Активность матриксных металлопротеиназ при различных патогенетических вариантах воспаления тема диссертации и автореферата по ВАК РФ 03.01.04, доктор педагогических наук Турна, Алия Абдурахмановна

  • Турна, Алия Абдурахмановна
  • доктор педагогических наукдоктор педагогических наук
  • 2010, Москва
  • Специальность ВАК РФ03.01.04
  • Количество страниц 260
Турна, Алия Абдурахмановна. Активность матриксных металлопротеиназ при различных патогенетических вариантах воспаления: дис. доктор педагогических наук: 03.01.04 - Биохимия. Москва. 2010. 260 с.

Заключение диссертации по теме «Биохимия», Турна, Алия Абдурахмановна

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ:

1. При ревматоидном артрите с внесуставными клиническими проявлениями, независимо от ревматоидного фактора и принадлежности к полу, наиболее информативным показателем деструкции экстрацеллюлярного матрикса соединительной ткани, является количественная оценка сывороточной активности ММП-3 (стромелизина 1).

2. С целью установления воспалительно-деструктивных процессов с последующим формированием дисплазии соединительной ткани, при внебольничной пневмонии бактериального характера, независимо от тяжести течения, целесообразно определение сывороточной активности ММП-7 (матрилизина).

3. Высокая сьюороточная активность ММП-9 (желатиназы В) является показателем нестабильной атеросклеротической бляшки при остром коронарном синдроме, и способствует выявлению больных с повышенным риском развития нежелательных сердечнососудистых событий. Достоверные различия сывороточной активности ММП-9 у пациентов с различными, клиническими проявлениями« острого коронарного синдрома позволяют рекомендовать её в качестве дифференциально-диагностического теста.

4. При различных патогенетических вариантах воспаления (аутоиммунном, бактериальном, метаболическом) нарушения в системе протеазы/антипротеазы сопровождаются снижением уровня универсального ингибитора альфа 2- макроглобулина и уменьшением общего антипротеолитического потенциала.

5. Патологические изменения макро-микроэлементного состава при ревматоидном артрите, внебольничной пневмонии и остром инфаркте миокарда характеризуются однонаправленностью изменений - снижением уровня цинка и магния, увеличением концентрации меди, железа, кобальта с относительной стабильностью содержания ионизированного кальция.

Список литературы диссертационного исследования доктор педагогических наук Турна, Алия Абдурахмановна, 2010 год

1. АбелевГ.И. Основы иммунитета. Соросовский Образовательный Журнал.1996;5:4-10

2. Авцын А.П., Жаворонков A.A. Микроэлементозы человека: этиология, классификация, органопатология. Москва «Медицина», 1991 год, с.496

3. Алексеенко И.Ф. Железодефицитные состояния. Москва, 1996 год, с. 192

4. Амелина Е.А., Анаев Э.Х., Красовский С.А. и др. Мукоактивная терапия. Под редакцией Чучалина А.Г., Белевского A.C. Издательский дом «АТМОСФЕРА», Москва 2006год, с. 128

5. Андреев H.A., Моисеев B.C. Антагонисты кальция в клинической медицине. Москва «Фарммединфо», 1995год, с. 105

6. Баранов B.C. Введение в молекулярную диагностику и генотерапию наследственных заболеваний. Москва. Специальная литература, 1997год, с.285

7. Белова Л.А. Биохимия процессов воспаления и поражения сосудов. Роль нейтрофилов. Биохимия 1997;62 (6):659-668

8. Блинков И.Л., Стародубцев А.К., Сулейманов С.Ш. и др. Микроэлементы: Краткая клиническая энциклопедия. Хабаровск. 2004год, с. 210

9. Вахрушев Я.М., Ермаков Г.И., Шараев П.Н. Оценка метаболизма основного вещества соединительной ткани при хронической обструктивной болезни легких. Терапевтический архив. 2006; 78(3): 13-16

10. Волкова М.А. Клиническая онкогематология. Москва «МЕДИЦИНА» 2001год, с.571

11. Воробьев П.А. Анемический синдром в клинической практике. Москва «Ньюдиамедик», 2001 год, с. 185

12. Габуда С.П., Гайдаш A.A., Дребущак В.А. и др. Уточнение данных ЯМР о структуре связанной воды в коллагене с помощью сканирующей колориметрии. Журнал структурной химии. 2005; 46 (6):1174-1176.

13. Городецкий В.В., Талибов О.Б. Препараты магния в медицинской практике. Москва «МЕДПРАКТИКА-М», 2003 год, с.43

14. Громова O.A., Никонов A.A. Роль и значение магния в патогенезе заболеваний нервной системы. Журнал неврология и психиатрия- им. С.С.Корсакова, 2002; 12: 45-49

15. Долгов В.В., Ермакова И.П. Лабораторная диагностика нарушений обмена минералов и заболеваний костей. Москва РМАПО, 1998год с.64

16. Долгов В.В., Луговская С.А., Почтарь М.Е. Лабораторная диагностика нарушений обмена железа. Санкт-Петербург Vital Diagnostics, 2002 год, с.51

17. Дорофейков В.В., Фрейдлин Т.С., Щербак И.Г. Альфа-2 макроглобулин как главный цитокин-связывающий белок плазмы крови. Медицинская иммунология. 1999; 5(1): 5-12

18. Ермакова И.И., Сакута Г.А., Черткова Т.А. и др. Выделение и характеристика протеогликанов культуры миобластов крыс. Биохимия 2007; 72(4):560-567

19. Зорин Н.А., Зорина В.Н. Зорина P.M. Роль альфа-2 макроглобулина при онкологических заболеваниях. (Обзор). Вопросы онкологии. 2004; 50 (5): 515-519

20. Зорин Н.А., Зорина В.Н., Зорина P.M. и др. Универсальный регулятор альфа- 2 макроглобулин (Обзор литературы). Клин. лаб. диагностика 2004; 11: 18-22

21. Кадурина Т.Н. Поражение сердечно-сосудистой системы у детей с различными вариантами наследственных болезней соединительной ткани. Вести аритмологии. 2000; 18: 87

22. Карпищенко А.И. Медицинские лабораторные технологии. Том 2. Санкт-Петербург «Интермедика», 1999г, с.653

23. Климов А.Н., Никуличева Н.Г. Обмен липидов и липопротеидов и его нарушения. Руководство для врачей. Санкт-Петербург «ПИТЕР», 1999год, с. 505

24. Клишо Е.В., Кондакова И.В., Чойнзонов E.JI. и др. Прогностическая значимость протеаз у больных плоскоклеточными карциномами головы и шеи. БЮЛЛЕТЕНЬ СО РАМН 2005;2(116): 82-91

25. Ковальчук Л.В. Антинегнные маркеры клеток иммунной системы человека CD (cluster differentiation) система. Учебное пособие РГМУ. Москва 2003 год, с.75

26. Коларов 3., Стойлов Р., Балева М. и др. Альфа-2 макроглобулин в сыворотке и синовиальной жидкости больных ревматоидным артритом и остеоартритом. Терапевтический архив 2000; 72 (5): 17-19

27. Коломиец В.В., Боброва, Е.В. Физиологические механизмы регуляции метаболизма магния. Украин. кардиол. журнал 1998;4:54-58

28. Королёва О.С., Затейщиков Д.А. Биомаркёры в кардиологии: регистрация внутрисосудистого воспаления. Фарматека 2007; 8-9: 30-36

29. Кудрин А.В., Громова О.А. Микроэлементы в иммунологии и онкологии. Москва «ГЭОТАР-Медиа», 2007год, с. 543

30. Кудрин А.В., Громова О.А. Микроэлементы в неврологии. Москва «ГЭОТАР-Медиа», 2006год, с.30331., Литвицкий П.Ф. Патофизиология. Москва «ГЭОТАР-МЕД», 2002 год, с.752

31. Луговская С.А., Морозова« В.Т., Почтарь М.Е. Лабораторная гематология. Москва «ЮНИМЕД-пресс», 2002 год, с. 114

32. Мазур Н.А. Очерки клинической кардиологии. ООО «Медицинское информационное агентство», 1999год, с.255

33. Мазуров В.И. Клиническая ревматология. С-Петер бург «ФОЛИАНТ», 2001год, с.416

34. Мартынов А.И., Степура О.Б., Остроумова О.Д. Маркеры дисплазий соединительной ткани у больных с идиопатическим пролабированием атриовентрикулярных клапанов и, с аномально расположенными хордами. Терапевтический архив 1996; 2:40-3

35. Меньшиков В.В. Руководство по клинической лабораторной' диагностике. Москва «Медицина», 1982 год, с.575

36. Минченко Б.И. Магний: клиническая значимость определения в сыворотке крови. Лабораторная медицина 1999; 2: 73-77

37. Минченко Б.И., Беневоленский Д.С. Нарушения обмена кальция (биохимия метаболизма) и лабораторная диагностика. Журнал Российской ассоциации медицинской лабораторной диагностики. 1998;1: 74-78

38. Москалёв Ю.И. Минеральный обмен. Москва «Медицина», 1985год, с.288

39. Мусил Я. Основы биохимии патологических процессов. Москва «Медицина», 1985год, с.430

40. Насонов Е.Л., Баранов A.A. Васкулиты и васкулопатии. Ярославль «Верхняя Волга», 1999год, с.613

41. Насонов Е.Л., Чичасова Н.В. Клиническое значение С-реактивного белка при ревматоидном артрите. Клиническая медицина 1997; 7: 29-32

42. Насонова В.А., Бунчук Н.В. Избранные лекции по клинической ревматологии. Москва «Медицина», 2001год, с.270

