. — Vol. 23(2). — P. 434-445

81. Ridley A.J, Paterson H.F., Johnston C.L., et al. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling // Cell. — 1992. — Vol. 70(3). — P. 401-41

82. Bates D.O, Hillman N.J., Williams B., et al. Regulation of microvascular permeability by vascular endothelial growth factors // J. Anat. — 2002. — Vol. 200(6). — P. 581-597

83. Fulton D., Gratton J.P., McCabe T.J., et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt // Nature. — 1999. — Vol. 399(6736). — P. 597-601

84. Fan F., Schimming A., Jaeger D., et al. Targeting the tumor microenvironment: focus on angiogenesis // Journal of Oncology. — 2012. — Vol. 2012(2012).

85. Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation // Mol Cell Biol. — 1992. — Vol. 12. — P. 5447-5454

86. Wang G.L., Semenza G.L. Purification and characterization of hypoxia-inducible factor 1 // J Biol Chem. — 1995. — Vol. 270. — P. 1230-1237

87. Goel S., Duda D.G., Xu L., et al. Normalization of the vasculature for treatment of cancer and other diseases // Physiol Rev. — 2011. — Vol. 91(3). — P. 1071-1121

88. NagyJ.A., Chang S.H., Dvorak A.M., et al. Why are tumour blood vessels abnormal and why is it important to know? // Br J Cancer. — 2009. — Vol. 100. — P. 865-869

89. Jain R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy // Science. — 2005. — Vol. 307. — P. 58-62

90. Less J.R., Skalak T.C., Sevick E.M., et al. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions // Cancer Res. — 1991. — Vol. 51.1. P. 265-273

91. Gordon M.S., Mendelson D.S., Kato G. Tumor angiogeiiesis and novel antiangiogenic strategies // International Journal of Cancer. — 2010. — Vol. 126(8). — P. 1777-1787

92. Eilken H.M., Adams R.H. Dynamics of endothelial cell behavior in sprouting angiogenesis // Current Opinion in Cell Biology. — 2010. — Vol. 22(5). — P. 617-625

93. Dejana E., Tournier-Lasserve E., Weinstein B.M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications // Dev Cell.2009. — Vol. 16. — P. 209-221

94. Hashizume //., Baluk P., Morikawa S., et al. Openings between defective endothelial cells explain tumor vessel leakiness // Am J Pathol. — 2000. — Vol. 156. — P.1363-1380

95. Parker L.H., Schmidt M., Jin S.W., et al. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation // Nature. — 2004. — Vol. 428(6984). — P. 754-758

96. Raza A., Franklin M.J., DudekA.Z. Pericytes and vessel maturation during tumor angiogenesis and metastasis / Am J Hematol. — 2010. — Vol. 85(8). — P. 593-598

97. Jain R.K., Booth M.F. What brings pericytes to tumor vessels? // J Clin Invest. — 2003, —Vol. 112. —P. 1134-1136

98. Hughes C.C. Endothelial -stromal interactions in angiogenesis // Curr Opin Hematol. — 2008. — Vol. 15. — P. 204-209106. von Tell D., Armulik A., Betsholtz C. Pericytes and vascular stability // Exp Cell Res. — 2006. — Vol. 312(5). — P. 623-629

99. Betsholtz C. Insight into the physiological functions of PDGF through genetic studies in mice // Cytokine Growth Factor Rev. — 2004. — Vol. 15. — P. 215-228

100. Greenberg J.I., Shields D.J., Barillas S.G., et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation // Nature. — 2008. — Vol. 456(7223). — P. 809-813

101. Thurston G. Role of angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis // Cell Tissue Res. — 2003. — Vol. 314. — P. 6168

102. Reiss Y., Droste J., Heil M., et al. Angiopoietin-2 impairs revascularization after limb ischemia // Circ Res. — 2007. — Vol. 101(1). — P. 88-96

103. Brown J.L., Cao Z.A., Pinzon-Ortiz M., et al. A human monoclonal anti-ANG2 antibody leads to broad antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical models // Mol Cancer Ther. — 2010. — Vol. 9. — P.145-156

