Сопряжение переноса электронов и протонов в бактериальных фотосинтетических реакционных центрах и цитохромных bc1-комплексах тема диссертации и автореферата по ВАК РФ 03.00.04, кандидат биологических наук Блох, Дмитрий Арнольдович

  • Блох, Дмитрий Арнольдович
  • кандидат биологических науккандидат биологических наук
  • 1999, Москва
  • Специальность ВАК РФ03.00.04
  • Количество страниц 143
Блох, Дмитрий Арнольдович. Сопряжение переноса электронов и протонов в бактериальных фотосинтетических реакционных центрах и цитохромных bc1-комплексах: дис. кандидат биологических наук: 03.00.04 - Биохимия. Москва. 1999. 143 с.

Оглавление диссертации кандидат биологических наук Блох, Дмитрий Арнольдович

СПИСОК СОКРАЩЕНИЙ

ВВЕДЕНИЕ

1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Фотосинтетическая и дыхательная цепи переноса электрона хроматофоров Rb. sphaeroides

1.2. Фотосинтетические реакционные центры (ФРЦ) Rb. sphaeroides

1.2.1. Структура ФРЦ

1.2.2. Поглощение света и разделение зарядов в ФРЦ

1.2.3. Хинонный акцепторный комплекс (ХАК) и цикл восстановления вторичного хинонного акцептора (Qb)

1.2.4. Методические подходы к изучению свойств хинонных акцепторов

1.3. Цитохромные ¿^-комплексы Rb. sphaeroides

1.4. Генерация трансмембранного потенциала (А\у) ФРЦ и бс^-комплексами.

2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1. Объекты исследования

2.1.1. Бактериальные штаммы

2.1.2. Культивирование бактерий

2.1.2.1. Питательные ростовые среды.

2.1.2.2. Поддержание, хранение и контроль чистоты штаммов.

2.1.2.3. Культивирование в жидкой среде и получение биомассы.

2.2. Препаративные методы

2.3. Аналитические методы

2.3.1. Измерение спектров оптического поглощения

2.3.2. Регистрация быстрой кинетики переходных процессов

2.3.2.1. Светоиндуцированные изменения оптического поглощения

2/3.2.2. Светоиндуцированные изменения трансмембранного потенциала

2.3.2.3. Источники импульсного и стаъщонарного возбуждающего освещения

2.3.2.4. Регистрация сигналов

2.4. Численный анализ данных и моделирование кинетических процессов.

2.5. Список используемых реактивов

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. Перенос электронов и протонов в ФРЦ Rb. sphaeroides.

3.1.1. Выбор точечных замен аминокислотных остатков в ФРЦ

3.1.2. Рекомбинация зарядов между Р,+ и (QaQb)*

3.1.2.1. Измерение кинетики рекомбинации в препаратах хроматофоров

3.1.2.2. Зависимость от рН константы равновесия L переноса первого электрона между QA и Qg

3.1.3. Электрогенный перенос электронов и протонов в ФРЦ

3.1.4. Кинетическая модель сопряжения переноса электронов и протонов в ХАК

3.1.4.1. Перенос первого электрона

3.1.4.2. Перенос второго электрона

3.2. Перенос электронов и протонов в цитохромных бс^-комплексах

Rb. sphaeroides

3.2.1. Выбор точечных замен аминокислотных остатков в ¿»«^-комплексах

3.2.2. Электрогенный перенос электронов и протонов в цитохромных bc-i -комплексах

3-2.2.1. Электрогенные реакции в хроматофорах, содержащих Ьс-[комплексы дикого типа

3.2.2.2. Электрогенные реакции в хроматофорах, содержащих мутантные be-[-комплексы

4. ВЫВОДЫ

Рекомендованный список диссертаций по специальности «Биохимия», 03.00.04 шифр ВАК

Заключение диссертации по теме «Биохимия», Блох, Дмитрий Арнольдович

4. ВЫВОДЫ

1. На основании исследования мутантных штаммов КЬ. sphaeroid.es, содержащих точечные замены аминокислотных остатков вблизи сайта Ов ФРЦ (Ь207Ш, Ь211НР, Ь217Ш, Ь2235А), показано, что: а) заряженные формы Arg-L207 и Aгg-L217 оказывают электростатическое влияние на (^в, причем А^-Ь217 влияет также на локальные диэлектрические свойства белка вблизи С^в; б) остаток Шз-Ь211 не влияет на перенос зарядов в хинонном акцепторном комплексе и, по-видимому, не заряжен при физиологических значениях рН; в) остатки А^-Ь207, Н1э-Ь211 и А^-Ь217 не участвуют непосредственно в переносе протона на (^в; г) дважды протонированная гидроксильная группа 8ег-Ь223 является непосредственным донором первого из двух протонов при восстановлении и протонировании <3в в ответ на вторую вспышку света.

2. На основании анализа кинетики переноса зарядов в ФРЦ дикого типа и мутантных штаммов предложена кинетическая модель сопряжения переноса электронов и протонов в хинонном акцепторном комплексе. Согласно модели: а) перенос первого электрона между Од и С^в и образование стабильного аниона семихинона С^в определяется кинетикой конформационного перехода, сопряженного с протонированием остатка 01и-Ь212; б) при восстановлении аниона семихинона (^в до гидрохинона интермедиатом реакции является нейтральный семихинон-радикал, а скорость-лимитирующей стадией - последующий перенос электрона с на (2В; в) на форму рН-зависимостей наблюдаемых констант скоростей электрогенного протонирования Од влияет суммарный электростатический потенциал (-120 мВ при рН 7), создаваемый заряженными формами близлежащих аминокислотных остатков.

3. Влияние мутаций Ь207Ш и Ь217Ш на кинетику электрогенного протонирования Ов объясняется в рамках предложенной нами модели суперпозицией двух электростатических эффектов: (а) повышением свободной энергии переноса второго электрона между Од и <3в, что приводит к замедлению скорость-лимитируюгцей стадии реакции, и (б) повышением кажущегося рК Ов, что приводит к сдвигу рН-зависимости кинетики протонирования Ов в щелочную область.

