Теоретическое моделирование теплопроводности материалов (Theoretical Simulations of Thermal Conductivity of Materials) тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Зераати Маджид

  • Зераати Маджид
  • кандидат науккандидат наук
  • 2025, «Сколковский институт науки и технологий»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 170
Зераати Маджид. Теоретическое моделирование теплопроводности материалов (Theoretical Simulations of Thermal Conductivity of Materials): дис. кандидат наук: 00.00.00 - Другие cпециальности. «Сколковский институт науки и технологий». 2025. 170 с.

Оглавление диссертации кандидат наук Зераати Маджид

Contents

Page

Introduction

Chapter 1. Background

1.1 Introduction of thermal conductivity

1.1.1 Why is it essential to study thermal conductivity?

1.2 Thermal barrier coatings: an overview

1.2.1 Introduction and history

1.2.2 Experimental aspects of thermal barrier coatings

1.2.3 Limitations of traditional materials

1.2.4 Future directions

Chapter 2. Density Functional Theory and Machine Learning

Potentials

2.1 Density functional theory

2.1.1 Schrodinger equation

2.1.2 Born-Oppenheimer approximation

2.1.3 Hartree-Fock approximation

2.1.4 Density functional theory

2.1.5 Hellmann-Feynman theorem

2.2 Machine learning interatomic potentials

2.2.1 Essential concepts of machine learning interatomic potentials

2.2.2 Data collection

2.2.3 Descriptors

2.2.4 Moment tensor potentials and active learning

2.2.5 Neuroevolution machine learning potentials (NEP)

Chapter 3. Methods for Computing Thermal Conductivity and

Related Properties

3.1 Phononic thermal conductivity

3.2 Phonon

3.3 Lattice dynamics and the dynamical matrix

Page

3.4 Quantum theory of lattice vibrations

3.5 Phononic specific heat

3.6 Boltzmann transport equation

3.6.1 Variational principle

3.6.2 Relaxation time approximation (RTA)

3.7 Solving Boltzmann transport equation

3.7.1 Intrinsic scattering processes (three-phonon processes)

3.8 Effective harmonic model (EHM)

3.9 Equilibrium molecular dynamics (EMD)

3.10 Homogeneous non-equilibrium molecular dynamics (HNEMD)

3.10.1 Derivations based on linear-response theory for general many-body potentials

3.10.2 Equation of motion in HNEMD

3.10.3 Quantum correction of thermal conductivity in HNEMD

3.11 Thermal expansion coefficient (TEC)

3.12 Path-Integral Molecular Dynamics in GPUMD

3.13 Elastic constants and mechanical properties

Chapter 4. High-Throughput Screening for Thermal Barrier

Coatings

4.1 Overview of high-throughput screening

4.2 Materials-Space exploration using machine learning

4.2.1 Advantages

4.2.2 Challenges

4.3 Accelerating thermal conductivity simulations

4.3.1 Computational methods

4.3.2 Advantages

4.3.3 Challenges

4.4 Conclusion

Chapter 5. Searching for Promising Materials for Thermal

Barrier Coatings I

5.1 Machine learning potentials

5.2 Comparison of methods for computing thermal conductivity

Page

5.3 Results for thermal conductivity

5.4 Results for thermal expansion coefficient

5.5 Mechanical properties of promising materials

5.6 Some practical aspects

Chapter 6. Searching for Promising Materials for Thermal

Barrier Coatings II

6.1 Machine learning potentials

6.2 Results for thermal expansion coefficient

6.3 Results for thermal conductivity

6.3.1 The effect of disorder on thermal conductivity

6.4 Elastic constants and mechanical properties

6.5 Selecting materials for TBC application

6.6 Conclusions

Chapter 7. Gehlenite as a Potential Material for Thermal Barrier

Coatings

7.1 Theoretical results

7.2 Sample preparation

7.3 Thermal cycling tests of deposited gehlenite samples

7.4 Concluding remarks for gehlenite

Conclusions

Acknowledgments

List of symbols and abbreviations

Bibliography

List of Figures

List of Tables

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Теоретическое моделирование теплопроводности материалов (Theoretical Simulations of Thermal Conductivity of Materials)»

Introduction

Relevance of the work. Since thermal barrier coatings (TBCs) are vital components in the aerospace, energy, and high-temperature-related industries. Serving as protective layers on the surfaces of components made of metals, ceramics, or composites, these coatings prevent damages caused by high temperatures and heat transfer to other parts of the system. With the increasing demand for performance and durability in high-temperature conditions, the importance of developing and optimizing thermal barrier coatings has grown significantly.

Currently, the main material used for TBCs is yttria stabilized zirconia (YSZ), due to its stability at high temperatures, oxidation, erosion and corrosion resistance, and desirable thermophysical properties. YSZ is a ceramic material composed of zirconia (ZrO2) with 6-8 wt.% yttria (Y2O3). Its low thermal conductivity 2 W/(m.K) at 1273 K), a high linear TEC (11x10-6 K-1 at 293-1273 K), good thermal shock resistance, and excellent chemical stability make it an ideal choice for TBCs [1]. The disadvantages of these coatings include phase transition at 1150-1200 °C and high oxygen conductivity limiting the number of thermal cycles and operating temperature at 1200 °C for YSZ.

During the 2000s, calcium magnesium aluminosilicates (CMAS) were utilized in high-temperature testing with YSZ coatings [2]. These silicates do not withstand temperatures greater than 1200 °C, infiltrate the TGO and fracture the TBC, and therefore, it experiences detachment and fails when the ceramic cools [3; 4].

Finding new materials for TBCs is crucial. New materials with features such as low heat transfer capability, suitably high TEC, high phase, and thermal, mechanical, and chemical stability in dusty air could improve the performance and efficiency of these coatings. Additionally, developing materials with lower weight and better thermophysical properties can reduce the overall weight of gas turbines and enhance the efficiency and application of thermal coatings. These materials can also provide higher resistance to mechanical damage from impact, pressure, and vibrations, leading to a decrease in failures and an increase in the useful life of components. Furthermore, considering different environmental conditions, new materials with greater resistance to oxidation can extend the useful life of the coating. Therefore, research and development in finding new materials for thermal barrier

coatings are of great importance and can contribute to improving the performance and durability of systems utilizing these coatings.

Dissertation goals. This research aims is devoted to investigation into the thermal conductivity and mechanical properties of various materials, aimed at identifying promising candidates for TBCs in high-temperature applications. Using advanced computational techniques, including molecular dynamics simulations, the Boltzmann transport equation, and machine learning potentials.

Scientific novelty. The scientific novelty is built up from the following results:

1. We implemented a reliable high-throughput screening for TBCs. This method included several important properties of TBCs.

2. For the first time, we identified several materials that stand out for their potential as TBCs.

Theoretical and practical significance. This innovative approach has the potential to greatly advance the theoretical study of TBCs. The results obtained are closely aligned with the pressing challenges associated with the development of new TBC materials that exhibit exceptional performance, as discussed in the dissertation.

Research methodology. To achieve the aforementioned goals, the methodology and methods of the present research were identified and the dissertation work was aimed at solving the following tasks, which correspond to the main dissertation chapters:

1. Comparison of currently thermal barrier coating materials with YSZ and highlights the advantages and disadvantages of them;

2. The selection of the proper high-throughput screening methods for thermal barrier coatings;

3. Comparison of methods for computing thermal conductivity and related properties;

4. Training machine learning interatomic potentials for candidate materials;

5. Using advanced computational techniques based on the CPU and GPU packages to calculate thermophysical properties such as thermal conductivity, thermal expansion, elastic properties, etc.;

6. Validation of theoretical methods with available experimental data.

7. Employ specific selection criteria to narrow down the list of candidate materials;

8. Validate our finding candidates in experiment, like as gehlenite.

Propositions for defense.