104. Folkman J. Tumor angiogenesis: therapeutic implications // N. Engl. J. Med. —1971.— Vol. 285(21). —P. 1182-1186108

105. Jain R.K., Duda D.G., Clark J.W., et al. Lessons from phase III clinical trials on anti-VEGF therapy for cancer // Clin. Pract.Oncol. — 2006. — Vol. 3(1). — P. 24-40

106. Fine B.A., Valente P.T., Feinstein G.I., et al. VEGF, flt-1, and KDR/flk-1 as prognostic indicators in endometrial carcinoma // Gynecol. Oncol. — 2000. — Vol. 76(1). —P. 33-39

107. Shen //., McDonald K.L. The Complexities of Resistance to Bevacizumab // Journal of Cancer Therapy. — 2012. — Vol. 3. — P. 491-503

108. McCarty J.H. Glioblastoma Resistance to Anti-VEGF Therapy: Has the Challenge Been MET? // Clin Cancer Res. — 2013. — Vol. 19(7). — P. 1631 -1633

109. Britten C.D., Kabbinavar F., Hecht J.R., et al. A phase I and pharmacokinetic study of sunitinib administered daily for 2 weeks, followed by a 1-week off period // Cancer Chemother Pharmacol. — 2008. — Vol. 61(3). — P. 515-524

110. Zhou Q., Gallo J.M. Differential effect of sunitinib on the distribution of temozolomide in an orthotopic glioma model // Neuro-Oncology. — 2009. — Vol. 11. — P. 301-310

111. Llovet J.M., Ricci S., Mazzaferro V. Sorafenib in advanced hepatocellular carcinoma // N Engl J Med. — 2008. — Vol. 359(4). — P. 378-390

112. Kindler H.L., Ioka T., Richel D.J. Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: a doubleblind randomised phase 3 study // Lancet Oncol. — 2011. — Vol. 12(3). — P. 256262

113. Infante J.R., Reid T.R., Cohn A.L. Axitinib and/or bevacizumab with modified FOLFOX-6 as first-line therapy for metastatic colorectal cancer: A randomized phase 2 study // Cancer. — 2013. — Vol. 119(14). — P. 2555-2563

114. Oudard S., Beuselinck B., Decoene J. Sunitinib for the treatment of metastatic renal cell carcinoma // Cancer Treat Rev. — 2011. — Vol. 37(3). — P. 178-184

115. Magnusson P.U., Looman C., Ahgren A., et al. Platelet-derived growth factor receptor-beta constitutive activity promotes angiogenesis in vivo and in vitro // Arterioscler Thromb Vase Biol. — 2007. — Vol. 27. — P. 2142-2149

116. McCarty M.F., Somcio R.J., Stoeltzing O., et al. Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content // J Clin Invest. — 2007. — Vol. 117. — P. 2114-2122

117. Batchelor T.T., Duda D.G., di Tomaso E., et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma // J Clin Oncol. — 2010. — Vol. 28. — P. 2817-2823

118. Nakahara T., Norberg S.M., Shalinsky D.R., et al. Effect of inhibition of vascular endothelial growth factor signaling on distribution of extravasated antibodies in tumors // Cancer Res. — 2006. — Vol. 66. — P. 1434-1445

119. Sullivan L.A., Brekken R.A. The VEGF family in cancer and antibody-based strategies for their inhibition // MAbs. — 2010. — Vol. 2(2). — P. 165-175

120. Finley S. D., Dhar M„ Popel A. S. Compartment Model Predicts VEGF Secretion and Investigates the Effects of VEGF Trap in Tumor-Bearing Mice // Front Oncol. -2013.-Vol.3. P.- 196

121. Hansen-Algenstaedt N., Stoll B.R., Padera T.P., et al. Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy // Cancer Res. — 2000. — Vol. 60. — P. 4556-4560

122. A Ion T., Hemo I., Itin A., et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity // Nat Med. — 1995. — Vol. 1. — P. 1024-1028

123. Kozin S.V., Boucher Y„ Hicklin D.J., et al. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts // Cancer Res. — 2001. — Vol. 61. — P. 39-44

