Катодные материалы для двухионных аккумуляторов на основе полимерных аминов тема диссертации и автореферата по ВАК РФ 02.00.04, кандидат наук Обрезков Филипп Александрович

  • Обрезков Филипп Александрович
  • кандидат науккандидат наук
  • 2022, ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
  • Специальность ВАК РФ02.00.04
  • Количество страниц 145
Обрезков Филипп Александрович. Катодные материалы для двухионных аккумуляторов на основе полимерных аминов: дис. кандидат наук: 02.00.04 - Физическая химия. ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)». 2022. 145 с.

Оглавление диссертации кандидат наук Обрезков Филипп Александрович

Table of Contents

Acknowledgements

Abstract

Table of Contents

Preface

Relevance and background of the research topic

The aims, objectives and the research methodology of the thesis

Scientific novelty

The theoretical and practical value of the thesis

Statements to be defended

The validity and reliability of the research results and conclusions

List of publications

List of conferences

The structure and amount of the thesis

Chapter 1. Introduction

1.1. State-of-the-art and developing battery technologies

1.1.1. Dual-ion batteries (DIB)

1.2. Organic cathode materials for energy storage devices

1.2.1. Organic ^-type cathodes for dual-ion batteries

1.3. Polyamine cathode materials design

1.3.1. Triphenylamine-based polymers

1.3.2. Heterocyclic amine-based polymers

1.3.3. Outstanding cathodes based on organic small molecules

1.4. Sodium and potassium based dual-ion batteries with polyamine cathode

1.5. Modification of cathode composition

1.6. Development of polyamine-based DIB summary

1.7. Synthetic approaches selection

1.8. Related work

Chapter 2. Materials and methods

2.1. Synthesis

2.1.1. Chemicals and synthetic techniques

2.1.2. Synthesis of monomers

2.1.3. Synthesis of polymers

2.2. Materials characterization

2.2.1. Fourier-transform infrared (FTIR) spectroscopy

2.2.2. Elemental analysis

2.2.3. Solid-state NMR (ssNMR) spectroscopy

2.2.4. Scanning electron microscopy

2.3. Cathode preparation and cell assembling

2.4. Electrochemical measurements

2.5. Calculation details

2.5.1. Calculations of specific capacity and energy density of PDPAPF6

2.5.2. Calculations of active material energy density, average discharge potential and realistic energy density of cathode composite

Chapter 3. PDPPD: an ultrafast charging polyphenylamine-based cathode material for high rate lithium, sodium and potassium batteries

3.1. Material characterization

3.2. Electrochemical behavior of PDPPD

3.3. The performance of PDPPD in lithium cells

3.4. Sodium and potassium batteries based on PDPPD

Chapter 4. High-energy and high-power-density potassium batteries using phenazine-based polymer as active cathode material

4.1. Electrolyte selection

4.2. Electrochemical behavior of p-DPPZ

4.3. Potassium-based dual-ion batteries with p-DPPZ cathode

Chapter 5. Phenazine-based copolymers as promising cathode materials for dual-ion batteries

5.1. Materials characterization

5.2. Electrochemical behavior of PDPAPZ and PPTZPZ

5.3. The performance of PDPAPZ and PPTZPZ in lithium half-cells

5.4. Potassium-based dual-ion batteries with PDPAPZ cathode

Chapter 6. Polydiphenylamine (PDPA) as a promising high-energy cathode material for

dual-ion batteries

6.1. Materials characterization

6.2. Electrochemical behavior of various cathode composites in lithium half-cells

6.3. Potassium-based dual-ion batteries with PDPA cathode

6.4. Comparison of PDPA-based cathode with reference materials

Conclusions

List of Symbols, Abbreviations

Bibliography

Appendix A. Supplementary figures and tables

Рекомендованный список диссертаций по специальности «Физическая химия», 02.00.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Катодные материалы для двухионных аккумуляторов на основе полимерных аминов»

Preface

Relevance and background of the research topic

The thesis topic is relevant, since the constantly growing demand for electronic portable devices, electric vehicles, as well as stationary energy storage systems dictates new requirements for electrochemical energy storage devices. For example, to implement the transition from traditional energy systems to smart grids technologies, the widespread installation of stationary energy storage systems at power plants is an important and urgent task. However, this technology is still at the initial stage of its development, because the widespread installation of such systems requires to create inexpensive stable batteries which are able to operate at high power densities without significant capacity losses in charge-discharge cycles.

As a well-established and versatile type of energy storage devices, lithium-ion batteries (LIB) have proven themselves as a promising technology for stationary energy storage. However, from the point of view of cost, power capabilities, environmental safety and scalability, the performance of LIB do not fully meet the aforementioned requirements. In particular, the widespread installation of large-scale LIB could be a source of severe environmental issues associated with the use of large amounts of toxic heavy metals contained in the cathodes of modern LIB [1]. As a reasonable alternative, a large number of new post-lithium technologies have been proposed in the related literature, including sodium-ion, potassium-ion, dual-ion and redox flow batteries.

Dual-ion batteries (DIB) represent a special type of energy storage devices in which both cations and anions of electrolyte are involved in redox processes. DIB represent one of the most promising post-lithium technologies due to their potentially high energy density, rate capabilities and low cost [2,3].

Among the variety of advanced cathode materials for dual-ion batteries, we consider polymeric aromatic amines as the most promising ones for their outstanding

performance characteristics. In particular, materials of this type show optimal values of redox potential (3-4 V vs. Li+/Li) [4,5], high values of specific capacity (up to 223 mAh g-1) [6], and extremely high current rates available for battery charge and discharge (up to 300C) [7]. However, it is necessary and desirable to achieve even better performance metrics to make polyamine-based DIB competitive with other state-of-the-art technologies.

Therefore, the development of polyamine-based organic electrode materials for lithium, sodium and potassium dual-ion batteries represents an important and urgent scientific problem.

The aims, objectives and the research methodology of the thesis

The present work is devoted to synthesis, physicochemical and electrochemical study of polymeric aromatic amines, which are promising cathode materials for lithium, sodium and potassium dual-ion batteries. The following aims and objectives of the present dissertation work were identified:

1. Development of stable polyamine-based cathodes possessing the highest possible values of specific capacity for ultrafast lithium-based dual-ion batteries and potassium batteries;

2. Optimization of the electrolyte formulation for potassium-based dual-ion batteries with polyamine-based cathode to improve their performance;

3. Increasing the organic active material (polyamine) content in the cathode composite.

To achieve the aforementioned goals, the methodology and methods of the present research were identified and the dissertation work was aimed at solving the following tasks, which correspond to the main dissertation chapters:

1. Design of efficient polyamine-based cathode materials for dual-ion batteries available for synthesis;

2. The selection of the proper experimental methods;

3. Synthesis and study of physicochemical and electrochemical properties of poly(N,N'-diphenyl-p-phenylenediamine) (PDPPD) as a cathode material for ultrafast lithium, sodium and potassium dual-ion batteries;

4. Synthesis and study of physicochemical and electrochemical properties of poly(N-phenyl-5,10-dihydrophenazine) (p-DPPZ) as a cathode material for potassium-based dual-ion batteries and the selection of the efficient electrolyte;

5. Synthesis and study of physicochemical and electrochemical properties of phenazine copolymers with diphenylamine (PDPAPZ) and phenothiazine (PPTZPZ) as cathodes for fast lithium and potassium-based dual-ion batteries;

6. Synthesis and study of physicochemical and electrochemical properties of polyaniline (PAni), polydiphenylamine (PDPA) and polytriphenylamine (PTPA) as cathode materials for lithium and potassium dual-ion batteries to optimize the active material content in the cathode composite.

Scientific novelty

The following statements disclose the scientific novelty of the present thesis work.

1. For the first time, the materials PDPPD, PDPAPZ and PPTZPZ were synthesized, characterized by physicochemical methods and studied as cathode materials for lithium and potassium-based dual-ion batteries.