1. Comparison of methods for computing thermal conductivity. To analyze our theoretical methods for thermal conductivity, the author compared different computational methods and related physics. Specifically, the author focused on La2Zr2O7, Mg3Àl2(SiO4)3, ZrSiO4, and BaZrO3, and compared results of different methods with experimental data. These materials have been well-studied theoretically and experimentally with reliable results.

2. For the first time, the author identified several materials that stand out for their potential as TBCs.

3. The author examined gehlenite, Ca2Al2SiO7 as a possible TBCs candidate. From his results it is clear that gehlenite could be a potential component for improved TBCs. There are several possible avenues. First, it can be used as the second (top) layer in the preparation of TBCs. Second, it can be used as a component of promising TBC composite systems providing high porosity of the ceramics and, therefore, low thermal conductivity.

Validation of the research results, reliability. The dissertation work was performed at the high scientific level. The reliability of the results is ensured by the use of a wide range of experimental data against simulations. Through this study, we identified several materials that stand out for their potential as TBCs.

The statements and conclusions formulated in the dissertation have received qualified approbation at international scientific conferences. The credibility is also confirmed by the publication of research results in peer-reviewed scientific journals.

The main results of the dissertation were reported at the following scientific conferences:

1. Majid Zeraati, Artem R. Oganov; "Strongly Anharmonic Phonons in Pyrope"; Recent Progress in Thermal Transport Theory and Experiments, ICTP, Italy, (2022) (Best Poster).

2. Majid Zeraati, Artem R. Oganov; "Calculation of Thermal Conductivity of Materials from First Principles"; Thermal Management Workshop, Minsk, Belarus, (2023).

3. Majid Zeraati, Artem R. Oganov; "Searching for low thermal conductivity materials for thermal barrier coatings"; 1st Open BRICS Conference on Smart Materials and Devices 2024, Shenzhen, China, (2024) (Best Student Talk).

The materials of the dissertation are fully presented in the two published works in the peer-reviewed journals.

Dissertation structure. The dissertation consists of an introduction, 6 chapters, and a conclusion. The dissertation is 170 pages long, including 43 figures, and 18 tables. The list of references contains 210 titles.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Заключение диссертации по теме «Другие cпециальности», Зераати Маджид

Conclusion

In conclusion, this study presents a thorough investigation into the thermal conductivity and mechanical properties of various materials, aimed at identifying promising candidates for TBCs in high-temperature applications. Using advanced computational techniques, including molecular dynamics simulations, the Boltz-mann transport equation, and machine learning potentials, we calculated the thermal conductivity of several candidate materials up to 1500 K. By analyzing the temperature dependence of these materials and factoring in anharmonic effects, we found that the behavior of thermal conductivity at high temperatures deviates from the commonly assumed inverse proportionality to temperature. Our methodology, validated against experimental data, allowed us to identify materials that exhibit the most desirable properties for use in TBCs.

One of the primary goals of this study was to determine materials with low thermal conductivity, high thermal expansion coefficients, and suitable mechanical properties, including fracture toughness and elastic modulus. To systematically narrow down the list of candidate materials, we employed specific selection criteria. First, we set a thermal conductivity threshold of 2 W/(m-K) at 1000 K. Next, we applied a range of (3.0 — 5.0) x 10-5 K-1 for average volumetric thermal expansion coefficients from 700 K to 1300 K. These thresholds allowed us to eliminate materials that did not meet the required thermal performance standards. We also applied Pugh's ratio, a measure of ductility, with a maximum limit of 0.57 to ensure that selected materials exhibit sufficient mechanical resilience. Fracture toughness values greater than 1 MPa-m1/2 were another essential criterion, as this property is vital for withstanding high-stress environments, particularly in the presence of erosion and other mechanical stresses.

Through this rigorous selection process, we identified several materials that stand out for their potential as TBCs. These materials presented in Table 18.

These materials were selected based on their low thermal conductivity at high temperatures, thermal expansion coefficients within the specified range, and mechanical properties that ensure durability under harsh operating conditions. Additionally, many of these materials exhibited high resistance to CMAS corrosion, which is a critical factor in the degradation of traditional TBCs.

Table 18 — Thermal conductivity (at T = 1500 K), volumetric thermal expansion (at T = 1500 K), Pugh's ratio, and fracture toughness of selected materials for TBCs application.

Thermal TEC Pugh's Fracture

Compound (structure) conductivity 10-5 toughness

[W/(m-K)j [K-1] Ratio [MPa-m1/2]

Perovskite

CaZrO3* (perovskite) 1.62±0.09 4.16 0.53 1.72

SrBa2MgNb2Ogt (trigonal double perovskite) 1.43±0.08 4.20 0.53 1.31

Ba3YTiTaOg* (trigonal double perovskite) 1.37±0.07 3.80 0.54 1.29

Ba2YNbO6 (double perovskite) 1.36±0.07 3.85 0.54 1.26

Ba2YTaO6 (double perovskite) 1.32±0.08 3.50 0.57 1.27

Sr3LaTa3O12 (layered perovskite) 1.10±0.10 4.87 0.49 1.09

BaLaMgNbO6 (double perovskite) 1.14±0.09 5.40 0.48 0.75

BaLaMgTaO6 (double perovskite) 1.11±0.10 5.16 0.26 1.61

Ba3LaTa3Oi2 (layered perovskite) 0.84±0.09 3.10 0.57 1.08

Garnet

Gd3Sc3Al3O12 (garnet) 1.58±0.05 3.69 0.51 1.44

Ca2YZr2Àl3Oi2 (garnet) 1.41±0.05 3.66 0.50 1.21

Sr3Y2Ge3O12 (garnet) 1.30±0.08 3.58 0.44 0.92

Gd3Ga5Oi2 (garnet) 1.16±0.08 4.43 0.48 1.37

Ca3Y2Ge3Oi2 (garnet) 1.16±0.06 3.68 0.43 0.88

Gd3Sc2Ga3O12 (garnet) 1.00±0.07 7.29 0.43 0.84

Pyrochlore

Y2Ti2O7 (cubic pyrochlore) 1.76±0.05 3.56 0.49 2.27

Gd2Ti2O7 (cubic pyrochlore) 1.41±0.07 4.27 0.50 1.69

La3Mg2Ta3Oi4* (trigonal ordered pyrochlore) 1.32±0.04 3.15 0.54 1.56

La3Mg2Nb3Oi4^ (trigonal ordered pyrochlore) 1.27±0.07 3.35 0.50 1.49

La3Ca2Nb3Oi4 (trigonal ordered pyrochlore) 1.24±0.06 3.40 0.51 1.32

Gd2Zr2O7 (cubic pyrochlore) 1.19±0.07 3.98 0.50 1.64

Gd2Hf2O7 (cubic pyrochlore) 1.00±0.05 3.05 0.55 1.70

Others

CaLaAl3O7 (melilite) 1.46±0.16 3.25 0.47 1.03

Ba6Ti2NbsO30 (tetragonal tungsten bronze) 1.12±0.10 5.43 0.46 0.85

Y4Ca(SiO4)3O (apatite) 1.04±0.05 4.02 0.43 0.88

Gd2AlTaO7* (weberite) 1.19±0.09 4.69 0.43 0.79

La3TaO7 (distorted weberite) 1.08±0.07 4.11 0.50 1.13

8% YSZ (Exp. at t = 1000 K) -2.0 [131] -3.21 [160] - 1.49 [209]

8% YSZ (Theory. at t = 1000 K) 2.24±0.13 4.06

10% YSZ (Exp.) [210] 1.9 <100> 1.1 <110>

t Hypothetical compounds.