124. Ton N.C., Parker G.J., Jackson A., et al. Phase I evaluation of CDP791, a PEGylated di-Fab' conjugate that binds vascular endothelial growth factor receptor 2 // Clin Cancer Res. — 2007. — Vol. 13(23). — P. 7113-7118

125. Kendall R.L., Thomas K.A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor // Proc Natl Acad Sei USA. — 1993. — Vol. 90. — P. 10705-10709

126. Cebe-Suarez S., Zehnder-Fjallman A., Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships // Cell Mol. Life Sei. — 2006. — Vol. 63(5). —P. 601-615

127. Wu F.T., Stefanini M.O., Mac Gabhann F., et al. A systems biology perspective on sVEGFRl: its biological function, pathogenic role and therapeutic use // J Cell Mol Med. — 2010. — Vol. 14(3). — P. 528-552

128. Wen Y., Edelman J.L., Kang T., et al. Two functional forms of vascular endothelial growth factor receptor-2/Flk-l mRNA are expressed in normal rat retina // J Biol Chem. — 1998. — Vol. 273. — P. 2090-2097

129. Albuquerque R.J., Hayashi T., Cho W.G., et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth // Nat Med. — 2009. — Vol. 15. —P. 1023-1030

130. Ebos J.M., Bocci G., Man S., et al. A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma // Mol Cancer Res. — 2004. — Vol. 2. — P. 315-326

131. Ashery-Padan R., Marquardt T., Zhou X., et al. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye // Genes Dev. — 2000. — Vol. 14. — P. 2701-2711

132. Kumar H., Heer K, Greenman J., et al. Soluble FLT-1 is detectable in the sera of colorectal and breast cancer patients // Anticancer Res. — 2002. — Vol. 22(3). — P. 1877-1880

133. Harris A.L., Reusch P., Barleon B., et al. Soluble Tie2 and Fltl extracellular domains in serum of patients with renal cancer and response to antiangiogenic therapy // Clin Cancer Res. — 2001, — Vol. 7(7). —P. 1992-1997

134. Jensen B. V., Johansen J.S., Price P.A. High levels of serum HER-2/neu and YKL-40 independently reflect aggressiveness of metastatic breast cancer // Clin Cancer Res. — 2003. — Vol. 9(12). — P. 4423-4434

135. Rohrberg K.S., Pappot H., Lassen U., et al. Biomarkers in tissue from patients with upper gastrointestinal cancers treated with erlotinib and bevacizumab // Cancer Biol Ther. — 2011. — Vol. 11 (8). — P. 732-739

136. Wedam S.B., Low J.A., Yang S.X., et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer // J. Clin. Oncol. — 2006. — Vol. 24. — P. 769-777

137. Burris H., Rocha-Lima C. New therapeutic directions for advanced pancreatic cancer: targeting the epidermal growth factor and vascular endothelial growth factor pathways // Oncologist. — 2008. — Vol. 13. — P. 289-298

138. Ellis L.M., Hicklin D.J. Pathways mediating resistance to vascular endothelial growth factor-targeted therapy // Clin. Cancer Res. — 2008a. — Vol. 14. — P. 6371— 6375

139. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation // Cell. — 2011. — Vol. 144(5). — P. 646-674

140. Rapisarda A., Melillo G. Role of the VEGF/VEGFR axis in cancer biology and therapy // Adv Cancer Res. — 2012. — Vol. 114. — P. 237-267

141. Auf G., Jabouille A., Guérit S., et al. Inositol-requiring enzyme 1 alpha is a key regulator of angiogenesis and invasion in malignant glioma // Proc Natl Acad Sci USA.2010. —Vol. 107(35). —P. 15553-15558

142. Chi A.S., Norden A.D., Wen P.Y. Antiangiogenic strategies for treatment of malignant glioma // Neurotherapeutics. — 2009. — Vol. 6(3). — P. 513-526

143. Saito H., Tsujitani S., Ikeguchi M., et al. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue // Br J Cancer. — 1998. — Vol. 78(12). — P. 1573-1577

144. Palucka K., Banchereau J. Cancer immunotherapy via dendritic cells // Nat Rev Cancer. — 2012. — Vol. 12(4). — P. 265-277