2. PDPPD as a cathode material for sodium, p-DPPZ and PDPA as cathodes for potassium dual-ion batteries were studied for the first time. PDPA has also been applied for the first time as a single cathode active material for lithium batteries.

3. Record values of energy density per total cathode mass among polymeric materials for dual-ion batteries have been achieved.

The theoretical and practical value of the thesis

The obtained results prove that the studied polymers represent a highly promising

organic cathode materials for dual-ion batteries. Additionally, the results of this study

provide some important guidelines for the design of novel polymeric cathode materials for emerging organic dual-ion batteries featuring high power and energy densities. Further rational design and exploration of this family of compounds might result in the development of a new generation of organic redox active materials for advanced energy storage devices and bring the intensively developing dual-ion battery technology closer to the market and real-life applications.

Statements to be defended

The statements to be defended in the thesis can be summarized as follows:

1. The cathode material PDPPD provides outstanding performance being utilized in ultrafast lithium dual-ion batteries, by operating at high current rates of 100-200 C, showing decent initial specific capacity of up to 84 mAh g-1 with its retention of 67% after 5000 charge-discharge cycles;

2. Exceptionally high energy density (up to 593 Wh kg-1) measured in potassium half-cells can be achieved for p-DPPZ-based cathodes;

3. The use of concentrated diglyme-based electrolyte in potassium dual-ion batteries with polyamine-based cathode allows to significantly improve their performance, in particular, to achieve higher specific capacity and energy density;

4. The use of polymers loaded with phenazine units is preferable over the phenothiazine-based ones for design of efficient and stable active cathode materials for dual-ion batteries, as it was shown by comparison of PDPAPZ and PPTZPZ.

5. The content of polymeric active material in cathode composites can be increased up to 80% without serious losses in specific capacity and energy density, which make it possible to achieve record values of realistic energy density calculated for the total mass of the cathode composite (418 Wh kg-1, measured in lithium half-cells), as it was shown for PDPA.

The validity and reliability of the research results and conclusions

The reliability of the results is ensured by the use of a wide range of complementary physicochemical and electrochemical methods of analysis. The results reproducibility of electrode materials study in electrochemical cells was confirmed by performing of two or three experiment trials. The statements and conclusions formulated in the dissertation have received qualified approbation at international scientific conferences. The credibility is also confirmed by the publication of research results in peer-reviewed scientific journals.

List of publications

1. Obrezkov F.A., Shestakov A.F., Traven V.F., Stevenson K.J., Troshin P.A. An ultrafast charging polyphenylamine-based cathode material for high rate lithium, sodium and potassium batteries // J. Mater. Chem. A. - 2019. - Vol. 7, no. 18. -P. 11430-11437.

2. Obrezkov F.A., Ramezankhani V., Zhidkov I., Traven V.F., Kurmaev E.Z., Stevenson K.J., Troshin P.A. High-Energy and High-Power-Density Potassium Ion Batteries Using Dihydrophenazine-Based Polymer as Active Cathode Material // J. Phys. Chem. Lett. - 2019. - Vol. 10, no. 18. - P. 5440-5445.

3. Kapaev R.R., Obrezkov F.A., Stevenson K.J., Troshin P.A. Metal-ion batteries meet supercapacitors: High capacity and high rate capability rechargeable batteries with organic cathodes and a Na/K alloy anode // Chem. Commun. - 2019. - Vol. 55, no. 78. - P. 11758-11761.

4. Obrezkov F.A., Somova A.I., Fedina E.S., Vasil'ev S.G., Stevenson K.J., Troshin P.A. Dihydrophenazine-Based Copolymers as Promising Cathode Materials for Dual-Ion Batteries // Energy Technol. - 2021. - Vol. 9, no. 1. - P. 2000772.

5. Obrezkov F.A., Shestakov A.F., Vasil'ev S.G., Stevenson K., Troshin P. Polydiphenylamine as a promising high-energy cathode material for dual-ion batteries // J. Mater. Chem. A. - 2021. - Vol. 9, no. 5. - P. 2864-2871.

The personal contribution of the applicant in the published works with co-authors

is as follows:

• Publication 1. The main part of the experimental work, the processing and systematization of the obtained data, and the preparation of the manuscript were performed by the applicant. The applicant synthesized the reported material PDPPD; prepared cathode composites; assembled lithium, sodium and potassium half-cells, studied the electrochemical properties of the material by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge cycling.

• Publication 2. The main part of the experimental work, the processing and systematization of the obtained data, and the preparation of the manuscript were performed by the applicant. The applicant synthesized the reported material p-DPPZ; prepared cathode composites; assembled potassium half-cells, studied the electrochemical properties of the material by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge cycling.

• Publication 3. The applicant synthesized one of the studied cathode materials: p-DPPZ.

• Publication 4. The significant part of the experimental work, the processing and systematization of the obtained data, and the preparation of the manuscript were performed by the applicant. The applicant measured FTIR spectra of the reported polymeric materials: PDPAPZ and PPTZPZ, assembled lithium and potassium half-cells for electrochemical studies by cyclic voltammetry and electrochemical impedance spectroscopy.

• Publication 5. The main part of the experimental work, the processing and systematization of the obtained data, and the preparation of the manuscript were performed by the applicant. The applicant synthesized the reported materials PAni, PDPA and PTPA; prepared cathode composites; assembled lithium and potassium half-cells, studied the electrochemical properties of materials by cyclic voltammetry,

electrochemical impedance spectroscopy and galvanostatic charge-discharge cycling.

List of conferences

1. F. Obrezkov, A. Shestakov, K. Stevenson, P. Troshin. Topical problems of modern electrochemistry and electrochemical material science. September 23-26, 2018.

2. F. Obrezkov, K. Stevenson, P. Troshin. 3rd annual Skoltech-MIT conference "Collaborative solutions for next generation education, science and technology". October 15-16, 2018.

3. F. Obrezkov, A. Shestakov, V. Traven, K. Stevenson, P. Troshin. Skoltech young scientists cross disciplinary conference "GEN-Y 2.0". March 13-17, 2019.

4. F. A. Obrezkov, A. F. Shestakov, V. F. Traven, K. J. Stevenson, P. A. Troshin. Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage. July 21-26, 2019.

5. F. A. Obrezkov, A. F. Shestakov, P. A. Troshin. 6th International fall school on organic electronics. September 14-17, 2020.

6. F. A. Obrezkov, K. J. Stevenson. 239th ECS Meeting. May 30 - June 3, 2021.

7. F. A. Obrezkov, K. J. Stevenson. XII International Conference on Chemistry for Young Scientists "MENDELEEV 2021". September 6-10, 2021.

8. F. A. Obrezkov, K. J. Stevenson. XVI International Conference "Topical problems of energy conversion in lithium electrochemical systems". September 20-24, 2021.

The structure and amount of the thesis

The thesis consists of an abstract, preface, six chapters, conclusions, list of symbols

and abbreviations, list of 156 references, and appendix comprising of 17 figures and 4

tables. The full volume of the dissertation is 145 pages, including 94 figures and 5 tables.

Похожие диссертационные работы по специальности «Физическая химия», 02.00.04 шифр ВАК

Заключение диссертации по теме «Физическая химия», Обрезков Филипп Александрович

Conclusions

Within the framework of the present project, seven different polyamine-based materials were synthesized and characterized by the set of complementary physicochemical techniques to establish and verify their chemical structures. The obtained polymers were applied as active cathode materials for lithium, sodium and potassium half-cells to study their electrochemical performance in dual-ion batteries.