4. Показано, что при окислении убигидрохинона в хинол-оксидазном сайте Ьсу комплекса существенный вклад в наблюдаемый электрогенез вносит выброс протонов во внутренний объем хроматофоров. При этом электрогенное перемещение одного из двух протонов компенсируется переносом электрона через железо-серный центр Риске и цитохром С\ на цитохром с2.

Список литературы диссертационного исследования кандидат биологических наук Блох, Дмитрий Арнольдович, 1999 год

1. Драчев Л.А. (1985) Генерация электрического потенциала мембранными белками. Дисс. докт. биол. наук., МГУ, Москва.

2. Кондратьева Е.Н., Максимова И. В., Самуилов В. Д. (1989) Фототрофные микроорганизмы. Изд-во МГУ, Москва.

3. Самуилов В. Д., Кондратьева Е.Н. (1969) Исследование фосфорилирования в препаратах хроматофоров разных видов. Биол. Науки 5, 97-100.

4. Шинкарев В.П. (1990) Функционирование хинонов в фотосинтетических бактериях. Итоги науки и техники, сер. "Биофизика", том 35. ВИНИТИ, Москва.

5. Albert I., Leibl W., Ewald G., Michel H., Rutherford A.W. (1994) Structural and functional consequences of a Glu L212-^Lys mutation in the Qb binding site of the photosynthetic reaction center of Rhodopseudomonas viridis. Biochemistry 33, 11355-11363.

6. Allen J.P., Feher G., Yeates Т.О., Komiya H., Rees D.C. (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors. Proc. Natl. Acad. Sci. USA 84, 5730-5734.

7. Allen J.P., Feher G., Yeates Т.О., Komiya H., Rees D.C. (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits. Proc. Natl. Acad. Sci. USA 84, 6162-6166.

8. Arapov D.A., Barmenkov Y.O., Bloch D.A., Drachev L.A., Kozhevnikov N.M., Korolev A.E. (1995) Recording of dynamic gratings in photosynthetic reaction centers. Optics & Spectroscopy 79, 517-520.

9. Arapov D.A., Korolev A.E., Bloch D.A. (1996) Hologram recording in media with photosynthetic reaction centers at a wavelength of 785 nm. J. Opt. Technology 63, 627-628.

10. Arapov D.A., Korolev A.E., Bloch D.A. (1997) Dynamic gratings in photosynthetic reaction centers of Rb. sphaeroides. J. Opt. Technology 64, 381-385.

11. Baccarini-Melandri A., Melandri B.A. (1971) Methods Enzymol. 123, 556-561.

12. Baccarini-Melandri A., Melandri B.A. (1977) A role for ubiquinone-10 in the photosynthetic bacterial electron transport chain. FEBS Lett 80, 454-464.

13. Baccarini-Melandri A., Casadio R., Melandri B.A. (1981) Electron transfer, proton translocation, and ATP synthesis in bacterial chromatophores. Current Topics Bioenerg. 12, 197-258.

14. Baltscheffsky M. (1978) Photosynthetic phosphorylation. In: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), Plenum Press, New York, pp. 249279.

15. Baciou L., Michel H. (1995) Interruption of the water chain in the reaction center from Rhodobacter sphaeroides reduces the rates of the proton uptake and of the second electron transfer to Qg. Biochemistry 34, 7967-7972.

16. Baciou L., Gulik-Krzywicki T., Sebban P. (1991a) Involvement of the protein-protein interactions in the thermodynamics of the electron-transfer process in the reaction centers from Rhodopseudomonas viridis. Biochemistry 30, 1298-1302.

17. Baciou L., Sinning I., Sebban P. (1991b) Study of QB~ stabilization in herbicide-resistant mutants from the purple bacterium Rhodopseudomonas viridis. Biochemistry 30, 9110-9116.

18. Baciou L., Bylina E.J., Sebban P. (1993) Study of wild type and genetically modified reaction centers from Rhodobacter capsulatus: Structural comparison with Rhodopseudomonas viridis and Rhodobacter sphaeroides. Biophys. J. 65, 652-660.

19. Barouch Y., Clayton R.K. (1977) Ubiquinone reduction and proton uptake by chromatophores of Rhodopseudomonas sphaeroides R-26. Periodicity of two in consequitive light flashes. Biochim. Biophys. Acta 462, 785-788.

20. Bauscher M., Nabedryk E., Bagley K., Breton J., Mantele W. (1990) Investigation of models for photosynthetic electron acceptors: Infrared spectroelectrochemistry of ubiquinone and its anions. FEBS Lett. 261, 191-195.

21. Baxendale J.II., Hardy H.R. (1953) Trans. Faraday Soc. 49, 1140-1144.

22. Belanger G., Berard J., Corriveau P., Gingras G. (1988) The structural genes coding for the L and M subunits of Rhodospirillum rubrum photoreaction center. J. Biol. Chem. 263, 7632-7638.

23. Bibikov S.I., Bloch D.A., Cherepanov D.A., Oesterhelt D. and Semenov A.Y. (1994) Flash-induced electrogenic reactions in the SA(L223) reaction center mutant in Rhodobacter sphaeroides chromatophores. FEBS Lett. 341, 10-14.

24. Bloch D.A., Bibikov S.I., Drachev L.A., Mulkidjanian A.Y. and Semenov A.Y. (1992) Participation of Arg-L207 in proton-conducting pathway leading to Qg-binding site of Rhodobacter sphaeroides reaction center. EBEC Short Reports 7, 1-6.

25. Bloch D.A., Bibikov S.I. and Semenov A.Y. (1993) Electrogenic events in chromatophores from Rhodobacter sphaeroides L223SA mutant. In: Proc. 22nd FEBS Meeting, p. C-05-026.

26. Bloch D.A., Dedukhova V.I., Mokhova E.N., Samartzev V.A., Severina I.I., Skulachev V.P. and Starkov A.A. (1996) Proteins are involved in uncoupling by SF6847, FCCP, DNP and fatty acids. EBEC Short Reports 9, 40.

27. Bowyer J.R., Crofts A.R. (1981a) Light-induced red shift of the Q absorption band of light-harvesting bacteriochlorophyll in Rb. sphaeroides. Arch. Biochem. Biophys. 207, 416-426.

28. Bowyer J.R., Crofts A.R. (1981b) On the mechanism of photosynthetic electron transfer in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 636, 218-233.