145. Ma Y., Shurin G.V., Gutkin, D.W., et al. Tumor associated regulatory dendritic cells // Semin Cancer Biol. — 2012. — Vol. 22(4). — P. 298-306

146. Fischer C., Jonckx B., Mazzone M, et al. Anti-PIGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels // Cell. — 2007. — Vol. 131.1. P. 463-475

147. Casanovas O., Hicklin D.J., Bergers G., et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors // Cancer Cell. — 2005. — Vol. 8. — P. 299-309

148. Li J.L., Sainson R.C., Oon C.E., et al. DLL4-notch signaling mediates tumor resistance to anti-VEGF therapy in vivo // Cancer Res. — 2011. — Vol. 71. — P. 60736083

149. Ito H., Daido S., Kanzawa Т., et al. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells // Int J Oncol. — 2005. — Vol. 26(5). —P. 1401-1410

150. Takeuchi H., Kondo Y, Fujiwara K., et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase В inhibitors // Cancer Res. — 2005. — Vol. 65(8). — P. 3336-3346

151. Mathew R., Karantza-Wadsworth V., White E. Role of autophagy in cancer // Nat Rev Cancer. — 2007. — Vol. 7(12). — P. 961-967

152. Erber R., Thurnher A., Katsen A.D., et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms // FASEB J. — 2004. — Vol. 18(2). — P. 338-340

153. Rapisarda A., HollingsheadM., Uranchimeg В., et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition // Mol Cancer Ther. — 2009. — Vol. 8(7). — P. 1867-1877

154. Ни Y.L., DeLay M., Jahangiri A., et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma // Cancer Res. —2012, —Vol. 72(7). —P. 1773-1783

155. Чехонин В.П., Шеин С.А., Корчагина А.А., и др. Роль VEGF в развитии неопластического ангиогенеза // Вестник РАМН. — 2012. — Vol. 2. — Р. 23-34

156. Argaw А.Т., Asp L., Zhang J., et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease // J Clin Invest. — 2012. — Vol. 122(7). —P. 2454-2468

157. Salhia В., Angelov L., Roncari L., et al. Expression of vascular endothelial growth factor by reactive astrocytes and associated neoangiogenesis // Brain Res. —2000. — Vol. 883(1). —P. 87-97

158. Srikanth M., Kessler J.A. Nanotechnology-novel therapeutics for CNS disorders // Nat Rev Neurol. — 2012. — Vol. 8(6). — P. 307-318

159. Duggan S.T.; Keating G.M. Pegylated liposomal doxorubicin: a review of its use in metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi's sarcoma // Drugs. — 2011. — Vol. 71(18). — P. 2531-2558

160. Chang H.I., Yeh M.K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy // Int JNanomedicine. — 2012. — Vol. 7. — P. 49-60

161. Lingappa M., Song H., Thompson S., et al. Immunoliposomal delivery of 213Bi for alpha-emitter targeting of metastatic breast cancer // Cancer Res. — 2010. — Vol. 70(17). —P. 6815-6823

162. Feng В., Tomizawa K, Michiue //., et al. Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo //Biomaterials.2010. —Vol. 31(14). —P. 4139-4145

163. Kazakov S., Levon К. Liposome-nanogel structures for future pharmaceutical applications // Curr Pharm Des. — 2006. — Vol. 12(36). — P. 4713-4728

164. Kabanov A. V., Vinogradov S. V Nanogels as pharmaceutical carriers: finite networks of infinite capabilities // Angew Chem Int Ed Engl. — 2009. — Vol. 48(30).1. P. 5418-5429

165. Nukolova N.V., Oberoi H.S., Cohen S.M., et al. Folate-decorated nanogels for targeted therapy of ovarian cancer // Biomaterials. — 2011. — Vol. 32(23). — P. 5417— 5426

166. Smisek D.L., Hoagland D.A. Agarose gel electrophoresis of high molecular weight, synthetic polyelectrolytes // American Chemical Society Macromolecules. — 1989. — Vol. 22. — P. 2270-2277