Polymer PDPPD was synthesized in a single-step cross-coupling reaction from a rationally designed monomer precursor. Organic cathodes comprising PDPPD as the active component demonstrated impressive electrochemical performance in lithium, sodium and potassium half-cells. In particular, decent specific capacities (up to 102 mAh g-1) and high average discharge potentials of 3.4-3.7 V have been demonstrated. Most importantly, this material revealed an outstanding rate capabilities showing just a minor capacity roll-off in lithium cells when going from low (e.g., 0.5C) to ultra-high current rates of 100-200 C, for which the specific capacities of up to 84 mAh g-1 with the 67% retention were shown. The rate-related capacity depression at high current densities was more pronounced for sodium and especially potassium dual-ion batteries due to the larger sizes of the corresponding metal ions. Nevertheless, still decent capacities of 35-50 mAh g-1 were maintained at a current rate of 100C.

We have demonstrated for the first time that polyamine p-DPPZ utilized as a cathode for potassium-based dual-ion batteries with an optimized electrolyte composition (2.2 M KPF6 in diglyme) allows to achieve impressive performance characteristics for this new type of energy storage devices. Indeed, p-DPPZ delivered superior energy (593 Wh kg-1, measured in potassium half-cell) and power density in a combination with good operation stability during charge-discharge cycling, which are the most important prerequisites for considering further practical applications.

Two hyperbranched phenazine-based polymers were synthesized and studied in this work. The material PDPAPZ was shown to be a highly promising organic cathode material delivering relatively high specific capacities (107 mAh g-1) and discharge potentials (3.55 V) in lithium batteries in combination with good operational stability (capacity retention 34% after 25 000 charge-discharge cycles) and outstanding rate capabilities: the specific capacity of 82 mAh g-1 was provided at 20 A g-1 current density. PDPAPZ demonstrated the energy density of 398 Wh kg-1 in potassium half-cell at the current density of 5 A g-1 and the power density of >104 W kg-1, which are among the best characteristics reported for fast cathodes for potassium batteries so far. The investigation of the another less promising phenazine-based PPTZPZ polymer suggested that the presence of phenothiazine units in its molecular structure most likely blocks electrochemical activity of phenazine units. Furthermore, sulfur atoms of phenothiazine moieties were found to be electrochemically inactive in the investigated potential window. Therefore, phenothiazine appears to be much less promising building block for polymeric cathode materials in comparison with phenazine.

We introduced polydiphenylamine (PDPA) based cathodes, which demonstrated excellent performance in lithium and potassium-based dual-ion batteries surpassing all previously known organic polymeric materials for dual-ion batteries with respect to the achieved realistic energy density of 418 Wh kg-1 measured in lithium half-cells and normalized to the total electrode weight (including such ballast components as carbon filler and binder). Additional improvement in the electrochemical performance of PDPA cathodes was achieved by replacing super-P conductive carbon with MWCNTs. It should be emphasized that the content of the active material in the cathode composite was increased up to an impressive 80% without deterioration of the electrochemical performance, which brings the performance of PDPA closer to that of state-of-the-art inorganic cathodes. It is important to note, that the same approach to study the cathode performance was applied for the widely explored materials for DIBs such as PAni and PTPA. The comparison of electrochemical properties of PAni, PDPA and PTPA revealed the greatest success of PDPA. Thus, the simple synthesis and low cost of PDPA

in a combination with the outstanding electrochemical performance in lithium and potassium batteries make it a highly promising material for developing cheap and scalable electrochemical devices for stationary energy storage.

To summarize, among the main achievements of this work, the following can be distinguished: the ultrafast stable organic cathodes with high specific capacity for lithium-based DIB were designed; the optimal electrolyte formulation was selected for potassium-based DIBs with polyamine-based cathode allowing to significantly improve their performance; and the active material content in the cathode composite was increased allowing to improve realistic energy density of organic-based cathodes. The ultrafast operation of PDPAPZ and especially PDPPD is of special interest in a view of multiple applications in "electric push" devices emerging at the interface between metal-ion batteries and supercapacitors. Impressive performance of p-DPPZ, PDPA and PDPAPZ in potassium-based cells clearly illustrates that the rapid development of potassium batteries has now brought them closer to real applications. In that context, the design of advanced organic cathodes such as p-DPPZ reported here might play an important role in the commercialization of the emerging potassium battery technology. The record values of realistic energy density achieved in lithium half-cells in a combination with moderate stability, rate capabilities, and compatibility with potassium battery chemistry demonstrated for cathodes based on cheap and easy-in-synthesis PDPA make this material highly promising for stationary battery applications.

The obtained results prove that the studied polymers indeed represent a highly promising organic cathode materials for dual-ion batteries. Additionally, the results of this study provided some important guidelines for the design of novel polymeric cathode materials for emerging organic batteries featuring high power and energy densities. Further rational design and exploration of this family of compounds might result in the development of a new generation of organic redox-active materials for advanced energy storage devices and bring the intensively developing dual-ion battery technology closer to the market and real-life applications.

Список литературы диссертационного исследования кандидат наук Обрезков Филипп Александрович, 2022 год

Bibliography

1. Larcher D., Tarascon J.-M. Towards greener and more sustainable batteries for electrical energy storage // Nat. Chem. - 2015. - Vol. 7, no. 1. - P. 19-29.

2. Placke T., Heckmann A., Schmuch R., Meister P., Beltrop K., Winter M. Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries // Joule. - 2018. - Vol. 2, no. 12. - P. 2528-2550.

3. Wang M., Tang Y. A Review on the Features and Progress of Dual-Ion Batteries // Adv. Energy Mater. - 2018. - Vol. 8, no. 19. - P. 1703320.

4. Feng J.K., Cao Y.L., AiX.P., Yang H.X. Polytriphenylamine: A high power and high capacity cathode material for rechargeable lithium batteries // J. Power Sources. -2008. - Vol. 177, no. 1. - P. 199-204.

5. Dai G., Wang X., Qian Y.., Niu Z., Zhu X., Ye J., Zhao Y.., Zhang X. Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode // Energy Storage Mater. - 2019. - Vol. 16. - P. 236-242.

6. Gannett C.N., Peterson B.M., Shen L., Seok J., Fors B.P., Abruna H.D. Cross-linking Effects on Performance Metrics of Phenazine-Based Polymer Cathodes // ChemSusChem. - 2020. - Vol. 13, no. 9. - P. 2428-2435.

7. Yamamoto K., Suemasa D., Masuda K., Aita K., Endo T. Hyperbranched Triphenylamine Polymer for UltraFast Battery Cathode // ACS Appl. Mater. Interfaces. - 2018. - Vol. 10, no. 7. - P. 6346-6353.

8. Obrezkov F.A., Shestakov A.F., Traven V.F., Stevenson K.J., Troshin P.A. An ultrafast charging polyphenylamine-based cathode material for high rate lithium, sodium and potassium batteries // J. Mater. Chem. A. - 2019. - Vol. 7, no. 18. - P. 11430-11437.

9. Obrezkov F.A., Ramezankhani V., Zhidkov I., Traven V.F., Kurmaev E.Z.,

Stevenson K.J., Troshin P.A. High-Energy and High-Power-Density Potassium Ion Batteries Using Dihydrophenazine-Based Polymer as Active Cathode Material // J. Phys. Chem. Lett. - 2019. - Vol. 10, no. 18. - P. 5440-5445.

10. Kapaev R.R., Obrezkov F.A., Stevenson K.J., Troshin P.A. Metal-ion batteries meet supercapacitors: High capacity and high rate capability rechargeable batteries with organic cathodes and a Na/K alloy anode // Chem. Commun. - 2019. - Vol. 55, no. 78. - P. 11758-11761.

11. Obrezkov F.A., Somova A.I., Fedina E.S., Vasil'ev S.G., Stevenson K.J., Troshin P.A. Dihydrophenazine-Based Copolymers as Promising Cathode Materials for Dual-Ion Batteries // Energy Technol. - 2021. - Vol. 9, no. 1. - P. 2000772.