* Known compound, hypothetical compounds.

* Has phase transition to cubic perovskite at 2023 K.

Among the materials evaluated, gehlenite (Ca2Al2SiO7) emerged as a particularly promising candidate due to its excellent thermal and mechanical properties. Its low thermal conductivity, high thermal expansion coefficient, and resistance to CMAS corrosion make it an attractive alternative to conventional YSZ. While gehlenite requires a protective YSZ layer to prevent reactions with metal substrates, it has demonstrated exceptional potential as a top layer in multilayer TBC systems. Additionally, solid solutions within the gehlenite-akermanite series and other structural analogs offer pathways for further optimizing the properties of TBC materials.

The overall contribution of this research lies in the identification of these promising materials and the establishment of a robust methodology for evaluating their suitability for TBC applications. By combining advanced computational techniques with stringent selection criteria, we were able to pinpoint materials that exhibit superior performance in terms of thermal conductivity, thermal expansion, and mechanical resilience. These findings contribute to ongoing efforts to improve the efficiency and durability of thermal barrier coatings, paving the way for more reliable high-temperature materials in industrial applications.

Future work should focus on experimental validation of the selected materials, particularly in real-world operating environments. Such validation will be critical for transitioning these materials from theoretical candidates to practical, deployable solutions in aerospace, power generation, and other high-temperature industries. Additionally, further exploration of composite systems and the fine-tuning of material properties through solid solutions and structural modifications could lead to even more advanced TBCs capable of withstanding the extreme conditions encountered in modern technological applications.

Список литературы диссертационного исследования кандидат наук Зераати Маджид, 2025 год

Bibliography

1. Overview on Double Ceramic Layer Thermal Barrier Coatings / L. L. Huang [et al.] // Advanced Materials Research. — 2014. — Vol. 1053. — P. 364—372.

2. Gildersleeve, E. Molten silicate interactions with plasma sprayed thermal barrier coatings: Role of materials and microstructure / E. Gildersleeve, V. Viswanathan, S. Sampath // Journal of the European Ceramic Society. — 2019. — Vol. 39, no. 6. — P. 2122—2131.

3. Poerschke, D. L. Silicate Deposit Degradation of Engineered Coatings in Gas Turbines: Progress Toward Models and Materials Solutions / D. L. Poerschke, R. W. Jackson, C. G. Levi // Annual Review of Materials Research. — 2017. — Vol. 47, no. 1. — P. 297—330.

4. Vargas-Bernal, R. Advances in Low Thermal Conductivity Materials for Thermal Barrier Coatings / R. Vargas-Bernal, B. Bermudez-Reyes //. — 2021. — P. 88—111.

5. Ghosh, S. Thermal Barrier Ceramic Coatings — A Review / S. Ghosh // Advanced Ceramic Processing. — InTech, 2015.

6. A Perspective on Thermally Sprayed Thermal Barrier Coatings: Current Status and Trends / R. VaBen [et al.] // Journal of Thermal Spray Technology. — 2022. — Vol. 31, no. 4. — P. 685—698.

7. Padture, N. P. Thermal Barrier Coatings for Gas-Turbine Engine Applications / N. P. Padture, M. Gell, E. H. Jordan // Science. — 2002. — Vol. 296, no. 5566. — P. 280—284.

8. Integrated Approach for the Development of Advanced, Coated Gas Turbine Blades / R. Herzog [et al.] // Advanced Engineering Materials. — 2006. — Vol. 8, no. 6. — P. 535—562.

9. Clarke, D. R. Thermal-barrier coatings for more efficient gas-turbine engines / D. R. Clarke, M. Oechsner, N. P. Padture // MRS Bulletin. — 2012. — Vol. 37, no. 10. — P. 891—898.

10. The 2016 Thermal Spray Roadmap / A. Vardelle [et al.] // Journal of Thermal Spray Technology. — 2016. — Vol. 25, no. 8. — P. 1376—1440.

11. Miller, R. A. History of Thermal Barrier Coatings for Gas Turbine Engines: Emphasizing NASA's Role from 1942 to 1990 / R. A. Miller // Thermal Barrier Coatings II, Engineering Conference International. — 2009.

12. Enhancing the performances of EB-PVD TBCs via overlayer Al-modifica-tion / H. Dong [et al.] // Surface and Coatings Technology. — 2023. — Vol. 473. — P. 130001.

13. Optimization of Segmented Thermal Barrier Coatings (s-TBCs) for High-Temperature Applications / B. A. Yalcinyüz [et al.] // Journal of Thermal Spray Technology. — 2023. — Vol. 32, no. 8. — P. 2636—2646.

14. Advances on strategies for searching for next generation thermal barrier coating materials / B. Liu [et al.] // Journal of Materials Science & Technology. — 2019. — Vol. 35, no. 5. — P. 833—851.

15. Thermal Barrier Coatings: Current Status, Search, and Analysis / S. M. Lak-iza [et al.] // Powder Metallurgy and Metal Ceramics. — 2018. — Vol. 57, no. 1/2. — P. 82—113.

16. Overview on advanced thermal barrier coatings / R. Vaßen [et al.] // Surface and Coatings Technology. — 2010. — Vol. 205, no. 4. — P. 938—942.

17. New Generation Perovskite Thermal Barrier Coating Materials / W. Ma [et al.] // Journal of Thermal Spray Technology. — 2008. — Vol. 17, no. 5/6. — P. 831—837.

18. High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites / A. van Roekeghem [et al.] // Physical Review X. — 2016. — Vol. 6, no. 4. — P. 041061.

19. Machine learning approaches to identify and design low thermal conductivity oxides for thermoelectric applications / A. Tewari [et al.] // Data-Centric Engineering. — 2020. — Vol. 1, no. 6. — e8.

20. Feynman, R. Forces in Molecules / R. Feynman // Physical Review. — 1939. — Vol. 56, no. 4. — P. 340—343.

21. Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization / A. Seko [et al.] // Physical Review Letters. — 2015. — Vol. 115, no. 20. — P. 205901.

22. Machine learning models for the lattice thermal conductivity prediction of inorganic materials / L. Chen [et al.] // Computational Materials Science. — 2019. — Vol. 170. — P. 109155.

23. Machine-learning-based interatomic potential for phonon transport in perfect crystalline Si and crystalline Si with vacancies / H. Babaei [et al.] // Physical Review Materials. — 2019. — Vol. 3, no. 7. — P. 074603.

24. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation / A. Jain [et al.] // APL Materials. — 2013. — Vol. 1, no. 1.

25. AFLOW: An automatic framework for high-throughput materials discovery / S. Curtarolo [et al.] // Computational Materials Science. — 2012. — Vol. 58. — P. 218—226.

26. AiiDA: automated interactive infrastructure and database for computational science / G. Pizzi [et al.] // Computational Materials Science. — 2016. — Vol. 111. — P. 218—230.

27. Draxl, C. The NOMAD laboratory: from data sharing to artificial intelligence / C. Draxl, M. Scheffler // Journal of Physics: Materials. — 2019. — Vol. 2, no. 3. — P. 036001.

28. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) / J. E. Saal [et al.] // The Minerals, Metals & Materials Society. — 2013. — Vol. 65, no. 11. — P. 1501—1509.

29. Accelerated search for materials with targeted properties by adaptive design / D.Xue [et al.] // Nature Communications. — 2016. — Vol. 7, no. 1. —P. 11241.

30. Podryabinkin, E. V. Active learning of linearly parametrized interatomic potentials / E. V. Podryabinkin, A. V. Shapeev // Computational Materials Science. — 2017. — Vol. 140. — P. 171—180.

31. Metadynamics Simulations of the High-Pressure Phases of Silicon Employing a High-Dimensional Neural Network Potential / J. Behler [et al.] // Physical Review Letters. — 2008. — Vol. 100, no. 18. — P. 185501.

32. Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water / M. Yang [et al.] // Catalysis Today. — 2022. — Vol. 387, November 2020. — P. 143—149.

33. Machine learning metadynamics simulation of reconstructive phase transition / Q. Tong [et al.] // Physical Review B. — 2021. — Vol. 103, no. 5. — P. 054107.

34. Behler, J. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces / J. Behler, M. Parrinello // Physical Review Letters. — 2007. — Vol. 98, no. 14. — P. 146401.

35. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials / A. Thompson [et al.] // Journal of Computational Physics. — 2015. — Vol. 285. — P. 316—330.

36. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons / A. P. Bartok [et al.] // Physical Review Letters. — 2010. — Vol. 104, no. 13. — P. 136403.

37. Shapeev, A. V. Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials / A. V. Shapeev // Multiscale Modeling & Simulation. — 2016. — Vol. 14, no. 3. — P. 1153—1173.

38. Behler, J. Representing potential energy surfaces by high-dimensional neural network potentials / J. Behler // Journal of Physics: Condensed Matter. — 2014. — Vol. 26, no. 18. — P. 183001.

39. Drautz, R. Atomic cluster expansion for accurate and transferable interatomic potentials / R. Drautz // Physical Review B. — 2019. — Vol. 99, no. 1. — P. 014104.

40. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics / L. Zhang [et al.] // Physical Review Letters. — 2018. — Vol. 120, no. 14. — P. 143001.

41. Gubaev, K. Machine learning of molecular properties: Locality and active learning / K. Gubaev, E. V. Podryabinkin, A. V. Shapeev // Journal of Chemical Physics. — 2018. — Vol. 148, no. 24.

42. The MLIP package: moment tensor potentials with MPI and active learning / I. S. Novikov [et al.] // Machine Learning: Science and Technology. — 2021. — Vol. 2, no. 2. — P. 025002.

43. Moment tensor potentials as a promising tool to study diffusion processes / I. Novoselov [et al.] // Computational Materials Science. — 2019. — Vol. 164, March. — P. 46—56.

44. Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport / Z. Fan [et al.] // Physical Review B. — 2021. — Vol. 104, no. 10. — P. 104309.

45. Natural Evolution Strategies / D. Wierstra [et al.] // Journal of Machine Learning Research. — 2014. — Vol. 15, no. 27. — P. 949—980. — URL: http: //jmlr.org/papers/v15/wierstra14a.html.

46. Schaul, T. High dimensions and heavy tails for natural evolution strategies / T. Schaul, T. Glasmachers, J. Schmidhuber // Proceedings of the 13th annual conference on Genetic and evolutionary computation. — New York, NY, USA : ACM, 2011. — P. 845—852.

47. Efficient molecular dynamics simulations with many-body potentials on graphics processing units / Z. Fan [et al.] // Computer Physics Communications. — 2017. — Vol. 218. — P. 10—16.

48. GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations / Z. Fan [et al.] // The Journal of Chemical Physics. — 2022. — Vol. 157, no. 11. — P. 114801.

49. Fan, Z. Improving the accuracy of the neuroevolution machine learning potential for multi-component systems / Z. Fan // Journal of Physics: Condensed Matter. — 2022. — Vol. 34, no. 12. — P. 125902.

50. General-purpose machine-learned potential for 16 elemental metals and their alloys / K. Song [et al.]. — 2023.

51. Ziman, J. M. Electrons and phonons: the theory of transport phenomena in solids / J. M. Ziman. — Oxford University Press, 2001.

52. Green, M. S. Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids / M. S. Green // The Journal of Chemical Physics. — 1954. — Vol. 22, no. 3. — P. 398—413.

53. Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance / R. Kubo, M. Yokota, S. Nakajima // Journal of the Physical Society of Japan. — 1957. — Vol. 12, no. 11. — P. 1203—1211.

54. Peierls, R. On the kinetic theory of thermal conduction in crystals / R. Peierls // Ann. Phys. — 1929. — Vol. 395, no. 8. — P. 1055—1101.

55. Omini, M. An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity / M. Omini, A. Sparavigna // Physica B: Condensed Matter. — 1995. — Vol. 212, no. 2. — P. 101—112.

56. Omini, M. Beyond the isotropic-model approximation in the theory of thermal conductivity / M. Omini, A. Sparavigna // Physical Review B. — 1996. — Vol. 53, no. 14. — P. 9064—9073.

57. Born, M. Zur Quantentheorie der Molekeln / M. Born, R. Oppenheimer // Annalen der Physik. — 1927. — Vol. 389, no. 20. — P. 457—484.

58. Born, M. Huang Dynamical theory of crystal lattices / M. Born. — 1954.

59. Hoover, W. G. Nonequilibrium molecular dynamics / W. G. Hoover, W. T. Ashurst //. Vol. 1. — Academic, New York, 1975. — P. 1—51.

60. Ikeshoji, T. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface / T. Ikeshoji, B. Hafskjold // Molecular Physics. — 1994. — Vol. 81, no. 2. — P. 251—261.

61. Jund, P. Molecular-dynamics calculation of the thermal conductivity of vitreous silica / P. Jund, R. Jullien // Physical Review B. — 1999. — Vol. 59, no. 21. — P. 13707—13711.

62. Broido, D. A. Lattice thermal conductivity of silicon from empirical interatomic potentials / D. A. Broido, A. Ward, N. Mingo // Physical Review B. — 2005. — Vol. 72, no. 1. — P. 014308.

63. ShengBTE: A solver of the Boltzmann transport equation for phonons / W. Li [et al.] // Computer Physics Communications. — 2014. — Vol. 185, no. 6. — P. 1747—1758.

64. Clarke, D. R. Materials selection guidelines for low thermal conductivity thermal barrier coatings / D. R. Clarke // Surface and Coatings Technology. — 2003. — Vol. 163/164. — P. 67—74.

65. Morelli, D. T. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors / D. T. Morelli, J. P. Heremans, G. A. Slack // Physical Review B. — 2002. — Vol. 66, no. 19. — P. 195304.

66. Fan, T. AICON2: A program for calculating transport properties quickly and accurately / T. Fan, A. R. Oganov // Computer Physics Communications. — 2021. — Vol. 266. — P. 108027.

67. Slack, G. Nonmetallic crystals with high thermal conductivity / G. Slack // Journal of Physics and Chemistry of Solids. — 1973. — Vol. 34, no. 2. — P. 321—335.

68. Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications / J. Yang [et al.] // Journal of the European Ceramic Society. — 2016. — Vol. 36, no. 15. — P. 3809—3814.

69. Mechanical and thermal properties of RETaO4 (RE=Yb,Lu,Sc) ceramics with monoclinic-prime phase / L. Chen [et al.] // Journal of Materials Science & Technology. — 2020. — Vol. 52. — P. 20—28.

70. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE=Tb,Dy,Ho,Er,Tm,Yb,Lu, and Y) for environmental and thermal barrier coating applications / Z. Tian [et al.] // Journal of the European Ceramic Society. — 2016. — Vol. 36, no. 1. — P. 189—202.

71. Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4 / S. Mukhopadhyay [et al.] // Science. — 2018. — Vol. 360, no. 6396. — P. 1455—1458.

72. Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach / L. Isaeva [et al.] // Nature Communications. — 2019. — Vol. 10, no. 1. — P. 3853.

73. Simoncelli, M. Unified theory of thermal transport in crystals and glasses / M. Simoncelli, N. Marzari, F. Mauri // Nature Physics. — 2019. — Vol. 15, no. 8. — P. 809—813.

74. Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals / Y. Luo [et al.] // Nature communications. — 2020. — Vol. 11, no. 1. — P. 2554.

75. Entropy Driven Stabilization of Energetically Unstable Crystal Structures Explained from First Principles Theory / P. Souvatzis [et al.] // Phys. Rev. Lett. — 2008. — Vol. 100, issue 9. — P. 095901.

76. Hellman, O. Lattice dynamics of anharmonic solids from first principles / O. Hellman, I. A. Abrikosov, S. I. Simak // Physical Review B. — 2011. — Vol. 84, no. 18. — 180301(R).

77. Eriksson, F. The Hiphive Package for the Extraction of High-Order Force Constants by Machine Learning / F. Eriksson, E. Fransson, P. Erhart // Advanced Theory and Simulations. — 2019. — Vol. 2, no. 5. — P. 1800184.

78. Fransson, E. Efficient construction of linear models in materials modeling and applications to force constant expansions / E. Fransson, F. Eriksson, P. Erhart // npj Computational Materials. — 2020. — Vol. 6, no. 1. — P. 135.

79. McQuarrie, D. Statistical mechanics. Univ / D. McQuarrie, D. Allan // Sci. Books, Sausalito, CA. — 2000.

80. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations / Z. Fan [et al.] // Physical Review B - Condensed Matter and Materials Physics. — 2015. — Vol. 92, no. 9.

81. Homogeneous nonequilibrium molecular dynamics method for heat transport and spectral decomposition with many-body potentials / Z. Fan [et al.] // Physical Review B. — 2019. — Vol. 99, no. 6. — P. 064308.

82. Efficient Calculation of the Lattice Thermal Conductivity by Atomistic Simulations with Ab Initio Accuracy / J. Brorsson [et al.] // Advanced Theory and Simulations. — 2022. — Vol. 5, no. 2. — P. 2100217.

83. Evans, D. J. Homogeneous NEMD algorithm for thermal conductivity—Application of non-canonical linear response theory / D. J. Evans // Physics Letters A. — 1982. — Vol. 91, no. 9. — P. 457—460.

84. Evans, D. J. Statistical Mechanics of Nonequilibrium Liquids / D. J. Evans, G. P. Morriss. — Academic, New York, 1990.

85. Tuckerman, M. E. Statistical Mechanics: Theory and Molecular Simulation / M. E. Tuckerman. — Oxford University Press, Oxford, 2010.

86. Vibrational mean free paths and thermal conductivity of amorphous silicon from non-equilibrium molecular dynamics simulations / K. Saaskilahti [et al.] // AIP Advances. — 2016. — Vol. 6, no. 12.

87. Quantum-corrected thickness-dependent thermal conductivity in amorphous silicon predicted by machine learning molecular dynamics simulations / Y. Wang [et al.] // Physical Review B. — 2023. — Vol. 107, no. 5. — P. 054303.

88. Mechanisms of temperature-dependent thermal transport in amorphous silica from machine-learning molecular dynamics / T. Liang [et al.] // Physical Review B. — 2023. — Vol. 108, no. 18. — P. 184203.

89. Accurate prediction of heat conductivity of water by a neuroevolution potential / K. Xu [et al.] // The Journal of Chemical Physics. — 2023. — Vol. 158, no. 20. — P. 204114.

90. Ho, C. Y. Thermal expansion of solids. Vol. 4 / C. Y. Ho, R. E. Taylor. — ASM international, 1998.

91. Wallace, D. Thermodynamics of Crystals / D. Wallace. — Wiley, 1972.

92. Carrier, P. First-principles prediction of crystal structures at high temperatures using the quasiharmonic approximation / P. Carrier, R. Wentzcovitch, J. Tsuchiya // Physcal Review. B. — 2007. — Vol. 76, no. 6. — P. 064116.

93. Efficient stochastic thermostatting of path integral molecular dynamics / M. Ceriotti [et al.] // The Journal of Chemical Physics. — 2010. — Vol. 133, no. 12. — P. 124104.

94. Feynman, R. P. Quantum mechanics and path integrals / R. P. Feynman, A. R. Hibbs. — McGraw-Hill, 1965.

95. Parrinello, M. Study of an F center in molten KCl / M. Parrinello, A. Rahman // The Journal of Chemical Physics. — 1984. — Vol. 80, no. 2. — P. 860—867.

96. Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolution potentials: Case studies on thermal properties of materials / P. Ying [et al.] // The Journal of Chemical Physics. — 2025. — Vol. 162, no. 6.

97. Physical properties of crystals: their representation by tensors and matrices / J. F. Nye [et al.]. — Oxford university press, 1985.

98. Wang, L. Work conjugate pair of stress and strain in molecular dynamics / L. Wang, J. D. Lee, C.-D. Kan // International Journal of Smart and Nano Materials. — 2016. — Vol. 7, no. 3. — P. 144—178.

99. Voigt, W. Lehrbuch der Kristallphysik. Vol. 1 / W. Voigt // Aufl. Teubner. Berlin/Leipzig. — 1928.

100. Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plas-tizitatsbedingung für Einkristalle . / A. Reuss // ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. — 1929. — Vol. 9, no. 1. — P. 49—58.

101. Hill, R. The elastic behaviour of a crystalline aggregate / R. Hill // Proceedings of the Physical Society. Section A. — 1952. — Vol. 65, no. 5. — P. 349—354.

102. Mazhnik, E. A model of hardness and fracture toughness of solids / E. Mazh-nik, A. R. Oganov // Journal of Applied Physics. — 2019. — Vol. 126, no. 12. — P. 125109.

103. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials / K. Gubaev [et al.] // Computational Materials Science. — 2019. — Vol. 156, June 2018. — P. 148—156.

104. Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set / G. Kresse, J. Furthmüller // Physical Review B. — 1996. — Vol. 54, no. 16. — P. 11169.

105. Blochl, P. E. Projector augmented-wave method / P. E. Blochl // Physical Review B. — 1994. — Vol. 50, no. 24. — P. 17953—17979.

106. Perdew, J. P. Generalized gradient approximation made simple / J. P. Perdew, K. Burke, M. Ernzerhof // Physical Review Letter. — 1996. — Vol. 77, no. 18. — P. 3865.

107. Monkhorst, H. J. Special points for Brillouin-zone integrations / H. J. Monkhorst, J. D. Pack // Physical Review B. — 1976. — Vol. 13, no. 12. — P. 5188.

108. Parrinello, M. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study / M. Parrinello, A. Rahman // Physical Review Letters. — 1980. — Vol. 45, no. 14. — P. 1196—1199.