29. Brandt U. (1998) The chemistry and mechanics of ubihydroquinone oxidation at center P (Q0) of the cytochrome bc\ complex. Biochim. Biophys. Acta 1365, 261-268.

30. Breton J., Boullais C., Berger G., Mioskowski C., Nabedryk E. (1995) Binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced

31. Brudler R. de Groot H.J.M., van Liemt W.B.S., Gast P., Hoff A.J., Lugtenburg J., Gerwert K. (1995) FTIR spectroscopy shows weak symmetric hydrogen bonding of the QB carbonyl groups in Rhodobacter sphaeroides R26 reaction centers. FEBS Lett. 370, 88-92.

32. Brzezinski P., Paddock M.L., Okamura M.Y., Feher G. (1997) Light-induced electrogenic events associated with proton uptake upon forming Qg in bacterial wild-type and mutant reaction centers. Biochim. Biophys. Acta 1321, 149-156.

33. Bylina E.J, Kolaczkowski S.V., Norris J.R., Youvan D.C. (1990) EPR characterization of genetically modified reaction centers of Rhodobacter capsulatus. Biochemistry 29, 6203-6210.

34. Chang C.-H., Schiffer M., Tiede D., Smith U., Norris J. (1985) Characterization of bacterial photosynthetic reaction center crystals from Rhodopseudomonas sphaeroides R-26 by X-ray diffraction. J. Mol. Biol. 186, 201-203.

35. Chang C.-H., El-Kabbani O., Tiede D., Norris J., Schiffer M. (1991) The structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 30, 5352-5360.

36. Chirino A.J., Lous E.J., Huber M., Allen J.P., Schenck C.C., Paddock M.L., Feher G., Rees D.C. (1994) Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 33, 4584-4593.

37. Cho H.M., Mancino L.J., Blankenship R.E. (1984) Light saturation curves and quantum yields in reaction centers from photosynthetic bacteria. Biophys. J. 45, 455-461.

38. Cogdell R.J., Brune D.C., Clayton R.K. (1974) Effects of extraction and replacement of ubiquinone upon the photochemical activity of reaction centers and chromatophores from Rhodopseudomonas sphaeroides. FEBS Lett. 45, 344-347.

39. Cramer W.A., Crofts A.R (1982) In: Photosynthesis (Govinjee, ed.), Acad. Press., N.Y. Цит. по переводу: Крамер У., Крофтс Э. (1987) Транспорт электронов и протонов. В кн.: "Фотосинтез" (Говинджи, ред.), Мир, Москва, т. 1, стр. 540632.

40. Crofts A.R., Berry E.A. (1998) Structure and function of the cytochrome bc\ complex of mitochondria and photosynthetic bacteria. Curr. Opin. Struct. Biol. 8, 501-509.

41. Crofts A.R., Wraight C.A. (1983) The electrochemical domain of photosynthesis. Biochim. Biophys. Acta 726, 149-186.

42. Crofts A.R., Meinhardt S.W., Jones K.J., Snozzi M. (1983) The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 723, 202-218.

43. Crofts A.R., Gennis R.B., Yun C.-H. (1991) Assignment of the histidine axial ligands to the cytochrome b^ and cytochrome b\ components of the bc\ complex from Rhodobacter sphaeroides by site-directed mutagenesis. FEBS Lett. 327, 270-.

44. Crofts A.R., Hacker B., Barquera B., Yun C.-H., Gennis R.B. (1992) Structure and function of the bc^-complex of Rhodobacter sphaeroides. Biochim. Biophys. Acta 1101, 162-165.

45. Daldal F., Tokito M.K., Davidson E., Faham M. (1989) Mutations conferring resistance to quinol oxidation (Qz) inhibitors of the cytochrome frc^-complex of Rhodobacter capsulatus. EMBO J. 8, 3951-3961.

46. Davis J., Donohue T.J., Kaplan S. (1988) Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. J. Bacteriol. 170, 320-329.

47. Debus R.J., Feher G., Okamura M.Y. (1985) LM complex of reaction centers from Rhodopseudomonas sphaeroides R-26: Characterization and reconstitution with the H subunit. Biochemistry 24, 2488-2500.

48. Deisenhofer J., Michel H. (1989a) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. EMBO J. 8, 2149-2169.

49. Deisenhofer J., Michel H. (1989b) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Science 245, 1463.

50. Deisenhofer J, Michel H. (1991) High-resolution structures of photosynthetic reaction centers. Annu. Rev. Biophys. Biophys. Chem. 20, 247-266.

51. Deisenhofer J., Epp O., Miki R., Huber R., Michel H. (1985) Structure of the protein summits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 A resolution. Nature 318, 618-624.

52. Deisenhofer J., Epp O., Sinning I., Michel H. (1995) Crystallografic refinement at 2.3 A resolution and refined model of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Mol. Biol. 246, 429-457.

53. Ditta G., Schmidkauser T., Yakobson E., Lu P., Liang X., Finlay D.R., Guiney D., I Ielinski D.R. (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13, 149 153.

54. Drachev L.A., Kaulen A.D., Semenov A.Y., Severina I.I., Skulachev V.P. (1979) Lipid-impregnated filters as a tool for studying the electric current-generating proteins. Analytical Biochem. 96, 250-262.

55. Drachev L.A., Dracheva S.M., Samuilov V.D., Semenov A.Y., Skulachev V.P. (1984) Photoelectric effects in bacterial chromatophores. Comparision of spectral and direct electrometric methods. Biochim. Biophys. Acta 767, 257-262.

56. Drachev L.A., Mamedov M.D., Mulkidjanian A.Y., Semenov A.Y., Shinkarev V.P. and Verkhovsky M.I. (1988) Phase II of carotenoid bandshift is mainly due to the electrogenic protonation of the secondary quinone acceptor. FEBS Lett. 233, 315318.

57. Drachev L.A., Mamedov M.D., Mulkidjanian A.Y., Semenov A.Y., Shinkarev V.P. Verkhovsky M.I. (1990) Electrogenesis associated with proton transfer in the reaction center protein of the purple bacterium Rhodobacter sphaeroides. FEBS Lett 259, 324-326.

