Генетический контроль терминации трансляции у эукариот тема диссертации и автореферата по ВАК РФ 03.00.15, доктор биологических наук Журавлева, Галина Анатольевна

  • Журавлева, Галина Анатольевна
  • доктор биологических наукдоктор биологических наук
  • 2007, Санкт-Петербург
  • Специальность ВАК РФ03.00.15
  • Количество страниц 325
Журавлева, Галина Анатольевна. Генетический контроль терминации трансляции у эукариот: дис. доктор биологических наук: 03.00.15 - Генетика. Санкт-Петербург. 2007. 325 с.

Оглавление диссертации доктор биологических наук Журавлева, Галина Анатольевна

СПИСОК СОКРАЩЕНИЙ

Глава 1. ЭВОЛЮЦИОННАЯ КОНСЕРВАТИВНОСТЬ

ФАКТОРОВ ТРАНСЛЯЦИИ ЭУКАРИОТ (ВВЕДЕНИЕ)

Глава 2. МАТЕРИАЛЫ И МЕТОДЫ

2.1. Штаммы

2.2. Плазмиды

2.2.1. Плазмиды для двугибридной системы

2.2.2. Плазмиды для аффинной хроматографии

2.2.3. Плазмиды серии pYX

2.2.4. Плазмиды, содержащие мутантные аллели генов 33 SUP45 и SUP

2.3. Секвенирование

2.4. Среды и условия культивирования

2.5. Молекулярно-генетические методы

2.5.1. Получение мутантов по генам SUP35 и SUP

2.5.2. Количественная оценка стабильности плазмид

2.5.3. Двугибридная система

2.6. Молекулярно-биологические и биохимические 40 методы

2.6.1. Скрининг библиотеки кДНК с помощью гибридизации

2.6.2. Скрининг библиотек кДНК с помощью двугибридной 41 системы

2.6.3. Количественная характеристика нонсенс-супрессии

2.6.4. Нозерн-гибридизация

2.6.5. Антитела

2.6.6. Иммуноблотинг

2.6.7. Детекция взаимодействия белков

2.7. Компьютерные и статистические методы

Глава 3. Белок eRF3 - эукариотический фактор терминации трансляции 2 класса

3.1. История изучения терминации трансляции у про- и эукариот (обзор литературы)

3.1.1. Нонсенс-супрессия у прокариот

3.1.2. Нонсенс-супрессия у дрожжей S. cerevisiae

3.1.2.1. Кодон-специфическая супрессия

3.1.2.2. Омнипотентная супрессия. Идентификация генов 55 SUP45 и SUP

3.1.2.3. Взаимодействие рецессивных омнипотентных супрессоров с кодон-специфичными супрессорами 3.1.2.4. Модификаторы нонсенс-супрессии, аллосупрессоры и 58 антисупрессоры

3.1.3. Белки 8ир45 и 8ир35 участвуют в контроле точности 61 трансляции

3.1.4. Гипотезы о белках, участвующих в терминации 65 трансляции у эукариот

3.2. Изоляция структурного гена Хепорш 1аехЬ, 66 гомологичного гену 31/Р35 дрожжей

3.2.1. Скрининг библиотеки кДНК X. \aevis

3.2.2. Сравнение С-терминальных доменов белков, 68 гомологичных 8ир35 из разных видов

3.2.3. Комплементация мутации зир35-21^) белком 8ир35-С 69 X. \aevis

3.2.4. Идентификация фактора терминации еИРЗ

3.3. Во взаимодействии с белком еДОЗ участвует С- 72 терминальный домен белка еВД!

3.4. Эволюционная консервативность взаимодействия 75 факторов терминации трансляции еШ^ и еДОЗ

3.5. Факторы терминации трансляции эукариот еЫП и 77 еШ?3 (обсуждение)

3.5.1. Терминация трансляции у эукариот

3.5.2. Фактор терминации трансляции еШЛ

3.5.3. Роль рибосомы в декодировании

3.5.4. Фактор терминации трансляции еЮ^

3.5.5. Терминация трансляции и молекулярная мимикрия

Глава 4. ИЗУЧЕНИЕ ФУНКЦИОНАЛЬНОЙ

ГОМОЛОГИИ БЕЛКОВ СЕМЕЙСТВА eRF3 ВЫСШИХ ЭУКАРИОТ (Н. sapiens, X. laevis, М. musculus) В КЛЕТКАХ ДРОЖЖЕЙ

4.1. Подсемейство факторов терминации eRF3 (Обзор 91 литературы)

4.2. Функциональное замещение дрожжевого фактора 95 терминации eRF3 белком mGSPT2 М. musculus

4.3. Делеционный анализ генов mGSPTl и mGSPT

4.4. Роль N-терминального домена в функционировании фактора терминации eRF

4.5. Взаимодействие белков GSPT1 и GSPT2 с белком 105 eRFl

4.6. Белок Hbsl S. cerevisiae филогенетически, но не 107 функционально, родственен белку eRF

4.6.1. Филогенетический анализ белков Hbsl S. cerevisiae и 107 eRFS Н. sapiens

4.6.2. Белки Hbsl и eRFS не способны функционировать в 108 качестве факторов терминации в клетках дрожжей

4.6.3. Белок Hbsl не взаимодействует с факторами 109 терминации eRF3 и eRFl

4.7. Консервативность фактора терминации 110 трансляции eRF3 у эукариот (Обсуждение)

4.7.1. Гены, кодирующие eRF3, у разных организмов

4.7.2. Структурная организация белка eRF

4.7.2.1. N-терминальный домен белка eRF

4.7.2.2. М- домен белка eRF

4.7.2.3. С-терминальный домен белка eRF

4.7.3. Функциональная гомология белков подсемейства eRF

4.7.4. Роль белка Hbsl в трансляции

Глава 5. ИСПОЛЬЗОВАНИЕ МУТАНТОВ ПО ГЕНАМ

SUP45VLSUP35 ДЛЯ ИЗУЧЕНИЯ СОБЫТИЙ, ПРОИСХОДЯЩИХ ПРИ ТЕРМИНАЦИИ ТРАНСЛЯЦИИ

5.1. Мутации sup45 и sup35 и их плейотропные 131 эффекты (обзор литературы)

5.1.1. Омнипотентная супрессия

5.1.2. Супрессия сдвигов считывания

5.1.3. Чувствительность к антибиотикам

5.1.4. Температурочувствительность

5.1.5. Осмочувствительность

5.1.6. Влияние мутаций sup35 и sup45 на функционирование 133 митохондрий

5.1.7. Влияние мутаций sup35 и sup45 на клеточный цикл

5.1.8. Фенотшшческое проявление фактора [PSf]

5.2. Использование мутантов по гену SUP45 для 139 изучения событий, происходящих при терминации трансляции

5.2.1. Мутации sup45, отобранные по эффекту супрессии 139 мутаций his7-l (UAA) и Iys9-A21 (UAA)

5.2.2. Нонсенс-мутации (sup45-n) в жизненно-важном гене

5.2.3. Мутации sup45-n приводят к трансляции стоп- 145 кодонов, как значащих

5.2.4. Жизнеспособность различных по происхождению 147 штаммов, содержащих мутации sup45-n

5.2.5. Мутации sup45-n нарушают жизнеспособность 151 аскоспор в мейозе

5.2.6. Присутствие аллели дикого типа гена SUP45 154 нарушает трансляцию нонсенс-кодонов

5.2.7. Миссенс-мутации в гене SUP

5.2.7.1. Фенотипическая характеристика миссенс-мутаций 157 в гене SUP

5.2.7.2. Миссенс-мутации в гене SUP45 не влияют 158 на количество белка eRFl

5.2.7.3. Большинство миссенс-мутаций в гене SUP45 159 не влияет на взаимодействие мутантных белков eRFl с бежом eRF3 в двугибридной системе

5.3. Использование мутантов по гену SUP35 для 160 изучения событий, происходящих при терминации трансляции

5.3.1. Характеристика белка eRF3 у мутантов по гену SUP

5.3.2. Секвенирование мутаций sup

5.3.3. Нонсенс-мутации в гене SUP35 (sup35-n) 167 не влияют на количество мРНК SUP

5.3.4. Мутации sup35-n не приводят к летальности в 168 отсутствие мутантной тРНК

5.3.5. Нонсенс-мутации в генах SUP45 и SUP35 не приводят к 170 уменьшению содержания белков eRFl и eRF3, соответственно

5.3.6. Миссенс-мутации в гене SUP35 не приводят к 172 нарушению взаимодействия с белком eRFl

5.4. Увеличение уровня тРНК у мутантов по факторам 173 терминации eRFl и eRF

5.4.1. Жизнеспособность нонсенс-мутантов по генам SUP45 173 и SUP35 увеличивается с увеличением числагенераций в условиях отбора

5.4.2. Нонсенс-мутанты по гену SUP45 характеризуются 176 повышенным содержанием тРНК

5.4.3. Количество тРНК в штаммах, несущих мутации sup

5.5. Мутации в генах SUP45 и SUP35 (Обсуждение)

5.5.1. Типы мутаций, возникающих в генах SUP45 и SUP

5.5.2. Миссенс-мутации в генах SUP45 и SUP

5.5.2.1. Миссенс-мутации в гене SUP

5.5.2.2. Миссенс-мутации в гене SUP

5.5.3. Нонсенс-мутации в генах SUP45 и SUP

5.5.3.1. Локализация нонсенс-мутаций

5.5.3.2. Нуклеотидное окружение нонсенс-мутаций

5.5.3.3. Плейотропные эффекты мутаций sup45-n nsup35-n

5.5.4. Увеличение количества тРНК у мутантов по генам

SUP45 и SUP

Глава 6. ИДЕНТИФИКАЦИЯ БЕЛКА РАВР, КАК

ВЗАИМОДЕЙСТВУЮЩЕГО С ФАКТОРОМ ТЕРМИНАЦИИ eRF

6.1. Белок РАВР и его роль в трансляции (обзор 213 литературы)

6.1.1. Семейство белков РАВР

6.1.2. Структура белка РАВРС

6.1.3. Ядерный белок PABPN

6.1.4. Участие РАВР в полиаденилировании

6.1.5. Роль РАВР в транспорте мРНК из ядра в цитоплазму

6.1.6. Функции белка РАВРС в трансляции

6.1.7. Участие РАВРС в деградации мРНК

6.2. Идентификация белков, взаимодействующих с 225 белком eRF3 человека

6.2.1. Скрининг библиотеки кДНК Н. sapiens. Выявление 225 белков РАВРС 1 и iPABP, как белков, взаимодействующих с eRF

6.2.2. Взаимодействие полноразмерных бежов РАВРС 1 и 227 eRF3 в двугибридной системе

6.2.3. Участок РАВРС 1, взаимодействующий с eRF3, 228 локализован в С-терминальном домене этого белка

6.3. еРАВР X. laevis - новый белок семейства РАВР

6.3.1. Скрининг библиотеки кДНКХ laevis. Выявление 230 белка еРАВР, как белка, взаимодействующего с eRF

6.3.2. Сравнение последовательности белка еРАВР с 231 другими белками семейства РАВР

6.3.3. Белки еРАВР и РАВР1X laevis связываются с белком 233 eRF3 in vitro

6.3.4. Белок еРАВР способен компенсировать дизрупцию 234 гена РАВ1 дрожжей S. cerevisiae

6.4. Взаимодействие белков Pabl и eRF3 в клетках 236 дрожжей

6.4.1. Взаимодействие дрожжевых бежов eRF3 и Pabl в 236 двугибридной системе

6.4.2. Идентификация минимальных взаимодействующих 238 доменов белков Pabl и eRF

6.4.3. Участки взаимодействия eRF3 с белками Pabl и Slal 240 различны

6.4.4. Антисупрессорный эффект Pabl в клетках дрожжей, 241 содержащих мутацию sup

6.4.6.

6.5.1.

6.5.2.

6.6. 6.6.1. 6.6.2.

6.6.3.

6.6.4.

Глава 7.

Сверхэкспрессия РАВ1 приводит к подавлению супрессии, вызванной присутствием фактора [Р57*] Увеличение содержания бежа РаЫ в клетке приводит 251 к снижению фенотипической супрессии, индуцированной паромомицином

Консервативность взаимодействия белков eRF3 и 252 РАВР в эволюции

Полноразмерные белки eRF3 и РАВР из разных видов способны взаимодействовать друг с другом

Выявление участков РАВР и eRF3, взаимодействующих друг с другом у разных видов

Роль белка РАВР в терминации трансляции обсуждение)

Консервативность участков РАВР, взаимодействующих с eRF3 у разных видов Консервативность участков eRF3, взаимодействующих 258 с РАВР у разных видов

Роль белка РаЫ в терминации трансляции у дрожжей 262 Эволюционная консервативность связи терминации 266 трансляции и деградации мРНК

ЭВОЛЮЦИОННАЯ КОНСЕРВАТИВНОСТЬ 268 СИСТЕМЫ ТЕРМИНАЦИИ ТРАНСЛЯЦИИ У ЭУКАРИОТ (Заключение)

ВЫВОДЫ

Рекомендованный список диссертаций по специальности «Генетика», 03.00.15 шифр ВАК

Введение диссертации (часть автореферата) на тему «Генетический контроль терминации трансляции у эукариот»

МАТЕРИАЛЫ И МЕТОДЫ 17 В работе использовали стандартные однобуквенные или трехбуквенныеобозначения аминокислот.

Похожие диссертационные работы по специальности «Генетика», 03.00.15 шифр ВАК

Заключение диссертации по теме «Генетика», Журавлева, Галина Анатольевна

Выводы

1. Клонирование гомолога гена SUP35 S. cerevisiae из X. laevis позволило идентифицировать один из двух эукариотических факторов терминации - eRF3. Белки eRF3 и eRFl взаимодействуют друг с другом.

2. Гомологи eRF3 из Н. sapiens, М. musculus и X. laevis, лишенные своих N-терминальных доменов, способны функционировать в клетках дрожжей. Белок mGSPT2 (eRF3b) М. musculus способен замещать in vivo дрожжевой белок Sup35/eRF3, в отличие от его гомолога из того же организма mGSPTl (eRF3a).

3. Гены HBS1 S. cerevisiae и eRFS Н. sapiens, не могут компенсировать делецию гена SUPS5 S. cerevisiae. Белок Hbsl не взаимодействует с белками eRFl и eRF3. Таким образом, белки семейства eRFS не способны осуществлять функции eRF3.