43. Насонова В.А., Бунчук Н.В. Руководство по внутренним болезням. Ревматические болезни. Москва «Медицина», 1997год, с.520

44. Ноздрюхина Л.Р., Нейко Е.М. Микроэлементы и атеросклероз. Москва «Наука», 1985год, с. 221

45. Оганов Р.Г. Факторы риска и профилактика сердечно-сосудистых заболеваний. Журнал Медицина 2003; 2:10-15

46. Полтырев С.С., Курицин И.Т. Физиология пищеварения. Москва «Высшая школа» 1980 год, с.255

47. Преображенский Д.В., Сидоренко Б.А. Ингибиторы АПФ и АТ1-блокаторы в клинической практике «Альянс ПРЕСИД», 2002год, с.224

48. Ревич Б.А. Здоровье населения и химическое загрязнение окружающей среды в России. Москва, Медицина, 199бгод, с. 105

49. Скальный А.В:, Рудаков И. А. Биоэлементы в медицине. Москва «Мир», 2004год, с.215

50. Смолянский Б.Л. Алиментарные заболевания. Ленинград «Медицина», 1979год, с.261

51. Соловьёва Н.И. Матриксные металлопротеиназы и их биологические функции. Ж. Биоорганическая химия 1998;24:217-226

52. Ткачук A.B. Клиническая биохимия. Москва. Издательский дом «ГОЭТАР-МЕД», 2004год, с.506

53. Туманов В.П., Глущенко Е.В., Морозов Є.С. и др. Использование культивированных фибробластов при лечении ожоговых ран. Бюлл. экспер. Биол. и мед. 1990;4:.400-402

54. Уголев A.M. «Теория адекватного питания и трофология» Санкт-Петербург, С.- Петербургское отделение издательства «Наука», издание Академии наук СССР в серии «Наука и технический прогресс», 1991 год, с.198

55. Хаитов P.M., Пинегин Б.В. Иммунная система желудочно-кишечного тракта: особенности строения и функционирования в норме и при патологии. Иммунология. 1997; 5: 4-14

56. Чучалин А.Г., Синопальников А.И., Страчунский JI.C. и др. Внебольничная пневмония у взрослых. Практические рекомендации по диагностике, лечению и профилактике. ООО «Издательский дом «М-Вести» Москва, 2006год, с.76

57. Шиффман Ф.Д. Патофизиология крови. С-Петербург. Невский диалект. 2001год, С.446

58. Яковлев В.М., Глотов А.В., Нечаева Г.И. Клинико-иммунологический анализ клинических вариантов дисплазии соединительной ткани Терапевтический архив 1994; 5: 9-13

59. Яровая Г.А. Биорегулирующие функции и патогенетитческая роль протеолиза. Распространение, классификация и основы механизма действия протеиназ. Лабораторная медицина.2001;4:75-80

60. Яровая Г.А. Биорегулирующие функции и патогенетическая роль протеолиза. Современные представления и перспективы. Лабораторная медицина. 2000; 3:19-22

61. Abramson S.R., Conner G.E., Nagase H. et al. Characterization of rat uterine matrilysin and its cDNA: Relationship to human pump-1 and activation of procollagenases. J. Biol. Chem. 1995; 270 (27):16016-16022

62. Adamson I.Y.R., Vincent R., Bakowska J. Différentialf production of metalloproteinases after instilling various urban air particle samples to rat lung. Exp. Lung; Res. 2003; 29: 375-388

63. Aktas O., Prozorovski T., Smorodchenko A.et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-kappaB ingibition and exerts neuroprotection in autoimmune encephalomyelitis. J. Immunol. 2004;173: 5794-5800

64. Anderson J.G., Cooney P.T., Erikson K.M. Inhibition of DAT function attenuates manganese accumulation in the globus pallidus. Environ. Toxicol. Pharmacol. 2007; 23(2): 179-184

65. Apple F.S., Pearce L.A., Chung A. et al. Multiple biomarker Use for Detection of Adverse Events in Patients Presenting with Symptoms Suggestive of Acute Coronary Syndrome. Clin. Chem. 2007; 53:874-881

66. Ardans J., Economou A., Martinson J. et al. Oxidised low density and high density lipoproteins regulate the production of matrix metalloproteinases 1 and 9 by activated monocytes. J. Leukoc. Biol. 2002; 71:1012-1018

67. Bailey Al. J., Paul R., Knott L. Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 1998; 106(1-2): 1-56

68. Bakos S.R., Schwob J.E., Costanzo R.M. et al. Matrix Metalloproteinase-9 and -2 Expression in the Olfactory Bulb Following Methyl Bromide Gas Exposure. Chem. Senses 2010; 35(8): 655-661

69. Balbin; Mi, Fueyo A;, Tester A. M. et al: Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat. Genet: 2003; 35(3): 252-257

70. Balkwill F., Coussens L.M. An inflammatory, link. Nature 2004; 431(7007): 405-406

71. Balkwill F., Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357(9255): 539-545

72. Baraldo S. P.D., Bazzan E.P.D:, Zanin M.E.B. et al. Matrix Metalloproteinase-2 Protein in Lung Periphery Is Related to COPD Progression. Chest 2007; 132:1733-1740

73. Barnes P.J. Chronic obstructive pulmonary disease. N. Engl. J. Medi 2000; 343(4): 269-280

74. Barrett A J. Evolution and the structural classification of peptidases. Biomed. Health Res. 1997;13:3-12

75. Barrios R.J., Kheradmand F., Batts L. et al. Asthma: pathology and pathophysiology. Arch. Pathol.Lab. Med. 2006; 130(4): 447-451

76. Baud V., Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discovery. 2009; 8(l):33-40

77. Beck K., Hunter I., Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J. 1990; 4(2): 148-60

78. Beerli R.R., Schopfer U., Dreier B. et al. Chemically regulated zinc finger transcription factors. J. Boil. Chem. 2000; 275: 32617-32627

79. Belaaouaj A., Shipley J.M., Kobayashi D.K. et al. Human macrophage metalloelastase: genomic organization, chromosomal location, gene linkage, and tissue-specific expression. J. Biol. Chem. 1995; 270(4): 14568-14575

80. Benevolenskaya LJ. Epidemiologya rheumatoid arthritis. J. Epidemiol. Rheum. Dis. 1990;16:773-783

81. Bensadoun E.S., Burke A.K., Hogg J.C. et al. Proteoglycan deposition in pulmonary fibrosis. Am. J. Respir. Crit Car. Med.1996; 154: 1819-1828

82. Bigg H. F., Shi Y. E., Liu Y. E. et al. Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase Am. J. Biol. Chem. 1997; 272(24): 15496-15500

83. Birkedal-Hansen H., Moore W.G., Bodden M.K. et al. Matrix metalloproteinasis: a review. Crit. Rev. Oral. Biol. Med 1993; 4:197-250

84. Black A.J., Topping J., Durham B. et al. A detailed assessment of alterations in bone turnover, calcium homeostasis, and bone density in normal pregnancy. J. Bone and Miner. Res. 2000; 15 (3): 557-565

85. Blackwell T.S., Christman J.W. The role of nuclear factor-kB in cytokine gene regulation. Am. J. Respir. Cell Mol. Biol. 1997; 17: 3-9

86. Blankenberg S., Rupprecht H;J.,, Poirier O. et al: Plasma concentrations and genetic variation of matrix metalloproteinases 9 and prognosis of patients with cardiovascular disease. Circulation.2003;107(12):1579-1585

87. Bode W., Reinemer P., Huber R. et al: The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 1994; 13 (6): 12631269

88. Borgono C.A., Diamandis E.P. The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer 2004; 4(11): 876-90

89. Borkakoti N., Winkler F.K., Williams D.H. et al. Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nat. Struct. Biol. 1994; 1(2):106-110

90. Boulay M.E., Prince P., Deschesnes F. et al. Metalloproteinase-9 in induced sputum correlates with the severity of the late allergen-induced asthmatic response. Respiration. 2004; 71(3): 216-224

91. Bremner I. Metallothionein in copper deficiency and toxicity. Trace Elements in Man and Animals- TeMa-8. Eds Anke M. Et al.-Dresden, 1993; 507-513

92. Brew K., Dinakarpandian D., Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta. 2000; 1477: 267-283

93. Brewerg J. Lowers ink copper therapy with tetrathiomolybdate for a crawfish both illnessilnis fibrosis and ignition. J. Trace Elem. Exp. Med. 2003;16:191-199

94. Brinckerhoff C. E., Ruby P. L., Austin S. D. et al. Molecular cloning of human synovial cell collagenase and selection of a single gene from genomic DNA. J. Clin. Invest 1987; 79(2): 542-546

95. Brinckerhoff C.E. Joint destruction in arthritis: metalloproteinase in the spotlight. Arthritis Rheum. 1991; 34: 1073-1075

96. Brown P. D., Giavazzi R. Matrix metalloproteinase inhibition: a review of anti-tumour activity. Ann. Oncol. 1995; 6: 967-974

97. Bruno V. Antidegenerative effect of Mg2+-valproate in cultured cerebellar neurons. Fun. Neurol. 1995; 10(3):121-130

98. Butler G.S., Overal C.M. Update biological roles for matrix metalloproteinases and new «intracellular» substrates revealed by degramics. Biochemistry. 2009;48(46): 10830-45

99. Caba E., Bahr B.A. Biphasic NF-kB activation in the excitotoxic hippocampus. Acta Neur. 2004; 108:173-182

100. Car N., Car A., Granic M., Skrabalo Z. et al: Zinc and Copper in the Serum of diabetic Patients. Biol. Trace Elem. Res. 1992; 32: 325-329