12. Obrezkov F.A., Shestakov A.F., Vasil'ev S.G., Stevenson K., Troshin P. Polydiphenylamine as a promising high-energy cathode material for dual-ion batteries // J. Mater. Chem. A. - 2021. - Vol. 9, no. 5. - P. 2864-2871.

13. Dunn B., Kamath H., Tarascon J.M. Electrical energy storage for the grid: A battery of choices // Science. - 2011. - Vol. 334, no. 6058. - P. 928-935.

14. Song Z., Zhou H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials // Energy Environ. Sci. - 2013. - Vol. 6, no. 8. - P. 2280-2301.

15. Yabuuchi N.., Kubota K., Dahbi M., Komaba S. Research development on sodium-ion batteries // Chem. Rev. - 2014. - Vol. 114, no. 23. - P. 11636-11682.

16. Eftekhari A., Jian Z., Ji X. Potassium Secondary Batteries // ACS Appl. Mater. Interfaces. - 2017. - Vol. 9, no. 5. - P. 4404-4419.

17. Holland-Cunz M.V., Cording F., Friedl J., Stimming U. Redox flow batteries -Concepts and chemistries for cost-effective energy storage // Front. Energy. - 2018. - Vol. 12, no. 2. - P. 198-224.

18. Wang G., Zhang L., Zhang J. A review of electrode materials for electrochemical supercapacitors // Chem. Soc. Rev. - 2012. - Vol. 41, no. 2. - P. 797-828.

19. Liang Y., Tao Z., Chen J. Organic Electrode Materials for Rechargeable Lithium Batteries // Adv. Energy Mater. - 2012. - Vol. 2, no. 7. - P. 742-769.

20. Haupler B., Wild A., Schubert U.S. Carbonyls: Powerful Organic Materials for Secondary Batteries // Adv. Energy Mater. - 2015. - Vol. 5, no. 11. - P. 1402034.

21. Janoschka T., Hager M.D., Schubert U.S. Powering up the Future: Radical Polymers for Battery Applications // Adv. Mater. - 2012. - Vol. 24, no. 48. -P. 6397-6409.

22. Zhao Q., Wang J., Lu Y., Li Y., Liang G., Chen J. Oxocarbon Salts for Fast Rechargeable Batteries // Angew. Chemie - Int. Ed. - 2016. - Vol. 55, no. 40. -P. 12528-12532.

23. Wu D., Huang Y., Hu X. A sulfurization-based oligomeric sodium salt as a high-performance organic anode for sodium ion batteries // Chem. Commun. -2016. - Vol. 52, no. 75. - P. 11207-11210.

24. Zhang R., Mizuno F., Ling C. Fullerenes: Non-transition Metal Cluster For Rechargeable Magnesium Battery Cathode // Chem. Commun. - 2015. - Vol. 51, no. 6. - P. 1108-1111.

25. Haupler B., Rossel C., Schwenke A.M., Winsberg J., Schmidt D., Wild A., Schubert U.S. Aqueous zinc-organic polymer battery with a high rate performance and long lifetime // NPG Asia Mater. - 2016. - Vol. 8, no. 7. - P. e283.

26. Chen Y., Zhuo S., Li Z., Wang C. Redox polymers for rechargeable metal-ion batteries // EnergyChem. - 2020. - Vol. 2, no. 2. - P. 100030.

27. Han C., Li H., Shi R., Zhang T., Tong J., Li J., Li B. Organic quinones towards advanced electrochemical energy storage: recent advances and challenges // J. Mater. Chem. A. - 2019. - Vol. 7, no. 41. - P. 23378-23415.

28. Zhang M., Zhang Y., Huang W., Zhang Q. Recent Progress in Calix[n]quinone (n=4, 6) and Pillar[5]quinone Electrodes for Secondary Rechargeable Batteries // Batter. Supercaps. - 2020. - Vol. 3, no. 6. - P. 476-487.

29. Huang W., Zheng S., Zhang X., Zhou W., Xiong W., Chen J. Synthesis and Application of Calix[6]quinone as a High-Capacity Organic Cathode for Plastic Crystal Electrolyte-Based Lithium-Ion Batteries // Energy Storage Mater. - 2020. -Vol. 26. - P. 465-471.

30. Wang X., Shang Z., Yang A., Zhang Q., Cheng F., Jia D., Chen J. Combining Quinone Cathode and Ionic Liquid Electrolyte for Organic Sodium-Ion Batteries // Chem. - 2019. - Vol. 5, no. 2. - P. 364-375.

31. Tang M., Wu Y., Chen Y., Jiang C., Zhu S., Zhuo S., Wang C. An organic cathode with high capacities for fast-charge potassium-ion batteries // J. Mater. Chem. A. -2019. - Vol. 7, no. 2. - P. 486-492.

32. Liang Y., Jing Y., Gheytani S., Lee K.Y., Liu P., Facchetti A., Yao Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries // Nat. Mater. - 2017. - Vol. 16, no. 8. - P. 841-848.

33. Patil N., Aqil A., Ouhib F., Admassie S., Inganas O., Jérôme C., Detrembleur C. Bioinspired Redox-Active Catechol-Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage // Adv. Mater. - 2017. - Vol. 29, no. 40. - P. 1703373.

34. Zhu L., Ding G., Xie L., Cao X., Liu J., Lei X., Ma J. Conjugated Carbonyl Compounds as High-Performance Cathode Materials for Rechargeable Batteries // Chem. Mater. - 2019. - Vol. 31, no. 21. - P. 8582-8612.

35. Tian B., Zheng J., Zhao C., Liu C., Su C., Tang W., Li X., Ning G.-H. Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries // J. Mater. Chem. A. - 2019. - Vol. 7, no. 16. - P. 9997-10003.

36. Wang Y., Liu Z., Wang C., Hu Y., Lin H., Kong W., Ma J., Jin Z. n-Conjugated Polyimide-Based Organic Cathodes with Extremely-Long Cycling Life for Rechargeable Magnesium Batteries // Energy Storage Mater. - 2020. - Vol. 26. -P. 494-502.

37. Tong Z., Tian S., Wang H., Shen D., Yang R., Lee C.S. Tailored Redox Kinetics,

Electronic Structures and Electrode/Electrolyte Interfaces for Fast and High-Energy-Density Potassium-Organic Battery // Adv. Funct. Mater. - 2020. -Vol. 30, no. 5. - P. 1907656.

38. Zhao J., Kang T., Chu Y., Chen P., Jin F., Shen Y., Chen L. A polyimide cathode with superior stability and rate capability for lithium-ion batteries // Nano Res. -2019. - Vol. 12, no. 6. - P. 1355-1360.

39. Fan L., Ma R., Wang J., Yang H., Lu B. An Ultrafast and Highly Stable Potassium-Organic Battery // Adv. Mater. - 2018. - Vol. 30, no. 51. - P. 1805486.

40. Lei K., Li F., Mu C., Wang J., Zhao Q., Chen C., Chena J. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolyte // Energy Environ. Sci. - 2017. - Vol. 10, no. 2. - P. 552-557.

41. Peng H., Yu Q., Wang S., Kim J., Rowan A.E., Nanjundan A.K., Yamauchi Y., Yu J. Molecular Design Strategies for Electrochemical Behavior of Aromatic Carbonyl Compounds in Organic and Aqueous Electrolytes // Adv. Sci. - 2019. - Vol. 6, no. 17. - P. 1900431.

42. Ghosh S., Makeev M.A., Macaggi M.L., Qi Z., Wang H., Rajput N.N., Martha S.K., Pol V. G. Dipotassium terephthalate as promising potassium storing anode with DFT calculations // Mater. Today Energy. - 2020. - Vol. 17. - P. 100454.

43. Luo Y., Liu L., Lei K., Shi J., Xu G., Li F., Chen J. A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate // Chem. Sci. - 2019. - Vol. 10, no. 7. - P. 2048-2052.