4. В качестве белков, взаимодействующих с eRF3, выявлены РАВРС1 и iPABP, принадлежащие к семейству белков, связывающихся с поли(А)-концами мРНК. Обнаружен новый белок семейства РАВР - еРАВР XJaevis. Белок еРАВР взаимодействует с eRF3 in vivo и in vitro. Белок еРАВР способен компенсировать делецию гена РАВ1 дрожжей S. cerevisiae.

5. Во взаимодействии фактора терминации eRF3 с белком РАВР принимают участие N-терминальный домен eRF3 и С-терминальный домен РАВР.

6. Впервые показано, что белок Pabl S. cerevisiae способен влиять на процесс терминации трансляции за счет взаимодействия с eRF3.

7. Показано, что значительную долю омнипотентных супрессорных мутаций в генах SUP45 и SUP35 составляют нонсенс-мутации, приводящие к уменьшению содержания белков eRFl и eRF3.

8. Большинство миссенс-мутаций в гене SUP45 приводят к заменам аминокислот в N-терминальном домене бежа eRFl, не вызывая уменьшения количества белка eRFl и нарушения его взаимодействия с белком eRF3. Проанализированные миссенс-мутации в гене SUP35 приводят к заменам аминокислот в С-терминальном домене белка eRF3, не вызывая уменьшения количества белка eRF3 и нарушения его взаимодействия с белком eRFl.

9. Штаммы, содержащие мутации в генах SUP45 и SUP35, характеризуются повышенным содержанием различных типов тРНК. Жизнеспособность нонсенс-мутантов по жизненно-важным генам SUP45 и SUP35 может быть связана с увеличением содержания тРНК в мутантных клетках.

10. Белки eRFl и eRF3, а также eRF3 и РАВР из разных видов способны взаимодействовать друг с другом, что свидетельствует о консервативности белковых комплексов, участвующих в терминации трансляции у различных эукариотических организмов.

Список литературы диссертационного исследования доктор биологических наук Журавлева, Галина Анатольевна, 2007 год

1. Борхсениус A.C., С.Г. Инге-Вечтомов. О роли генов SUP35 и SUP45 в контроле клеточного цикла дрожжей-сахаромицетов // Доклады РАН. 1997. Т. 353. С. 553-556.

2. Борхсениус A.C., М.В. Репневская, К. Куришко, С.Г. Инге-Вечтомов. Связь нарушения кариогамии и терминации трансляции у дрожжей Saccharomyces cerevisiae. //Генетика, 2005. Т. 41. С. 178-186.

3. Дагкесаманская А.Р., В.В. Кушниров, C.B. Паушкин, М.Д. Тер-Аванесян. Слияние глутатион S-трансферазы с N-концом белка Sup35p дрожжей ингибирует его прионоподобные свойства. Генетика. 1997. Т. 33. С. 610615.

4. Журавлева Г.А., Л.Н. Миронова, С.Г. Инге-Вечтомов Геном дрожжей и первые шаги в постгеномную эру // Молекулярная биология. 2000. Т. 34. С. 474-484.

5. Задорский С.П., С.Г. Инге-Вечтомов. Ген SUP35 Pichia methanolica является рецессивным супрессором в Saccharomyces cerevisiae. II Доклады РАН. 1998. Т. 361. С. 825-829.

6. Захаров И.А., С.А. Кожин, Т.Н. Кожина, И.В. Федорова. Сборник методик по генетике дрожжей-сахаромицетов // Л., Наука. 1984.143 С.

7. Инге-Вечтомов С.Г. Новые генетические линии дрожжей Saccharomyces cerevisiae II Вестник ЛГУ. 1963. Т.21. С.117-125.

8. Инге-Вечтомов С.Г. Реверсии к прототрофности у дрожжей, нуждающихся в аденине // Вестник ЛГУ. 1964. Сер. 2. Вып 9. С.112-117

9. Инге-Вечтомов С.Г. Влияние источника углерода и митохондриального генома на рибосомную супрессию в цитоплазме у дрожжей-сахаромицетов // Исследования по генетике. 1986. Вып. 10. С. 60-64.

10. Инге-Вечтомов С.Г., В.М. Андрианова. Рецессивные супер-супрессоры у дрожжей//Генетика. 1970. Т. 6. С. 103-115.

11. Инге-Вечтомов С.Г., В.М. Андрианова. Новый тип суперсупрессоров у дрожжей. В кн.: Молекулярные механизмы генетических процессов // М., 1972. С.189-195.

12. Инге-Вечтомов С.Г., Б.В. Симаров. Связь суперсупрессии и межаллельной комплементации в локусе ad2 у дрожжей S.cerevisiae II Исследования по генетике. 1967. Вып. 3. С. 127-148.

13. Инге-Вечтомов С.Г., Т.С. Карпова. Доминантные супрессоры, эффективные при пониженной температуре, у дрожжей Saccharomyces II Генетика. 1984. Т. 20, С.1620-1627.

14. Инге-Вечтомов С.Г., О.Н. Тиходеев, Т.С. Карпова. Селективная система для получения рецессивных рибосомных супрессоров у дрожжей Saccharomyces cerevisiae II Генетика. 1988. Т. 24, С.1159-1165.

15. Инге-Вечтомов С.Г., JI.H. Миронова, М.Д. Тер-Аванесян. Неоднозначность трансляции: версия эукариот? // Генетика. 1994. ТЗО. С. 1022-1035.

16. Купширов В.В., М.Д. Тер-Аванесян, В.Н. Смирнов. Структурное и функциональное сходство бежов Sup35p и Ure2p дрожжей и прионов млекопитающих //Молекулярная биология. 1995. Т.29. Р.750-755.

17. Миронова JI.H., М.Д. Тер-Аванесян. Циклогексимидзависимые мутанты у дрожжей Saccharomyces cerevisiae // Генетика. 1983. Т. 19. С. 19251933.

18. Миронова JI.H., O.A. Зеленая, М.Д. Тер-Аванесян. Ядерно-митохондриальные взаимодействия у дрожжей: митохондриальные мутации, компенсирующие дыхательную недостаточность у мутантов supl и sup2 // Генетика. 1986. Т. 22. С. 200-208.

19. Миронова JI.H., Г.А. Журавлева, В.Н. Куликов, М.Г. Самсонова, М.Я. Соом. Взаимодействие мутаций в гене SUP45 (SUP1) у дрожжей-сахаромицетов и их влияние на структуру белка // Доклады РАН. 1993. Т. 333. С. 658-660.

20. Миронова JI.H. Генетический и эпигенетический контроль считывания стоп-кодонов у дрожжей Saccharomyces cerevisiae. Автореферат докт. дисс., Санкт-Петербург, 2002.

21. Москаленко С.Е. Нонсенс- и миссенс-мутации в жизненно-важном гене SUP45 дрожжей S. cerevisiae. Автореферат канд. дисс., Санкт-Петербург, 2003.

22. Сургучев А.П., В. Пиперсберг, В.Н. Смирнов, М.Д. Тер-Аванесян, С.Г. Инге-Вечтомов. Клонирование гена supl дрожжей Saccharomyces cerevisiae //Доклады АН СССР. 1983. Т. 272, С. 987-991.

23. Телков М.В., А.П. Сургучов, А.Р. Дагкесаманская, М.Д. Тер-Аванесян. Изоляция фрагмента хромосомной ДНК, содержащего ген sup2 дрожжей Saccharomyces cerevisiae // Генетика. 1986. Т. 22. С.17-25.

24. Тер-Аванесян М.Д., С.Г. Инге-Вечтомов. Взаимодействие доминантных и рецессивных супрессоров у дрожжей Saccharomyces cerevisiae II Генетика. 1980. T. 16. С. 86-94.

25. Тер-Аванесян М.Д., С.Г. Инге-Вечтомов, Е.А. Шубочкина. Экспрессия супрессорных мутаций supl и sup2 у дрожжей S. cerevisiae. Влияние гипертонических условий// Генетика. 1982а. Т. 18, С. 215-222.

26. Тер-Аванесян М.Д., Е.А. Шубочкина, С.Г. Инге-Вечтомов. Эффект циклогексимида на экспрессию мутации в гене sup2 дрожжей Saccharomyces cerevisiae П Генетика. 19826. Т. 18, С. 223-226.

27. Тиходеев О. Н., Е.В. Гетманова, B.JI. Тихомирова, С.Г. Инге-Вечтомов. Неоднозначность трансляции у дрожжей: генетический контроль и модификации // В кн.: Молекулярные механизмы генетических процессов. М., 1990. С. 218-228.

28. Тихомирова B.JL, Т.С. Карпова, М.Д. Тер-Аванесян, С.Г. Инге-Вечтомов. Генетический анализ взаимодействия тРНК и рибосомы при информационной супрессии у дрожей Saccharomyces II Исследования по генетике. 1986. Вып. 10. С. 52-60.

29. Финкелыптейн А. В., О. Б. Птицын. Физика белка // М.: Книжный дом "Университет". 2002.376 с.

30. Урбах В. Ю. Статистический анализ в биологических и медицинских исследованиях //М.: Медицина. 1975. 296 с.

31. Чернов Ю.О., И.Л. Деркач, А.Р. Дагкесаманская, B.JI. Тихомирова, М.Д. Тер-Аванесян, С.Г. Инге-Вечтомов. Нонсенс-супрессия при амплификации гена, кодирующего белковый фактор трансляции // Докл. АН СССР. 1988. Т.301. С. 1227-1229.

32. Шабельская С.В. Молекулярно-генетическая характеристика супрессорных мутантов по гену SUP35 дрожжей Saccharomyces cerevisiae. Автореферат канд. дисс., Санкт-Петербург, 2005.

33. Шумов Н.Н., К.В. Волков, JI.H. Миронова. Взаимодействие гена АТР17 с генами SUP45 и SUP35 у дрожжей Saccharomyces cerevisiae // Генетика. 2000. Т. 36. С. 644-650.

34. The FlyBase database of the Drosophila Genome Projects and community literature. The FlyBase Consortium // Nucleic Acids Res. 1999. V. 27, P. 8588.

35. Adam S.A., T. Nakagawa, M.S. Swanson, Т.К. Woodruff, G. Dreyfuss. mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence // Mol.Cell Biol. 1986. V. 6, P. 2932-2943.

36. Afonina E., R. Stauber, G.N. Pavlakis. The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm // J.Biol.Chem. 1998. V. 273, P. 13015-13021.

37. Agrawal R.K., P. Penczek, R.A. Grassucci, J. Frank. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation //Proc.Natl.Acad.Sci.U.S.A. 1998. V. 95, P. 6134-6138.

38. Alkalaeva E.Z., A.V. Pisarev, L.Y. Frolova, L.L. Kisselev, T.V. Pestova. In Vitro Reconstitution of Eukaryotic Translation Reveals Cooperativity between Release Factors eRFl and eRF3 // Cell. 2006. V.125, P. 1125-1136.

39. All-Robyn J.A., N. Brown, E. Otaka, S.W. Liebman. Sequence and functional similarity between a yeast ribosomal protein and the Escherichia coli S5 ram protein // Mol.Cell Biol. 1990a. V. 10. P. 6544-6553.

40. All-Robyn J.A., D. Kelley-Geraghty, E. Griffin, N. Brown, S.W. Liebman. Isolation of omnipotent suppressors in an eta+. yeast strain // Genetics. 1990b. V. 124, P. 505-514.

41. Allen N.P., L. Huang, A. Burlingame, M. Rexach. Proteomic analysis of nucleoporin interacting proteins // J.Biol.Chem. 2001. V. 276, P. 29268-29274.

42. Amrani N., M. Minet, M. Le Gouar, F. Lacroute, F. Wyers. Yeast Pabl interacts with Rnal5 and participates in the control of the poly(A) tail length in vitro II Mol.Cell Biol. 1997. V. 17, P. 3694-3701.

43. Amrani N., S. Dong, F. He, R. Ganesan, S. Ghosh, S. Kervestin, C. Li, D.A. Mangus, P. Spatrick, A. Jacobson. Aberrant termination triggers nonsensemediated mRNA decay // Biochem.Soc.Trans. 2006. V. 34, P. 39-42.

44. Andersen G.R., L. Valente, L. Pedersen, T.G. Kinzy, J. Nyborg. Crystal structures of nucleotide exchange intermediates in the eEFlA-eEFlBalpha complex. Nat.Struct.Biol. 2001. V. 8. P. 531-534.

45. Anderson J.T., S.M. Wilson, K.V. Datar, M.S. Swanson. NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability // Mol.Cell Biol. 1993. V. 13, P. 2730-2741.

46. Arkov A.L., D.V. Freistroffer, M. Ehrenberg, E.J. Murgola. Mutations in RNAs of both ribosomal subunits cause defects in translation termination // EMBO J. 1998. V. 17. P. 1507-1514.

47. Arkov A.L., K.O. Hedenstierna, E.J. Murgola. Mutational efcience for a functional connection between two domains of 23 S rRNA in translation termination // J.Bacteriol. 2002. V. 184, P. 5052-5057.

48. Arkov A.L., E.J. Murgola. Ribosomal RNAs in translation termination: facts and hypotheses // Biochemistry (Mosc.) 1999. V. 64, P. 1354-1359.

49. Atkins J.F., R.B. Weiss, S. Thompson, R.F. Gesteland. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops // Annu.Rev.Genet. 1991. V. 25, P. 201-228.

50. Baer B.W., R.D. Kornberg. The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein // J.Cell Biol. 1983. V. 96, P. 717721.

51. Baker K.E., R. Parker. Nonsense-mediated mRNA decay: terminating erroneous gene expression II CurrOpin.Cell Biol. 2004. V. 16, P. 293-299.

52. Basu J., B.C. Williams, Z. Li, E.V. Williams, M.L. Goldberg. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis // Cell Motil.Cytoskeleton. 1998. V. 39, P. 286-302.

53. Beaudet A.L., C.T. Caskey. Mammalian peptide chain termination. II. Codon specificity and GTPase activity of release factor. Proc.Natl.Acad.Sci.U.S.A. 1971. V. 68, P. 619-624.

54. Beier H., M. Grimm. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs // Nucleic Acids Res. 2001. V. 29. P. 4767-4782.

55. Belostotsky D.A., R.B. Meagher. A pollen-, ovule-, and early embryo-specific poly(A) binding protein from Arabidopsis complements essential functions in yeast // Plant Cell. 1996. V. 8, P. 1261-1275.