101. Cermak J., Key N.S., Bach R.R. et aL C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 1993;82(2):513-20

102. Chang J.Y., Liu L .Z. Manganese potentiates nitric oxide production by microglia. Mol. Brain Res. 1999;68(l-2):22-28

103. Chen P.C., Wheeler D.S., Malhotra V. et al. A green tea-derived polyphenol, epigallocatechin-3-gallate, inhibits IkB kinase activation and IL-8 gene expression. Inflammation. 2002;26:233-241

104. Chen Z. J., Parent L., Maniatis T. Site-specific phosphorylation of IkappaB alpha by a novel ubiquitination-dependent protein kinase activity. Cell.l996;84(6):853-862

105. Chesters J.K., Boyne R., Petrie L. et al. Zinc-dependent promoters in cell replication and differentiation. J. Trace Elem. Man and Animal 1993;8: 136-140

106. Chow A.K., Cena J., Schulz R. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. British Journal of Pharmcology 2007; 152(2): 189-205

107. Chua C.C., Hamdy R.C., Chua B.H. Angiotensin II induces TIMP-1 production in rat heart endothelial cells. Biochim. Biophys. Acta 1996; 1311(3): 175-180

108. Churg A., Wang R.D., Tai H. et al. Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-alpha release. Am. J. Respir. Crit. Care Med. 2003; 167(8): 1083-1089

109. Choi Y.A., Kim D.K., Bang O.S. et al. Secretory phospholipase A2 promotes MMP-9-mediated cell death by degrading type I collagen via the ERK pathway at an early stage of chondrogenesis. Biology of the Cell 2010; 102:107-119

110. Close D. R. Matrix metalloproteinase inhibitors in rheumatic diseases. Ann. Rheum. Dis 2001; 60(3): 11162-11167

111. Cobb L.M., Mychaleckyj J.C., Wozniak D.J. et al. Pseudomonas aeruginosa Flagellin and Alginate Elicit Very Distinct Gene Expression Patterns in Airway Epithelial Cells: Implications for Cystic Fibrosis Disease. J. Immunol. 2004; 173: 5659-5670

112. Coldwell J.R. Venoms,, copper and zinc in processing arthritis. J. Rheum. Dieases Clin. Northern 1999; 25 (4): 919-928

113. Corry D.B., Kheradmand F. Biology and therapeutic potential of the interleukin-4/interleukin-13 signaling pathway in asthma. Am. J. Respir. Med. 2002; 1(3): 185-193

114. Corry D.B., Kiss A., Song L.Z. et al. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J. 2004; 18(9): 995-997

115. Corry D.B., Rishi K., Kanellis J. et al. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat. Immunol. 2002; 3(4): 347-353

116. CourtmanD.W., Pereira C.A., Kashef V. et al. Development of a pericardial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction. J. Biomed. Mater. Res. 2004; 28 (6): 655-666

117. Courtois G. The NF-kB signaling pathway in human genetic diseases. Cell Mol. Life Sci. 2005; 62:1682-1691

118. Coussens L.M., Werb Z. Inflammation and cancer. Nat. 2002; 420: 860-867

119. Coussens L.M., Werb Z. Matrix metalloproteinases and the development of cancer. Chem. Biol. 1996; 3(11):895-904

120. Creemers E.J.M., Cleutjens J.P.M., Smits J.F.M. et al. Matrix Metalloproteinase Inhibition after Myocardial Infarction. Circulat. Res. 2001;89:201-210

121. Doss M.X., Potta S.P., Hescheler J. et al. Trapping of growth factors by catechins: a possible therapeutical target for prevention of proliferative diseases. J. Nutr. Biochem. 2005;16(5):259-266

122. Doyle L., Flynn A. The effect of magnesium supplementation on biochemical markers of bone metabolism or blood pressure in healthy young adult females. Eur. J. Clin. Nutr. 1999; 53 (4): 255-261

123. Dunsmore S.E., Saarialho-Kere U.K., Roby J.D. et al. Matrilysin function and expression in airway epithelium. J. Clin. Invest. 1998; 102(7):1321-133

124. Elkington P.T.G., Friedland J.S. Matrix metalloproteinases in destructive pulmonary pathology. Thorax 2006; 61(3):259-266

125. Enghild J.J., Salvesen G., Thogersen I.B. et al. Proteinase Binding and Inhibition by the Monomelic &alpha-Macroglobulin Rat É0-Inhibitor-3. J. Biol. Chem., 1989; 264:11428-11435

126. English J.L., Kassiri Z., Koskivirta I. et al. Individual Timp deficiencies differentially impact pro-MMP-2 activation. J. Biol. Chem. 2006; 281 (15): 1033710346

127. Erickson H.P. Stretching fibronectin. J. muscle res. cell motility 2002; 23 (56): 575-80

128. Esmedliaeva D. S., Titarenko O. T., Skvortsova L. A. et al. The activity of alpha2-macroglobulin and its forms in patients with destructive pulmonary tuberculosis. Problemy tuberkuleza i boleznei legkikh 2004;(ll):40-43

129. Etoh T., Joffs C., Deschamps A.M. et al. Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. Am. J. Physiol. Heart. Circ. Physiol. 2001; 281(3): 987-994

130. Fairweather-Tait S.J. Dependence of the bioavailability on the metal species. Metal Ions in Biology and Medicine. Eds. Ph. Collery et al. Paris: John Libbey Eurotext. 1998;5:211-217

131. Fakova F.A. Reticulin fibres in the tunica albugínea and peritubular tissue of seminiferous tubules of adult male Wistar rats. Acta Hist. Chem. 2002; 104(3):279-83

132. Fatar M., Stroick M., Griebe M. et al. Matrix metalloproteinases in cerebrovascular diseases. Cerebrovasc. Dis. 2005; 20 (3): 141-151

133. Faursehou M., Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infection 2003; 5(14): 1317-1327

134. Fausto D.S., Willams P J. Biological chemistry of elements. Cambrige, 2003, 678p.

135. Fields G.B., Netzel-Arnett S.J., Windsor L.J. et al. Proteolytic activities of human fibroblast collagenase: hydrolysis of a broad range of substrates at a single active site. J.Biochem. 1990;29(28):6670-6677

136. Finkel T., Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408:239-247

137. Firestein G.S. Etiology and pathogenesis of rheumatoid arthritis. In: Harris E.D., Ruddy S., Sledge C.B. (eds.): Kelly's Textbook of rheumatology. Philadelphia: W.B. Saunders, 2001: 921-966

138. Fosang A.J., Last K., Knauper V. et al. Degradation of cartilage aggrecan by collagenase-3(MMP-13) FEBS Lett.1996; 380(1-2): 17-20

139. Freije J.M., Diez-Itza I., Balbin M. et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J. Biol. Chem. 1994; 269(24):16766-16773

140. Friedman N.E., Lobaugh B., Drezner M.K. Effects of calcitriol and phosphorus therapy on the growth of patients with X-linked hypophosphatemia. J. Clin. Endocrinol. Metab. 1993; 76 (4): 839-44

141. Fujiki H. Green tea: Health benefits as cancer preventive for humans. Chem. Res. 2005; 5(3): 119-132

142. Fukuda D, Shimada K, Tanaka A. et al. Comparison of levels of serum matrix metalloproteinase-9 in patients with acute myocardial infarction versus unstable angina pectoris versus stable angina pectoris. Am J Cardiol. 2006;97(2): 175-80

143. Fulp T. Jr., Douziech N., Jacob M.P. et al. Age-related alterations in the signal transduction pathways of the elastin-laminin receptor. Pathol. Biol. 2001 ;49 (4):339-48

144. Furman C., Copin C., Kandoussi M. et al: Rosuvastatin reduces MMP-7 secretion by human monocyte-derived macrophages: potential relevance to atherosclerotic plaque stability. Atherosclerosis. 2004;174(l):93-8

145. Gabay C., Kushnewr I. Acute-phase proteins and othe systemic responses to inflammation. N. Engl. J. Med. 1999; 340: 448-454

146. Gaire M., Magbanua Z., McDonnell S. et al. Structure and expression of the human gene for the matrix metalloproteinase matrilysin. J. Biol. Chem.1994; 269: 2032-2040

147. Galis Z.S., Sukhova G.K., Lark M.W. et al. Increased expression of matrix metalloproteinase and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Invest. 1994;94:2493-2503

148. Garvin P., Nilsson L., Carstensen J. et al. Circulating Matrix Metalloproteinase-9 Is Associated with Cardiovascular Risk Factors in a Middle-Aged Normal Population. Oxford J. Med. (QJM) 2008; 101(10):785-791

149. Gaudin P., Razakaboay M., Surla A. et al. A study of metalloproteinases in fifty joint fluid specimens. Rev. Rhum. Engl. Ed. 1997;64(6):375-38

150. Ge Y., Murray P., Hendershot W. H. Trace metal speciation and bioavailability in urban soils. J. Envron. Pollut. 2000; 107:137-144

151. Gerard M., Turino M.D. Proteases in COPD. A Critical Pathway to Injury. Chest 2007; 132:1724-1725

152. Giannelli G., Erriquez R., Iannone F. et al. MMP-2, MMP-9, TIMP-1 and TIMP-2 levels in patients with rheumatoid arthritis and psoriatic arthritis. Clin Exp Rheumat. 2004; 22: 335-338

153. Goffin F., Frankenne F., Beliard A. et al. Human Endometrial Epithelial Cells Modulate the Activation of Gelatinase A by Stromal Cells. Gynecol. Obstet. Invest. 2002; 53(2): 105-111