58. Ducruix A., Reiss-Husson F. (1987) Primary characterization by X-ray diffraction of crystals of photochemical reaction centers from wild-type Rhodopseudomonas spheroidesj. Mol. Biol. 193, 419-421.

59. Dutton P.L., Moser C.C. (1994) Quantum biomechanics of long-range electron transfer in protein: hydrogen bonds and reorganization energies. Proc. Natl. Acad. Sci. USA 91, 10247-10250.

60. Ermler U., Fritzsch G., Buchanan S.K., Michel H. (1994a) Structure of the photosynthetic reaction center from Rhodobacter sphaeroides at 2.65 A resolution: cofactors and protein-cofactor interactions. Structure 2, 925-936.

61. Ermler U., Michel H., Schiffer M.J. (1994b) Structure and function of the photosynthetic reaction center from Rhodobacter sphaeroides. J. Bioenerg. Biomembr. 26, 5-15.

62. Fabian M., Chamorovsky S.K., Zakharova N.I., Selivanov V.A., Kononenko A.A. (1981) Light-induced changes in pH and buffer capacity in reaction center preparations of Rhodobacter sphaeroides. Molekularnaya Biologia 15, 439-446.

63. Farchaus J.W., Gruenberg H., Oesterhelt D. (1990) Complementation of a reaction center-deficient Rhodobacter sphaeroides pw/LMX deletion strain in trans with pufBALM does not restore the photosynthesis-positive phenotype. J. Bacteriol. 172, 977-985.

64. Feher G., Okamura M.Y. (1978) Chemical composition and properties of reaction centers. In: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), Plenum Press, New York, pp. 349-386.

65. Feher G., Okamura M.Y. (1984) Structure and function of the reaction centers from Rhodopseudomonas sphaeroides. In: Advances in Photosynthesis Research (Sybesma C., ed), M. Nijhoff/W. Junk Publ., Dordrecht, The Netherlands, Vol. II, pp. 155-164.

66. Foloppe N., Ferrand M., Breton J., Smith J.C. (1995) Structural model of the photosynthetic reaction center of Rhodobacter capsulatus. Proteins 22, 226-244.

67. Gabellini N., Sebald W. (1986) Nucleotide sequence and transcription of the fbc operon from Rhodopseudomonas sphaeroides. Eur. J. Biochem. 154, 569-579.

68. Gennis R.B., Barquera B., Hacker B., van Doren S.R., Arnaud S., Crofts A.R., Davidson E., Gray K.A., Daldal F. (1993) The 6cj-complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus. J. Bioenerg. Biomembr. 25, 195-209.

69. Glaser E.G., Crofts A.R. (1984) A new electrogenic step in the ubiquinol:cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 766, 322-333.

70. Goodenough, J.B., (1986) Proton movement in inorganic materials. Methods Enzymol. 127, 263.

71. Gopta O.A., Bloch D.A., Cherepanov D.A., Mulkidjanian A.Y. (1997a) Temperature dependence of the electrogenic reaction in the Qg site of the Rhodobacter sphaeroides photosynthetic reaction center: the Qa Qb QaQb transition. FEBS Lett. 412, 490-494.

72. Gopta O.A., Bloch D.A., Cherepanov D.A., Semenov A.Y. (1998a) Effect of buffer concentration on the kinetics of electrogenic proton transfer in the QB site in Rhodobacter sphaeroides reaction centers. EBEC Short Reports 10, 188.

73. Gopta O.K., Cherepanov D.A., Demin O.V., Semenov A.Y., Bloch D.A. (1998b) Functioning of decyl-ubiquinone in the Qg site of Rhodobacter sphaeroides reaction centers. EBEC Short Reports 10, 188.

74. Graige M.S., Paddock M.L., Bruce J.M., Feher G., Okamura M.Y. (1996) Mechanism of proton-coupled electron transfer for quinone (Qb) reduction in reaction centers of Rb. sphaeroides. J. Am. Chem. Soc. 118, 9005-9016.

75. Graige M.S., Feher G., Okamura M.Y. (1998) Conformational gating of the electron transfer reaction Qa 'Qb QaQb * bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc. Natl. Acad. Sci. USA 95, 11679-11684.

76. Gutman M., Nachliel E. (1990) The dynamic aspects of of proton transfer processes. Biochim. Biophys. Acta 1015, 391-414.

77. Hanson D.K., Baciou L., Tiede D., Nance S.L., Schiffer M., Sebban P. (1992a) In bacterial reaction centers protons can diffuse to the secondary quinone by alternative pathways. Biochim. Biophys. Acta 1102, 260-265.

78. Hanson D.K., Nance S.L, Schiffer M. (1992b) Second-site mutation at M43 (Asn -> Asp) compensates for the loss of two acidic residues in the QB site of the reaction center. Photosynth. Res. 32, 147-153.

79. Jackson J.В., Crofts A.R. (1971) The kinetics of light-induced carotenoid changes in Rhodopseudomonas sphaeroides and their relations to electrical field generation across the chromatophore membrane. Eur. J. Biochem. 18, 120-130.

80. Kalman L., Maroti P. (1997) Conformation-activated protonation in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides. Biochemistry 36, 1526915276.

81. Kalman L., Gajda Т., Sebban P., Maroti P. (1997) pH-Metric study of reaction centers from photosynthetic bacteria in micellular solutions: protonatable groups equilibrate with the aqueous bulk phase. Biochemistry 36, 4489-96.

82. Kalman L., Sebban P., Hanson D.K., Schiffer M., Maroti P. (1998) Flash-induced changes in buffering capacity of reaction centers from photosynthetic bacteria reveal complex interaction between quinone pockets. Biochim. Biophys. Acta 1365, 513-521.

83. Kaminskaya O.P., Drachev L.A., Konstantinov A.A., Semenov A.Y., Skulachev V.P. (1986) Electrogenic reduction of the secondary quinone acceptor in chromatophores of Rhodospirillum rubrum. Rapid kinetic measurements. FEBS Letters 2, 224-228.

84. Kaplan S., Arntzen C.J. (1982) In: Photosynthesis (Govinjee, ed.), Acad. Press., N.Y. Щит. по переводу: Каплан С., Арнтцен Ч.Дж. (1987) Структура и функция фотосинтетических мембран. В кн.: "Фотосинтез", Говинджи, ред., Мир, Москва, т. 1, стр. 162-265.