56. Benson D.A., I. Karsch-Mizrachi, DJ. Lipman, J. Ostell, B.A. Rapp, D.L. Wheeler. GenBank//Nucleic Acids Res. 2000. V. 28, P. 15-18.

57. Benzer S., S.P. Champe. A change from nonsense to sense in the genetic code // Proc.Natl.Acad.Sci.U.S.A. 1962. V. 48,P. 1114-1121.

58. Bertram G., H.A. Bell, D.W. Ritchie, G. Fullerton, I. Stansfield.Terminating eukaryote translation: domain 1 of release factor eRFl functions in stop codon recognition // RNA. 2000. V. 6. P. 1236-1247.

59. Bertram G., S. Innes, 0. Minella, J.P. Richardson, I. Stansfield. Endless possibilities: translation termination and stop codon recognition // Microbiology. 2001. V. 147. P. 255-269.

60. Bidou L., G. Stahl, I. Hatin, 0. Namy, J.P. Rousset, P.J. Farabaugh. Nonsense-mediated decay mutants do not affect programmed -1 frameshifting //RNA. 2000. V. 6,952-961.

61. Blanco P., C.A. Sargent, C.A. Boucher, G. Howell, M. Ross, N.A. Affara. A novel poly(A)-binding protein gene (PABPC5) maps to an X-specific subinterval in the Xq21.3/Ypll.2 homology block of the human sex chromosomes // Genomics. 2001. V. 74, P. 1-11.

62. Blobel G. A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs // Proc.Natl.Acad.Sci.U.S.A. 1973. V. 70, P. 924-928.

63. Boeck R., S. Jr. Tarun, M. Rieger, J.A. Deardorff, S. Muller-Auer, A.B. Sachs. The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity//J.Biol.Chem. 1996. V. 271, P. 432-438.

64. Boeke J. D., F. Lacroute, G. R. Fink. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance //Mol. Gen. Genet. 1984. V. 197. P. 345-346.

65. Bommer U.A., G. Lutsch, J. Stahl, H. Bielka. Eukaiyotic initiation factors eIF-2 and eIF-3: interactions, structure and localization in ribosomal initiation complexes //Biochimie. 1991. V. 73. P. 1007-1019.

66. Bonetti B., L. Fu, J. Moon, D.M. Bedwell. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae II J. Mol. Biol. 1995. V. 251. P. 334-345.

67. Bonneaud N., O. Ozier-Kalogeropoulos, G.Y. Li, M. Labouesse, L. Minvielle-Sebastia, F. Lacroute. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors // Yeast. 1991. V. 7, P. 609-615.

68. Boone C., K.L. Clark, G.F. Jr Sprague. Identification of a tRNA(Gln) ochre suppressor in Saccharomyces cerevisiae II Nucleic Acids Res. 1992. V. 20, P. 4661.

69. Borchsenius A.S., A.A. Tchourikova, S.G. Inge-Vechtomov. Recessive mutations in SUP35 and SUP45 genes coding for translation release factorsaffect chromosome stability in Saccharomyces cerevisiae II Curr. Genet. 2000. V. 37. P. 285-291.

70. Borchsenius A.S., R.D. Wegrzyn, G.P. Newnam, S.G. Inge-Vechtomov, Y.O. Chernoff. Yeast prion protein derivative defective in aggregate shearing and production of new "seeds' // EMBO J. 2001. V. 20, P. 6683-6691.

71. Bouakaz L., E. Bouakaz, E.J. Murgola, M. Ehrenberg, S. Sanyal. The role of ribosomal protein Lll in class I release factor-mediated translation termination and translational accuracy // J.Biol.Chem. 2006. V. 281, P. 45484556.

72. Bourne H.R., D.A. Sanders, F. McCormick. The GTPase superfamily: conserved structure and molecular mechanism // Nature. 1991. V. 349, P. 117127.

73. Bradley M.E., S. Bagriantsev, N. Vishveshwara, S.W. Liebman. Guanidine reduces stop codon read-through caused by missense mutations in SUP35 or SUP45II Yeast. 2003. V. 20, P. 625-632.

74. Brandriss M.C., L.Soll, D. Botstein. Recessive lethal amber suppressors in yeast//Genetics. 1975. V. 79, P. 551-560.

75. Brandriss M.C., J.W. Stewart, F. Sherman, D. Botstein. Substitution of serine caused by a recessive lethal suppressor in yeast // J.Mol.Biol. 1976. V. 102, P. 467-476.

76. Breining P., A.P. Surguchov, W. Piepersberg. Cloning and identification of a DNA fragment coding for the supl gene of S. cerevisiae II Curr. Genet. 1984. V.8.P. 467-470.

77. Breining P., W. Piepersberg. Yeast omnipotent suppressor SUP1 (SUP45): nucleotide sequence of the wildtype and a mutant gene // Nucleic Acids Res. 1986. V. 11. P. 5187-5197.

78. Brengues M., D. Teixeira, R. Parker. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies // Science 2005. V. 310, P. 486-489.

79. Brenner S., L. Barnett, E.R. Katz, F.H. Crick. UGA: a third nonsense triplet in the genetic code // Nature. 1967. V. 213, P. 449-450.

80. Brown C.E., S.Z. Jr. Tarun, R. Boeck, A.B. Sachs. PANS encodes a subunit of the Pablp-dependent poly(A) nuclease in Saccharomyces cerevisiae II Mol.Cell Biol. 1996. V. 16, P. 5744-5753.

81. Brown C.E., A.B. Sachs. Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation // Mol.Cell Biol. 1998. V. 18, P. 6548-6559.

82. Brown C.M., P.A. Stockwell, C.N. Trotman, W.P. Tate. The signal for the termination of protein synthesis in procaryotes // Nucleic Acids Res. 1990. V. 18, P. 2079-2086.

83. Browne G.J., C.G. Proud. Regulation of peptide-chain elongation in mammalian cells // Eur.J.Biochem. 2002. V. 269. P. 5360-5368.

84. Brune C., S.E. Munchel, N. Fischer, A.V. Podtelejnikov, K. Weis. Yeast poly(A)-binding protein Pabl shuttles between the nucleus and the cytoplasm and functions in mRNA export//RNA. 2005. V. 11, P. 517-531.

85. Buckingham R.H., G. Grentzmann, L. Kisselev. Polypeptide chain release factors // Mol.Microbiol. 1997. V. 24. P. 449-456.

86. Burd C.G., G. Dreyfuss. Conserved structures and diversity of functions of RNA-binding proteins // Science. 1994. V. 265, P. 615-621.

87. Cai T., T.R. Reilly, M. Cerio, M.E. Schmitt. Mutagenesis of SNM1, which encodes a protein component of the yeast RNase MRP, reveals a role for this ribonucleoprotein endoribonuclease in plasmid segregation // Mol.Cell Biol. 1999. V. 19, P. 7857-7869.

88. Camonis J.H., M. Cassan, J.P. Rousset. Of mice and yeast: versatile vectors which permit gene expression in both budding yeast and higher eukaryotic cells // Gene. 1990. V. 86, P. 263-268.

89. Capecchi M.R. Polypeptide chain termination in vitro: isolation of a release factor // Proc.Natl.Acad.Sci.U.S.A. 1967. V. 58, P. 1144-1151.

90. Caponigro G., R. Parker. Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae II Microbiol.Rev. 1996. V. 60, P. 233-249.

91. Carr-Schmid A., C. Pfund, E.A. Craig, T.G. Kinzy. Novel G-protein complex whose requirement is linked to the translational status of the cell // Mol.Cell Biol. 2002. V. 22, P. 2564-2574.

92. Cassan M., J.P. Rousset. UAG readthrough in mammalian cells: Effect of upstream and downstream stop codon contexts reveal different signals // BMC.Mol.Biol. 2001. 2,3.

93. Cavallius J., W. Zoll, K. Chakraburtty, W.C. Merrick. Characterization of yeast EF-1 alpha: non-conservation of post-translational modifications // Biochim.Biophys.Acta. 1993. V. 1163. P. 75-80.

94. Chabelskaya S., D. Kiktev, S. Inge-Vechtomov, M. Philippe, G. Zhouravleva. Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiaeare non-lethal // Mol.Genet Genomics. 2004. V. 272, P. 297-307.A

95. Chauvin C., S. Salhi, C. Le GofF, W. Viranaicken, D. Diop, O. Jean-Jean. Involvement of human release factors eRF3a and eRF3b in translation termination and regulation of the termination complex formation // Mol.Cell Biol. 2005. V. 25, P. 5801-5811.

96. Chavatte L., L. Frolova, L. Kisselev, A. Favre. The polypeptide chain release factor eRFl specifically contacts the s(4)UGA stop codon located in the A site of eukaryotic ribosomes // Eur.J.Biochem. 2001. V. 268, P. 2896-2904.

97. Chavatte L., A. Seit-Nebi, V. Dubovaya, A. Favre. The invariant uridine of stop codons contacts the conserved NK.SR loop of human eRFl in the ribosome // EMBO J. 2002. V. 21, P. 5302-5311.

98. Chavatte L., S. Kervestin, A. Favre, O. Jean-Jean. Stop codon selection in eukaryotic translation termination: comparison of the discriminating potential between human and ciliate eRFl s // EMBO J. 2003. V. 22, P. 1644-1653.

99. Chernoff Yu. O., I.L. Derkach, S.G. Inge-Vechtomov. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae // Curr Genet. 1993. V. 24. P. 268-270.

100. Chernoff Y.O., A. Vincent, S.W. Liebman. Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics// EMBO J. 1994. V. 13. P.906-913.

101. Chernoff Y.O, S. L. Lindquist, B. Ono, S. G. Inge-Vechtomov, S. W. Liebman. Role of the chaperone protein Hspl04 in propagation of the yeast prion-like factor PSf. II Science. 1995. V. 268. P. 880-884.

102. Chernoff Y.O., G.P. Newnam, S.W. Liebman. The translational function of nucleotide CI054 in the small subunit rRNA is conserved throughout evolution: genetic evidence in yeast // Proc.Natl.Acad.Sci.U.S.A. 1996. V. 93, P. 2517-2522.

103. Chernoff Y.O., A.P. Galkin, E. Lewitin, T.A. Chernova, G.P. Newnam, S.M. Belenkiy. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein // Mol. Microbiol. 2000. V.35. P.865-876.

104. Chou T. Ribosome recycling, diffusion, and mRNA loop formation in translational regulation // Biophys.J. 2003. V. 85. P. 755-773.

105. Christianson T.W., R.S. Sikorski, M. Dante, J.H. Shero, P. Hieter. Multifunctional yeast high-copy-number shuttle vectors // Gene. 1992. V. 110, P. 119-122.

106. Corcelette S., T. Masse, J J. Madjar. Initiation of translation by non-AUG codons in human T-cell lymphotropic virus type I mRNA encoding both Rex and Tax regulatory proteins //Nucleic Acids Res. 2000. V. 28, P. 1625-1634.

107. Corpet F. Multiple sequence alignment with hierarchical clustering // Nucleic Acids Res. 1988. V. 16, P. 10881-10890.

108. Cosson B., N. Berkova, A. Couturier, S. Chabelskaya, M, Philippe, G. Zhouravleva. Poly(A)-binding protein and eRF3 are associated in vivo in human andXenopus cells // Biol.Cell. 2002a. 94,205-216.

109. Cosson B., A. Couturier, R. Le Guellec, J. Moreau, S. Chabelskaya, G. Zhouravleva, M. Philippe. Characterization of the poly(A) binding proteins expressed during oogenesis and early development of Xenopus laevis II Biol.Cell. 2002c. V. 94, P. 217-231.

110. Couturier A., B. Cosson, M. Philippe, G. Zhouravleva. PABP is a new partner of eRF3 // Translation Control Meeting. Cold Spring Harbor. 1998. P.72.

111. Cox B.S. Psi, a cytoplasmic suppressor of super-suppressor in yeast // Heredity. 1965. V. 20. P. 505-521.

112. Cox B.S. A recessive lethal super-suppressor mutation in yeast and other psi phenomena // Heredity. 1971. V. 26. P. 211-32.

113. Cox B. S. Allosuppressors in yeast // Genet. Res. 1977. V. 30. P. 187-205.

114. Cox B. S., M. F. Tuite, C. S. McLaughlin. The psi factor of yeast: a problem in inheritance // Yeast. 1988. V. 4. P. 159-178.

115. Craig A.W., A. Haghighat, A.T. Yu, N. Sonenberg. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation // Nature. 1998. V. 392, P. 520-523.

116. Craigen W.J., R.G. Cook, W.P. Tate, C.T. Caskey. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2 //Proc.Natl.Acad.Sci.U.S.A. 1985. V. 82, P. 3616-3620.

117. Craigen W.J, C.T. Caskey. Expression of peptide chain release factor 2 requires high-efficiency frameshift//Nature. 1986. V. 322. P. 273-275.

118. Craigen W.J., C.T. Caskey. The function, structure and regulation of E. coli peptide chain release factors // Biochimie. 1987. V. 69, P. 1031-1041.

119. Crick F.H., L. Barnett, S. Brenner, R.J Watts-Tobin. General nature of the genetic code for proteins // Nature. 1961. V. 192, P. 1227-1232.

120. Crouzet M., M.F. Tuite. Genetic control of translational fidelity in yeast: molecular cloning and analysis of the allosuppressor gene SAL3 II Mol.Gen.Genet. 1987. V. 210, P. 581-583.

121. Crouzet M., F. Izgu, C.M. Grant, M.F. Tuite. The allosuppressor gene SAL4 encodes a protein important for maintaining translational fidelity in Saccharomyces cerevisiaell Curr.Genet. 1988. V. 14, P. 537-543.

122. Culbertson M.R., R.F. Gaber, C.M. Cummins. Frameshift suppression in Saccharomyces cerevisiae. V. Isolation and genetic properties of nongroup-specific suppressors // Genetics. 1982. V. 102, P. 361-378.

123. Culbertson M.R., P.F. Leeds. Looking at mRNA decay pathways through the window of molecular evolution // Curr Opin.Genet Dev. 2003. V. 13, P. 207214.

124. Culbertson M.R., E. Neeno-Eckwall. Transcript selection and the recruitment of mRNA decay factors for NMD in Saccharomyces cerevisiae IIRNA. 2005. V. 11, P. 1333-1339.