44. Zhang S., Ren S., Han D., Xiao M., Wang S., Meng Y. Aqueous sodium alginate as binder: Dramatically improving the performance of dilithium terephthalate-based organic lithium ion batteries // J. Power Sources. - 2019. - Vol. 438. - P. 227007.

45. Luo C., Shea J.J., Huang J. A carboxylate group-based organic anode for sustainable and stable sodium ion batteries // J. Power Sources. - 2020. - Vol. 453. - P. 227904.

46. Cabañero J.M., Pimenta V.P., Cannon K.C., Morris R.E., Armstrong A.R. Sodium Naphthalene-2,6-dicarboxylate: An Anode for Sodium Batteries // ChemSusChem. - 2019. - Vol. 12, no. 19. - P. 4522-4528.

47. Liao J., Hu Q., Yu Y., Wang H., Tang Z., Wen Z., Chen C. A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte // J. Mater. Chem. A. - 2017. - Vol. 5, no. 36. - P. 19017-19024.

48. Wang D.Y., Guo W., Fu Y. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries // Acc. Chem. Res. - 2019. - Vol. 52, no. 8. - P. 2290-2300.

49. Shimizu T., Wang H., Matsumura D., Mitsuhara K., Ohta T., Yoshikawa H. Porous Metal-Organic Frameworks Containing Reversible Disulfide Linkages as Cathode Materials for Lithium-Ion Batteries // ChemSusChem. - 2020. - Vol. 13, no. 9. -P. 2256-2263.

50. Wang D.Y., Si Y., Li J., Fu Y. Tuning the electrochemical behavior of organodisulfides in rechargeable lithium batteries using N-containing heterocycles // J. Mater. Chem. A. - 2019. - Vol. 7, no. 13. - P. 7423-7429.

51. Zhou J., Qian T., Xu N., Wang M., Ni X., Liu X., Shen X., Yan C. Selenium-Doped Cathodes for Lithium-Organosulfur Batteries with Greatly Improved Volumetric Capacity and Coulombic Efficiency // Adv. Mater. - 2017. - Vol. 29, no. 33. -P. 1701294.

52. Luo C., Xu G.L., Ji X., Hou S., Chen L., Wang F., Jiang J., Chen Z., Ren Y., Amine K., Wang C. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries // Angew. Chemie - Int. Ed. - 2018. - Vol. 57, no. 11. - P. 2879-2883.

53. Luo C., Ji X., Hou S., Eidson N., Fan X., Liang Y., Deng T., Jiang J., Wang C. Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li-Ion Batteries // Adv. Mater. - 2018. - Vol. 30, no. 23. -

P. 1706498.

54. Liang Y., Luo C., Wang F., Hou S., Liou S.C., Qing T., Li Q., Zheng J., Cui C., Wang C. An Organic Anode for High Temperature Potassium-Ion Batteries // Adv. Energy Mater. - 2019. - Vol. 9, no. 2. - P. 1802986.

55. Peng C., Ning G., Su J., Zhong G., Tang W., Tian B., Su C., Yu D., Zu L., Yang J., Ng M.. Hu Y., Yang Y., Armand M., Loh K.P. Reversible multi-electron redox chemistry of n-conjugated N-containing heteroaromatic molecule-based organic cathodes // Nat. Energy. - 2017. - Vol. 2, no. 7. - P. 17074.

56. Mao M., Luo C., Pollard T.P., Hou S., Gao T., Fan X., Cui C., Yue J, Tong Y., Yang G., Deng T., Zhang M., Ma J., Suo L., Borodin O., Wang C. A Pyrazine-Based Polymer for Fast-Charge Batteries // Angew. Chemie - Int. Ed. - 2019. - Vol. 58, no. 49. - P. 17820-17826.

57. Kapaev R.R., Zhidkov I.S., Kurmaev E.Z., Stevenson K.J., Troshin P.A. Hexaazatriphenylene-based polymer cathode for fast and stable lithium-, sodium-and potassium-ion batteries // J. Mater. Chem. A. - 2019. - Vol. 7, no. 39. -P.22596-22603.

58. Häupler B., Burges R., Friebe C., Janoschka T., Schmidt D., Wild A., Schubert U.S. Poly(exTTF): A novel redox-active polymer as active material for Li-organic batteries // Macromol. Rapid Commun. - 2014. - Vol. 35, no. 15. - P. 1367-1371.

59. Wild A., Strumpf M., Häupler B., Hager M.D., Schubert U.S. All-Organic Battery Composed of Thianthrene- and TCAQ-Based Polymers // Adv. Energy Mater. -2017. - Vol. 7, no. 5. - P. 1601415.

60. Zhang J.Y., Kong L.B., Zhan L.Z., Tang J., Zhan H., Zhou Y.H., Zhan C.M. Sulfides organic polymer: Novel cathode active material for rechargeable lithium batteries // J. Power Sources. - 2007. - Vol. 168, no. 1. - P. 278-281.

61. Liu L., Tian F., Wang X., Yang Z., Zhou M., Wang X. Porous polythiophene as a cathode material for lithium batteries with high capacity and good cycling stability

// React. Funct. Polym. - 2012. - Vol. 72, no. 1. - P. 45-49.

62. Suguro M., Iwasa S., Kusachi Y., Morioka Y., Nakahara K. Cationic Polymerization of Poly(vinylether) Bearing a TEMPO Radical: A New Cathode-Active Material for Organic Radical Batteries // Macromol. Rapid Commun. - 2007. - Vol. 28, no. 18-19. - P. 1929-1933.

63. Xu L., Yang F., Su C., Ji L., Zhang C. Synthesis and properties of novel TEMPO-contained polypyrrole derivatives as the cathode material of organic radical battery // Electrochim. Acta. - 2014. - Vol. 130. - P. 148-155.

64. Kim J.K., Cheruvally G., Ahn J.H., Seo Y.G., Choi D.S., Lee S.H., Song C.E. Organic radical battery with PTMA cathode: Effect of PTMA content on electrochemical properties // J. Ind. Eng. Chem. - 2008. - Vol. 14, no. 3. - P. 371376.

65. Su C., He H., Xu L., Zhao K., Zheng C., Zhang C. A mesoporous conjugated polymer based on a high free radical density polytriphenylamine derivative: its preparation and electrochemical performance as a cathode material for Li-ion batteries // J. Mater. Chem. A. - 2017. - Vol. 5, no. 6. - P. 2701-2709.

66. Peterson B.M., Ren D., Shen L., Wu Y.C.M., Ulgut B., Coates G.W., Abruna H.D., Fors B.P. Phenothiazine-Based Polymer Cathode Materials with Ultrahigh Power Densities for Lithium Ion Batteries // ACS Appl. Energy Mater. - 2018. - Vol. 1, no. 8. - P. 3560-3564.

67. Lee M., Hong J., Lee B., Ku K., Lee S., Park C.B., Kang K. Multi-electron redox phenazine for ready-to-charge organic batteries // Green Chem. - 2017. - Vol. 19, no. 13. - P. 2980-2985.

68. Lee S., Lee K., Ku K., Hong J., Park S.Y., Kwon J.E., Kang K. Utilizing Latent Multi-Redox Activity of p-Type Organic Cathode Materials toward High Energy Density Lithium-Organic Batteries // Adv. Energy Mater. - 2020. - Vol. 10, no. 32. - P. 2001635.

69. Li W., Zhu L., Yu Z., Xie L., Cao X. LiV3O8/polytriphenylamine composites with enhanced electrochemical performances as cathode materials for rechargeable lithium batteries // Materials. - 2017. - Vol. 10, no. 4. - P. 344.

70. Su C., Huang Q.-F., Xu L.-H., Zhang C. Preparation and performances of C-LiFePO4/polytriphenylamine composite as cathode material for lithium-ion batteries // Acta Physico-Chimica Sin. - 2014. - Vol. 30, no. 1. - P. 88-94.