154. Goldbach-Mansky R., Lee J.M., Hoxworth J.M. et al. Active synovial matrix metalloproteinase-2 is associated with radiographic erosions in patients with early synovitis. Arthritis. Res. 2000; 2:145-153

155. Goldberg G.I., Wilhelm S.M., Kronberger A. et al. Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein. J. Biol. Chem. 1986; 261: 6600-6605

156. Gomez D.E., Alonso D.F., Yoshiji H. et al. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell. Biol. 1997; 74(2):111-122

157. Guo L.J., Luo X.H., Xie H. et al: Tissue inhibitor of matrix metalloproteinase-1 suppresses apoptosis of mouse bone marrow stromal cell line MBA-1. Calcif Tissue Int. 2006;78 (5):285-92

158. Gomisruth F.X., Maskos K., Betz M. et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by timp-1. Nature 1997; 389(6646) 77-81

159. Gosling P. Analytical reviews in clinical biochemistry: Calcium measurement. Ann. Clin. Biochem 1988;25:210-219

160. Greenberg S.S., Xie J., Zatarain J.M. et al. Hydroxocobal-amin (vitamin B12) prevents and reverses endotoxin-induced hypotension and mortality in rodents: role of nitric oxide. J. Pharmacol. Exp. Ther. 1995; 273(1): 257-265

161. Greene J., Wang M., Liu Y.E. et al. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem. 1996; 271(48):30375-30380

162. Greensmith L., Mooney E.C., Waters H.J. et al. Magnesium ions reduce motoneuron death following nerve injury or exposure to N-methyl-D-aspartate in the developing rat. Neuroscience 1995; 68 (3): 807-812

163. Gross J., Lapiere C.M. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl. Acad. Sci.USA.1962;48:1014-1022

164. Grote K., Flach I., Luchtefeld M. et al. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ. Res. 2003;92(11): 80-86

165. Gruber B.L., Sorbi D., French D.L. et al. Markedly elevated serum MMP-9 (gelatinase B) levels in rheumatoid arthritis: a potentially useful laboratory marker. Clin. Immunol. Immunopathol. 1996;78(2): 161-71

166. Gschwandtner M., Purwar R., Wittmann M. et al. Histamine Up regulates Keratinocyte MMP-9 Production via the Histamine Hi Receptor. J. Invest. Dermatol. 2008;128(12): 2783-2791

167. Garwicz D., Lennartsson A., Jacobsen S.E. et al. Biosynthetic profiles of neutrophil serine proteases in a human bone marrow-derived cellular myeloid differentiation model. Haematolog. 2005; 90(1): 38-44.

168. Gupta G. P., Nguyen D. X., Chiang A. C. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 2007; 446(7137): 765-770

169. Huo N., Ichikawa Y., Kamiyama M. et al. MMP-7 (matrilysin) accelerated growth of human umbilical vein endothelial cells. Cancer Lett. 2002;177 (1):95-100

170. Hartog C.M., Wermelt J.A., Sommerfeld C.O. et al. Pulmonary Matrix Metalloproteinase Excess in Hospital-acquired Pneumonia. American Journal of Respiratory and Critical Care Medicine 2003; 167:593-598

171. Hasleton, P.S., Roberts T.E. Adult respiratory distress syndrome-an update. Histopathology 1999; 34(4): 285-294

172. Hayakawa T., Yamashita K., Ohuchi E. et al. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J. Cell. Sei. 1994; 107(9): 2373-2379

173. He C. Molecular mechanism of transcriptional activation of human gelatinase B by proximal promoter. Cancer Lett. 1996;106:185-191

174. Hegedüs K., Fekete I., Molnär L. et al. Beneficial vascular and metabolic effects of cobalt-ATP in spontaneously hypertensive rabbits with diffuse chronic cerebral ischaemia. J. Neurol. 1995; 242(4):243-248

175. Henriet P., Blavier L., Declerck Y.A. et al. Tissue inhibitors of metalloproteinases (TIMP) in invasion and proliferation. APMIS 1999;107(1):111-9

176. Hermann J.A., Hall M. A., Hidalgo M., Eckhardt G.S. Development of Matrix Metalloproteinase Inhibitors in Cancer Therapy. J. Nation. Cancer Inst. 2001; 93 (3): 178-193

177. Hernandez-Barrantes S., Shimura Y., Soloway P.D. et al. Differential'roles of TIMP-4 and TIMP-2 in pro-MMP-2 activation by MT1-MMP. Biochem. Biophys. Res. Commun. 2001; 281(1):126-130

178. Herzog E., Gu A., Kohmoto T. et al. Early activation of metalloproteinases after experimental myocardial infarction occurs in infarct and non-infarct zones. Cardiovasc. Pathol. 1998; 7(6): 307-312

179. Heymans S., Luttun A., Nuyens D. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevent cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat. Med. 1999; 5(10): 1135-1142

180. Hidalgo M., Eckhardt G.S. Development of Matrix Metalloproteinase Inhibitors in Cancer Therapy. J. Nation. Cancer Inst. 2001; 93 (3): 178-193

181. Hiller R., Seigel D., Sperduto R.D. et al. Serum zinc and serum lipid profiles in 778 adults. J. Ann. Epidem. 1995; 5(6):490-496

182. Hoekstra R., Eskens F.A.L.M., Verweij J. et al. Matrix Metalloproteinase Inhibitors: Current Developments and Future Perspectives. The Oncologist 2001; 6 (5): 415-427

183. Hoffmann A., Baltimore D. Circuitry of nuclear factor kB signaling. Immunol. Rev. 2006; 210: 171-178

184. Hoffmann A., Natoli G., Ghosh G. et al. Transcriptional regulation via the NF-kB signaling module. Oncogene 2006; 25: 6706-6716

185. Hooper N.M. Families of zinc metalloproteases. FEBS Lett. 1994; 354(1): 1-6

186. Hrabec E., Strek M., Nowak D. et al. Elevated level of circulating matrix metalloproteinase 9 in patients withlung cancer. Respir. Med. 2001;95:1-4

187. Hristova E.N., Cecco S.A., Niemela J. et al. Analyzer dependent differences in results for ionized calcium, ionized magnesium, sodium, and pH. Clin. Chem 1995; 41:1649-1653

188. Hubner R.H., Meffert S., Mundt U. et al. Matrix metalloproteinase-9 in bronchiolitis obliterans syndrome after, lung transplantation. Eur. Respir. J. 2005; 25(3): 494-501

189. Hulmes D.J. Building collagen molecules, fibrils, and suprafibrillar structures. J. Struct. Biol. 2002; 137(1-2): 2-10

190. Humphries S.E., Martin S., Cooper J. et al. Interaction between smoking and the stromelysin-1 (MMP3) gene 5A/6A promoter polymorphism and risk of coronary heart disease in healthy men. Ann. Hum. Genet. 2002; 66(5-6): 343-352

191. Inokubo Y., Hanada H., Ishizaka H. et al. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am. Heart. J. 2001; 141(2):211-7

192. Iozzo R.V. Proteoglycans: structure, biology and molecular interactions. New-York. Marcel Dekker Inc. 2000; 442c.

193. Iozzo R.V., Murdoch A.D. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 1996; 10: 598-614

194. Ishiguro N., Ito T., Miyazaki K. et al. Matrix metalloproteinases, tissue inhibitors of metalloproteinases, and glycosaminoglycans in synovial fluid from patients with rheumatoid arthritis. J. Rheumatol. 1999; 26(l):34-40

195. Ishii Y., Ogura T., Tatemichi M. et al. Induction of matrix metalloproteinase gene transcription by nitric oxide and mechanisms of MMP-1 gene induction in human melanoma cell lines. Int. J. Cancer. 2003; 103: 161-168

196. Jin Won Huh M.D., Dong Soon Kim M.D., Yeon-Mok Oh M.D. et al. Is Metalloproteinase-7 Specific for Idiopathic Pulmonary Fibrosis? Chest 2008; 133:1101-1106

197. Johnson J.L., Jackson C.L., Angelini G.D. et al. Activation of Matrix-Degrading Metalloproteinases by Mast Cell Proteases in Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology. 1998;18(11): 1707-1715

198. Joos L., He J.Q., Shepherdson M. B. et al. The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum. Molec. Genet. 2002; 11(5): 569-576

199. Jung K. Serum or plasma: what kind of blood sample should be used to measure circulating matrix metalloproteinases and their inhibitors? J. Neuroimmunol. 2005;162:1-2

200. Kahari V.M., Saarialho-Kere U. Matrix metalloproteinases in skin. Exp. Dermatol. 1997; 6:199-213

201. Kai H., Ikeda H., Yasukawa H. et al. Peripheral blood levels of matrix metalloproteinase 2 and 9 are elevated in patients with acute coronary syndromes. J. Am. Coll. Cardiol. 1998; 32(2): 368-372

202. Kaski J.C., Zouridakis E.G. Inflammation, infection and acute coronary plaque events. Eur. Heart. J. 2001;3(I):10-15

203. Kandalam V., Basu R., Abraham T. et al. TIMP2 Deficiency Accelerates Adverse Post-Myocardial Infarction Remodeling Because of Enhanced MT1-MMP Activity Despite Lack of MMP2 Activation. Circ. Res. 2010; 106(4): 796-808

204. Kelly E.A., Busse W.W., Jaijour N.N. et al. Increased matrix metalloproteinase 9 in the airway after allergen challenge. Am. J. Respir. Crit. Care Med. 2000;162(3):1157-1161