125. Czaplinski K., N. Majlesi, T. Baneijee, S. W. Peltz. Mttl is a Upfl-like helicase that interacts with the translation termination factors and whose overexpression can modulate termination efficiency // RNA. 2000. V. 6. P. 730-743.

126. Czworkowski J., J. Wang, T.A. Steitz, P.B. Moore. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution // EMBO J. 1994. V. 13, P. 3661-3668.

127. Dagkesamanskaya A. R., M.D. Ter-Avanesyan. Interaction of the yeast omnipotent suppressors SUP1(SUP45) and SUP2(SUP35) with non-mendelian factors // Genetics. 1991. V. 128. P. 513-520.

128. Dagkesamanskaya A., M. Ter-Avanesyan, W.H. Mager. Transcriptional regulation of SUP 35 and SUP45 in Saccharomyces cerevisiae //Yeast. 1997. V. 13. P. 1265-1274.

129. Decker C.J., R. Parker. mRNA decay enzymes: decappers conserved between yeast and mammals I I Proc.Natl.Acad.Sci.U.S.A. 2002. V. 99, P. 1251212514.

130. Deo R.C., J.B. Bonanno, N. Sonenberg, S.K. Burley. Recognition of polyadenylate RNA by the poly(A)-binding protein // Cell. 1999. V. 98, P. 835-845.

131. Deo R.C., N. Sonenberg, S.K. Burley. X-ray structure of the human hyperplastic discs protein: an ortholog of the C-terminal domain of poly(A)-binding protein // Proc.Natl.Acad.Sci.U.S.A. 2001. V. 98, P. 4414-4419.

132. DePace A.H., A. Santoso, P. Hillner, J.S. Weissman. A critical role for amino-terminal glutamine/ asparagine repeats in the formation and propagation of a yeast prion//Cell. 1998. V.93 P. 1241-1252.

133. Derkatch I. L., Y. O. Chernoff, V. V. Kushnirov, S. G. Inge-Vechtomov, S. W. Liebman. Genesis and variability of P5Z. prion factors in Saccharomyces cerevisiae II Genetics. 1996. V. 144. P. 1375-1386.

134. Derkatch I. L., M. E. Bradley, P. Zhou, Y. O. Chernoff, S. W. Liebman. Genetic and environmental factors affecting the de novo appearance of the PSt. prion in Saccharomyces cerevisiae II Genetics. 1997. V. 147. P. 507519.

135. Derkatch I.L., M.E. Bradley, S.W. Liebman. Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the PSt. prion I I Proc.Natl.Acad.Sci.U.S.A. 1998. V. 95, P. 2400-2405.

136. Didichenko S.A., M.D. Ter-Avanesyan, V.N. Smirnov. Ribosome-bound EF-a-like protein of yeast Saccharomyces cerevisiae //Eur. J. Biochem. 1991. V. 198. P. 705-711.

137. Dincbas-Renqvist V., A. Engstrom, L. Mora, V. Heurgue-Hamard, R. Buckingham, M. Ehrenberg. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J. 2000. V. 19, P. 6900-6907.

138. Doel S.M., S. J. McCready, C.R. Nierras, B.S. Cox. The dominant PNM2-mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene // Genetics. 1994. V. 137. P. 659-670.

139. Doma M.K., R. Parker. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation // Nature. 2006. V. 440, P. 561-564.

140. Dontsova M., L. Frolova, J. Vassilieva, W. Piendl, L. Kisselev, M. Garber. Translation termination factor aRFl from the archaeon Methanococcus jannaschii is active with eukaryotic ribosomes // FEBS Lett. 2000. V. 472, P. 213-216.

141. Dower K., M. Rosbash. T7 RNA polymerase-directed transcripts are processed in yeast and link 3' end formation to mRNA nuclear export // RNA. 2002. V. 8, P. 686-697.

142. Draper D.E. Themes in RNA-protein recognition // J.Mol.Biol. 1999. V. 293, P. 255-270.

143. Duncan K., J.G. Umen, C. Guthrie. A putative ubiquitin ligase required for efficient mRNA export differentially affects hnRNP transport // Curr Biol. 2000. V. 10, P. 687-696.

144. Eaglestone S.S., B.S. Cox, M.F. Tuite. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism //EMBO J. 1999. V. 18. P. 1974-1981.

145. Ebihara K., Y. Nakamura. C-terminal interaction of translational release factors eRFl and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids // RNA. 1999. V. 5. P. 739-750.

146. Edelman I., M.R Culbertson. Exceptional codon recognition by the glutamine tRNAs in Saccharomyces cerevisiae II EMBO J. 1991. V. 10, P. 1481-1491.

147. Eggertsson G., D. Soil. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli// Microbiol Rev. 1988. V. 52. P. 354374.

148. Ehrenberg M., T. Tenson. A new beginning of the end of translation. Nat.Struct.Biol. 2002. V. 9, P. 85-87.

149. Engelberg-Kulka H. UGA suppression by normal tRNATrp in Escherichia coli: codon context effects //Nucleic Acids Res. 1981. V. 9, P. 983-991.

150. Etcheverry T., M. Salvato, C Guthrie. Recessive lethality of yeast strains carrying the SUP61 suppressor results from loss of a transfer RNA with a unique decoding function // J.Mol.Biol. 1982. V. 158, P. 599-618.

151. Eurwilaichitr L., F.M. Graves, I. Stansfield, M.F. Tuite. The C-terminus of eRFl defines a functionally important domain for translation termination in Saccharomyces cerevisiae //Mol. Microbiol. 1999. V. 32. P. 485-96.

152. Eustice D.C., L.P. Wakem, J.M. Wilhelm, F. Sherman. Altered 40 S ribosomal subunits in omnipotent suppressors of yeast // J.Mol.Biol. 1986. V. 188, P. 207-214.

153. Fan X., P. Dion, J. Laganiere, B. Brais, G.A. Rouleau. Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death // Hum.Mol.Genet. 2001. V. 10, P. 2341-2351.

154. Faux N.G., S.P. Bottomley, A.M. Lesk, J.A. Irving, J.R. Morrison, M.G. de la Banda, J.C. Whisstock. Functional insights from the distribution and role of homopeptide repeat-containing proteins // Genome Res. 2005. V. 15, P. 537551.

155. Feilotter H.E., G.J. Hannon, C.J. Ruddell, D.Beach. Construction of an improved host strain for two hybrid screening // Nucleic Acids Res. 1994. V. 22, P. 1502-1503.

156. Feral C., G. Guellaen, A. Pawlak. Human testis expresses a specific poly(A)-binding protein //Nucleic Acids Res. 2001. V. 29, P. 1872-1883.

157. Fields S., O. Song. A novel genetic system to detect protein-protein interactions //Nature 1989. V. 340, P. 245-246.

158. Firoozan M., C.M. Grant, J.A. Duarte, M.F. Tuite. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay // Yeast. 1991. V.7. P.173-183.

159. Fourmy D., S. Yoshizawa, J.D. Puglisi. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA // J.Mol.Biol. 1998. V. 277, P. 333-345.

160. Freistroffer D.V., M. Y. Pavlov, J. MacDougall, R.H. Buckingham, M. Ehrenberg. Release factor RF3 in E.coli accelerates the dissociation of releasefactors RF1 and RF2 from the ribosome in a GTP-dependent manner // EMBO J. 1997. V. 16. P. 4126-4133.

161. Freistroffer D.V., M. Kwiatkowski, R.H. Buckingham, M. Ehrenberg. The accuracy of codon recognition by polypeptide release factors // Proc.Natl.Acad.Sci.U.S.A. 2000. V. 97, P. 2046-2051.

162. Frolova L., X. Le Goff, G. Zhouravleva, E. Davydova, M. Philippe, L. Kisselev. Eukaryotic polypeptide chain release factor eRF3 is an eRFl- and ribosome-dependent guanosine triphosphatase // RNA. 1996. V.2. P. 334 -341.

163. Frolova L.Y., T.I. Merkulova, L.L. Kisselev. Translation termination in eukaryotes: polypeptide release factor eRFl is composed of functionally and structurally distinct domains // RNA. 2000. V. 6. P. 381-390.

164. Fujita T., T. Itoh. Organization and nucleotide sequence of a gene cluster comprising the translation elongation factor 1 alpha, ribosomal protein S10 and tRNA(Ala) from Halobacterium halobium 11 Biochem.Mol.Biol.Int. 1995. V. 37, P. 107-115.

165. Fukami-Kobayashi K., S. Tomoda, M. Go. Evolutionary clustering and functional similarity of RNA-binding proteins // FEBS Lett. 1993. V. 335, P. 289-293.

166. Gagny B., P. Silar. Identification of the genes encoding the cytosolic translation release factors from Podospora anserina and analysis of their role during the life cycle // Genetics. 1998. V.149.1763-1775.

167. Gallie D.R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency // Genes Dev. 1991. V. 5, P. 2108-2116.

168. Gamier J., J.F. Gibrat, B. Robson. GOR method for predicting protein secondary structure from amino acid sequence // Methods Enzymol. 1996. V. 266. P. 540-553.

169. Geiduschek E.P., G.A. Kassavetis. The RNA polymerase III transcription apparatus // J.Mol.Biol. 2001. V. 310, P. 1-26.

170. Geourjon C., G. Deleage. SOPM: a self-optimized method for protein secondary structure prediction // Protein Eng. 1994. V.7. P.157-164.

171. Gerlach W.L. Genetic properties of some amber-ochre supersuppressors in Saccharomyces cerevisiae II Mol. Gen. Genet. 1975. V. 138. P. 53-63.

172. Gerlinger U.M., R. Guckel, M. Hoffrnann, D.H. Wolf, W. Hilt. Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation // Mol.BioI.Cell 1997. V. 8, P. 2487-2499.

173. Ghaemmaghami S., W.K. Huh, K. Bower, R.W. Howson, A. Belle, N. Dephoure, E.K. O'Shea, J.S. Weissman. Global analysis of protein expression in yeast // Nature 2003. V. 425, P. 737-741.

174. Gietz R.D., R.H. Schiestl, A.R. Willems, R.A. Woods. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure // Yeast. 1995. V. 11, P. 355-360.

175. Gillet R. and B. Felden. Emerging views on tmRNA-mediated protein tagging and ribosome rescue //Mol.Microbiol. 2001. V. 42, P. 879-885.

176. Gilmore R.A. Super-suppressors in Saccharomyces cerevisiae II Genetics. 1967. V. 56, P. 641-658.

177. Gilmore R.A., J.W. Stewart, F. Sherman. Amino acid replacements resulting from super-suppression of nonsense mutants of iso-1-cytochrome c from yeast // J.Mol.Biol. 1971. V. 61, P. 157-173.

178. Giuliodori S., R. Percudani, P. Braglia, R. Ferrari, E. Guffanti, S. Ottonello, G. Died. A composite upstream sequence motif potentiates tRNA gene transcription in yeast // J.Mol.Biol. 2003. V. 333, P. 1-20.

179. Goldstein J.L., C.T. Caskey. Peptide chain termination: effect of protein S on ribosomal binding of release factors // Proc.Natl.Acad.Sci.U.S.A. 1970. V. 67, P. 537-543.

180. Goss D.J., D. Rounds, T. Harrigan, C.L. Woodley, A.J. Wahba. Effects of eucaryotic initiation factor 3 on eucaryotic ribosomal subunit equilibrium and kinetics // Biochemistry. 1988. V. 27. P. 1489-1494.

181. Goss D.J., D.J. Rounds. A kinetic light-scattering study of the binding of wheat germ protein synthesis initiation factor 3 to 40S ribosomal subunits and 80S ribosomes//Biochemistry. 1988. V. 27. P. 3610-3613.

182. Grange T., C.M. de Sa, J. Oddos, R Pictet. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif // Nucleic Acids Res. 1987. V. 15, P. 4771-4787.

183. Granneman S., S.J. Baserga. Crosstalk in gene expression: coupling and co-regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing // Curr Opin.Cell Biol. 2005. V. 17, P. 281-286.

184. Grenett H.E., P. Bounelis, G.M. Fuller. Identification of a human cDNA with high homology to yeast omnipotent suppressor 45 // Gene. 1992. V. 110. P. 239-243.

185. Grentzmann G., D. Brechemier-Baey, V. Heurque, L. Mora, R.H. Buckingham. Localization and characterization of the gene encoding release factor RF3 in E. coli I I Proc. Natl. Acad. Sci. USA. 1994. V. 91. P. 58485852.

186. Grosshans H., G. Simos, E. Hurt, Transport of tRNA out of the nucleus-direct channeling to the ribosome? // J.Struct.Biol. 2000. V. 129, P. 288-294.

187. Guarente L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast // Methods Enzymol. 1983. V. 101, P. 181-191.

188. Guthrie C., G.R. Fink. Guide to yeast genetics and molecular biology // San Diego: Academic Press. 1991. 596 P.

189. Gygi S.P., Y. Rochon, B.R. Franza, R. Aebersold. Correlation between protein and mRNA abundance in yeast // Mol.Cell Biol. 1999. V. 19, P. 17201730.

190. HammelI C.M., S. Gross, D. Zenklusen, C.V. Heath, F. Stutz, C. Moore, C.N Cole. Coupling of termination, 3' processing, and mRNA export // Mol.Cell Biol. 2002. V. 22, P. 6441-6457.

191. Hani J., H. Feldmann. tRNA genes and retroelements in the yeast genome // Nucleic Acids Res. 1998. V. 26, P. 689-696.

192. Harger J.W., A. Meskauskas, J.D. Dinman. An "integrated model" of programmed ribosomal frameshifting // Trends Biochem.Sci. 2002. V. 27, P. 448-454.

193. Hawthorne D.C., R.K Mortimer. Super-suppressors in yeast // Genetics. 1963. V. 48, P. 617-620.

194. Hawthorne D.C., R.K. Mortimer. Genetic mapping of nonsense suppressors in yeast // Genetics. 1968. V. 60. P. 735-742.

195. Hawthorne D.C., U. Leupold. Suppressors in yeast // Curr. Top. Microbiol. Immunol. 1974. V. 64, P. 1-47.

196. Himmelfarb H.J., E. Maicas, J.D. Friesen. Isolation of the SUP45 omnipotent suppressor gene of Saccharomyces cerevisiae and characterization of its gene product // Mol. Cell. Biol. 1985. V. 5. P. 816-822.

197. Horton L.E., P. James, E.A. Craig, J.O. Hensold. The yeast hsp70 homologue Ssa is required for translation and interacts with Sisl and Pabl on translating ribosomes //J.Biol.Chem. 2001. V. 276, P. 14426-14433.