71. Yang X., Bao C., Xie L., Zhu L., Cao X. Preparation of LiNi1/3Co1/3Mn1/3O2/polytriphenylamine cathode composites with enhanced electrochemical performances towards reversible lithium storage // Ceram. Int. -2019. - Vol. 45, no. 8. - P. 9726-9735.

72. Zhu L., Ding G., Xie L., Yang Q., Yang X., Cao X. Facile preparation of NaV3O8/polytriphenylamine composites as cathode materials towards high-performance sodium storage // Int. J. Energy Res. - 2020. - Vol. 44, no. 4. -P. 3215-3223.

73. Zhu L., Xie L., Cao X. LiV3O8/Polydiphenylamine Composites with Significantly Improved Electrochemical Behavior as Cathode Materials for Rechargeable Lithium Batteries // ACS Appl. Mater. Interfaces. - 2018. - Vol. 10, no. 13. -P.10909-10917.

74. Su C., Ye Y., Bu X., Xu L., Zhang C. Preparation and Properties of Polytriphenylamine / Multi-Walled Carbon Nanotube Composite as a Cathode Material for Li-ion Batteries // Adv. Mater. Res. - 2011. - Vol. 335-336. - P. 15121515.

75. Huang W., Jia T., Zhou G., Chen S., Hou Q., Wang Y., Luo S., Shi G., Xu B. A triphenylamine-based polymer with anthraquinone side chain as cathode material in lithium ion batteries // Electrochim. Acta. - 2018. - Vol. 283. - P. 1284-1290.

76. Su C., Yang F., Xu L., Zhu X., He H., Zhang C. Radical Polymer Containing a Polytriphenylamine Backbone: Its Synthesis and Electrochemical Performance as

the Cathode of Lithium-Ion Batteries // Chempluschem. - 2015. - Vol. 80, no. 3. -P. 606-611.

77. Zhu L., Cao X. p-Dopable Poly(4-nitro)triphenylamine as Cathode Material with High Discharge Voltage for Lithium Ion Batteries // Int. J. Electrochem. Sci. - 2015. - Vol. 10. - P. 4359-4365.

78. Chen Z., Li W., Dai Y., Xu N., Su C., Liu J., Zhang C. Conjugated microporous polymer based on star-shaped triphenylamine-benzene structure with improved electrochemical performances as the organic cathode material of Li-ion battery // Electrochim. Acta. - 2018. - Vol. 286. - P. 187-194.

79. Choi J., Kim E.S., Ko J.H., Lee S.M., Kim H.J., Ko Y.J., Son S.U. Hollow and microporous triphenylamine networks post-modified with TCNE for enhanced organocathode performance // Chem. Commun. - 2017. - Vol. 53, no. 62. - P. 8778-8781.

80. Xiang J., Burges R., Haupler B, Wild A., Schubert U.S., Ho C.-L, Wong W.-Y. Synthesis, characterization and charge-discharge studies of ferrocene-containing poly(fluorenylethynylene) derivatives as organic cathode materials // Polymer. -2015. - Vol. 68. - P. 328-334.

81. Yao C.J., Xie J., Wu Z., Xu Z.J., Zhang S., Zhang Q. A Conjugated Copolymer of N-Phenyl-p-phenylenediamine and Pyrene as Promising Cathode for Rechargeable Lithium-Ion Batteries // Chem. - An Asian J. - 2019. - Vol. 14, no. 13. - P. 22102214.

82. Zhang C., Yang X., Ren W., Wang Y., Su F., Jiang J. Microporous organic polymer-based lithium ion batteries with improved rate performance and energy density // J. Power Sources. - 2016. - Vol. 317. - P. 49-56.

83. Fan H., Gao J., Qi L., Wang H. Hexafluorophosphate anion intercalation into graphite electrode from sulfolane/ethylmethyl carbonate solutions // Electrochim. Acta. - 2016. - Vol. 189. - P. 9-15.

84. Placke T., Fromm O., Lux S.F., Bieker P., Rothermel S., Meyer H.-W., Passerini S., Winter M. Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells // J. Electrochem. Soc. - 2012. - Vol. 159, no. 11. - P. A1755-A1765.

85. Xiong J., Wei Z., Xu T., Zhang Y., Xiong C., Dong L. Polytriphenylamine derivative with enhanced electrochemical performance as the organic cathode material for rechargeable batteries // Polymer. - 2017. - Vol. 130. - P. 135-142.

86. Su C., Han B., Ma J., Xu L. A Novel Anthraquinone-Containing Poly(Triphenylamine) Derivative: Preparation and Electrochemical Performance as Cathode for Lithium-Ion Batteries // ChemElectroChem. - 2020. - Vol. 7, no. 19.

- P. 4101-4107.

87. Chen S., Jia T., Zhou G., Zhang C., Hou Q., Wang Y., Luo S., Shi G., Zeng Y. A Cross-Linked Triphenylamine-Based Polymer Cathode Material with Dual Anion-Cation Reversible Insertion for Lithium Ion Battery // J. Electrochem. Soc.

- 2019. - Vol. 166, no. 12. - P. A2543-A2548.

88. Chen Z., Su C., Zhu X., Xu R., Xu L., Zhang C. Micro-/Mesoporous conjugated polymer based on star-shaped triazine-functional triphenylamine framework as the performance-improved cathode of Li-organic battery // J. Polym. Sci. Part A Polym. Chem. - 2018. - Vol. 56, no. 22. - P. 2574-2583.

89. Dai G., Liu Y., Niu Z., He P., Zhao Y., Zhang X., Zhou H. The Design of Quaternary Nitrogen Redox Center for High-Performance Organic Battery Materials // Matter.

- 2019. - Vol. 1, no. 4. - P. 945-958.

90. Otteny F., Studer G., Kolek M., Bieker P., Winter M., Esser B. Phenothiazine-Functionalized Poly(norbornene)s as High-Rate Cathode Materials for Organic Batteries // ChemSusChem. - 2020. - Vol. 13, no. 9. - P. 2232-2238.

91. Zhang Y., Gao P., Guo X., Chen H., Zhang R., Du Y., Wang B., Yang H. Hypercrosslinked phenothiazine-based polymers as high redox potential organic

cathode materials for lithium-ion batteries // RSC Adv. - 2020. - Vol. 10, no. 28. -P. 16732-16736.

92. Casado N., Mantione D., Shanmukaraj D., Mecerreyes D. Symmetric All-Organic Battery Containing a Dual Redox-Active Polymer as Cathode and Anode Material // ChemSusChem. - 2020. - Vol. 13, no. 9. - P. 2464-2470.

93. Peterson B.M., Shen L., Lopez G.J., Gannett C.N., Ren D., Abruna H.D., Fors B.P. Elucidation of the electrochemical behavior of phenothiazine-based polyaromatic amines // Tetrahedron. - 2019. - Vol. 75, no. 32. - P. 4244-4249.

94. Otteny F., Kolek M., Becking J., Winter M., Bieker P., Esser B. Unlocking Full Discharge Capacities of Poly(vinylphenothiazine) as Battery Cathode Material by Decreasing Polymer Mobility Through Cross-Linking // Adv. Energy Mater. -2018. - Vol. 8, no. 33. - P. 1802151.

95. Otteny F., Perner V., Wassy D., Kolek M., Bieker P., Winter M., Esser B. Poly(vinylphenoxazine) as Fast-Charging Cathode Material for Organic Batteries // ACS Sustain. Chem. Eng. - 2020. - Vol. 8, no. 1. - P. 238-247.

96. Ham Y, Ri V., Kim J., Yoon Y, Lee J., Kang K, An K.S., Kim C, Jeon S. Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries // Nano Res. - 2020.