85. Keister D.L. (1978) Respiration vs. photosynthesis. In: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), Plenum Press, New York, pp. 849-856.

86. Kleinfeld D., Okamura M.Y., Feher G. (1984b) Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochemistry 23, 5780-5786.

87. Kleinfeld D., Okamura M.Y., Feher G. (1985) Charge recombination kinetics as a probe of protonation of the primary acceptor in photosynthetic reaction centers. Biophys J. 48, 849-852.

88. Knaff D.B. (1990) The cytochrome 6сгсотр1ех of photosynthetic bacteria. Photosynth. Res. 35, 117-133.

89. Konstantinov A.A. (1990) Vectorial electron and proton transfer steps in the cytochrome bc\ complex. Biochim. Biophys. Acta 1018, 138-141.

90. Konstantinov A.A., Popova E. (1988) In: Cytochrome Systems: Molecular Biology and Bioenergetics (Papa S., Chance В., Ernster L., eds), Plenum Press, N.Y., pp. 751765.

91. Korolev Л.E., Arapov D.A., Bloch D.A., Kozhevnikov N.M. (1997) Recording of realtime gratings at infrared in reaction centers' contained medium. In: Practical Holography and Holographic Materials XI (SPIE Proceedings, Vol. 3011), pp. 4448.

92. Mancino L.J., Dean D.P., Blankenship R.E. (1984) Kinetics and thermodynamics of the P87o+Qa ~> P87o Qb reaction in isolated reaction centers in the photosynthetic bacterium Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 764, 46-54.

93. Marcus R.A., Sutin N. (1985) Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265-322.

94. Maroti P., Wraight C.A. (1988a) Flash-induced H binding by bacterial photosynthetic reaction centers: (I) comparison of spectrophotometric and conductometric methods. Biochim. Biophys. Acta 934, 314-328.

95. Maroti P., Wraight C.A. (1988b) Flash-induced H binding by bacterial photosynthetic reaction centers: (II) influences of the redox states of the acceptor quinones and primary donor. Biochim. Biophys. Acta 934, 329-347.

96. Maroti P., Wraight C.A. (1997) Kinetics of H+ ion binding by the P+QA state of bacterial photosynthetic reaction centers: rate limitation within the protein? Biophys. J. 73, 367-381.

97. Maroti P., Hanson D.K., Baciou L., Schiffer M., Sebban P. (1994) Proton conduction within the reaction centers of Rhodobacter capsulatus: The electrostatic role of the protein. Proc. Natl. Acad. Sci.USA 91, 5617-5621.

98. Maroti P., Hanson D.K., Schiffer M., Sebban P. (1995) Long-range electrostatic interaction in the bacterial photosynthetic reaction centre. Nat. Struct. Biol. 2, 1057-1059.

99. McComb J.C., Stein R.R., Wraight C.A. (1990) Investigation on the influence of headgroup substitution and isoprene side-chain length in the function of primary and secondary quinones of bacterial reaction centers. Biochim. Biophys. Acta 1015, 156-171.

100. McPherson P.H., Rongey S.H., Paddock M.L., Feher G., Okamura M.Y. (1991) The rate of electron transfer Qa~Qb -» QaQb in RCs from Rb. sphaeroides in which Asp-L213 is replaced with Asn. Biophys. J. 59 142a. Abstract.

101. McPherson P.H., Okamura M.Y., Feher G. (1993) Light induced proton uptake by photosynthetic reaction centers from Rhodobacter sphaeroides R-26. II. Protonation of the state DQAQB2~. Biochim. Biophys. Acta 1144, 309-324.

102. Miksovska J., ICälmän L., Schiffer M., Maroti P., Sebban P., Hanson D.K. (1997) In bacterial reaction centers rapid delivery of the second proton to Qb can be achieved in the absence of L212Glu. Biochemistry 36, 12216-11226.

103. Miksovska J., Valerio-Lepiniec M., Schiffer M., Hanson D.K., Sebban P. (1998) In bacterial reaction centers, a key residue suppresses mutational blockage of two different proton transfer steps. Biochemistry 37, 2077-2083.

104. Moret et al. (1961) Biochim. Biophys. Acta 54, 381-387.

105. Morton et al. (1958) Helv. Chim. Acta 4, 2343-2347.

106. Morrison L.E., Schelhorn J.E., Cotton T.M., Bering C.L., Loach P.A. (1982) In: Functions of Quinones in Energy Conserving Systems (Trumpower B.L., ed.), Acad. Press, New York, pp. 35-57.

107. Moser C.C., Keske J.M., Warncke IC., Farid R.S., Dutton P.L. (1992) Nature of biological electron transfer. Nature 355, 796-802.

108. Moser C.C., Keske J.M., Warncke K., Farid R.S., Dutton P.L. (1993) Electrontransfer mechanisms in reaction centers: engineering guidelines. In: The

109. Photosynthetic Reaction Center (Deisenhofer J., Norris J.R., eds.), Academic Press, New York, Vol. II, pp. 1-22.

110. Nagashima K.V., Matsuura K., Ohyama S., Shimada K. (1994) Primary structure and transcription of genes encoding B870 and photosynthetic reaction center apoproteins from Rubrivivax gelatinosus. J. Biol. Chem. 269, 2477-2484.

111. Nagashima K.V., Matsuura K., Shimada K. (1996) Photosynth. Res. 50, 61-70.

112. Nagashima K.V., Hiraishi A., Shimada K., Matsuura K. (1997a) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J. Mol. Evol. 45, 131-136.

113. Nagle J.F., Tristram-Nagle S. (1983) Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J. Membr. Biol. 74, 1-14.

114. Niederman R.A., Gibson K.D. (1978) Isolation and physicochemical properties of membranes from purple photosynthetic bacteria. In: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), Academic Press, New York, pp. 79-118.

115. Oettmeier W.( Godde D., Kunze В., Höfle G. (1985) Stigmatellin. A dual type inhibitor of photosynthetic electron transport. Biochim. Biophys. Acta 807, 216219.