205. Kennedy A.M., Inada M., Krane S. M. et al. MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type (SEMDMO). J. Clin. Invest. 2005; 115(10): 2832-2842

206. Keyszer G., Lambiri I., Keysser M. et al: Matrix metalloproteinases, but not cathepsins B, H and L or their inhibitors in peripheral blood of patients with rheumatoid. J. Rheumatol. 1998;57:392-8

207. Kheradmand F., Rishi K. The Role of Proteinases in Airway Remodeling. New York: Dekker, 2003; 749-765

208. Kheradmand P., Rishi K., Werb Z. et al. Signaling through the EGF receptor controls lung morphogenesis in part by regulating MTl-MMP-mediated activation of gelatinase A/MMP2. J. Cell. Sci. 2002; 115(4): 839-848

209. King T.EJ., Schwarz M.I., Brown K. et al. Idiopathic pulmonary fibrosis. Relationship between histopathologic features and mortality. Am. J. Respir. Crit. Care Med. 2001; 164: 1025-1032

210. Kinoshita T., Fukuzawa. H., Shimada T. et al; Primary structure and expression of a gamete lytic enzyme in Chlamydomonas-Reinhardtii: similarity of functional domains to matrix metalloproteases. Proc. Natl: Acad. Sci; USA. 1992; 89:4693-4697

211. Kleiner D.E., Stetler-Stevenson W.G; Matrix metalloproteinases and metastasis; Cancer Chemother Pharmacol. 1999; 43 :42-51

212. Klimiuk P.A., Sierakowski S., Latosiewicz R. et al. Serum- matrix metalloproteinases and tissue inhibitors of metalloproteinases in different histological variants of rheumatoid synovitis. Rheumatology 2002; 41(1): 78-87

213. Knauper V., Lopez-Otin C., Smith B. et al. Biochemical characterization of human collagenase-3. J. Biol. Chem. 1996;271(3):1544-1550

214. Knauper V., Wilhelm S.M., Seperack P.K. et al. Direct activation of human neutrophil procollagenase by recombinant stromelysin. Biochem. J. 1993;295( 2):581-586

215. Knauper V., Will H., Lopez-Otin C. et al. Cellular Mechanisms for Human Procollagenase-3 (MMP-13) Activation. Am. J. Bioch. Mol. Biol. 1996;271 (29): 17124-17131

216. Knox J.D., Boreham D.R., Walker J.A. et al. Mapping of the metalloproteinase gene matrilysin (MMP7) to human chromosome Ilq21-q22. Cytogenet. Cell. Genet. 1996; 72:179-182

217. Konttinen Y.T., Ceponis A., Takagi M., et al. New collagenolytic enzymes/cascade identified at the pannus-hard tissue junction in rheumatoid arthritis: destruction from above. Matrix. Biol. 1998;17:585-601

218. Kony S., Zureik M., Driss F. et al. Association of bronchial hyperresponsiveness and lung function with C-reactive protein (CRP): a population based study. Thorax. 2004;59(10):892-896

219. Kotajima L., Aotsuka S., Fujimani M. et al. Increased levels of matrix metalloproteinase-3 in sera from patients with active lupus nephritis. Clin. Exp. Rheumatol. 1998; 16(4):409-15

220. Kramer K.K., Liu J., Choudhuri S. et al. Induction of methallothionen mRNA and protein in murine astrocyte cultures. Toxicol. Applied Pharmacol. 1996;136(1):94-100*

221. Kumar A., Boriek A.M. Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J. 2003;17(3):386-396

222. Kumar A., Takada Y., Boriek A.M. et al. Nuclear factor-icB: its role in health anddisease. J. Mol. Med. 2004; 82:434-448

223. Kurose K. Macrophage infiltration in IgA nephropathy and Henoch-Schonlein purpura nephritis. Relationship to clinicopathological findings. Nippon. Jinzo. Gakkai. Shi.1994; 36(ll):982-989

224. Kusano K., Miyaura C., Inada M. et al. Regulation of matrix metalloproteinases (MMP-2, -3, -9, and-13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 1998; 139:1338-1345

225. Kwiatkowska K., Sobota A. Signaling in phagocytosis. Bioessays 1999;21:422-431

226. Labat-Robert J. Age-dependent remodeling of connective tissue: role of fibronectin and laminin. Pathol. Biol. 2003; 51(10): 563-8

227. Lanone S., Zheng T., Zhu Z. et al. Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and-12 in IL-13-induced inflammation and remodeling. J. Clin. Invest.2002; 110(4): 463-474

228. Lappalainen Z., Lappalainen J., Oksala N. K. J. et al. Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brain. J. Appl. Physiol. 2009; 106(2): 461-467

229. Lash A., Saleem A Iron metabolism and its regulation. Ann. Clin. Lab. Sci. 1995; 25 (1): 20-30

230. Laterveer L., Lindley I. J. D., Heemskerk D. P. M. et al. Rapid mobilization of hematopoietic progenitor cells in Rhesus monkeys by a single intravenous injection of interleukin-8. Blood 1996; 87(2): 781-788

231. Laurie S., Davis A. Question of Transformation. The Synovial Fibroblast in Rheumatoid Arthritis. Am. J. Pathol. 2003;162(5): 1399-1402

232. Lee J. G., Dahi S., Mahimkar R. et al. Intronic regulation of matrix metalloproteinase-2 revealed by in vivo transcriptional analysis in ischemia. Proc. Nat. Acad. Sci. 2005; 102: 16345-16350

233. Lefkowith J.B. Leukocyte migration in immune complex glomerulonephritis: Role of adhesion receptors. Kidney Int. 1997; 51(5):1469-1475

234. Leiss M., Beckmann K., Giros A. et al. The role of integrin binding sites in fibronectin matrix assembly in vitro. Curr. Opin. Cell. Biol. 2008; 20 (5):502-7

235. Li D.Y., Brooke B., Davis E.C. et al. Elastin is an essential determinant of arterial morphogenesis. Nature 1998; 393(6682)276-80

236. Li J., Brick P., O'Hare M.C. et al. Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Structure.1995;3(6):541 -549

237. Li J., Schwimmbeck P L., Tschope C. et al. Collagen degradation in a murine myocarditis model: relevance of matrix metalloproteinase in association with inflammatory induction. Cardiovasc. Res. 2002; 56(2): 235-247

238. Li Q., Park P.W., Wilson C.L. et al. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell. 2002; 111(5): 635-646

239. Li Y.Y., McTiernan C.F., Feldman A.M. et al. Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc. Res. 1999; 42(1): 162-172

240. Lian X., Qin Y., Hossain S.A. et al. Overexpression of Stat3C in pulmonary epithelium protects against hyperoxic lung injury. J. Immunol. 2005; 174(11): 7250-7256

241. Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995;91:2844-2850

242. Lim S., Roche N., Oliver B.G. et al. Balance of matrix metalloprotease-9 and tissue inhibitor of metalloprotease-1 from alveolar macrophages in cigarette smokers. Regulation by interleukin-10. Am. J. Respir. Crit. Care Med. 2000; 162(4): 1355-1360

243. Lin M, Regional distribution and localization of zinc and metallothionein in the intestine of its fed diets differing in zinc content. Scand. J. Gastroenterol. 1999; 34(7): 689-695

244. Lin M., Jackson P., Tester A. M. et al. Matrix Metalloproteinase-8 Facilitates Neutrophil Migration through the Corneal Stromal Matrix by Collagen Degradation and Production of the Chemotactic Peptide Pro-Gly-Pro. Am; J. Pathol. 2008; 173(1): 144-153

245. Lin M., Suitherland D.R., Horstfall W. et al: Cell surface antigen CD 109 is novel member of alpha 2 macroglobulin, C3,C4,C5 family of thioester containing proteins. Blood. 2002; 99(5):1691-1693

246. Linn R., DuPont B. R., Knight C. B. et al: Reassignment of the 92-kDa type IV collagenase gene (CLG4B) to human chromosome 20. Cytogent. Cell. Genet. 1996; 72(2-3): 159-161

247. Liu P, Olivieri N. iron- overload cardiomyopathies: new insights into an old disease. Cardiovasc. Drugs Ther. 1994;8:101-110

248. Liu Y.E., Wang M., Greene J. et al. Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TTMP-4). J. Biol. Chem. 1997; 272(33): 20479-20483 : '

249. López-Boado Y.S., Wilson C.L., Hooper L.V. et al. Bacterial Exposure Induces and Activates Matrilysin in Mucosal Epithelial Cells. Cell.Biol. 2000; 148(6): 1305-1315

250. Lovejoy B., Cleasby A., Hassell A.M. et al. Structural analysis of the catalytic domain of human fibroblast collagenase. Ann. NY Acad. Sei. 1994; 732: 375-378

251. Lovejoy B., Cleasby A., Hassell A.M. et al. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science. 1994; 263(5145):375-377

252. Mahmoud R.K., El-Ansary A.K., El-Eishi H.H. et al. Matrix metalloproteinases MMP-3 and MMP-1 levels in sera and synovial fluids in patients with rheumatoid arthritis and osteoarthritis. Ital. J. Biochem. 2005;54(3-4):248-57

253. Maidment J.M., Moore D., Murphy G.P. et al. Matrix metalloproteinase homologues from Arabidopsis thaliana: expression and activity. J. Biol. Chem. 1999; 274(49): 34706-34710

254. Malik M., Bakshi C.S., Me Cabe K. et al. Matrix metalloproteinase 9 activity enhances host susceptibility to pulmonary infection with type A and B strains of Francisella tularensis. J. Immunol. 2007;178(2): 1013-20