167. Hermanson G.T. Bioconjugate Techniques, 2nd Edition. Academic Press // — 2008. — 1202 pages

168. Bronich Т.К., Keifer P.A., Shlyakhtenko L.S., et al. Polymer micelle with cross-linked ionic core // J Am Chem Soc. — 2005. — Vol. 127. — P. 8236-8237

169. Чехонин В.П., Баклаушев В.П., Юсубалиева Г.М., и др. Моделирование и иммуногистохимический анализ глиомы С6 in vivo // Клеточные технологии в биологии и медицине. —2007. — № 2 — С. 65-73

170. Mertens N., Remaut Е., Fiers W. Tight Transcriptional Control Mechanism Ensures Stable High-Level Expression from T7 Promoter-Based Expression Plasmids // Nature Biotechnology. — 1995. — Vol. 13. — P. 175 179

171. Giacalone M.J., Gentile A.M., Lovitt B.T., et al. Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system // BioTechniques. — 2006. — Vol. 40(3). — P. 355-364

172. Ballmer-Hofer K, Andersson A.E., Ratcliffe L.E., et al. Neuropilin-1 promotes VEGFR2 trafficking through Rabll vesicles thereby specifying signal output // Blood. — 2011, —Vol. 118(3). —P. 816-826

173. Meissner M., Doll M., Hrgovic I., et al. Suppression of VEGFR2 Expression in Human Endothelial Cells by Dimethylfumarate Treatment: Evidence for Anti-Angiogenic Action // Journal of Investigative Dermatology. — 2011. — Vol. 131. — P. 1356-1364

174. He Т., Smith N., Saunders D., et al. The expression of VEGFR2 in C6 gliomas was assessed by using a specific molecular probe with molecular magnetic resonance imaging // J Cell Mol Med. — 2011. — Vol. 15(4). — P. 837-849

175. Scott A., Mellor H. VEGF receptor trafficking in angiogenesis // Biochem Soc Trans. — 2009. — Vol. 37(6). — P. 1184-1188

176. Riahi R., Yang Y., Zhang D.D., et al. Advances in wound-healing assays for probing collective cell migration // J Lab Autom. — 2012. — Vol. 17(1). — P. 59-65

177. Chekhonin V.P., Shein S.A, Korchagina A.A, et al. VEGF in tumor progression and targeted therapy // Curr Cancer Drug Targets. — 2012. — Vol. 13(4). — P. 423-443

178. Mentlein R., Forstreuter F., Mehdorn H.M., et al. Functional significance of vascular endothelial growth factor receptor expression on human glioma cells // J Neurooncol. — 2004. — Vol. 67(1-2). — P. 9-18

179. Karihaloo A., Karumanchi S.A., Cantley W.L., et al. Vascular endothelial growth factor induces branching morphogenesis/tubulogenesis in renal epithelial cells in aneuropi 1 in-dependent fashion // Mol Cell Biol. — 2005. — Vol. 25(17). — P. 74417448

180. Stormo G.D., Schneider T.D., Gold L. Characterization of translation initiation sites in E. coli // Nucl. Acids Res. — 1982. — Vol. 10. — P. 2971 -2996

181. Mitraki A., King J. Protein folding intermediates and inclusion body formation // Biotechnology. — 1989. — Vol. 7. — P. 690-697

182. Bardwell J.C.A., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo // Cell. — 1991. — Vol. 67. — P. 581-589

183. LaVallie E.R., DiBlasio E.A., Kovacic S., et al. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm // Biotechnology. — 1993b. —Vol. 11. — P.187-193

184. Doblas S., Saunders D., Kshirsagar P., et al. Phenyl-tert-butylnitrone induces tumor regression and decreases angiogenesis in a C6 rat glioma model // Free Radic Biol Med. — 2008. — Vol. 44. — P. 63-72

185. Millauer B., Shawver L.K., Plate K.H., et al. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant // Nature. — 1994. — Vol. 367. — P. 576-579

186. Berger P., Ballmer-Hofer K. The reception and the party after: how vascular endothelial growth factor receptor 2 explores cytoplasmic space // Swiss Med Wkly. — 2011. —Vol.41. —P. wl3318