198. Hosoda N., F. Lejeune, L.E Maquat. Evidence that poly(A) binding protein CI binds nuclear pre-mRNA poly(A) tails // Mol.Cell Biol. 2006. V. 26, P. 3085-3097.

199. Huang Y., G.C. Carmichael. Role of polyadenylation in nucleocytoplasmic transport ofmRNA//Mol.Cell Biol. 1996. V. 16, P. 1534-1542.

200. Hughes M.K., A.L. Hughes. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis II Mol.Biol.Evol. 1993. V. 10, P. 1360-1369.

201. Huntley M,, G.B. Golding. Evolution of simple sequence in proteins // J.Mol.Evol. 2000. V. 51, P. 131-140.

202. Inagaki Y., D.W. Ford. Evolution of the eukaryotic translation termination system: origins of release factors //Mol.Biol.Evol. 2000. V. 17, P. 882-889.

203. Inagaki Y., W.F. Doolittle. Class I release factors in ciliates with variant genetic codes //Nucl. Acids Res. 2001. V. 29. P. 921-927.

204. Inagaki Y., C. Blouin, W.F. Doolittle, A.J. Roger. Convergence and constraint in eukaryotic release factor 1 (eRFl) domain 1: the evolution of stop codon specificity // Nucleic Acids Res. 2002. V. 30, P. 532-544.

205. Inge-Vechtomov S.G., T.R. Soidla, S.A. Kozin, B.V. Simarov. Super-suppressor induced interallelic complementation // J.Mol.Biol. 1966. V. 19, P. 583-585.

206. Inge-Vechtomov S.G., E.A. Ilmov, L.N. Mironova, V.L. Tikchomirova, V.V. Volkov, S.P. Zadorsky. Yeast approach to protein "prionization": SUP35-PST\ system // In: Prions and Brain Diseases in Animals and Humans. 1998. Plenum Press. N.Y. P. 99-109.

207. Inge-Vechtomov S., G., Zhouravleva, & M Philippe. Eukaryotic release factors (eRFs) history // Biol.Cell. 2003. V. 95, P. 195-209.

208. Inoue H., H. Nojima, H. Okayama. High efficiency transformation of Escherichia coli with plasmids // Gene. 1990. V. 96. P. 23-28.

209. Ishiguro J., B.I. Ono, M. Masurekar, C.S. McLaughlin, F. Sherman. Altered ribosomal protein SI 1 from the SUP46 suppressor of yeast // J.Mol.Biol. 1981. V. 147, P. 391-397.

210. Ito K., K. Ebihara, M. Uno, M. Nakamura. Conserved motifs in prokaryiotic and eukaryiotic polypeptide release factors: tRNA-protein mimicry hypothesis //Proc. Natl. Acad. Sci. USA. 1996. V. 93. P. 5453-5448.

211. Ito K., K. Ebihara, Y. Nakamura. The stretch of C-terminal acidic amino acids of translational release factor eRFl is a primary binding site for eRF3 of fission yeast // RNA. 1998a. V. 4, P. 958-972.

212. Ito K., M. Uno, Y. Nakamura. Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons // Proc.Natl.Acad.Sci.U.S.A. 1998b. V. 95, P. 8165-8169.

213. Ito K., M. Uno, Y. Nakamura. A tripeptide 'anticodori deciphers stop codons in messenger RNA // Nature. 2000. V. 403, P. 680-684.

214. Ito-Harashima S., P.E. Hartzog, H. Sinha, J.H. McCusker. The tRNA-Tyr gene family of Saccharomyces cerevisiae: agents of phenotypic variation and position effects on mutation frequency // Genetics. 2002. V. 161, P. 13951410.

215. Jakobsen C.G., T.M. Segaard, 0. Jean-Jean, L. Frolova, J. Justesen. Identification of a novel termination release factor eRF3b expressing the eRF3 activity in vitro and in vivo //Mol.Biol. 2001. V. 35, P. 672-681.

216. Janzen D.M., A.P Geballe. The effect of eukaryotic release factor depletion on translation termination in human cell lines // Nucleic Acids Res. 2004. V. 32, P. 4491-4502.

217. Jean-Jean O., X. Le Goff, M Philippe. Is there a human psi.? I I C.R.Acad.Sci.III. 1996. V. 319, P. 487-492.

218. Jeffares D.C., A.M. Poole, D. Penny. Relics from the RNA world // J.Mol.Evol. 1998. V. 46, P. 18-36.

219. Jones S., D.T. Daley, N.M. Luscombe, H.M. Berman, J.M. Thornton. Protein-RNA interactions: a structural analysis // Nucleic Acids Res. 2001. V. 29, P. 943-954.

220. Jorgensen R., P.A. Ortiz, A. Carr-Schmid, P. Nissen, T.G. Kinzy, G.R. Andersen. Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase // Nat.Struct.Biol. 2003. V. 10. P. 379385.

221. Kahvejian A., Y.V. Svitkin, R. Sukarieh, M.N. M'Boutchou, N. Sonenberg. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms // Genes Dev. 2005. V. 19, P. 104113.

222. Kaiser C., S. Michaelis, A. Mitchell. Methods in yeast genetics. A Cold Spring Harbor laboratory course manual // NY: Cold Spring Harbor Laboratoiy Press. 1994.

223. Kapp L.D., J.R. Lorsch. The molecular mechanics of eukaryotic translation // Annu.Rev.Biochem. 2004. V. 73, P. 657-704.

224. Karamyshev A.L., K. Ito, Y. Nakamura. Polypeptide release factor eRFl from Tetrahymena thermophila: cDNA cloning, purification and complex formation with yeast eRF3 // FEBS Lett. 1999a. V. 457, P. 483-488.

225. Karamyshev A.L., Z.N. Karamysheva, K. Ito, S. Matsufuji, Y. Nakamura. Overexpression and purification of recombinant eRFl proteins of rabbit and Tetrahymena thermophila II Biochemistry. 1999b. V. 64, P. 1391-1400.

226. Karimi R., M.Y. Pavlov, R.H. Buckingham, M. Ehrenberg. Novel roles for classical factors at the interface between translation termination and initiation // Mol.Cell. 1999. V. 3,P. 601-609.

227. Karlin S., C. Burge. Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development // Proc.Natl.Acad.Sci.U.S.A. 1996. V. 93, P. 1560-1565.

228. Kawakami K., T. Inada, Y. Nakamura. Conditionally lethal and recessive UGA-suppressor mutations in the prfB gene encoding peptide chain release factor 2 of Escherichia colill J.Bacteriol. 1988. V. 170, P. 5378-5381.

229. Kawakami K., Y. Nakamura. Autogenous suppression of an opal mutation in the gene encoding peptide chain release factor 2 // Proc. Natl. Acad. Sci. USA. 1990. V. 87. P. 8432-8436.

230. Keller R.W., U. Kuhn, M. Aragon, L. Bornikova, E. Wahle, D.G Bear. The nuclear poly(A) binding protein, PABP2, forms an oligomeric particle covering the length of the poly(A) tail // J.Mol.Biol. 2000. V. 297, P. 569-583.

231. Kervestin S., L. Frolova, L. Kisselev, O. Jean-Jean. Stop codon recognition in ciliates: Euplotes release factor does not respond to reassigned UGA codon // EMBO Rep. 2001. V. 2, P. 680-684.

232. Kessler S.H., A.B. Sachs. RNA recognition motif 2 of yeast Pablp is required for its functional interaction with eukaryotic translation initiation factor 4G // Mol. Cell Biol. 1998. V. 18. P. 51-57.

233. Khaleghpour K., A. Kahvejian, G. De Crescenzo, G. Roy, Y.V. Svitkin, H. Imataka, M. O'Connor-McCourt, N. Sonenberg. Dual interactions of the translational repressor Paip2 with poly(A) binding protein // Mol.Cell Biol. 2001a. V. 21, P. 5200-5213.

234. Khaleghpour K., Y.V. Svitkin, A.W. Craig, C.T. DeMaria, R.C. Deo, S.K. Burley, N. Sonenberg. Translational repression by a novel partner of human poly(A) binding protein, Paip2 // Mol.Cell. 2001b. V. 7, P. 205-216.

235. Khil P.P., N.A. Smirnova, P.J. Romanienko, R.D. Camerini-Otero. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation // NatGenet. 2004. V. 36, P. 642-646.

236. Khorana H.G. Synthesis in the study of nucleic acids. The Fourth Jubilee Lecture // Biochem.J. 1968. V. 109, P. 709-725.

237. Kikuchi Y., K. Shimatake, A. Kikuchi. A yeast gene required for the Gl-to-S transition encodes a protein containing an A-kinase target site and GTPase domain // EMBO J. 1988. V.7. P. 1175-1182.

238. Kisselev L.L., R. H. Buckingham.Translational termination comes of age // Trends Biochem Sci. 2000. V. 25. P. 561-566.

239. Kisselev L., M. Ehrenberg, L. Frolova. Termination of translation: interplay of mRNA, rRNAs and release factors? // EMBO J. 2003. V. 22, P. 175-182.

240. Klaholz B.P., T. Pape, A.V. Zavialov, A.G. Myasnikov, E.V. Orlova, B. Vestergaard, M. Ehrenberg, M. van Heel. Structure of the Escherichia coli ribosomal termination complex with release factor 2 // Nature. 2003. V. 421, P. 90-94.

241. Klaholz B.P., A.G. Myasnikov, M. van Heel. Visualization of release factor 3 on the ribosome during termination of protein synthesis // Nature. 2004. V. 427, P. 862-865.

242. Kobayashi T., Y. Funakoshi, S. Hoshino, T. Katada. The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay // J.Biol.Chem. 2004. V. 279, P. 45693-45700.

243. Kokoska R.J., L. Stefanovic, A.B. Buermeyer, R.M. Liskay, T.D. Petes. A mutation of the yeast gene encoding PCNA destabilizes both microsatellite and minisatellite DNA sequences // Genetics. 1999. V. 151, P. 511-519.

244. Konecki D.S., K.C. Aune, W. Tate, C.T. Caskey. Characterization of reticulocyte release factor // J.Biol.Chem. 1977. V. 252, P. 4514-4520.

245. Kong C., K. Ito, M.A. Walsh, M. Wada, Y. Liu, S. Kumar, D. Barford, Y. Nakamura, H. Song. Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe II Mol.Cell. 2004. V. 14, P. 233-245.

246. Kopczynski J.B., A.C. Raff, JJ. Bonner. Translational readthrough at nonsense mutations in the HSF1 gene of Saccharomyces cerevisiae // Mol. Gen. Genet. 1992. V. 234. P. 369-378.

247. Kouprina N., A. Kirillov, E. Kroll, M. Koryabin, B. Shestopalov, V. Bannikov, V. Zakharyev, V. Larionov. Identification and cloning of the CHL4 gene controlling chromosome segregation in yeast // Genetics. 1993. V. 135, P. 327-341.

248. Kozlov G., J.F. Trempe, K. Khaleghpour, A. Kahvejian, I. Ekiel, K. Gehring. Structure and function of the C-terminal PABC domain of human poly(A)-binding protein // Proc.Natl.Acad.Sci.U.S.A. 2001. V. 98, P. 4409-4413.

249. Kozlov G., N. Siddiqui, S. Coillet-Matillon, J.F. Trempe, I. Ekiel, T. Sprules, K. Gehring. Solution structure of the orphan PABC domain from Saccharomyces cerevisiae poly(A)-binding protein // J.Biol.Chem. 2002. V. 277, P. 22822-22828.

250. Kuhn U., T. Pieler. Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction // J.Mol.Biol. 1996. V. 256, P. 20-30.

251. Kuhn U., E. Wahle. Structure and function of poly(A) binding proteins // Biochim.Biophys.Acta. 2004. V. 1678, P. 67-84.

252. Kushnirov V.V., M.D. Ter-Avanesyan, M.V. Telckov, A.P Surguchov, V.N. Smirnov, S.G. Inge-Vechtomov. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae // Gene. 1988. V. 66. P. 45-54.

253. Kyrpides N.C., C.R. Woese. Universally conserved translation initiation factors // Proc.Natl.Acad.Sci.U.S.A. 1998. V. 95. P. 224-228.

254. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 //Nature. 1970. V. 227, P. 680-685.

255. Lancaster L., M.C. Kiel, A. Kaji, H.F. Noller. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing // Cell. 2002. V. 111. P. 129-140.

256. Laten H., J., Gorman, & R.M. Bock. Isopentenyladenosine deficient tRNA from an antisuppressor mutant of Saccharomyces cerevisiae 11 Nucleic Acids Res. 1978. V. 5, P. 4329-4342.

257. Le Goff C., O. Zemlyanko, S. Moskalenko, N. Berkova, S. Inge-Vechtomov, M. Philippe, G. Zhouravleva. Mouse GSPT2, but not GSPT1, can substitute for yeast eRF3 in vivo II Genes Cells 2002. V. 7, P. 1043-1057.

258. Le H., S.C. Chang, R.L. Tanguay, D.R. Gallie. The wheat poly(A)-binding protein functionally complements pabl in yeast // EurJ.Biochem. 1997. V. 243, P. 350-357.

259. Lecompte O., R. Ripp, J.C. Thierry, D. Moras, O. Poch. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale // Nucleic Acids Res. 2002. V. 30, P. 5382-5390.

260. Lee C.C., W.J. Craigen, D.M. Muzny, E. Harlow, C.T. Caskey. Cloning and expression of a mammalian peptide chain release factor with sequence similarity to tryptophanyl-tRNA synthetases // Proc.Natl.Acad.Sci.U.S.A. 1990. V. 87, P. 3508-3512.

261. Legrain P., M. Rosbash. Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm // Cell 1989. V. 57, P. 573-583.

262. Lejeune F., L.E Maquat. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells // Curr Opin.Cell Biol. 2005. V. 17, P. 309-315.

263. Liebman S.W., J.W. Stewart, F. Sherman. Serine substitutions caused by an ochre suppressor in yeast // J.Mol.Biol. 1975. V. 94, P. 595-610.

264. Liebman S.W., F. Sherman. Inhibition of growth by amber suppressors in yeast // Genetics. 1976. V. 82, P. 233-249.

265. Liebman S.W., F. Sherman. Extrachromosomal psf determinant suppresses nonsense mutations in yeast // J. Bacteriol. 1979. V. 139. P. 1068-1071.