255. Management of acute coronary syndromes: acute coronary syndromes without persistent ST segment elevation. Recommendations of the Task Force of the European Society of Cardiology. Eur. Heart. J. 2000; 21:1406-1432

256. Mandel S., Youdim M., Weinreb O. et al. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic.Biol.Med. 2004; 37(3): 304-317

257. Maseri A., Cianflone D. Inflammation in acute coronary syndromes. Eur. Heart. J. 2002; 4(B): 8-13322: Massova I., Kotra L.P., Fridman R. et al: Matrix metalloproteinases: structures, evolution, and diversification. FASEB J.1998; 12(12): 1075-1095

258. Masumoto K., de Rooij J.D:, Suita S. et al. Expression of matrix metalloproteinases and tissáy inhibitors- of metalloproteinases during normal human pulmonary development. Histopathology 2005; 47(4): 410-419

259. Matrisian L. Metalloproteinases and their inhibitors in matrix remodelling. Trends Genet. 1990;6(4):121-5

260. Matsumura S., Iwanaga S., Mochizuki S. et al. Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J. Clin. Invest.2005; 115(3): 599-609

261. Matsuyama A., Sakai N., Ishigami M. et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis. Circulation 2003; 108(12): 1469-1473

262. Mattei M.G., Roeckel N., Olsen B.R. et al. Genes of the membrane-type matrix metalloproteinase (MT-MMP) gene family, MMP14, MMP15, and MMP16, localize to human chromosomes 14, 16, and 8, respectively. Genomics 1997; 40(1): 168-169

263. Mauviel A. Cytokine regulation of metalloproteinase gene expression. J. Cell. Biochem. 1993;53:288-295

264. McCarty D.J. Rheumatoid arthritis. Current Practice of Medicine 2000; 11:147-148

265. McGeehan G., Burkhart W., Anderegg R. et al.Sequencing and characterization of the soybean leaf metalloproteinase: structural and functional similarity to the matrix metalloproteinase family. Plant Physiol. 1992; 99(3): 11791183

266. McKeown S., Richter A.G., O'Kane C. et al. MMP expression and abnormal lung permeability are important determinants of outcome in IPF. Eur. Respir. J. 2009; 33(l):77-84

267. McQuibban G. A., Gong J.-H., Tam E. M. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 2000: 289(5482): 1202-1206

268. Mohammed F.F., Smookler D.S., Khokha R. Metalloproteinases, inflammation, and rheumatoid arthritis Ann. Rheum. Dis. 2003; 62(2):1143-1147

269. Molet S., Belleguic C., Lena H. et al. Increase in macrophage elastase (MMP-12) in lungs from patients with, chronic obstructive pulmonary disease. Tnflamm. Res. 2005; 54(1): 31-36

270. Montfort I., Perez-Tamayo R. The distribution of collagenase in normal rat tissues. J. Histochem. Cytochem. 1975; 23(12): 910-920

271. Morgunova E., Tuuttila A., Bergmann U. et al. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 1999; 284(5420): 1667-1670

272. Morrow D.A., Rifai N., Antman E.M. et al. C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TEVH HA substudy. J Am Coll Cardiol 1998;31:1460-5

273. Mukheijee R., Rivers W.T., Ruddy J.M. et al. Long-Term Localized High-Frequency Electric Stimulation Within the Myocardial Infarct: Effects on Matrix Metalloproteinases and Regional Remodeling. Circulation. 2010; 122(1): 20-32

274. Muller D., Quantin B., Gesnel M.C. et al. The collagenase gene family in humans consists of at least four members. Biochem. J. 1988; 253(1): 187-192

275. Mungalov N.P. Mg2+ induces conformational changes in the catalytic subunit of Phosphorylase kinase, whether by itself or as part of the holoenzyme complex. J. Protein. Chem. 1999; 18 (2):157-164

276. Murphy G., Allan J.A., Willenbrock F. et al. The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem. 1992;267:9612-9618

277. Murphy G., Cockett M.I., Stephens P.E. et al. Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes. Biochem. J. 1987;248(l):265-268

278. Murphy G., Willenbrock F. Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol. 1995; 248:496-510

279. Murphy G., Willenbrock F., Crabbe T. et al. Regulation of matrix metalloproteinase activity. Ann. NY Acad. Sei. 1994; 732: 31-41

280. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol. Chem. 1997; 378(3-4): 151-160

281. Nagase H. Matrix metalloproteinases in Zinc Metalloproteases in Health and Disease (Hooper N. M., ed.), Taylor & Francis, London, UK, 1996; 153-204

282. Nagase H., Barrett A. J., Woessner J. F. et al. Nomenclature and glossary of the matrix metalloproteinases. Matrix Suppl. 1992; 1: 421-424

283. Nagase H., Fields C.G., Fields G.B. et al. Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3) J. Biol. Chem. 1994; 269(33): 20952-20957.

284. Nagase H., OkadaY. Proteinases and matrix degradation. Inj Kelley W.N;, Harris E.D., Ruddy S., Sledge C.B., eds. Textbook of rheumatology. Philadelphia: W.B. Saunders, 1997:323-41

285. Nagase H., Suzuki K., Cawston T. E. et al. Involvement of a region near valine-69 of tissue inhibitor of metalloproteinases (TIMP)-1 in the interaction with matrix metalloproteinase 3 (stromelysin 1). Biochem. J. 1997; 325:163-167

286. Nanni S., Melandri G., Hanemaaijer R. et al. Matrix metalloproteinases in premature coronary atherosclerosis: influence of inhibitors, inflammation, and genetic polymorphisms. Translational Research. 2007; 149 (3): 137-144

287. Nelson N. Metal ion transporters and homeostasis. EMBO J. 1999-18(16): 4361-4371

288. Ning W., Li C.J:, Kaminski N. Feghali-Bostwick C.A. et al. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc. Natl. Acad. Sei. USA 2004; 101(41): 1489514900

289. Nishijima C., Hayakawa I., Matsushita T. et al. Autoantibody against matrix metalloproteinase-3 in patients with systemic sclerosis. Clin. Exp. Immunol. 2004; 138(2): 357-363

290. Nöda K., Ishida S., Inoue M. et al. Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest. Ophthal. Vis. Sei. 2003; 44(5): 2163-2170

291. Noel A., Jost M., Maquoi E. et al. Matrix metalloproteinases at cancer tumorhost interface. Semin. Cell. Dev. Biol. 2008; 19(l):52-60

292. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology. Enzyme Nomenclature. Academic Press. 1992, Orlando

293. Noutsias M., Pauschinger M., Kühl U. et al. Immunosuppressive treatment in familial dilated cardiomyopathy with biopsy-proven intramyocardial inflammation? Am. Coll. Cardiol. 2003;41(1);169

294. Novak M.J., Johns L.P., Miller R.C. et al. Adjunctive benefits of subantimicrobial dose doxycycline in the management of severe, generalized, chronic periodontitis. J. Periodontol. 2002;73(7): 762-769

295. Ohtsuka T., Nishimura K., Kurata A. et al: Serum matrix metalloproteinase-3 as a» novel marker for risk stratification of patients with nonischemic dilated cardiomyopathy. J Card Fail. 2007;13(9):752-8

296. Okada A., Bellocq J.P., Rouyer N. et al. Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc. Natl. Acad. Sei. USA. 1995; 92(7): 2730-2734

297. Opdenakker G., Masure S.„ Grillet B: et al. Cytokine-mediated regulation of human4leukocyte gelatinases andirole m arthritis. Lymphokine Cytokine Res. 1991; 10(4): 317-324

298. Orgel J.P., Irving T.C., Miller A. et al. Microfibrillar structure of type I collagen in situ. Proc. Natl: Acad. Sei. 2006. 103(24): 9001-5372.0siewacz H.D. Cellular copper homeostasis: impact on mitochondrial functions. Gene. 2002; 286(1):65-71.

299. Pardo A, Selman M, Kaminski N. Approaching the degradóme in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol. 2008; 40(6-7): 1141-55

300. Parks W.C., Lopez-Boado Y.S., Wilson C.L. et al. Matrilysin in epithelial repair and defense. Chest. 2001; 120(1): 36-41

301. Parks W.C., Shapiro S.D., Wilson C.L. et al. Matrix metalloproteinases in lung biology. Respir. Res. 2001,2(1):10-19

302. Parks W.C., Wilson C.L., Lopez-Boado Y.S. et al. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 2004; 4: 617-629

303. Pasceri V., Wilier.wn J.T., Yeh E.T.H. et al. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000;102(18):2165-8

304. Patterson C., Pourmotabbed T., Mainardi C.L. et al. Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity PNAS 1993; 90(7):2569-2573

305. Peacock J.M., Folsom A.R. Arnett D.K. et al. Relationship of serum and dietary magnesium to incident hypertension: the Atherosclerosis Risk in Communities (ARIC) Study. Ann. Epidemic. 1999; 9 (3): 159-165

306. Pei D., Weiss S.J: Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J. Biol. Chem. 1996; 271(15): 9135-9140

307. Pendas A. M., Santamaría I., Alvarez M. V. et al. Fine physical mapping of the human matrix metalloproteinase genes clustered on chromosome llq22.3. Genomics 1996; 37(2): 266-269

308. Pepper M.S. Extracellular, proteolysis and angiogenesis. Thromb. Harmat. 2001;86:346-355

309. Peres D. Microelements and vitamins. Biological, institute of health; Leon. España, 2002rofl, 460 c.

310. Peretz A., Papadopoulos T., Willems D. et al. Zinc supplementation increases bone alkaline phosphatase in healthy men. Trace Elem. Med. Biol. 2001; 15(2-3):175-178