109. Parrinello, M. Polymorphic transitions in single crystals: A new molecular dynamics method / M. Parrinello, A. Rahman // Journal of Applied Physics. — 1981. — Vol. 52, no. 12. — P. 7182—7190.

110. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales / A. P. Thompson [et al.] // Comp. Phys. Comm. — 2022. — Vol. 271. — P. 108171.

111. Togo, A. First-principles calculations of the ferroelastic transition between rutile-type and CaCl 2-type SiO 2 at high pressures / A. Togo, F. Oba, I. Tanaka // Physical Review B. — 2008. — Vol. 78, no. 13. — P. 134106.

112. Zirconates as New Materials for Thermal Barrier Coatings / R. Vassen [et al.] // Journal of the American Ceramic Society. — 2004. — Vol. 83, no. 8. — P. 2023—2028.

113. EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs / B. Saruhan [et al.] // Surface and Coatings Technology. — 2004. — Vol. 182, no. 2/3. — P. 175—183.

114. Lanthanum zirconate based thermal barrier coatings: A review / J. Zhang [et al.] // Surface and Coatings Technology. — 2017. — Vol. 323. — P. 18—29.

115. Simoncelli, M. Wigner Formulation of Thermal Transport in Solids / M. Simoncelli, N. Marzari, F. Mauri // Physical Review X. — 2022. — Vol. 12, no. 4. — P. 041011.

116. Bonding and dynamics of Mg in pyrope: a theoretical investigation / B. Winkler [et al.] // American Mineralogist. — 2000. — Vol. 85, no. 3/4. — P. 608—612.

117. Thermodynamic and elastic properties of pyrope at high pressure and high temperature by first-principles calculations / Y. Hu [et al.] // Journal of Geophysical Research: Solid Earth. — 2016. — Vol. 121, no. 9. — P. 6462—6476.

118. Anharmonic motions versus dynamic disorder at the Mg ion from the charge densities in pyrope (Mg3Al2Si3O12) crystals at 30 K: six of one, half a dozen of the other / R. Destro [et al.] // Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials. — 2017. — Vol. 73, no. 4. — P. 722—736.

119. Broadband dielectric response of Ba(Zr,Ti)O3 ceramics: From incipient via re-laxor and diffuse up to classical ferroelectric behavior / D. Nuzhnyy [et al.] // Physical Review B. — 2012. — Vol. 86, no. 1. — P. 014106.

120. Theoretical and experimental investigations on high temperature mechanical and thermal properties of BaZrO3 / Y. Liu [et al.] // Ceramics International. — 2018. — Vol. 44, no. 14. — P. 16475—16482.

121. Thermochemical and thermophysical properties of alkaline-earth perovskites / S. Yamanaka [et al.] // Journal of Nuclear Materials. — 2005. — Vol. 344, no. 1—3. — P. 61—66.

122. Mechanical and thermal properties of ZrSiO4 / F. Nakamori [et al.] // Journal of Nuclear Science and Technology. — 2017. — Vol. 54, no. 11. — P. 1267—1273.

123. Anharmonicity-induced phonon hardening and phonon transport enhancement in crystalline perovskite BaZrO3 / J. Zheng [et al.] // Physical Review B. — 2022. — Vol. 105, no. 22. — P. 224303.

124. Zhu, T. Mixed phononic and non-phononic transport in hybrid lead halide perovskites: glass-crystal duality, dynamical disorder, and anharmonicity / T. Zhu, E. Ertekin // Energy & Environmental Science. — 2019. — Vol. 12, no. 1. — P. 216—229.

125. Kagome modes, a new route to ultralow thermal conductivity? / D. J. Voneshen [et al.] // arXiv. — 2018.

126. Anharmonicity of the antiferrodistortive soft mode in barium zirconate BaZrO3 / P. Rosander [et al.] // Physical Review B. — 2023. — Vol. 108, no. 1. — P. 014309.

127. Li, W. Thermal conductivity of fully filled skutterudites: Role of the filler / W. Li, N. Mingo // Physical Review B. — 2014. — Vol. 89, no. 18. — P. 184304.

128. Anharmonicity measure for materials / F. Knoop [et al.] // Physical Review Materials. — 2020. — Vol. 4, no. 8. — P. 083809.

129. Evans, D. J. The Nose-Hoover thermostat / D. J. Evans, B. L. Holian // The Journal of Chemical Physics. — 1985. — Vol. 83, no. 8. — P. 4069—4074.

130. Dong, L. Enhanced dielectric and piezoelectric properties of xBaZrO3-(1-x)BaTiO3 ceramics / L. Dong, D. S. Stone, R. S. Lakes // Journal of Applied Physics. — 2012. — Vol. 111, no. 8. — P. 084107.

131. Schlichting, K. W. Thermal conductivity of dense and porous yttria-stabilized zirconia / K. W. Schlichting, N. P. Padture, P. G. Klemens // Journal of Materials Science. — 2001. — Vol. 36, no. 12. — P. 3003—3010.

132. Guan, S.-H. Resolving the Temperature and Composition Dependence of Ion Conductivity for Yttria-Stabilized Zirconia from Machine Learning Simulation / S.-H. Guan, C. Shang, Z.-P. Liu // The Journal of Physical Chemistry C. — 2020. — Vol. 124, no. 28. — P. 15085—15093.

133. Thermophysical properties of rock-like oxide fuel with spinel-yttria stabilized zirconia system / N. Nitani [et al.] // Journal of Nuclear Materials. — 1999. — Vol. 274, no. 1/2. — P. 15—22.

134. Fischer, W. A. Keramische und elektrolytische Eigenschaften von Zirkon-silicat ZrSiO4 bei Temperaturen um 1600 °C / W. A. Fischer, D. Janke, M. Schulenburg // Archiv für das Eisenhüttenwesen. — 1976. — Vol. 47, no. 10. — P. 607—612.

135. Sakihama, J. Microstructure Development in Porous Calcium Hexaluminate and Application as a High-Temperature Thermal Insulator: A Critical Review / J. Sakihama, R. Salomao // Interceram - International Ceramic Review. — 2019. — Vol. 68, S1. — P. 58—65.

136. Vishista, K. Sol-Gel Synthesis and Characterization of Alumina-Calcium Hex-aaluminate Composites / K. Vishista, F. D. Gnanam, H. Awaji // Journal of the American Ceramic Society. — 2005. — Vol. 88, no. 5. — P. 1175—1179.

137. Thieblot, L. High-temperature thermal expansion and decomposition of garnets / L. Thieblot, J. Roux, P. Richet // European Journal of Mineralogy. — 1998. — Vol. 10, no. 1. — P. 7—16.

138. Horai, K.-i. Thermal conductivity of rock-forming minerals / K.-i. Horai // Journal of Geophysical Research. — 1971. — Vol. 76, no. 5. — P. 1278—1308.

139. Characterization of laser crystal Yb:CaYAlO4 / D. Li [et al.] // Journal of the Optical Society of America B. — 2011. — Vol. 28, no. 7. — P. 1650.

140. Absorption and luminescence spectra of Nd3± and Er3± ions in monocrystals of CaYAlO4 / E. F. Kustov [et al.] // Physica Status Solidi (a). — 1977. — Vol. 41, no. 2. — P. 379—383.

141. Omoto, K. Origin of anisotropic thermal expansion in CaYAlO4 / K. Omoto, M. Yashima // Applied Physics Express. — 2014. — Vol. 7, no. 3. — P. 037301.

142. Padture, N. P. Low Thermal Conductivity in Garnets / N. P. Padture, P. G. Klemens // Journal of the American Ceramic Society. — 2005. — Vol. 80, no. 4. — P. 1018—1020.