97. Zhu L., Cao X. p-Dopable poly(4-cyano)triphenylamine: A high voltage organic cathode for lithium ion batteries // Mater. Lett. - 2015. - Vol. 150. - P. 16-19.

98. Su C., Ji L., Xu L., Zhou N., Wang G., Zhang C. A polytriphenylamine derivative exhibiting a four-electron redox center as a high free radical density organic cathode // RSC Adv. - 2016. - Vol. 6, no. 27. - P. 22989-22995.

99. Su C., Yang F., Ji L., Xu L., Zhang C. Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries // J. Mater. Chem. A. - 2014. - Vol. 2, no. 47. - P. 20083-20088.

100. Su C., Zhu X., Xu L., Zhou N., He H., Zhang C. Organic polytriphenylamine

derivative-based cathode with tailored potential and its electrochemical performances // Electrochim. Acta. - 2016. - Vol. 196. - P. 440-449.

101. Su C., Ye Y., Xu L., Zhang C. Synthesis and charge - discharge properties of a ferrocene-containing polytriphenylamine derivative as the cathode of a lithium ion battery // J. Mater. Chem. - 2012. - Vol. 22, no. 42. - P. 22658-22662.

102. Su C., Yang F., Ye Y., Xu L., Wang L., Zhang C. Poly[tris(thienylphenyl)amine] Derivatives as a Performance-Improved Cathode Material for Lithium Ion Batteries // J. Electrochem. Soc. - 2013. - Vol. 160, no. 11. - P. A2021-A2026.

103. Dai G., He Y., Niu Z., He P., Zhang C., Zhao Y., Zhang X., Zhou H. A Dual-Ion Organic Symmetric Battery Constructed from Phenazine-Based Artificial Bipolar Molecules // Angew. Chemie - Int. Ed. - 2019. - Vol. 58, no. 29. - P. 9902-9906.

104. Zhang F., Cheng Y., Niu Z., Ye J., Dai G., Zhang X., Zhao Y. Tailoring the Voltage Gap of Organic Battery Materials Based on a Multi-Electron Redox Chemistry // ChemElectroChem. - 2020. - Vol. 7, no. 7. - P. 1781-1788.

105. Acker P., Rzesny L., Marchiori C.F.N., Araujo C.M., Esser B. n-Conjugation Enables Ultra-High Rate Capabilities and Cycling Stabilities in Phenothiazine Copolymers as Cathode-Active Battery Materials // Adv. Funct. Mater. - 2019. -Vol. 29, no. 45. - P. 1906436.

106. Lv J., Ye J., Dai G., Niu Z., Sun Y., Zhang X., Zhao Y. Flame-retarding battery cathode materials based on reversible multi-electron redox chemistry of phenothiazine-based polymer // J. Energy Chem. - 2020. - Vol. 47. - P. 256-262.

107. Deng W., Liang X., Wu X., Qian J., Cao Y., Ai X., Feng J. A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode // Sci. Rep. - 2013. -Vol. 3, no. 1. - P. 2671.

108. Fan L., Liu Q., Xu Z., Lu B. An Organic Cathode for Potassium Dual-Ion Full Battery // ACS Energy Lett. - 2017. - Vol. 2, no. 7. - P. 1614-1620.

109. Gao H., Xue L., Xin S., Goodenough J.B. A High-Energy-Density Potassium

Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode // Angew. Chemie - Int. Ed. - 2018. - Vol. 57, no. 19. - P. 5449-5453.

110. Kravchyk K. V., Wang S., Piveteau L., Kovalenko M. V. Efficient Aluminum Chloride-Natural Graphite Battery // Chem. Mater. - 2017. - Vol. 29, no. 10. - P. 4484-4492.

111. Abu-Thabit N.Y. Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles // J. Chem. Educ. - 2016. -Vol. 93, no. 9. - P. 1606-1611.

112. Orlov A. V, Ozkan S.Z., Bondarenko G.N., Karpacheva G.P. Oxidative Polymerization of Diphenylamine : Synthesis and Structure of Polymers // Polym. Sci. Ser. B. - 2006. - Vol. 48, no. 1-2. - P. 5-10.

113. Topchiy M.A., Dzhevakov P.B., Rubina M.S., Morozov O.S., Asachenko A.F., Nechaev M.S. Solvent-Free Buchwald-Hartwig (Hetero)arylation of Anilines, Diarylamines, and Dialkylamines Mediated by Expanded-Ring N-Heterocyclic Carbene Palladium Complexes // European J. Org. Chem. - 2016. - Vol. 2016, no. 10. - P. 1908-1914.

114. Minami Y., Komiyama T., Shimizu K., Hiyama T., Goto O., Ikehira H. Catalytic Carbon-Nitrogen Bond-Forming Cross-Coupling Using N-Trimethylsilylamines // Bull. Chem. Soc. Jpn. - 2015. - Vol. 88, no. 10. - P. 1437-1446.

115. Li Z.H., Xiong M.J., Wong M.S. Synthesis and blue light-emitting properties of 4,4'-bis(diphenylamino)-quinque(p-phenyl)s // Chinese Chem. Lett. - 2007. -Vol. 18, no. 7. - P. 823-826.

116. Mcilroy S.P., Clo E., Nikolajsen L., Frederiksen P.K., Nielsen C.B., Mikkelsen K. V, Gothelf K. V, Ogilby P.R. Two-Photon Photosensitized Production of Singlet Oxygen : Sensitizers with Phenylene - Ethynylene-Based Chromophores // J. Org. Chem. - 2005. - Vol. 70, no. 4. - P. 1134-1146.

117. Koene B.E., Loy D.E., Thompson M.E. Asymmetric Triaryldiamines as Thermally

Stable Hole Transporting Layers for Organic Light-Emitting Devices // Chem. Mater. - 1998. - Vol. 10, no. 8. - P. 2235-2250.

118. Kanazawa Y., Yokota T., Ogasa H., Watanabe H., Hanakawa T., Soga S., Kawatsura M. Chemoselective Amination of Bromoiodobenzenes with Diarylamines by Palladium/Xantphos or Ligand-free Copper Catalysts // Tetrahedron. - 2015. - Vol. 71, no. 9. - P. 1395-1402.

119. Shimizu K., Minami Y., Goto O., Ikehira H., Hiyama T. Silicon-based C-N Cross-coupling Reaction // Chem. Lett. - 2014. - Vol. 43, no. 4. - P. 438-440.

120. Osamu G., Tamejiro H., Hideyuki I., Yasunori M. Production method for amine compound: pat. JP2014196464A USA. - 2013.

121. Ito A., Kurata R., Sakamaki D., Yano S., Kono Y., Nakano Y., Furukawa K., Kato T., Tanaka K. Redox Modulation of para-Phenylenediamine by Substituted Nitronyl Nitroxide Groups and Their Spin States // J. Phys. Chem. A. - 2013. - Vol. 117, no. 48. - P. 12858-12867.

122. Hirohiko F., Satonobu S., Junpei T., Shizuo T., Kazuhiko T. Compound and composition, organic electroluminescent device: pat. JP5500580B2 USA. - 2014.

123. Hirai Y., Uozumi Y. Heterogeneous Aromatic Amination of Aryl Halides with Arylamines in Water with PS-PEG Resin-Supported Palladium Complexes // Chem. - An Asian J. - 2010. - Vol. 5, no. 8. - P. 1788-1795.

124. Wu C., Djurovich P.I., Thompson M.E. Study of Energy Transfer and Triplet Exciton Diffusion in Hole-Transporting Host Materials // Adv. Funct. Mater. -2009. - Vol. 19, no. 19. - P. 3157-3164.

125. Suzuki K., Hori Y., Kobayashi T. A New Hybrid Phosphine Ligand for Palladium-Catalyzed Amination of Aryl Halides // Adv. Synth. Catal. - 2008. - Vol. 350, no. 5. - P. 652-656.