311. Petersen C.M. Alpha 2 macroglobulin and pregnancy zone protein. Serum level, alpha 2macroglobulin receptors, cellular synthesis an aspects of function relation to immunology. Dan. Med. Bull. 1993; 40: 409-446

312. Posthumus MD., Limburg P.C., Westra J. et al. Serum levels of matrix metalloproteinase-3 in relation to the development of radiological damage in patients with early rheumatoid arthritis. Rheumatology (Oxford) 1999;38:1081-7

313. Potier M., Karl M., Elliot S.J. et al. Response to sex hormones differs in atherosclerosis-susceptible and -resistant mice. Am. J. Physiol. Endocrinol. Metab.2003; 285(6): E1237-1245

314. Prasad A. S. Zinc in human health: effect of zinc on immune cells. Mol. Med. 2008;14(5-6):353-7.

315. Prussin C., Metcalfe D.D. IgE mast cells, basophils and eosinophils. J. Allergy Clin. Immunol. 2003;lll(2):486-94

316. Pugin J., Verghese G., Widmer M C. et al.The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit. Care Med; 1999; 27(2): 304-312

317. Pugin J., Widmer M.C., Kossodo S. et al. Human neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and proinflammatory mediators. Am. J. Respir. Cell. Mol .Biol; 1999; 20(3): 458-464

318. Qiu Z., Strickland D. K., Hyman B. T. et al. Alpha2-macroglobulin enhances the clearance of endogenous soluble beta-amyloid peptide via low-density lipoprotein receptor-related protein in cortical neurons. J. Neurochem. 1999; 73(4), 1393-1398

319. Qu C.J., Rieppo J:, Hyttinen M.M. et al. Humman articular cartilage proteoglycans are not under sulfated in osteoarthritis. Connect. Tiss. Res. 2007; 48(l):27-33

320. Quamme G.A., Rabkin S.W. Cytosolic free magnesium in cardiac myocytes: identification of a Mg2+ influx pathway. Biochem. Biophys. Res. Comm. 1990; 167(3): 1406-1412

321. Quinones S., Buttice G., Kurkinen M. et al. Promoter elements in the transcriptional activation of the human stromelysin-1 gene by the inflammatory cytokine, interleukin 1. Biochem. J. 1994; 302(2): 471-477

322. Quinones S:, Saus J., Otani Y. et al: Transcriptional regulation of human, stromelysin. J. Biol: Chem. 1989; 264(14): 8339-8344

323. Radisky D C., Przybylo J.A. Matrix MetaUoproteinase-induced Fibrosis and Malignancy in Breast and Lung. Am. Thor. Soc. 2008; 5(3):316-322404; Rawlings N.D., Barrett A.J. Evolutionary families of metallopeptidases. Meth. Enzymol. 1995;248:183-228

324. Ridker P.M., Buring J.E., Cook N.R. et al.C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14,719 initially healthy American women. Circulation2003;107(3):391-397.

325. Ridker P.M., Rifai N., Rose L. et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 2002;347(20): 1557-1565

326. Ries C., Petrides P. E. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol. Chem. Hoppe-Seyler 1995; 376: 345-355

327. Robins S.P., Brady J.D. Collagen cross-linking and metabolism. In: Bilezikian J.P., Raisz L.G. & Rodan G.A. (eds) Principles of bone biology, 2 edition. San Die go, Academic Press: 2002; 211-223.

328. Rohde L.E., Ducharme A., Arroyo L.H. et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation. 1999; 99(23): 3063-3070

329. Ronday H.K., Van der Laan W.H., Tak P.P. et al. Human granzyne B mediates cartilage proteoglycan degradation and is expressed at the invasive front of the synovium in rheumatoid arthritis. Rheumatol. 2001; 40 (1):55-61

330. Roos R. Atherosclerosis: A Defense Mechanism Gone Awry., American J. Path. 1993; 143(4): 987-1002

331. Rosas I.O., Richards T.J, Konishi K. et al. MMP1 and MMP7 as Potential Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis. PLoS Med: 2008; 5(4): e93. PMCID: PMC 2346504

332. Roth« J:A., Garrick M.D. Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem: Phann.2003; 66(1): 1-13

333. Rothwarf D.M., Zandi E., Natoli G. et al. IKK- gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 1998;395(6699):297-300

334. Ryu J., Vicencio A.G., Yeager M.E. et al. Differential expression of matrix metalloproteinases and their inhibitors in human and mouse lung development. Thrombosis Haemostasis. 2005; 94(1): 175-183

335. Saffarian S., Collier I. E., Manner B. L. et al. Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Sci. 2004; 306(5693): 108-111

336. Samnegard A., Silveira A., Tornvall P. et al. Lower serum concentration of matrix metalloproteinase-3 in the acute stage of myocardial infarction. J. Intern. Med. 2006; 259(5):530-6

337. Sato H., Takino T., Kinoshita T. et al. Cell surface binding and activation of gelatinase A induced by expression of membrane-type-1-matrix metalloproteinase (MTl-MMP). FEBS Lett. 1996;385(3):238-240

338. Sato H., Takino T., Okada Y. et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370(6484): 61-65

339. Scherer S., de Souza T.B., de Paoli J. et al., Matrix metalloproteinase gene polymorphisms in patients with rheumatoid arthritis. Rheumatoi Int 2010; 30 (3):369-73

340. Schulz R. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Ann. Rev. Pharmacol. Toxicol. 2007; 47:211-242

341. Schulze C.J., Wang W., Suarez-Pinzon W.L. et al. Imbalance between tissue inhibitor of metalloproteinase- 4 and matrix metalloproteinases during acute myocardial ischemia-reperfusion injury. Circulation 2003; 107: 2487-2492

342. Seemayer C.A., Kuchen S., Kuenzler P. et al. Cartilage destruction mediated by synovial fibroblasts does not depend on proliferation in rheumatoid* arthritis. Am. J. Pathol. 2003; 162(5): 1549-1557

343. Segal G., Lee W., Arora P.D. Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts. J Cell Sci. 2001;114(1):119-129

344. Situnayake R.D., Kitas G. Dyslipidemia and rheumatoid' arthritis. Ann. Rheum. Dis. 1997;56(6):341-342

345. Siwik D.A., Pagano P.J., Colucci W.S. et al. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am. J. Physiol. Cell. Physiol. 2001; 280(1): 53-60

346. Snow E.T. Effect of chromium on DNA replication in vitro. Environ. Health Perspect. 1994;102(3): 41-44

347. Sordat B., Piffaretti J.C., Weiss L. et al. Invasion Metastasis. 1990; 10(3), 178-192

348. Souza-Costa D.C., Zerbini T., Palei A.C. et al. L-Arginine attenuates acute pulmonary embolism-induced increases in lung matrix metalloproteinase-2 and matrix metalloproteinase-9. Chest. 2005;128(5): 3705-3710

349. Spencer H., Norris C, Williams D. Inhibitory effects of zinc on magnesium balance and magnesium absorption in man. J Am Coll Nutr. 1994;13(5):479-484

350. Spinale F.G.Amplified Bioactive Signaling and Proteolytic Enzymes Following Ischemia Reperfusion and Aging: Remodeling Pathways That Are Not Like a Fine Wine. Circulation. 2010; 122(4): 322-324

351. Springer T.A. Traffic signals on endothelium for lymphocyte reaction and leukocyte emigration. Ann. Rev. Physiol. 1995; 57(4): 827-872

352. Stefanidakis M., Koivunen E. Cell-surface association betweenmatrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood. 2006; 108(5): 1441-1450

353. Steinberg J., Halter J., Schiller H., et al. Chemically modified tetracycline prevents the development of septic shock and acute respiratory distress syndrome in a clinically applicable porcine model. Shock. 2005;24(4):348-56

354. Sternlicht M.D., Werb Z. How matrix metalloproteinases regulate cell behavior. Ann. Rev. Dev. Biol. 2001; 17: 463-516

355. Stewart W.W., Johnson A., Steward M.W. et al. The effect of antibody isotype on the activation of C3 and C4 by immune complexes formed in the presence of serum: correlation with the prevention of immune precipitation. Mol. Immunol. 1990;27(5):423-8

356. Studer S.M., Kaminski N. Towards Systems Biology of Human Pulmonary Fibrosis. The American Thoracic Society. 2007; 4(1):85-91

357. Su W.Y., Jaskot R.H., Dreher K.L. et al. Particulate matter induction of pulmonary gelatinase A, gelatinase B, and1 tissue inhibitor of metalloproteinase expression. Inhalat. Toxicol. 2000; 12(2): 105-119

358. Su W.Y., Jaskot R.H., Richards J. et al. Induction of pulmonary matrilysin expression by combustion and ambient air particles. Am. J. Physiol. Lung. Cell. Mol .Physiol.2000; 279(1): 152-160

359. Suga M., Iyonaga K., Okamoto T. et al. Characteristic elevation of matrix metalloproteinase activity in idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care. Med. 2000; 162(5):1949-56

360. Sugiyama E. Role of matrix metalloproteinase-3 in joint destruction in rheumatoid arthritis. Clinical calcium. 2007; 17(4):528-34

361. Taghavi S., Krenn K., Jaksch P.1 et al. Broncho-alveolar lavage matrix metalloproteases as a sensitive measure of bronchiolitis obliterans. Am. J. Transplant. 2005; 5(6): 1548-1552

362. Tarlton J.F., Vickery C. J., Leaper D J. et al. Postsurgical wound progression monitored by temporal changes in the expression of matrix metalloproteinase-9. Br. J. Dermatol. 1997;137(4):506-516