143. Furuse, H. Thermo-optic properties of ceramic YAG at high temperatures / H. Furuse, R. Yasuhara, K. Hiraga // Optical Materials Express. — 2014. — Vol. 4, no. 9. — P. 1794.

144. Buykx, W. Specific heat, thermal diffusivity and thermal conductivity of syn-roc, perovskite, zirconolite and barium hollandite / W. Buykx // Journal of Nuclear Materials. — 1982. — Vol. 107, no. 1. — P. 78—82.

145. High-temperature crystallographic and thermodynamic investigations on synthetic zirconolite (CaZrTi2O7) / M. Jafar [et al.] // Journal of Thermal Analysis and Calorimetry. — 2018. — Vol. 131, no. 3. — P. 2709—2718.

146. Effect of Ca2+ Substitution on the Structure, Microstructure, and Microwave Dielectric Properties of Sr2Al2SiO7 Ceramic / K. M. Manu [et al.] // Journal of the American Ceramic Society / ed. by X. M. Chen. — 2013. — Vol. 96, no. 12. — P. 3842—3848.

147. Merlini, M. Thermal expansion and phase transitions in akermanite and gehlenite / M. Merlini, M. Gemmi, G. Artioli // Physics and Chemistry of Minerals. — 2005. — Vol. 32, no. 3. — P. 189—196.

148. Temperature Dependence of the Thermal, Electrical Resistivity, Dielectric and Piezoelectric Properties of CaYAl3O7 Crystal / Y. Li [et al.] // Crystals. — 2018. — Vol. 8, no. 1. — P. 34.

149. Thermal Conductivity of the Rare-Earth Strontium Aluminates / C. Wan [et al.] // Journal of the American Ceramic Society. — 2010. — Vol. 93, no. 5. — P. 1457—1460.

150. Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure / J. Feng [et al.] // Acta Materialia. — 2012. — Vol. 60, no. 8. — P. 3380—3392.

151. Diffused Lattice Vibration and Ultralow Thermal Conductivity in the Binary Ln-Nb-O Oxide System / J. Yang [et al.] // Advanced Materials. — 2019. — Vol. 31, no. 24. — P. 1—9.

152. High-temperature properties of titanium-substituted yttrium niobate / A. Mielewczyk-Gryn [et al.] // Journal of Materials Research. — 2019. — Vol. 34, no. 19. — P. 3312—3318.

153. Y4Al2O9 ceramics as a novel thermal barrier coating material for high-temperature applications / X. Zhou [et al.] // Materials Letters. — 2014. — Vol. 134. — P. 146—148.

154. Preparation, mechanical, and thermal properties of a promising thermal barrier material: Y4Al2Og / Y. Zhou [et al.] // Journal of Advanced Ceramics. — 2015. — Vol. 4, no. 2. — P. 94—102.

155. Ma, W. Ceramic thermal barrier coating materials / W. Ma, H. Dong // Thermal Barrier Coatings. — Elsevier, 2011. — P. 25—52.

156. Phase stability, microstructural and thermo-physical properties of BaLn2Ti3O10 (Ln=Nd and Sm) ceramics / L. Guo [et al.] // Ceramics International. — 2013. — Vol. 39, no. 6. — P. 6743—6749.

157. Ruddlesden-Popper structured BaLn2Ti3O10, a highly anisotropic material for thermal barrier coatings / L. Guo [et al.] // Ceramics International. —

2012. — Vol. 38, no. 5. — P. 4345—4352.

158. The structure and thermoelectric properties of tungsten bronze Ba6Ti2Nb8O30 / D. Jiang [et al.] // Journal of Applied Physics. — 2019. — Vol. 126, no. 12. — P. 125115.

159. Crystal growth and properties of CaY4(SiO4)3O, a new laser host for Ho+3 / R. Hopkins [et al.] // Journal of Crystal Growth. — 1971. — Vol. 10, no. 3. — P. 218—222.

160. Vafien, R. Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings / R. VaBen, G. Kerkhoff, D. Stover // Materials Science and Engineering: A. — 2001. — Vol. 303, no. 1/2. — P. 100—109.

161. Cynn, H. Effects of cation disordering in a natural MgAl2O4 spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements / H. Cynn, O. L. Anderson, M. Nicol // Pure and Applied Geophysics PA-GEOPH. — 1993. — Vol. 141, no. 2—4. — P. 415—444.

162. Ganesh, I. A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications / I. Ganesh // International Materials Reviews. —

2013. — Vol. 58, no. 2. — P. 63—112.

163. Iakovleva, A. Study of novel proton conductors for high temperature solid oxide cells : PhD thesis / Iakovleva Anastasia. — Universite Paris-Saclay (Co-mUE), 2015.

164. Influence of Oxygen Partial Pressure during Growth on Optical and Electrical Properties of Ca3TaAl3Si2O14 Single Crystals / X. Fu [et al.] // Crystal Growth & Design. — 2016. — Vol. 16, no. 4. — P. 2151—2156.

165. Zhou, Q. The effect of disorder in Ba2YTaO6 on the tetragonal to cubic phase transition / Q. Zhou, B. J. Kennedy, J. A. Kimpton // Journal of Solid State Chemistry. — 2011. — Vol. 184, no. 4. — P. 729—734.

166. Research on Thermal Stability and Properties of Ca3ZrSi2Og as Potential T/EBC Materials / Y. Pan [et al.] // Coatings. — 2021. — Vol. 11, no. 5. — P. 583.

167. Kumar, P. Effect of Interstitial Hydrogen on Elastic Behavior of Metals: An Ab-Initio Study / P. Kumar, I. Adlakha // Journal of Engineering Materials and Technology. — 2022. — Vol. 145, no. 1.

168. First-principles prediction of electrochemical polarization and mechanical behavior in Mg based intermetallics / P. Mishra [et al.] // Computational Materials Science. — 2022. — Vol. 214. — P. 111667.

169. Effect of point defects on the thermal transport properties of (LaxGd1-x)2Zr2O7: Experiment and theoretical model / C. L. Wan [et al.] // Physical Review B. — 2006. — Vol. 74, no. 14. — P. 144109.

170. Ligny, D. de. High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites / D. de Ligny, P. Richet // Physical Review B. — 1996. — Vol. 53, no. 6. — P. 3013—3022.

171. Sinogeikin, S. V. Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell / S. V. Sinogeikin, J. D. Bass // Physics of the Earth and Planetary Interiors. — 2000. — Vol. 120, no. 1/2. — P. 43—62.

172. Pugh, S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals / S. Pugh // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. — 1954. — Vol. 45, no. 367. — P. 823—843.

173. Gilman, J. J. Electronic basis of the strength of materials / J. J. Gilman. — Cambridge University Press, 2003.

174. Thermal transport in phase-change materials from atomistic simulations / G. C. Sosso [et al.] // Physical Review B. — 2012. — Vol. 86, no. 10. — P. 104301.

175. Accessing thermal conductivity of complex compounds by machine learning interatomic potentials / P. Korotaev [et al.] // Physical Review B. — 2019. — Vol. 100, no. 14. — P. 144308.

176. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces / J. P. Perdew [et al.] // Physical Review Letters. — 2008. — Vol. 100, no. 13. — P. 136406.

177. Performance and Cost Assessment of Machine Learning Interatomic Potentials / Y. Zuo [et al.] // Journal of Physical Chemistry A. — 2020. — Vol. 124, no. 4. — P. 731—745.

178. Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport / Z. Fan [et al.] // Physical Revview B. — 2021. — Vol. 104, no. 10. — P. 104309.

179. GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations / Z. Fan [et al.] // Journal of Chemical Physics. — 2022. — Vol. 157, no. 11. — P. 114801.

180. Estimation of thermal barrier coating fracture toughness using integrated computational materials engineering / X. Geng [et al.] // Ceramics International. — 2023. — Vol. 49, no. 15. — P. 25788—25794.

181. Kumar, P. Effect of interstitial hydrogen on elastic behavior of metals: An ab-initio study / P. Kumar, I. Adlakha //J. Eng. Mater. Technol. — 2023. — Vol. 145, no. 1. — P. 011003.

182. Schulz, U. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO-MgO-Al2O3-SiO2) and volcanic ash deposits / U. Schulz, W. Braue // Surface and Coatings Technology. — 2013. — Vol. 235. — P. 165—173.

183. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating / X. Zhang [et al.] // Ceramics International. — 2016. — Vol. 42, no. 16. — P. 19349—19356.

184. Investigation of CMAS Resistance of Sacrificial Suspension Sprayed Alumina Topcoats on EB-PVD 7YSZ Layers / C. Mikulla [et al.] // Journal of Thermal Spray Technology. — 2020. — Vol. 29, no. 1/2. — P. 90—104.

185. Louisnathan, S. J. Refinement of the crystal structure of a natural gehlenite, Ca2Al(Al,Si)O7 / S. J. Louisnathan // The Canadian Mineralogist. — 1971. — Vol. 10, no. 5. — P. 822—837.

186. Crystal growth, characterization and structure refinement of neodymium3+ doped gehlenite, a new laser material [Ca2Al2SiO7] / A. Lejus [et al.] // Materials Research Bulletin. — 1994. — Vol. 29, no. 7. — P. 725—734.

187. Calcium aluminate silicate Ca2Al2SiO7 single crystal applicable to piezoelectric sensors at high temperature / H. Takeda [et al.] // Applied Physics Letters. — 2013. — Vol. 102, no. 24.

188. Novel environmentally friendly inorganic yellow pigments based on gehlenite-type structure / B. Bae [et al.] // Ceramics International. — 2016. — Vol. 42, no. 13. — P. 15104—15106.

189. Temperature-dependent dielectric and Raman spectra and microwave dielectric properties of gehlenite-type Ca2Al2SiO7 ceramics / Z. Song [et al.] // International Journal of Applied Ceramic Technology. — 2020. — Vol. 17, no. 2. — P. 771—777.

190. A 3D nanostructured calcium-aluminum-silicate scaffold with hierarchical meso-macroporosity for bone tissue regeneration: Fabrication, sintering behavior, surface modification and in vitro studies / A. Bigham [et al.] // Journal of the European Ceramic Society. — 2021. — Vol. 41, no. 1. — P. 941—962.

191. Selected Phase Equilibria Studies in the Al2O3-CaO-SiO2 System / E. Haccu-ria [et al.] // Journal of the American Ceramic Society / ed. by J. Biernacki. — 2016. — Vol. 99, no. 2. — P. 691—704.

192. The effect of temper on the thermal conductivity of traditional ceramics: Nature, percentage and granulometry / I. Allegretta [et al.] // Thermochimica Acta. — 2014. — Vol. 581. — P. 100—109.

193. The effect of sintering temperature on prepared and properties of calcium hexaluminate/gehlenite composites / P. Bai [et al.] // Science of Sintering. — 2014. — Vol. 46, no. 3. — P. 315—321.

194. Jia, D. Sintering Behavior of Gehlenite. Part I: Self-Forming, Macro-/Me-soporous Gehlenite—Pore-Forming Mechanism, Microstructure, Mechanical, and Physical Properties / D. Jia, D. Kim, W. M. Kriven // Journal of the American Ceramic Society. — 2007. — Vol. 90, no. 6. — P. 1760—1773.

195. High-temperature behaviour of melilite: in situ X-ray diffraction study of gehlenite-akermanite-Na melilite solid solution / M. Merlini [et al.] // Physics and Chemistry of Minerals. — 2008. — Vol. 35, no. 3. — P. 147—155.

196. Esfarjani, K. Method to extract anharmonic force constants from first principles calculations / K. Esfarjani, H. T. Stokes // Physical Review B. — 2008. — Vol. 77, no. 14. — P. 144112.

197. Cape, J. A. Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity / J. A. Cape, G. W. Lehman // Journal of Applied Physics. — 1963. — Vol. 34, no. 7. — P. 1909—1913.

198. Blumm, J. Improvement of the mathematical modeling of flash measurements / J. Blumm, J. Opfermann // High Temperatures-High Pressures. — 2002. — Vol. 34, no. 5. — P. 515—521.

199. Fabrication of layered ceramic-metal composites by detonation spraying / V. Y. Ulianitsky [et al.] // Ceramics International. — 2020. — Vol. 46, no. 17. — P. 27903—27908.

200. Thermostabilizing BaTiO3 coatings synthesized by detonation spraying method / M. Mikhailov [et al.] // Surface and Coatings Technology. — 2017. — Vol. 319. — P. 70—75.

201. CMAS corrosion and thermal cycling fatigue resistance of alternative thermal barrier coating materials and architectures: A comparative evaluation / S. Morelli [et al.] // Surface and Coatings Technology. — 2022. — Vol. 439. — P. 128433.

202. Guo, L. Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications / L. Guo, G. Li, Z. Gan // Journal of Advanced Ceramics. — 2021. — Vol. 10, no. 3. — P. 472—481.

203. Wiesner, V. L. Mechanical and thermal properties of calcium-magnesium aluminosilicate (CMAS) glass / V. L. Wiesner, N. P. Bansal // Journal of the European Ceramic Society. — 2015. — Vol. 35, no. 10. — P. 2907—2914.

204. Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion / D. Li [et al.] // Journal of Advanced Ceramics. — 2021. — Vol. 10, no. 3. — P. 551—564.

205. Air Plasma-Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS) / W. Li [et al.] // Journal of Thermal Spray Technology. — 2014. — Vol. 23, no. 6. — P. 975—983.

206. Transient and steady states of Gd2Zr2O7 and 2ZrO2.Y2O3 (ss) interactions with calcium magnesium aluminium silicates / S. Duluard [et al.] // Journal of the European Ceramic Society. — 2019. — Vol. 39, no. 4. — P. 1451—1462.

207. Seifert, F. Macroscopic and structural changes at the incommensurate-normal phase transition in melilites / F. Seifert, F. Rothlisberger // Mineralogy and Petrology. — 1993. — Vol. 48, no. 2—4. — P. 179—192.

208. Skakle, J. M. S. Crystal chemistry of (RE,A)2M3O7 compounds (RE=Y, lanthanide; A=Ba, Sr, Ca; M=Al, Ga) / J. M. S. Skakle, R. Herd // Powder Diffraction. — 1999. — Vol. 14, no. 3. — P. 195—202.

209. Effect of Two-Step Sintering on the Mechanical and Electrical Properties of 5YSZ and 8YSZ Ceramics / Y. Li [et al.] // Materials. — 2023. — Vol. 16, no. 5. — P. 2019.

210. Microhardness and Fracture Toughness Anisotropy in Cubic Zirconium Oxide Single Crystals / A. Pajares [et al.] // Journal of the American Ceramic Society. — 1988. — Vol. 71, no. 7. — P. C-332-C—333.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.