126. Cheng H., Chiu K.Y., Lu S., Chen C, Wei Y, Yang T, Kuo M.Y., Chen P.P., Su Y.O. Computational Studies of Their Oxidative States Linear Oligoarylamines:

Electrochemical, EPR, and Computational Studies of Their Oxidative States // J. Phys. Chem. A. - 2015. - Vol. 119, no. 10. - P. 1933-1942.

127. Yano M., Ishida Y., Aoyama K., Tatsumi M., Sato K., Shiomi D., Ichimura A., Takui T. Synthesis and Electronic Properties of Tetraaryl p- and m- Phenylenediamines // Synth. Met. - 2003. - Vol. 137, no. 1-3. - P. 1275-1276.

128. Paine A.J. Mechanisms and Models for Copper Mediated Nucleophilic Aromatic Substitution. 2. A Single Catalytic Species from Three Different Oxidation States of Copper in an Ullmann Synthesis of Triarylamines // J. Am. Chem. Soc. - 1987.

- Vol. 109, no. 5. - P. 1496-1502.

129. Kim J.Y., Yokoyama D., Adachi C. Horizontal Orientation of Disk-like Hole Transport Molecules and Their Application for Organic Light-Emitting Diodes Requiring a Lower Driving Voltage // J. Phys. Chem. C. - 2012. - Vol. 116, no. 15.

- P. 8699-8706.

130. Chen C., Yang L. Arylation of Diarylamines Catalyzed by Ni(II)-PPh3 System // Org. Lett. - 2005. - Vol. 7, no. 11. - P. 2209-2211.

131. Kazuo H., Katsumasa I., Ryohei K. Condensation of 1,4-Cyclohexanediones and Secondary Aromatic Amines. II. N-Phenylation of Diarylamines // Bull. Chem. Soc. Jpn. - 1986. - Vol. 59, no. 3. - P. 803-807.

132. Yang L., Li X., Yang J., Qu Y.., Hua J. Colorimetric and Ratiometric Near-Infrared Fluorescent Cyanide Chemodosimeter Based on Phenazine Derivatives // ACS Appl. Mater. Interfaces. - 2013. - Vol. 5, no. 4. - P. 1317-1326.

133. Wang M., Li C., Lv A., Wang Z., Bo Z., Zhang F. Synthesis and photovoltaic behaviors of benzothiadiazole- and triphenylamine- based alternating copolymers // Polymer. - 2012. - Vol. 53, no. 2. - P. 324-332.

134. Atuegbu A., Freeman B., Hurt C., Kitaygorodorskyy A., Lingappa V. Antiviral compounds: pat. WO2011137447A1 USA. - 2011.

135. Wizansky A.R., Rauch P.E., Disalvo F.J. Powerful Oxidizing Agents for the

Oxidative Deintercalation of Lithium from Transition-Metal Oxides // J. Solid State Chem. - 1989. - Vol. 81, no. 2. - P. 203-207.

136. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. - 1996. - Vol. 77, no. 18. - P. 3865-3868.

137. Stevens W.J., Basch H., Krauss M. Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms // J. Chem. Phys. -1984. - Vol. 81, no. 12. - P. 6026-6033.

138. Laikov D.N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets // Chem. Phys. Lett. -1997. - Vol. 281, no. 1-3. - P. 151-156.

139. Watanabe M., Nishiyama M., Koie Y. Palladium/P(t-Bu)3-catalyzed synthesis of aryl t-butyl ethers and application to the first synthesis of 4-chlorobenzofuran // Tetrahedron Lett. - 1999. - Vol. 40, no. 50. - P. 8837-8840.

140. Nikitina V.A., Kuzovchikov S.M., Fedotov S.S., Khasanova N.R., Abakumov A.M., Antipov E. V. Effect of the electrode/electrolyte interface structure on the potassium-ion diffusional and charge transfer rates: towards a high voltage potassium-ion battery // Electrochim. Acta. - 2017. - Vol. 258. - P. 814-824.

141. Levin E.E., Vassiliev S. Y., Nikitina V.A. Solvent effect on the kinetics of lithium ion intercalation into LiCoO2 // Electrochim. Acta. - 2017. - Vol. 228. - P. 114-124.

142. Vlad A., Singh N., Rolland J., Melinte S., Ajayan P.M., Gohy J.F. Hybrid supercapacitor-battery materials for fast electrochemical charge storage // Sci. Rep. - 2014. - Vol. 4. - P. 4315.

143. Liang Y., Chen Z., Jing Y., Rong Y., Facchetti A., Yao Y. Heavily n-dopable n-conjugated redox polymers with ultrafast energy storage capability // J. Am. Chem. Soc. - 2015. - Vol. 137, no. 15. - P. 4956-4959.

144. Choi N.S., Han J. G., Ha S. Y., Park I., Back C.K. Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries // RSC Adv.

- 2015. - Vol. 5, no. 4. - P. 2732-2748.

145. Ponrouch A., Marchante E., Courty M., Tarascón J.M., Palacín M.R. In search of an optimized electrolyte for Na-ion batteries // Energy Environ. Sci. - 2012. -Vol. 5, no. 9. - P. 8572-8583.

146. Zhao H., Xu J., Yin D., Du Y. Electrolytes for Batteries with Earth-Abundant Metal Anodes // Chem. - A Eur. J. - 2018. - Vol. 24, no. 69. - P. 18220-18234.

147. Schroder K., Alvarado J., Yersak T.A., Li J., Dudney N., Webb L.J., Meng Y.S., Stevenson K.J. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes // Chem. Mater. - 2015. -Vol. 27, no. 16. - P. 5531-5542.

148. Xiao N., Mcculloch W.D., Wu Y. Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries // J. Am. Chem. Soc.

- 2017. - Vol. 139, no. 28. - P. 9475-9478.

149. Lei K., Li F., Mu C., Wang J., Zhao Q. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes // Energy Environ. Sci. - 2017. - Vol. 10, no. 2. - P. 552-557.

150. Katorova N.S., Fedotov S.S., Rupasov D.P., Luchinin N.D., Delattre B., Chiang Y., Abakumov A.M., Stevenson K.J. Effect of Concentrated Diglyme-Based Electrolytes on the Electrochemical Performance of Potassium-Ion Batteries // ACS Appl. Energy Mater. - 2019. - Vol. 2, no. 8. - P. 6051-6059.

151. Leonard D.P., Wei Z., Chen G., Du F., Ji X. Water-in-Salt Electrolyte for Potassium-Ion Batteries // ACS Energy Lett. - 2018. - Vol. 3, no. 2. - P. 373-374.

152. Zeng G., Soc J.E., Zeng G., Xiong S., Qian Y., Ci L., Feng J. Non-Flammable Phosphate Electrolyte with High Salt-to-Solvent Ratios for Safe Potassium-Ion Battery Non-Flammable Phosphate Electrolyte with High Salt-to-Solvent Ratios for Safe Potassium-Ion Battery // J. Electrochem. Soc. - 2019. - Vol. 166, no. 6. -P. A1217-A1222.

153. Zhang R., Bao J., Wang Y., Sun C.-F. Concentrated electrolytes stabilize bismuth-potassium batteries // Chem. Sci. - 2018. - Vol. 9, no. 29. - P. 6193-6198.

154. Simon P., Gogotsi Y. Materials for electrochemical capacitors // Nat. Mater. - 2008. - Vol. 7, no. 11. - P. 845-854.

155. NMR spectrum, SDBS No.: 1731CDS-01-853 [Electronic resource] // Spectral Database for Organic Compounds (SDBS). URL: https://sdbs.db.aist.go.jp (accessed: 09.09.2020).

156. Nguyen T.Q., Breitkopf C. Determination of Diffusion Coefficients Using Impedance Spectroscopy Data // J. Electrochem. Soc. - 2018. - Vol. 165, no. 14. -P. E826-E831.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.