187. Lampugnani M.G., Orsenigo F., Gagliani M.C., et al. Vascular endothelial cadherin controls VEGFR2 internalization and signaling from intracellular compartments // J Cell Biol. — 2006. — Vol. 174(4). — P. 593-604

188. Labrecque L., Royal I., Surprenant D.S., et al. Regulation of vascular endothelialgrowth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol // Mol

189. Biol Cell. — 2003. — Vol. 14(1). — P. 334-347118

190. Jin K., Zhu Y., Sun Y., et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo // Proc Natl Acad Sei USA. — 2002. — Vol. 99(18). —P. 11946-11950

191. Kilic E., Kilic U., Wang Y., et al. The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF's neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia // FASEB J. — 2006. — Vol. 20(8). — P. 1185-1187

192. Abbott N.J., Ronnback L., Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier // Nature Rev. — 2006. — Vol. 7. — P. 41-53

193. Takano T., Tian G.F., Peng W., et al. Astrocyte-mediated control of cerebral blood flow // Nat. Neurosci. — 2006. — Vol. 9. — P. 260-267

194. Freitas-Andrade M., Carmeliet P., Stanimirovic D.B., et al. VEGFR2-mediated increased proliferation and survival in response to oxygen and glucose deprivation in P1GF knockout astrocytes // J Neurochem. — 2008. — Vol. 107(3). — P. 756-767

195. Tas F., Duranyildiz D., Oguz H., et al. Circulating serum levels of angiogenic factors and vascular endothelial growth factor receptors 1 and 2 in melanoma patients // Melanoma Res. — 2006. — Vol. 16. — P. 405-411

196. Aref S., El Sherbiny M., Goda T., et al. Soluble VEGF/sFLtl ratio is an independent predictor of AML patient outcome // Hematology. — 2005. — Vol. 10. — P.131-134

197. Ebos J.M., Lee C.R., Christensen J.G., et al. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy // Proc Natl Acad Sei USA. — 2007. — Vol. 104. — P. 17069-17074

198. Shinto O., Yashiro M., Kawajiri H., et al. Inhibitory effect of a TGFbeta receptor type-I inhibitor, Ki26894, on invasiveness of scirrhous gastric cancer cells // Br J Cancer. — 2010, —Vol. 102(5). —P. 844-851

199. Kim J.O., Nukolova N.V., Oberoi H.S., et al. Block Ionomer Complex Micelles with Cross-Linked Cores for Drug Delivery // Polym Sei Ser A Chem Phys. — 2009. — Vol. 51. —P. 708-718

200. Savita B., Amarnath M. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy // WIREs Nanomed Nanobiotechnol. — 2009. — Vol. 1. — P. 415-425

201. Gratton S.E.A., Ropp P.A., Pohlhaus P.D., et al. The effect of particle design on cellular internalization pathways // PNAS. — 2008. — Vol. 105(33). — P. 11613— 11618

202. Wen Z, Yan Z, He R., et al. Brain targeting and toxicity study of odorranalectinconjugated nanoparticles following intranasal administration // Drug Delivery. — 2011. — Vol. 18(8). — P. 555-561

203. Nukolova N.V., Yang Z., Kim J.O., et al. Polyelectrolyte Nanogels Decorated with Mono-clonal Antibody for Targeted Drug Delivery // React Funct Polym. — 2011. —Vol. 71(3). —P. 315-323

204. Spratlin J. Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2 // Curr Oncol Rep. — 2011. — Vol. 13(2). — P. 97-102

205. Spratlin J.L., Mulder K.E., Mackey J.R. Ramucirumab (IMC-1121B): a novel attack on angiogenesis//Future Oncol. — 2010. —Vol. 6(7). —P. 1085-1094

206. Sofroniew M.V., Vinters H.V. Astrocytes: biology and pathology // Acta Neuropathol. — 2010. — Vol. 119(1). — P. 7-35

207. Jin K.L., Mao X.O., Greenberg D.A. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia // Proc. Natl. Acad. Sci. U.S.A. — 200. — Vol. 97. —P. 10242-10247

208. Wang Y., Kilic E., Kilic U., et al. VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena // Brain. — 2005. — Vol. 128. — P. 52-63

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.