266. Liebman S.W., M. Cavenagh. An antisuppressor that acts on omnipotent suppressors in yeast // Genetics. 1980. V. 95, P. 49-61.

267. Liebman S.W., M.M. Cavenagh, L.N. Bennett. Isolation and properties of an antisuppressor in Saccharomyces cerevisiae specific for an omnipotent suppressor//J.Bacteriol. 1980. V. 143, P. 1527-1529.

268. Liebman S.W., J.A. All-Robyn. A non-mendelian factor, eta+., causes lethality of yeast omnipotent-suppressor strains // Curr.Genet. 1984. V. 8, P. 567-573.

269. Liebman S.W., Y.O. Chernoff, R. Liu. The accuracy center of a eukaryotic ribosome // Biochem. Cell Biol. 1995. V. 73. P.l 141-1149.

270. Lin J.P., M. Aker, K.C. Sitney, R.K. Mortimer. First position wobble in codon-anticodon pairing: amber suppression by a yeast // Gene. 1986. V. 49. P. 383-388.

271. Liu G., J. Tang, B.T. Edmonds, J. Murray, S. Levin, J. Condeelis. F-actin sequesters elongation factor 1 alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction // J.Cell Biol. 1996. V. 135, P. 953-963.

272. Liu J.J., N. Sondheimer, S.L. Lindquist. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion PSf. II Proc.Natl.Acad.Sci. U.S.A. 2002. V. 99, P. 16446-16453.

273. Liu Q. Comparative analysis of base biases around the stop codons in six eukaryotes // Biosystems. 2005. V. 81, P. 281-289.

274. Lozupone C.A., R.D. Knight, L.F. Landweber. The molecular basis of nuclear genetic code change in ciliates // Curr.Biol. 2001. V. 11, P. 65-74.

275. Lynch S.R., J.D. Puglisi. Structural origins of aminoglycoside specificity for prokaryotic ribosomes // J.Mol.Biol. 2001a. V. 306, P. 1037-1058.

276. Lynch S.R., J.D. Puglisi. Structure of a eukaryotic decoding region A-site RNA // J.Mol.Biol. 2001b. V. 306, P. 1023-1035.

277. Mangus D.A., N. Amrani, A. Jacobson. Pbplp, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation // Mol.Cell Biol. 1998. V. 18, P. 7383-7396.

278. Mangus D.A., M.C. Evans, A. Jacobson. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression // Genome Biol. 2003. V. 4, P. 223.

279. Maniatis T., E.F. Fritsch, J. Sambrook. Molecular cloning a laboratory manual // Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratoiy. 1982

280. Manney T.R. Action of a super-suppressor in yeast in relation to allelic mapping and complementation// Genetics 1964. V. 50, P. 109-121.

281. Manney T.R. Evidence for chain termination by super-suppressible mutants in yeast // Genetics. 1968. V. 60, P. 719-733.

282. Manuvakhova M., K. Keeling, D.M. Bedwell. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system //RNA. 2000. V. 6, P. 1044-1055.

283. Maquat L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics //Nat.Rev.Mol.Cell Biol. 2004. V. 5, P. 89-99.

284. Marcotte E.M., M. Pellegrini, T.O. Yeates, D. Eisenberg, A census of protein repeats //J.Mol.Biol. 1999. V. 293, P. 151-160.

285. Mathison L., M.R. Culbertson. Suppressible and nonsuppressible +1 G-C base pair insertions induced by ICR-170 at the his4 locus in Saccharomyces cerevisiae II Mol.Cell Biol. 1985. V. 5, P. 2247-2256.

286. McCaughan K.K., C.M. Brown, M.E. Dalphin, M.J. Beny, W.P. Tate. Translational termination efficiency in mammals is influenced by the base following the stop codon // Proc.Natl.Acad.Sci.U.S.A. 1995. V. 92, P. 54315435.

287. McCusker J.H., J.E. Haber. crl mutants of Saccharomyces cerevisiae resemble both mutants affecting general control of amino acid biosynthesis and omnipotent translational suppressor mutants // Genetics. 1988a. V. 119, P. 317-327.

288. McCusker J.H., J.E. Haber. Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae II Genetics. 1988b. V. 119, P. 303-315.

289. Mehdi H., E. Ono, K.C. Gupta. Initiation of translation at CUG, GUG, and ACG codons in mammalian cells // Gene. 1990. V. 91, P. 173-178.

290. Merkulova T.I., L.Y. Frolova, M. Lazar, J. Camonis, L.L. Kisselev. C-terminal domains of human translation termination factors eRFl and eRF3 mediate their/« vivo interaction // FEBS Lett. 1999. V. 443. P. 41-47.

291. Meyer S., C. Urbanke, E.Wahle. Equilibrium studies on the association of the nuclear poly(A) binding protein with poly(A) of different lengths // Biochemistiy. 2002. V. 41, P. 6082-6089.

292. Mikuni 0., K. Kawakami, Y. Nakamura. Sequence and functional analysis of mutations in the gene encoding peptide-chain-release factor 2 of Escherichia coliii Biochimie. 1991. V. 73, P. 1509-1516.

293. Mikuni 0., K. Ito, J. Moffat, K. Matsumura, K. McCaughan, T. Nobukuni, W. Tate, Y. Nakamura. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli I I Proc.Natl.Acad.Sci.U.S.A. 1994. V. 91, P. 5798-5802.

294. Mironova L.N., N.A. Provorov, M.D. Ter-Avanesyan, S.G. Inge-Vechtomov, V.N. Smirnov, A.P. Surguchov. The effect of paromomycin on the expression ofribosomal suppressors in yeast//Curr. Genet. 1982. V. 5. P. 149-152.

295. Mironova L.N., M.G. Samsonova, G.A. Zhouravleva, V.N. Kulikov, M.Y. Soom. Reversions to respiratory competence of omnipotent sup45 suppressor mutants may be caused by secondary sup45 mutations // Curr. Genet. 1995. V. 27. P. 195-200.

296. Mizuta K., T. Hashimoto, K. Suzuki, E. Otaka. Yeast ribosomal proteins: XII. YS11 of Saccharomyces cerevisiae is a homologue to E. coli S4 according to the gene analysis // Nucleic Acids Res. 1991. V. 19, P. 2603-2608.

297. Moazed D., H.F. Noller. Intermediate states in the movement of transfer RNA in the ribosome // Nature. 1989. V. 342. P. 142-148.

298. Mora L., A. Zavialov, M. Ehrenberg, R.H. Buckingham. Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli II Mol.Microbiol. 2003. V. 50, P. 1467-1476.

299. Mortimer R., J.R. Johnston. Genealogy of principal strains of the yeast genetic stock center // Genetics. 1986. V.l 13. P.35-43.

300. Moskalenko S.E., S.V. Chabelskaya, S.G. Inge-Vechtomov, M. Philippe, G.A Zhouravleva. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae II BMC Mol.Biol. 2003.4,2.

301. Mottagui-Tabar S., M.F. Tuite, L.A. Isaksson. The influence of 5' codon context on translation termination in Saccharomyces cerevisiae // Eur. J. Biochem. 1998. V. 257. P.249-254.

302. Munroe D., A. Jacobson. mRNA poly(A) tail, a 3' enhancer of translational initiation // Mol.Cell Biol. 1990. V. 10, P. 3441-3455.

303. Muramatsu T., K. Heckmann, C. Kitanaka, Y. Kuchino. Molecular mechanism of stop codon recognition by eRFl: a wobble hypothesis for peptide anticodons // FEBS Lett. 2001. V. 488, P. 105-109.

304. Nakamura Y., K. Ito. How protein reads the stop codon and terminates translation // Genes Cells. 1998. V. 3, P. 265-278.

305. Nakamura Y., K. Ito. A tripeptide discrimanator for stop codon recognition // FEBS Lett. 2002. V. 514. P. 30-33.

306. Nakamura Y., K. Ito. Making sense of mimic in translation termination // Trends Biochem.Sci. 2003. V. 28, P. 99-105.

307. Nakayashiki T., K. Ebihara, H. Bannai, Y. Nakamura. Yeast PSt. "prions" that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state // Mol.Cell. 2001. V. 7, P. 1121-1130.

308. Nakayashiki T., C.P. Kurtzman, H.K. Edskes, R.B. Wickner. Yeast prions URE3. and [PSt] are diseases // Proc.Natl.Acad.Sci.U.S.A 2005. V. 102, P. 10575-10580.

309. Namy O., I. Hatin, J.P. Rousset. Impact of the six nucleotides downstream of the stop codon on translation termination // EMBO Rep. 2001. V. 2, P. 787793.

310. Namy O., G. Duchateau-Nguyen, J.-P. Rousset. Translational teadthrough of the PDE2 stop-codon modulates cAMP levels in Saccharomyces cerevisiae II Mol. Microbiol. 2002. V. 43. P. 641-652.

311. Nelson R.J., T. Ziegelhoffer, C. Nicolet, M. Werner-Washburne, E.A. Craig. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis // Cell. 1992. V. 71, P. 97-105.

312. Newnam G.P., R.D. Wegrzyn, S.L. Lindquist, Y.O. Chernoff. Antagonistic interactions between yeast chaperones Hspl04 and Hsp70 in prion curing // Mol. Cell Biol. 1999. V. 19. P. 1325-1333.

313. Nilsson M., M. Ryden-Aulin. Glutamine is incorporated at the nonsense codons UAG and UAA in a suppressor-free Escherichia coli strain // Biochim.Biophys.Acta. 2003. V. 1627, P. 1-6.

314. Nissen P., M. Kjeldgaard, S. Thirup, G. Polekhina, L. Reshetnikova, B.F. Clark, J. Nyborg. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog // Science. 1995. V. 270. P. 1464-1472.

315. Nissen P., M. Kjeldgaard, J. Nyborg. Macromolecular mimicry // EMBO J. 2000. V. 19, P. 489-495.

316. Ogle J.M., D.E. Brodersen, W.M. Jr. Clemons, M.J. Tarry, A.P. Carter, V. Ramakrishnan. Recognition of cognate transfer RNA by the 30S ribosomal subunit // Science. 2001. V. 292, P. 897-902.

317. Ogle J.M., F.V. Murphy, M.J. Tarry, V. Ramakrishnan. Selection of tRNA by the ribosome requires a transition from an open to a closed form // Cell. 2002. V. Ill,P. 721-732.

318. Ogle J.M., A.P. Carter, V. Ramakrishnan. Insights into the decoding mechanism from recent ribosome structures // Trends Biochem.Sci. 2003. V. 28, P. 259-266.

319. Ogle J.M. & Ramakrishnan V. Structural insights into translational fidelity // Annu.Rev.Biochem. 2005. V.74, P.129-177.

320. Oma Y., Y. Kino, N. Sasagawa, S. Ishiura. Intracellular localization of homopolymeric amino acid-containing proteins expressed in mammalian cells //J.Biol.Chem. 2004. V. 279, P. 21217-21222.

321. Ono B.I., J.W. Stewart, F. Sherman. Yeast UAA suppressors effective in psi+ strains: leucine-inserting suppressors //J.Mol.Biol. 1979. V. 132, P. 507-520.

322. Ono B.I., J.W. Stewart, F. Sherman. Serine insertion caused by the ribosomal suppressor SUP46 in yeast // J.Mol.Biol. 1981. V. 147, P. 373-379.

323. Ono B.I., M. Tanaka, M. Kominami, Y. Ishino, S. Shinoda. Recessive UAA suppressors of the yeast S. cerevisiae II Genetics. 1982. V. 102, P. 653-664.

324. Ono B.I., N. Moriga, K. Ishihara, J. Ishiguro, Y. Ishino, S. Shinoda. Omnipotent suppressors effective in psC strains of S. cerevisiae. Recessivness and dominance // Genetics. 1984. V. 107, P. 219-230.

325. Ono B., Y. Ishino-Arao, M. Tanaka, I. Awano, S. Shinoda. Recessive nonsense suppressors in Saccharomyces cerevisiae: action spectra, complementation groups and map positions // Genetics. 1986. V. 114, P. 363374.

326. Ono B., Y.O. Chernoff, Y. Ishino-Arao, N. Yamagishi, S. Shinoda, S.G. Inge-Vechtomov. Interactions between chromosomal omnipotent suppressors and extrachromosomal effectors in Saccharomyces cerevisiae II Curr.Genet. 1991. V. 19, P. 243-248.

327. Ono B., R., Yoshida, K., Kamiya, & T Sugimoto,. Suppression of termination mutations caused by defects of the NMD machinery in Saccharomyces cerevisiae II Genes Genet Syst. 2005. V. 80, P. 311-316.

328. Oparina N.J., O.V. Kalinina, M.S. Gelfand, L.L. Kisselev. Common and specific amino acid residues in the prokaryotic polypeptide release factors RF1 and RF2: possible functional implications // Nucleic Acids Res. 2005. V. 33, P. 5226-5234.

329. Otero L.J., M.P. Ashe, A.B. Sachs. The yeast poly(A)-binding protein Pablp stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms // EMBO J. 1999. V. 18, P. 3153-3163.

330. Palmer E., J.M. Wilhelm, F. Sherman. Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics // Nature 1979a. V. 277, P. 148-150.

331. Palmer E., J.M. Wilhelm, F. Sherman. Variation of phenotypic suppression due to the pst and psf extrachromosomal determinants in yeast // J.Mol.Biol. 1979b. V. 128, P. 107-110.

332. Paris J., M. Philippe. Poly(A) metabolism and polysomal recruitment of maternal mRNAs during early Xenopus development // Dev.Biol. 1990. V. 140, P. 221-224.

333. Patino M. M., J. J. Liu, J. R. Glover, S. Lindquist. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast // Science. 1996. V. 273. P. 622-626.

334. Paushkin S.V., V.V. Kushnirov, V.N. Smirnov, M.D. Ter-Avanesyan. Propagation of the yeast prion-like \pst. determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor // EMBO J. 1996. V. 15. P. 3127-3134.

335. Paushkin S.V., V.V. Kushnirov, V.N. Smirnov, M.D. Ter-Avanesyan. Interaction between yeast Sup45p (eRFl) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation // Mol. Cell. Biol. 1997. V.17. P. 2798-2805.

336. Pavlov M.Y., D.V. Freistroffer, J. MacDougall, R.H. Buckingham, M. Ehrenberg. Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3 // EMBO J. 1997b. V.16. P. 4134-4141.