116. Oettmeier W., Preuße S. (1987), Herbicide and quinone binding to chromatophores and reaction centers from Rhodobacter sphaeroides, Z. Naturforsch. 42c, 690-692.

117. Okamura M.Y., Feher G. (1992) Proton transfer in reaction center from photosynthetic bacteria. Annu. Rev. Biochem. 61, 861-896.

118. Okamura M.Y., Isaacson R.A., Feher G. (1975) Primary acceptor in bacterial photosynthesis: Obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sei. USA 72, 3491-3495.

119. Okamura M.Y., Feher G., Nelson N., (1982). In: Photosynthesis (Govinjee, ed.), Acad. Press., N.Y. Цит. по переводу: Окамура М.И., Фехер Г., Нельсон Н. (1987) Реакционные центры. В кн.: "Фотосинтез", Говинджи, ред., Мир, Москва, т. 1, стр. 316-402.

120. Ort D.R., Melandri B.A. (1982) In: Photosynthesis (Govinjee, ed.), Acad. Press., N.Y. Цит. по переводу: Орт Д.Р., Меландри Б.А. (1987) Механизм синтеза АТР. В кн.: "Фотосинтез", Говинджи, ред., Мир, Москва, т. 2, стр. 5-64.

121. Ouchane S., Picaud М., Reiss-Husson F., Vernotte С., Astier С. (1996) Development of gene transfer methods for Rubrivivax gelatinosus SI: construction, characterization and complementation of a puf operon deletion strain. Mol. Gen. Genet. 252, 379-385.

122. Ovchinnikov Y.A., Abdulaev N.G., Zolotarev A.S., Shmukler B.E., Zargarov A.A., Kutuzov M.A., Telezhinskaya I.N. (1988a) Photosynthetic reaction centre of Chloroflexus aurantiacus. I. Primary structure of L-subunit. FEBS Lett. 231, 237242.

123. Ovchinnikov Y.A., Abdulaev N.G., Shmuckler B.E., Zargarov A.A., Kutuzov M.A., Telezhinskaya I.N., Levina N.B., Zolotarev A.S. (1988b) Photosynthetic reaction centre of Chloroflexus aurantiacus. Primary structure of M-subunit. FEBS Lett. 232, 364-368.

124. Overfield R.E., Wraight C.A., DeVault D. (1979) Microsecond photooxidation kinetics of cytochrome c from Rhodopseudomonas sphaeroides: in vivo and solution studies.1. FEBS Lett. 105, 137-142.

125. Overfield R.E., Wraight C.A. (1980a) Oxidation of cytochrome c and c2 by bacterial photosynthetic reaction centers in phospholipid vesicles. 1. Studies with neutral membranes. Biochemistry 19, 3322-3327.

126. Overfield R.E., Wraight C.A. (1980b) Oxidation of cytochrome c and c by bacterial photosynthetic reaction centers in phospholipid vesicles. 2. Studies with negative membranes. Biochemistry 19, 3328-3334.

127. Pachence J.M., Dutton P.L., Blasie J.K. (1983) A structural investigation of cytochrome c binding to photosynthetic reaction centers in reconstituted membranes. Biochim. Biophys. Acta 724, 6-19.

128. Paddock M.L., Feher G., Okamura M.Y. (1990a) pH-Dependence of carge recombination in RCs from Rb. sphaeroides in which Glu-L212 is replaced with Asp. Biophys. J. 57, 569a. Abstract.,

129. Paddock M.L., Feher G., Okamura M.Y. (1995) Pathway of proton transfer in bacterial reaction centers: further investigations on the role of Ser-L223 studied by site-directed mutagenesis. Biochemistry 34, 15742-15750.

130. Parson W.W. (1969) The reaction between primary and secondary electron acceptors in bacterial photosynthesis. Biochim. Biophys. Acta 189, 384-396.

131. Parson W.W. (1978) Quinone as secondary electron acceptors. In: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), Plenum Press, New York, pp. 455469.

132. Peloquin J.M., Bylina E.J., Youvan D.C. and Bocian D.F. (1991) Effects of pigmentprotein interactions on the conformation of the primary electron acceptor in Rhodobacter capsulatus reaction centers. Biochim. Biophys. Acta 1056, 85-88.

133. Petty K.M., Jackson J.B., Dutton P.L. (1977) Kinetics and stoichiometry of proton binding in Rhodopseudomonas sphaeroides chromatophores. FEBS Lett. 84, 299303.

134. Pfennig N. (1978) General physiology and ecology of photosynthetic bacteria. In: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), Academic Press, New York, pp. 3-18.

135. Prince R.C., Dutton P.L. (1976) The primary acceptor of bacterial photosynthesis: its operating midpoint potential? Arch. Biochem. Biophys. 172, 329-334.

136. Prince R.C., Dutton P.L. (1978) Protonation and reducing potential of the primary electron acceptor. In: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), Academic Press, New York, pp. 439-453.

137. Prince R.C., Dutton P.L., Bruce J.M. (1983) Electrochemistry of ubiquinones and plastoquinones in aprotic solvents. FEBS Lett. 160, 273-276.

138. Provencher S.W. (1976) A Fourier method for the analysis of exponential decay curves. Biophys. J. 16, 27-41.

139. Rashin A.A., Iofin M., Honig B. (1986) Internal cavities and buried waters in globular proteins. Biochemistry 25, 3619-3625.

140. Rees D.C., Komiya H., Yeates T.O., Allen J.P., Feher G. (1989) The bacterial photosynthetic reaction center as a model for membrane proteins. Annu. Rev. Biochem. 58, 607-633.

141. Rich P.R., Bendall D.S. (1979) A mechanism for the reduction of cytochromes by quinols in solution and its relevance to biological electron transfer reactions. FEBS Lett 105, 189-194.

142. Rich P.R., Bendall D.S. (1980) The kinetics and thermodynamics of the reduction of cytochrome c by substituted p-benzoquinols in solution. Biochim. Biophys. Acta 592, 506-518.

143. Robertson D.E., Dutton P.L. (1988) The nature and magnitude of the charge-separation reactions of ubiquinol: cytochrome c2 oxidoreductase. Biochim. Biophys. Acta 935, 273-291.