363. Taylor D.J., Cheung N.T., Dawes P.T. et al. Increased serum proMMP-3 in inflammatory arthritides: a potential indicator of synovial inflammatory monokine activity. Ann. Rheum. Dis. 1994; 53(10):768-72

364. Tchetverikov I., LardL. R., DeGroot J. et al. Matrix metalloproteinases-3, -8, -9 as markers of disease activity and joint damage progression in early rheumatoid arthritis Ann. Rheum. Dis. 2003;62(11): 1094-1099

365. Tchetverikov I., Ronday H. K., Van El B. et al. MMP profile in paired serum and synovial fluid samples of patients with rheumatoid arthritis. Ann. Rheum. Dis. 2004; 63(7):881-883

366. Templeton D.M., Olivieri N.F., Parkes J.D. et al. Recent trends in iron chelation. Metal Ions in Biology and Medicine. Eds. Ph. Collery et al. Paris.Jons Libbey Eurotext. 1998; 5: 71-76

367. Tetlow L.C., Lees M., Woolley D.E. et al. Comparative studies of collagenase and stromelysin-1 expression by rheumatoid synoviocytes in vitro. Virchows Arch. 1995;425(6):569-76

368. Thompson M., Cockerill G. Matrix metalloproteinase-2: the forgotten enzyme in aneuiysm pathogenesis. Ann. NY Acad. Sci. 2006; 1085:170-174

369. Thorgeirsson U.P., Yoshiji H., Sinha C.C. et al. Breast cancer, tumor neovasculature and the effect of tissue inhibitor of metalloproteinases-1 (TIMP-1) on angiogenesis. In Vivo. 1996; 10(2): 137-144

370. Thrailkill K., Cockrell G., Simpson P. et al. Physiological matrix metalloproteinase (MMP) concentrations: comparison of serum and plasma specimens. Clin. Chem. Lab. Med. 2006; 44(4): 503-504

371. Thrailkill K., Cockrell G., Simpson- P. et al. Physiological matrix metalloproteinase (MMP) concentrations: comparison of serum and- plasma specimens. Clin: Chem. Lab. Med. 2006; 44(4):503-504

372. Tsushima R.G., Wickenden A.D., Bouchard* R.A. et al. Modulation* of Iron Uptake in Heart by L-Type Ca2+ Channel Modifiers. Circulation Res. 1999;84(U):1302-1309

373. Turner H.E., Nagy Z., Esiri M.M. et al. Role of matrix metalloproteinase 9 in pituitary tumor behavior. J. Clin. Endocr. Metab.2000; 85(8): 2931-2935

374. Tyagi S.C., Matsubara L., Weber K.T. et al. Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clin. Biochem. 1993; 26(3): 191-1981

375. Van Wart H.E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. USA. 1990; 87(14): 5578-5582

376. Vance S.H., Tucci M., Benghuzzi H. et al. Pathophysiological response of rhesus monkey kidney epithelial cells exposed to epigallocatechin-3-gallate. Biomed. Sci. Instrum. 2005; 41: 223-228

377. Vanhoutte D., Schellings M., Pinto Y. et al. Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc. Res. 2006; 69(3): 604-613

378. Ventura C.L., Higdon R., Hohmann L. et al. Staphylococcus aureus Elicits Marked Alterations in the Airway Proteome during Early Pneumonia. Infect. 1mm. 2008;76 (12): 5862-5872

379. Vernooy J.H., Lindeman J.H., Jacobs J.A., et al. Increased activity of matrix metalloproteinase-8 and matrix metalloproteinase-9 in induced sputum from patients with COPD. Chest. 2004; 126(6):1082-1010

380. Voisine P., Bianchi C., Ruel M. Inhibition of tha cardiac angiogenic response to exogeneos vascular endothelial growth factor. Surgery 2004; 136(2):407-415

381. Vu T.H., Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev.2000; 14(17): 2123-2133

382. Vuorinen K., Myllarniemi M., Lammi L. et al. Elevated matrilysin levels in bronchoalveolar lavage fluid do not distinguish idiopathic pulmonary fibrosis from other interstitial lung diseases. APMIS. 2007; 115(8):969-75

383. Walder R.L. Rheumatoid arthritic: epidemiology, pathology, pathogenesis. In: Primer of the Reumatic Diseases, Xed. 1993;86-99

384. Wassenaar A., Verschoor T., Kievits F. et al. CD40 engagement modulates the production of matrix metalloproteinases by gingival fibroblasts. Clin. Exp. Immunol. 1999; 115(1): 161-167

385. Webb C. S., Bonnema D.D., Hinan Ahmed* S. et al. Specific Temporal Profile of Matrix Metalloproteinase Release Occurs in Patients After Myocardial Infarction: Circulation. 2006;114(10): 1020-1027

386. Wee Yong V., Power C., Forsyth P. et al. Metalloproteinases in,biology and. pathology of the nervous system: Nat. Rev. Neurosci. 2001; 2(7): 502 -511

387. Weinreb O., Mandel S., Amit T.et al. Neurological mechanisms of green tea polyphenols in Alzheimer,s and Parkinson,s diseases. J. Nutr. Biochem. 2004;15(9): 506-516

388. Wheeler D.S., Catravas J.D., Odoms K. et al. Epigallocatechin-3-gallate, a Green Tea-Derived Polyphenol, Inhibits IL-lj3- Dependent Proinflammatory Signal Transduction in Cultured Respiratory Epithelial Cells. J. Nutr. 2004;134(5): 1039-1044

389. Williams F.M. in Immunopharmacology of Neutrophils (Hellewell P.G., Williams T.J., eds.) Academic Press London 1994; 245-257

390. Williamson R.A., Bartels H., Murphy G. et al. Folding and stability of the active N-terminal domain of tissue inhibitor of metalloproteinases-1 and -2. Protein Eng. 1994; 7(8): 1035-1040

391. Williamson R.A., Marston F.A., Angal S. et al. Disulphide bond assignment in human tissue inhibitor of metalloproteinases (TIMP). Biochem. J. 1990; 268(2): 267-274

392. Williamson R.A., Martorell G., Carr M.D. et al. Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family. Biochem. 1994;33(39):11745-11759

393. Wilson C.L., Matrisian L.M. Matrilysin. Parks, WC Mecham, RP eds. Matrix metalloproteinases. 1998; 149-184 Academic Press. San Diego,USA

394. Wilson C.L., Ouellette A.J., Satchell D.P. et al. Regulation of intestinal a-defensin activation by the metalloproteinase matrilysin in innate host defense. Sei. 1999;286(5437): 113-117

395. Wilczynski G. M., Konopacki F. A., Wilczek E. et al. Important role of matrix metalloproteinase 9 in epileptogenesis. J. Cell Biol. 2008; 180(5): 1021-1035

396. Woessner J.F. Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991; 5(8) :2145-2154493: Woessner J.F. Jr. Role of matrix proteases in processing enamel proteins. Connect Tissue Res. 1998; 39(1-2): 69-73

397. Woessner J.F. MMPs and TIMPs-an historical perspective. Mol. Biotechnol. 2002; 22(1): 33-49

398. Wright J.L., Churg A. Animal models of cigarette smoke-induced COPD. Chest. 2002; 122(6): 301-306

399. Yamagiwa H:, Tokunaga K., Hayami T. et al. Expression, of metalloproteinase-13 (collagenase-3) is induced during fracture healing in mice. Bone 1999; 25(2):197-203

400. Yasuda T., Poole A.R. A fibronectin fragment induces type ED collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthritis. Rheum. 2002;46(l):138-48

401. Ye S. Polymorphism in matrix metalloproteinase gene promotors: implication in regulation of gene expression and susceptibility of various diseases. Matrix. Biol. 2000; 19(7): 623-629

402. Ye S., Eriksson P., Hamsten A. et al. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J. Biol. Chem.1996; 271(22): 1305513060

403. Ye S., Watts G. F., Mandalia S. et al. Preliminary report: genetic variation in the human stromelysin promoter is associated with progression of coronary atherosclerosis. Brit. Heart J. 1995; 73(3): 209-215

404. Yoshihara Y., Nakamura H., Obata K. et al. Matrix metalloproteinases and tissue in hibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis. 2000; 59 (6):455-61

405. Yoshida W., Uzuki M., Nishida J. et al. Examination of in vivo gelatinolitytic activity in rheumatoid arthritis synovial tissue using newly developed in situ zymography and image analyzer. Clin. Exp. Rheumatol. 2009;27(4):587-93

406. Yu Q., Stamenkovic I. Cell-surface localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000; 14(2):163-176

407. Yu W.H., Woessner J.F. Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase-7). J. Biol. Chem. 2000; 275(6):4183-419

408. Zapico I., Coto E., Rodriguez A. et al. DNA polymorphism at the alpha2-macroglobulin gene is associated with the severity of rheumatoid arthritis. J. Rheumatol. 2000 ;27(10):2308-11

409. Zheng T., Zhu Z., Wang Z. et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 2000; 106(9): 1081-1093

410. Zucker S., Lysik R.M., Zarrabi M.H. et al. Elevated plasma stromelysin levels in arthritis. J. Rheumatol. 1994;21(12):2329-33

411. Zuo F., Kaminski N., Eugui E. et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc. Nat. Acad. Sei. 2002; 99(9): 6292-6297

412. Zvaifler N.J., Firestein G.S. Pannus and pannocytes. Alternative models of joint destruction in rheumatoid arthritis. Arthritis. Rheum 1994;37(6):783-789