337. Pel H.J., J.G. Moffat, K. Ito, Y. Nakamura, W.P. Tate. Escherichia coli release factor 3: resolving the paradox of a typical G protein structure and atypical function with guanine nucleotides // RNA. 1998. V. 4, P. 47-54.

338. Percudani R., A. Pavesi, S. Ottonello. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae II J.Mol.Biol. 1997. V. 268, P. 322-330.

339. Petty S., D.E. Brodersen, F.V. Murphy, C.M. Dunham, M. Selmer, MJ. Tarry, A.C. Kelley, V. Ramakrishnan. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon // Cell. 2005. V. 123, P. 1255-1266.

340. Petsch K.A., J. Mylne, J.R. Botella. Cosuppression of eukaryotic release factor 1-1 in Arabidopsis affects cell elongation and radial cell division // Plant Physiol 2005. V. 139, P. 115-126.

341. Phillips S.L., D. Schlessinger, D. Apirion. Temperature-dependent suppression of UGA and UAA codons in a temperature-sensitive mutant of Escherichia coli II Cold Spring Harb.Symp.Quant.Biol. 1969. V. 34, P. 499503.

342. Pintard L., D. Kressler, B. Lapeyre. Spblp is a yeast nucleolar protein associated with Noplp and Nop58p that is able to bind S-adenosyl-L-methionine in vitro II Mol.Cell Biol. 2000. V. 20, P. 1370-1381.

343. Pluta K., O. Lefebvre, N.C. Martin, W.J. Smagowicz, D.R. Stanford, S.R. Ellis, A.K. Hopper, A. Sentenac, M. Boguta. Maflp, a negative effector of RNA polymerase III in Saccharomyces cerevisiae II Mol.Cell Biol. 2001. V. 21, P. 5031-5040.

344. Polevoda B., L. Span, F. Sherman. The yeast translation release factors Mrflp and Sup45p (eRFl) are methylated, respectively, by the methyltransferases Mtqlp and Mtq2p // J.Biol.Chem. 2006. V. 281, P. 2562-2571.

345. Poole E.S., C.M. Brown, W.P. Tate. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli//EMBO J. 1995. V. 14, P. 151-158.

346. Poole E.S., R. Brimacombe, W.P. Tate. Decoding the translational termination signal: the polypeptide chain release factor in Escherichia coli crosslinks to the base following the stop codon // RNA. 1997. V. 3, P. 974-982.

347. Poole A.M., D.C. Jeffares, D. Penny. The path from the RNA world // J.Mol.Evol. 1998. V. 46, P. 1-17.

348. Prendergast J.A., L.E. Murray, A. Rowley, D.R. Carruthers, R.A. Singer, G.C. Johnston. Size selection identifies new genes that regulate Saccharomyces cerevisiae cell proliferation // Genetics. 1990. V. 124, P. 81-90.

349. Proud C.G. Regulation of mammalian translation factors by nutrients // Eur.J.Biochem. 2002. V. 269, P. 5338-5349.

350. Pure G.A., G.W. Robinson, L. Naumovski, E.C. Friedberg. Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln gene // J. Mol. Biol. 1985. V. 183. P. 31-42.

351. Quandt K., K. Freeh, H. Karas, E. Wingender, T. Werner. Matlnd and Matlnspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data // Nucleic Acids Res. 1995. V. 23, P. 4878-4884.

352. Ramakrishnan V. Ribosome structure and the mechanism of translation // Cell 2002. V. 108, P. 557-572.

353. Rawat U.B., A.V. Zavialov, J. Sengupta, M. Valle, R.A. Grassucci, J. Linde, B. Vestergaard, M. Ehrenberg, J. Frank. A cryo-electron microscopic study of ribosome-bound termination factor RF2 // Nature 2003. V. 421, P. 87-90.

354. Rawat U., H. Gao, A. Zavialov, R. Gursky, M. Ehrenberg, J. Frank. Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM // J.Mol.Biol. 2006. V. 357, P. 1144-1153.

355. Recht M.I., S. Douthwaite, K.D. Dahlquist, J.D. Puglisi. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction // J.Mol.Biol. 1999. V. 286, P. 33-43.

356. Riles L., M.V. Olson. Nonsense mutations in essential genes of Saccharomyces cerevisiae II Genetics 1988. V. 118, P. 601-607.

357. Roberts D.M., L. Besl, S.H. Oh, R.V. Masterson, J. Schell, G. Stacey. Expression of a calmodulin methylation mutant affects the growth and development of transgenic tobacco plants // Proc.Natl.Acad.Sci.U.S.A 1992. V. 89, P. 8394-8398.

358. Rost B., C. Sander. Prediction of protein secondary structure at better than 70% accuracy II J.MoLBiol. 1993. V. 232, P. 584-599.

359. Rost B., C. Sander. Combining evolutionary information and neural networks to predict protein secondary structure // Proteins 1994. V. 19, P. 55-72.

360. Roy G., G. De Crescenzo, K. Khaleghpour, A. Kahvejian, M. O'Connor-McCourt, N. Sonenberg. Paipl interacts with poly(A) binding protein through two independent binding motifs // Mol.Cell Biol. 2002. V. 22, P. 3769-3782.

361. Russell D.W., L.L. Spremulli. Purification and characterization of a ribosome dissociation factor (eukaryotic initiation factor 6) from wheat germ // J.Biol.Chem. 1979. V. 254. P. 8796-8800.

362. Ryden M., J. Murphy, R. Martin, L. Isaksson, J. Gallant. Mapping and complementation studies of the gene for release factor 1 // J.Bacteriol. 1986. V. 168, P. 1066-1069.

363. Ryden S.M., L.A. Isaksson. A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors // Mol.Gen.Genet. 1984. V. 193, P. 38-45.

364. Sachs A.B., M.W. Bond, R.D. Kornberg. A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression // Cell 1986. V. 45, P. 827-835.

365. Sachs A.B., R.W. Davis, R.D. Kornberg. A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability // Mol.Cell Biol. 1987. V. 7, P. 3268-3276.

366. Sachs A.B., R.W Davis. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation // Cell 1989. V. 58, P. 857-867.

367. Salas-Marco J., D.M. Bedwell. GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination // Mol.Cell Biol. 2004. V. 24, P. 7769-7778.

368. Salas-Marco J., D.M. Bedwell. Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough // J.Mol.Biol. 2005. V. 348, P. 801-815.

369. Salas-Marco J., H. Fan-Minogue, A.K. Kallmeyer, L.A. Klobutcher, P.J. Farabaugh, D.M. Bedwell. Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes // Mol.Cell Biol. 2006. V. 26, P. 438-447.

370. Sambrook J., E.E. Fritsch, T. Maniatis. Molecular cloning: A Laboratory Manual // 2nd edit. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY. 1989.

371. Samsonova M. G., S.G. Inge-Vechtomov, P. Taylor. Structure comparison and evolutionary relations between elongation factors EF-Tu (EF-1 alpha) and Sup2 proteins // Genetica. 1991. V. 85. P. 35-44.

372. Sandbaken M.G., M.R. Culbertson. Mutations in elongation factor EF-1 alpha affect the frequency of frameshifting and amino acid misincorporation in Saccharomyces cerevisiae II Genetics. 1988. V. 120. P. 923-934.

373. Schmitt M.E., T.A. Brown, B.L. Trumpower. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae II Nucleic Acids Res. 1990. V. 18, P. 3091-3092.

374. Schwartz D.C., R Parker. Mutations in translation initiation factors lead to increased rates of deadenylation and decapping of mRNAs in Saccharomyces cerevisiae II Mol.Cell Biol. 1999. V. 19, P. 5247-5256.

375. Schwartz D.C., R. Parker. mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E // Mol.Cell Biol. 2000. V. 20, P. 7933-7942.

376. Scolnick E., R. Tompkins, T. Caskey, M. Nirenberg. Release factors differing in specificity for terminator codons // Proc. Natl. Acad. Sci. USA. 1968. V. 61. P. 768-774.

377. Seit-Nebi A., L. Frolova, L. Kisselev. Conversion of omnipotent translation termination factor eRFl into ciliate-like UGA-only unipotent eRFl // EMBO Rep. 2002. V. 3,P. 881-886.

378. Selmer M., S. A1 Karadaghi, G. Hirokawa, A. Kaji, A. Liljas. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic // Science. 1999. V. 286, P. 2349-2352.

379. Serio T.R., S.L. Lindquist. PSt\. an epigenetic modulator of translation termination efficiency // Annu.Rev.Cell Dev.Biol. 1999. V. 15, P. 661-703.

380. Shapiro R., E.A. Fox, J.F. Riordan. Role of lysines in human angiogenic chemical modification and site-directed mutagenesis //Biochemistry. 1989. V. 28, P. 1726-1732.

381. Sherman F. Suppression in yeast Saccharomyces cerevisiae II In: Molecular Biology of the yeast Saccharomyces'. Metabolism and Gene Expression. Ed. by J.N. Strathern et al., Cold Spring Harbor Laboratories, New York. 1982. P. 463-486.

382. Sherman F., J.W Stewart. Variation of mutagenic action on nonsense mutants at different sites in the iso-1-cytochrome c gene of yeast // Genetics. 1974. V. 78, P. 97-113.

383. Sherman F., G.R. Fink, J.B. Hicks. Methods in Yeast Genetics // Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 1986.

384. Sheth U., R. Parker. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies // Science. 2003. V. 300, P. 805-808.

385. Shiina N., Y. Gotoh, N. Kubomura, A. Iwamatsu, E. Nishida. Microtubule severing by elongation factor 1 alpha // Science. 1994. V. 266, P. 282-285.

386. Shorter J., S. Lindquist. Prions as adaptive conduits of memory and inheritance // NatRev.Genet. 2005. V. 6, P. 435-450.

387. Shyu A.B., J.G. Belasco, M.E. Greenberg. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay //Genes Dev. 1991. V.5, P.221-231.

388. Sikorski R.S., P. Hieter. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae II Genetics. 1989. V. 122. P. 19-27.

389. Singh A., D. Ursic, J. Davies. Phenotypic suppression and misreading in S. cerevisiae II Nature. 1979. V. 277. P. 146-149.

390. Smirnov V. N., V.G. Kreier, L.V. Lizlova, V.M. Andrianova, S.G. Inge-Vechtomov. Recessive super-suppression in yeast // Mol. Gen. Genet. 1974. V.129. P. 105-121.

391. Smirnov V.N., A.P. Surguchev, E.S. Fominykch, L.V. Lizlova, T.V. Saprygina, S.G. Inge-Vechtomov. Recessive nonsense-suppression in yeast: further characterization of a defect in translation // FEBS Letters. 1976. V. 66. P. 12-15.

392. Song J.M., S.W. Liebman. Interaction of UAG suppressors and omnipotent suppressors in Saccharomyces cerevisiae II J.Bacteriol. 1985. V. 161, P. 778780.

393. Song J.M., S.W. Liebman. Allosuppressors that enhance the efficiency of omnipotent suppressors in Saccharomyces cerevisiae // Genetics. 1987. V. 115. P. 451-460.

394. Sonenberg N., T.E. Dever. Eukaryotic translation initiation factors and regulators //Curr.Opin.Struct.Biol. 2003. V. 13. P. 56-63.

395. Srivastava S., A. Verschoor, J. Frank. Eukaryotic initiation factor 3 does not prevent association through physical blockage of the ribosomal subunit-subunit interface // J.Mol.Biol. 1992. V. 226. P. 301-304.

396. Stahl G., G.P. McCarty, PJ. Farabaugh. Ribosome structure: revisiting the connection between translational accuracy and unconventional decoding // Trends Biochem.Sci. 2002. V. 27, P. 178-183.

397. Stansfield I., G.M. Grant, Akhmaloka, M.F. Tuite. Ribosomal association of the yeast SAL4 (SUP45) gene product: implications for its role in translation fidelity and termination // Mol. Microbiol. 1992. V. 6. P. 3469-3478.

398. Stansfield I., M.F. Tuite. Polypeptide chain termination in Saccharomyces cerevisiae II Curr.Genet. 1994. V. 25, P. 385-395.

399. Stansfield I., Akhmaloka, M.F. Tuite. A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes // Curr.Genet. 1995a. V. 27, P. 417-426.

400. Stansfield I., L. Eurwilaichitr, Akhmaloka, M.F. Tuite. Depletion in the levels of the release factor eRFl causes a reduction in the efficiency of translation termination in yeast // Mol Microbiol. 1996. V. 20. P. 1135-1143.

401. Stansfield I., V.V. Kushnirov, K.M. Jones, M.F. Tuite. A conditional-lethal translation termination defect in a sup45 mutant of the yeast Saccharomyces cerevisiae //Eur.J.Biochem. 1997. V. 245, P. 557-563.

402. Stansfield I., K.M. Jones, P. Herbert, A. Lewendon, W.V. Shaw, M.F. Tuite. Missense translation errors in Saccharomyces cerevisiae II J.Mol.Biol. 1998. V. 282, P. 13-24.

403. Stark H., M.V. Rodnina, J. Rinke-Appel, R. Brimacombe, W. Wintermeyer, M. van Heel. Visualization of elongation factor Tu on the Escherichia coli ribosome //Nature. 1997. V. 389, P. 403-406.

404. Stark H., M.V. Rodnina, H.J. Wieden, F. Zemlin, W. Wintermeyer, M. van Heel. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex // Nat.Struct.Biol. 2002. V. 9. P. 849-854.

405. Strasser K., E. Hurt. Yralp, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export // EMBO J. 2000. V. 19, P. 410-420.

406. Stretton A.O., S. Brenner. Molecular consequences of the amber mutation and its suppression// J.Mol.Biol. 1965. V. 12, P. 456-465.

407. Surguchov A.P., E.M. Pospelova, V.N. Smirnov. Synergistic action of genetic and phenotypic suppression of nonsense mutations in yeast Saccharomyces cerevisiae II Mol.Gen.Genet. 1981b. V. 183, P. 197-198.

408. Takanami M., Y. Yan. The release of polypeptide chains from ribosomes in cell-free amino acid-incorporating systems by specific combinations of bases in synthetic polyribonucleotides // Proc.Natl.Acad.Sci.U.S.A. 1965. V. 54, P. 1450-1458.

409. Tarun S.Z., A.B. Sachs. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G // EMBO J. 1996. V. 15. P. 71687177.

410. Tarun S.Z., S.E. Wells, J.A. Deardorff, A.B. Sachs. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation // Proc.Natl.Acad.Sci.U.S.A 1997. V. 94, P. 9046-9051.