144. Rosen D., Okamura M.Y., Feher G. (1980) Interaction of cytochrome c with reaction centers of Rhodopseudomonas sphaeroides R-26: Determination of number of binding sites and dissociation constants by equilibrium dialysis. Biochemistry 19, 5687-5692.

145. Rutherford A.W., Evans M.C. (1980) Direct measurement of the redox potential of the primary and secondary quinone electron acceptors in Rhodopseudomonas sphaeroides (wild-type) by EPR spectrometry. FEBS Lett. 110, 257-261.

146. Schônknecht G., Althoff G., Junge W. (1992) Dimerization constant and single-channel conductance of gramicidin in thylakoid membranes. Membr. Biol. 126, 265-275.

147. Sebban, P., Maroti, P., Hanson, D.K. (1995a) Electron and proton transfer to the quinones in bacterial photosynthetic reaction centers: insight from combined approaches of molecular genetics and biophysics. Biochimie 77, 677-694.

148. Sebban P., Maroti P., Schiffer M., Hanson D.K. (1995b) Electrostatic dominoes: long distance propagation of mutational effects in photosynthetic reaction centers of Rhodobacter capsulatus. Biochemistry 34, 8390-8397.

149. Semenov A.Y., Mamedov M.D., Mineev A.P., Chamorovsky S.K., Grishanova N.P. (1986) Electrogenic phases in the electron-transport chain of chromatophores from Rhodopseudomonas sphaeroides. Biologicheskie Membrany 3, 1011-1019.

150. Schemer S. (1986) Theoretical calculation of energetics of proton translocation through membranes. Methods Enzymol. 127, 456.

151. Schulten Z., Schulten K. (1986) Proton conduction through proteins: an overview of theoretical principles and applications. Methods Enzymol. 127, 419.

152. Shinkarev V.P., Wraight C.A. (1997) The interaction of quinone and detergent with reaction centers of purple bacteria. I. Slow quinone exchange between reaction center micelles and pure detergent micelles. Biophys. J. 72, 2304-2319.

153. Shinkarev V.P., Kononenko A.A., Rubin A.B. (1985a) The molecular mechanism of the electron transfer between the quinone co-factors in the purple bacterial photosynthetic reaction centers. Biologicheskie Membrany 1, 640-650.

154. Shinkarev V.P., Mulkidjanian A.Y., Verkhovsky M.I., Kaurov B.S. (1985b) Biologicheskie Membrany 2, 725-737.

155. Shiozawa J.A., Lottspeich F., Oesterhelt D., Feick R. (1989) The primary structure of the Chloroflexus aurantiacus reaction-center polypeptides. Eur. J. Biochem. 180, 75-84.

156. Shopes R.J., Wraight C.A. (1985) The acceptor quinone complex of Rhodopseudomonas viridis reaction centers. Biochim. Biophys. Acta 806, 348-356.

157. Sinning I., Koepke J., Michel H. (1990) Recent advances in the structure analysis of Rhodopseudomonas viridis reaction center mutants. In: Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle M.E., ed.), Springer-Verlag, Berlin, pp. 199-208.

158. Sistrom W.R. (1960) J. Gen. Microbiol. 22, 778-785.

159. Sled V.D., Shinkarev V.P., Verkhovsky M.I., Mominov P.T., Verkhoturov V.N., Timofeev K.N., Kaurov B.S. (1985b) Biologicheskie Membrany 2, 1016-1022.

160. Starkov A.A., Bloch D.A., Dedukhova V.I., Tikhonova I.M., Vygodina T.V., Severina I.I., Skulachev V.P. (1995a) On the mechanism of protonophorous uncouplers action in mitochondria. J. Mol. Medicine 73, A97.

161. Stowell M.H.B., McPhillips T.M., Rees D.C., Soltis S.M., Abresch E., Feher G. (1997) Light-induced structural changes in photosynthetcis reaction center: implication for mechanism of electron-proton transfer. Science 276, 812-816.

162. Straley S.C., Parson W.W., Mauzerall D.C., Clayton R.K. (1973) Pigment content and molar extinction coefficients of photochemical reaction centers from Rhodopseudomonas spheroides. Biochim. Biophys. Acta 305, 597-609.

163. Swallow A.J. (1982) In: Functions of Quinones in Energy Conserving Systems (Trumpower B.L., ed.), Acad. Press, New York, pp. 59-72.

164. Takahashi E., Wraight C.A. (1990) A crucial role for Asp in the proton transfer pathway to the secondary quinone of reaction centers from Rhodobacter sphaeroides. Biochim. Biophys. Acta 1020, 107-111.

165. Takahashi E., Wraight C.A. (1991) Small weak acids stimulate proton transfer events in site-directed mutants of the two ionizable residues, GluL212 and AspL213, in the Qß-binding site of Rhodobacter sphaeroides reaction center. FEBS Lett. 283 140-144.

166. Takamiya K., Dutton P.L. (1979) Ubiquinone in Rhodopseudomonas sphaeroides. Some thermodynamic properties.Biochim. Biophys. Acta 546, 1-16.

167. Theiler R., Suter F., Zuber H. (1983) Hoppe-Seyler's Z. Physiol. Chem. 364, 17651776.

168. Thierbach G., Kunze B., Reichenbach H. (1984) The mode of action of stigmatellin, a new inhibitor of the cytochrome frc^-segment of the respiratory chain. Biochim. Biophys. Acta 765, 227-235.

169. Tiede D.M., Vazquez J., Cordova J., Marone P.A. (1996) Time-resolved electrochromism associated with the formation of quinone anions in the Rhodobacter sphaeroides R26 reaction center. Biochemistry 35, 10763-10775.

170. Trissl H.W., Gräber P. (1980) II. Electrical measurements in the nanosecond range of the charge separation from chloroplasts spread at a heptane-water interface. Application of a novel capacitive electrode. Biochim. Biophys. Acta 595, 96-108.

171. Trumpower B.L. (1981) Function of the iron-sulfur protein of the cytochrome b-cj segment in electron-transfer and energy-conserving reactions of the mitochondrial respiratory chain. Biochim. Biophys. Acta 639, 129-155.

172. Truper H.G. (1978) Sulfur mtabolism. In: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), Academic Press, New York, pp. 677-690.