411. Tate W.P., S.A. Mannering. Three, four or more: the translational stop signal at length // Mol.Microbiol. 1996. V. 21, P. 213-219.

412. Tate W.P., E.S. Poole, S.A. Mannering. Hidden infidelities of the translational stop signal // Prog.Nucleic Acid Res.Mol.Biol. 1996. V. 52, P. 293-335.

413. Ter-Avanesyan M.D., J. Zimmermann, S.G. Inge-Vechtomov, A.B. Sudarikov, V.N. Smirnov, A.P. Surguchov. Ribosomal recessive suppressors cause a respiratory deficiency in yeast Saccharomyces cerevisiae II Mol. Gen. Genet. 1982. V.185. P. 319-323.

414. Ter-Avanesyan M. D., L.N. Mironova, S.G. Inge-Vechtomov, I.V. Zlatkin, V.N. Smirnov, A.P. Surguchov. Drug-dependent mutants in yeast Saccharomyces cerevisiae II Curr Genet. 1983. V. 7. P. 357 -362.

415. Thakurta A.G., Y.J. Ho, R. Dhar. Schizosaccharomyces pombe spPABP, a homologue of Saccharomyces cerevisiae Pablp, is a non-essential, shuttling protein that facilitates mRNA export // Yeast. 2002. V. 19, P. 803-810.

416. Tharun S., R. Parker. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsmlp-7p complex on deadenylated yeast mRNAs // Mol.Cell. 2001. V. 8, P. 1075-1083.

417. Thomas A., H. Goumans, H.O. Voorma, R. Benne. The mechanism of action of eukaryotic initiation factor 4C in protein synthesis // Eur.J.Biochem. 1980. V. 107. P. 39-45.

418. Thompson H.A., I. Sadnik, J. Scheinbuks, K. Moldave. Studies on native ribosomal subunits from rat liver. Purification and characterization of a ribosome dissociation factor//Biochemistry. 1977. V. 16. P. 2221-2230.

419. Tikhomirova V.L., S.G Inge-Vechtomov. Sensitivity of sup35 and sup45 suppressor mutants in Saccharomyces cerevisiae to the anti-microtubule drug benomyl // Curr.Genet. 1996. V. 30, P. 44-49.

420. Tollervey D. Molecular biology: RNA lost in translation // Nature. 2006. V. 440, P. 425-426.

421. Tork S., I. Hatin, J.P. Rousset, C. Fabret. The major 5' determinant in stop codon read-through involves two adjacent adenines // Nucleic Acids Res. 2004. V. 32, P. 415-421.

422. Towbin H., T. Staehelin, J. Gordon. Electrophoretic transfer of proteins from polyaciylamide gels to nitrocellulose sheets: procedure and some applications // Proc.NatLAcad.Sci.U.S.A. 1979. V. 76, P. 4350-4354.

423. Triana-Alonso F.J., K. Chakraburtty, K.H. Nierhaus. The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor // J.Biol.Chem. 1995. V. 270. P. 20473-20478.

424. True H.L., S.L. Lindquist. A yeast prion provides a mechanism for genetic variation and phenotypic diversity // Nature 2000. V. 407, P. 477-483.

425. True H.L., I. Berlin, S.L. Lindquist. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits // Nature 2004. V. 431, P. 184-187.

426. Tuite M.F., I. Stansfield. Termination of protein synthesis // Mol.Biol.Rep. 1994. V. 19, P. 171-181.

427. Uchida N., S. Hoshino, H. Imataka, N. Sonenberg, T. Katada. A Novel Role of the Mammalian GSPT/eRF3 Associating with Poly(A)-binding Protein in Cap/Poly(A)-dependent Translation // J.Biol.Chem. 2002. V. 277, P. 5028650292.

428. Uptain S.M., G.J. Sawicki, B. Caughey, S. Lindquist. Strains of PSt. are distinguished by their efficiencies of prion-mediated conformational conversion IIEMBO J. 2001. V. 20, P. 6236-6245.

429. Urbero B., L. Eurwilaichitr, I. Stansfield, J.P. Tassan, X. Le GofF, M. Kress, M.F Tuite. Expression of the release factor eRFl (Sup45p) gene of higher eukaryotes in yeast and mammalian tissues // Biochimie 1997. V. 79, P. 27-36.

430. Valasek L., A.A. Mathew, B.S. Shin, K.H. Nielsen, B. Szamecz, A.G. Hinnebusch. The yeast eIF3 subunits TIF32/a, NIPl/c, and eIF5 make critical connections with the 40S ribosome in vivo // Genes Dev. 2003. V. 17. P. 786799.

431. Valente L., T.G. Kinzy. Yeast as a sensor of factors affecting the accuracy of protein synthesis // Cell Mol.Life Sci. 2003. V. 60. P. 2115-2130.

432. Valle M., J. Sengupta, N.K. Swami, R.A. Grassucci, N. Burkhardt, K.H. Nierhaus, R.K. Agrawal, J. Frank. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process // EMBO J. 2002. V. 21, P. 3557-3567.

433. Valouev I. A., V.V. Kushnirov, M. D. Ter-Avanesyan. Yeast polypeptide chain release factors eRFl and eRF3 are involved in cytoskeletonorganization and cell cycle regulation // Cell Motil.Cytoskeleton. 2002. V. 52, P. 161-173.

434. Vanin E.F. Processed pseudogenes: characteristics and evolution // Annu.Rev.Genet. 1985. V. 19, P. 253-272.

435. Velichutina I.V., J. Dresios, J.Y. Hong, C. Li, A. Mankin, D. Synetos, S.W. Liebman. Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA affect the function of the decoding center of the ribosome // RNA. 2000. V. 6, P. 1174-1184.

436. Velichutina I.V., J.Y. Hong, A.D. Mesecar, Y.O. Chemoff, S.W. Liebman. Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA // J.Mol.Biol. 2001. V. 305, P. 715-727.

437. Vestergaard B., L.B. Van, G.R. Andersen, J. Nyborg, R.H. Buckingham, M. Kjeldgaard. Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRFl // Mol.Cell 2001. V. 8, P. 1375-1382.

438. Vilela C., C. Velasco, M. Ptushkina, J.E. McCarthy. The eukaryotic mRNA decapping protein Dcpl interacts physically and functionally with the eIF4F translation initiation complex//EMBO J. 2000. V. 19, P. 4372-4382.

439. Vincent A., S.W. Liebman. The yeast omnipotent suppressor SUP46 encodes a ribosomal protein which is a functional and structural homolog of the Escherichia coli S4 ram protein // Genetics. 1992. V. 132, P. 375-386.

440. Voeltz G.K., J. Ongkasuwan, N. Standart, J.A. Steitz. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts // Genes Dev. 2001. V. 15, P. 774-788.

441. Wach A., A. Brachat, C. Alberti-Segui, C. Rebischung, P. Philippsen. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae II Yeast 1997. V. 13, P. 1065-1075.

442. Wahle E. Poly(A) tail length control is caused by termination of processive synthesis // J.Biol.Chem. 1995. V. 270, P. 2800-2808.

443. Wahle E., U. Ruegsegger. 3-End processing of pre-mRNA in eukaryotes // FEMS Microbiol.Rev. 1999. V. 23, P. 277-295.

444. Wakem L.P., F. Sherman. Isolation and characterization of omnipotent suppressors in the yeast Saccharomyces cerevisiae. Genetics 1990. V. 124, P. 515-522.

445. Waldron C., B.S. Cox, N. Wills, R.F. Gesteland, P.W. Piper, D. Colby, C. Guthrie. Yeast ochre suppressor SUQ5-ol is an altered tRNA Ser UCA // Nucleic Acids Res. 1981. V. 9. P. 3077-3088.

446. Wang W., K. Czaplinski, Y. Rao, S.W. Peltz. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts // EMBO J. 2001. V. 20. P. 880-890.

447. Wang Z., N. Day, P. Trifillis, M. Kiledjian. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro II Mol.Cell Biol. 1999. V. 19, P. 4552-4560.

448. Wang Z., M. Kiledjian. The poly(A)-binding protein and an mRNA stability protein jointly regulate an endoribonuclease activity // Mol.Cell Biol. 2000. V. 20, P. 6334-6341.

449. Vasudevan S., S.W. Peltz, C.J. Wilusz. Non-stop decay a new mRNA surveillance pathway // Bioessays 2002. V. 24, P. 785-788.

450. Weigert M.G., A. Garen. Base composition of nonsense codons in E. coli. Evidence from amino-acid substitutions at a tryptophan site in alkaline phosphatase // Nature 1965. V. 206, P. 992-994.

451. Weischenfeldt J., J. Lykke-Andersen, B. Porse. Messenger RNA surveillance: neutralizing natural nonsense // Curr Biol. 2005. V. 15, R559-R562.

452. Weiss W.A., E.C Friedberg. Normal yeast tRNA(CAGGln) can suppress amber codons and is encoded by an essential gene // J.Mol.Biol. 1986. V. 192, P. 725-735.

453. Weiss W.A., I. Edelman, M.R. Culbertson, E.C. Friedberg. Physiological levels of normal tRNA(CAGGln) can effect partial suppression of amber mutations in the yeast Saccharomyces cerevisiae II Proc. Natl. Acad. Sci. USA. 1987. V. 84. P. 8031-8034.

454. Wells S.E., P.E. Hillner, R.D. Vale, A.B Sachs. Circularization of mRNA by eukaryotic translation initiation factors // Mol.Cell 1998. V. 2, P. 135-140.

455. Wheeler D.L., C. Chappey, A.E. Lash, D.D. Leipe, T.L. Madden, G.D. Schuler, T.A. Tatusova, B.A. Rapp. Database resources of the National Center for Biotechnology Information // Nucleic Acids Res. 2000. V. 28, P. 10-14.

456. Wickner R.B. URE3. as an altered URE2 protein: evidence for a prion analog in S. cerevisiae II Science. 1994. V.264. P.566-569.

457. Wickner R.B., D.C. Masison, H.K. Edskes. PS7. and [URE3] as yeast prions //Yeast 1995. V. 11, P. 1671-1685.

458. Wilkinson M.F. A new function for nonsense-mediated mRNA-decay factors // Trends Genet. 2005. V. 21, P. 143-148.

459. Willis I.M., N. Desai, R. Upadhya. Signaling repression of transcription by RNA polymerase III in yeast // Prog.Nucleic Acid Res.Mol.Biol. 2004. V. 77, P. 323-353.

460. Wilson D.N., D. Guevremont, W.P. Tate. The ribosomal binding and peptidyl-tRNA hydrolysis functions of Escherichia coli release factor 2 are linked through residue 246 // RNA. 2000. V. 6, P. 1704-1713.

461. Wilson P.G., M.R. Culbertson. SUFI2 suppressor protein of yeast. A fusion protein related to the EF-1 family of elongation factors // J. Mol. Biol. 1988. V.199. P.559-573.

462. Woods A., T. Sherwin, R. Sasse, T.H. MacRae, A.J. Baines, K. Gull. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies // J.Cell Sci. 1989. V. 93, P. 491500.

463. Wu E.D., H. Inokuchi, H. Ozeki. Identification of the mutations in the prfB gene of Escherichia coli K12, which confer UGA suppressor activity // JpnJ.Genet. 1990. V. 65, P. 115-119.

464. Wu J., J. Bag. Negative control of the poly(A)-binding protein mRNA translation is mediated by the adenine-rich region of its 5'-untranslated region //J.Biol.Chem. 1998. V. 273, P. 34535-34542.

465. Xie K., E.J. Lambie, M. Snyder. Nuclear dot antigens may specify transcriptional domains in the nucleus //Mol.Cell Biol. 1993. V. 13, P. 61706179.

466. Yanisch-Perron C., J. Vieira, J. Messing. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors // Gene. 1985. V. 33. P. 103-119.

467. Young E.T., J.S. Sloan, K. Van Riper. Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae II Genetics. 2000. V. 154, P. 1053-1068.

468. Zavialov A.V., R.H. Buckingham, M. Ehrenberg. A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3 // Cell. 2001. V. 107, P. 115-124.

469. Zavialov A.V., L. Mora, R.H. Buckingham, M. Ehrenberg. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3 // Mol.Cell 2002. V. 10, P. 789-798.

470. Zelus B.D., D.H. Giebelhaus, D.W. Eib, K.A. Kenner, R.T. Moon. Expression of the poly(A)-binding protein during development of Xenopus laevis II Mol.Cell Biol. 1989. V. 9, P. 2756-2760.

471. Zhang A., T.P. Cheng, X.Y. Wu, B.T. Altura, B.M. Altura. Extracellular Mg2+ regulates intracellular Mg2+ and its subcellular compartmentation in fission yeast, Schizosaccharomycespombe II Cell Mol.Life Sci. 1997. V. 53, P. 69-72.

472. Zhang S., M. Ryden-Aulin, L.A. Kirsebom, L.A. Isaksson. Genetic implication for mi interaction between release factor one and ribosomal protein L7/L12 in vivo II J.Mol.Biol. 1994. V. 242, P. 614-618.

473. Zhao J., L. Hyman, C. Moore. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis //Microbiol.Mol.Biol.Rev. 1999. V. 63, P. 405-445.

474. Zhelkovsky A., S. Helmling, C. Moore. Processivity of the Saccharomyces cerevisiae poly(A) polymerase requires interactions at the carboxyl-terminal RNA binding domain//Mol.Cell Biol. 1998. V. 18, P. 5942-5951.

475. Zhou P., I.L. Derkatch, S.M. Uptain, M.M. Patino, S. Lindquist, S. Liebman. The yeast non-Mendelian factor ETA+. is a variant of [PSt], a prion-like form of release factor eRF3 // EMBO J. 1999. V. 18. P. 1182-1191.

476. Zhouravleva G., V. Alenin, S. Inge-Vechtomov, Y. Chernoff To stick or not to stick: Prion domains from yeast to mammals // Recent Res. Devel. Mol. Cell. Biol. 2002. V. 3, P. 185-218.

477. Zhouravleva G., V. Schepachev, A. Petrova, O. Tarasov, S. Inge-Vechtomov. Evolution of translation termination factor eRF3: Is GSPT2 generated by retrotransposition of GSPTVs mRNA? // IUBMB.Life. 2006. V. 58, P. 199202.1. БЛАГОДАРНОСТИ

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.