173. Truper H.G., Pfennig N. (1978) Taxonomy of Rhodospirillaies. In: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), Academic Press, New York, pp. 1927.

174. Valerio-Lepiniec M., Delcroix J.D., Schiffer M., Hanson D.K., Sebban P. (1997) A native electrostatic environment near Qg is not sufficient to ensure rapid proton delivery in photosynthetic reaction centers. FEBS Lett 407, 159-163.

175. Verkhovsky M.I., Morgan J.E., Verkhovskaya M.L., Wikstrom M. (1997) Translocation of electrical charge during a single turnover of cytochrome-c oxidase, Biochim. Biophys. Acta 1318, 6-10.

176. Vermeglio A. (1977) Secondary electron transfer in reaction centers of Rhodopseudomonas sphaeroides. Out-of-phase periodicity of two for the formation of ubisemiquinone and fully reduced ubiquinone. Biochim. Biophys. Acta 459, 516524.

177. Vermeglio A., Clayton R.K. (1977) Kinetics of electron transfer between the primary and secondary electron acceptor in reaction centers from Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 461, 159-165.

178. Vermeglio A., Martinez T., Clayton R.K. (1980) Mode of inhibition of electron transport by ortho-phenanthroline in chromatophores and reaction centers of Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sci. USA 77, 1809-1813.

179. Warncke K., Dutton P.L. (1993b) Influence of QA site redox cofactor structure on equilibrium binding, in situ electrochemistry, and electron-transfer performance in the photosynthetic reaction center protein. Biochemistry 32, 4769-4779.

180. Warshel A. (1986) Correlation between the structure and efficiency of light-induced proton pumps. Methods Enzymol. 127, 578.

181. Williams J.C., Steiner L.A., Ogden R.C., Simon M.I., Feher G. (1983) Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sci. USA 80, 6505-6509.

182. Williams J.C.„ Steiner L.A., Feher G., Simon M.I. (1984) Primary structure of the L subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sci. USA 81, 7303-7307.

183. Wraight C.A. (1977) Electron acceptors of photosynthetic bacterial reaction centers. Direct observation of oscillatory behaviour suggesting two closely equivalent ubiquinones. Biochim. Biophys. Acta 459, 525-531.

184. Wraight C.A. (1979) Electron acceptors of bacterial photosynthetic reaction centers. II. H+ binding coupled to secondary electron transfer in the quinone acceptor complex. Biochim. Biophys. Acta 548, 309-327.

185. Wraight C.A. (1981) Oxidation-reduction physical chemistry of the acceptor quinone complex in bacterial photosynthetic reaction centers: evidence for a new model of herbicide activity. Isr. J. Chemistry 21, 348-354.

186. Wraight C.A. (1982a) In: Photosynthesis (Govinjee, ed.), Acad. Press., N.Y. Цит. no переводу: Рейт К. A. (1987) Современное состояние исследований по фотосинтезу. В кн.: "Фотосинтез", Говинджи, ред., Мир, Москва, т. 1, стр. 108-161.

187. Wraight C.A. (1982b) The involvement of stable semiquinones in the two-electron gates of plant and bacterial photosynthesis. In: Function of Quinones in Energy Conserving Systems (Trumpower B.L., ed.), Acad. Press, New York, pp. 181-197.

188. Wraight C.A., Stein R.R. (1980) Redox equilibrium in the acceptor quinone complex of isolated reaction centers and the mode of action of o-phenanthroline. FEBS Lett. 113, 73-77.

189. Xia D., Yu C.A., Kim H., Xia J.Z., Kachurin A.M., Zhang L., Yu L., Deisenhofer J. (1997) Crystal structure of the cytochrome be\ complex from bovine heart mitochondria. Science 277, 60-66.

190. Yeates T.O., Komiya H., Rees D.C., Allen J.P., Feher G. (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: membrane-protein interactions. Proc. Natl. Acad. Sci. USA 84, 6438-6442.

191. Yoch D.C. (1978) Nitrogen fixation and hydrogen metabolism by photosynthetic bacteria. In: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), Academic Press, New York, pp. 657-676.

192. Youvan D.C., Bylina E.J., Alberti M., Begusch H., Hearst J.E. (1984) Nucleotide and deduced polypeptide sequence of the photosynthetic reaction center, P870 antenna and flanking polypeptide from Rhodopseudomonas capsulata. Cell 37, 949-957.

193. Youvan D.C., Ismail S., Bylina E.J. (1985) Chromosomal deletion and plasmid complementation of the photosynthetic reaction center and light-harvesting genes from Rhodopseudomonas capsulata. Gene 38, 19-30.

194. Yu C.A., Xia D., Kim H., Deisenhofer J., Kachurin A.M., Zhang L., Deng K.P., Yu L. (1998a) Three-dimensional structure and functions of bovine heart mitochondrial cytochrome bc\ complex. Biofactors 8, 187-189.

195. Yu C.A., Xia D., Kim H., Deisenhofer J., Zhang L., Kachurin A.M., Yu L. (1998b) Structural basis of functions of the mitochondrial cytochrome bc\ complex. Biochim. Biophys. Acta 1365, 151-158.

196. Yun C.-H., Beci R., Crofts A.R., Gennis R.B. (1990) Cloning and sequencing the fbc operon encoding the cytochrome bc-i complex from Rb. sphaeroides. Eur. J. Biochem. 194, 399-411.

197. Yun C.-H., Crofts A.R., Gennis R.B. (1991) Assignment of the histidine axial ligands to the cytochrome £>h and cytochrome bl components of the bc\ complex from

198. Rhodobacter sphaeroides by site-directed mutagenesis. Biochemistry 30, 67476754.

199. Zhang Z., Huang L., Shulmeister V.M., Chi Y.I., Kim K.K., Hung L.W., Crofts A.R., Berry E.A., Kim S.H. (1998) Electron transfer by domain movement in cytochrome bci. Nature 392, 677-684.

200. Zhao X., Ogura T., Okamura M., Kitagawa T. (1997) Observation of the resonance Raman spectra of the semiquinones Qa* and Qb*~ in photosynthetic reaction centers from Rhodobacter sphaeroides R26. J. Am. Chem. Soc. 119, 5263-5264.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.