Системы рестрикции-модификации в Escherichia coli: механизмы стабилизации плазмид и защиты от бактериофагов (Restriction-modification systems in Escherichia coli: phage protection and plasmid stabilization mechanisms) тема диссертации и автореферата по ВАК РФ 00.00.00, кандидат наук Козлова Светлана Юрьевна

  • Козлова Светлана Юрьевна
  • кандидат науккандидат наук
  • 2025, «Сколковский институт науки и технологий»
  • Специальность ВАК РФ00.00.00
  • Количество страниц 128
Козлова Светлана Юрьевна. Системы рестрикции-модификации в Escherichia coli: механизмы стабилизации плазмид и защиты от бактериофагов (Restriction-modification systems in Escherichia coli: phage protection and plasmid stabilization mechanisms): дис. кандидат наук: 00.00.00 - Другие cпециальности. «Сколковский институт науки и технологий». 2025. 128 с.

Оглавление диссертации кандидат наук Козлова Светлана Юрьевна

Table of Contents

Chapter 1. Introduction

Chapter 2. Literature review

2.1. Restriction-modification systems overview

2.2. Type I RM systems

2.2.1. EcoKI, EcoAI, and EcoR124I Type I RM systems

2.3. Type II RM systems

2.3.1. Esp1396I, EcoRV, Eco29kI, and EcoRI Type II RM systems

2.4. Type III and Type IV RM systems

2.5. Regulation of RM systems expression and activity

2.6. Diverse functions in addition to phage protection

2.6.1. PSK studies

2.7. Cooperation with other cell systems

2.7.1. RecBCD

2.8. Conclusions for literature review

Chapter 3. Materials and Methods

3.1. Bacterial strains, phages and plasmids

3.2. Bacterial growth and phage propagation

3.3. CRISPR interference assay

3.4. The PSK assay

3.5. Plasmid stability assay

3.6. Phage plaquing (EOP) assay

3.7. Plasmid copy number and a relative expression of MTase or REase genes determination

3.8. Microscopy

3.9. Fluorescence intensity calibration

3.10. SOS response detection

3.11. Restriction of X phage DNA in cell-free extracts

3.12. Statistical analysis

3.13. Deriving a model of RM-based PSK

Chapter 4. Dependence of post-segregational killing mediated by Type II restriction-modification systems on the lifetime of restriction endonuclease effective activity

4.1. Introduction

4.2. Results and discussion

4.2.1. Type II restriction-modification systems stabilize plasmids

4.2.2. CRISPR-mediated loss of plasmids containing some Type II RM systems leads to PSK52

4.2.3. Cells losing RM systems plasmids that cause PSK undergo SOS response

4.2.4. The Esp1396I REase activity is short-lived

4.2.5. Mathematical modeling of PSK mediated by TA and RM systems

4.3. Concluding remarks

Chapter 5. Cells with stochastically increased methyltransferase to restriction endonuclease ratio provide an entry for bacteriophage into protected cell population

5.2. Results and discussion

5.2.1. The copy number of plasmids carrying an RM system affects the level of protection from phage infection

5.2.2. The influence of additional REase or MTase enzymes on protection from bacteriophage infection

5.2.3. The influence of PCN and additional expression of REase or MTase on bacteriophage X DNA degradation after infection of cells carrying the Esp1396I_fluo RM system

5.2.4. Determination of REase and MTase levels in productively infected bacteria

5.3. Concluding remarks

Chapter 6. The role of RecBCD in anti-phage defense and processing of DNA breaks generated by RM systems

6.2. Results and discussion

6.2.1. M13 bacteriophage-based model system allows studying the influence of RM sites number and direction

6.2.2. Protection by RM systems against M13 phage depends on RM sites number and direction

6.2.3. Protection level is affected by presence of the Chi site in M13 phage genome

6.2.4. Protection level is not affected by ArecA mutation but affected by ArecB/C/D mutations for the EcoA and EcoKI Type I RM systems

6.2.5. ArecB/C/D mutations affect plasmid copy number and M to R ratio for the EcoKI system

6.2.6. Defense and PCN for the EcoKI are partially restored when RecBCD components are expressed from complementing plasmids

6.3. Concluding remarks

Conclusions

Acknowledgements

List of abbreviations

Bibliography

Appendix A. Supplementary figures and tables

Рекомендованный список диссертаций по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Введение диссертации (часть автореферата) на тему «Системы рестрикции-модификации в Escherichia coli: механизмы стабилизации плазмид и защиты от бактериофагов (Restriction-modification systems in Escherichia coli: phage protection and plasmid stabilization mechanisms)»

Chapter 1. Introduction

Research topic relevance. Bacteria have evolved numerous mechanisms to resist the constant assault of viruses (called bacteriophages, or phages) that can infect and kill them. One such strategy is restriction-modification (RM) systems. RM systems comprise a methyltransferase (MTase) that modifies cognate sequences in DNA, adding a methyl group to a base in the recognition site, and a restriction endonuclease (REase) that recognizes the same site as an MTase and cleaves DNA if this site is unmodified [1]. When phage DNA with non-modified recognition sites is injected into bacterial cell, REase binds and cleaves this DNA preventing the progression of the phage's life cycle. Thus, RM systems are considered a part of the innate immune response because they can provide defense against any phage, including ones that have never been encountered previously, as long as they harbor RM target sites.

In addition to the defensive role of RM systems, they contribute to many other biological processes. They can participate in epigenetic regulation of transcription, be involved in recombination and genome rearrangements, and play a role in the control of the evolution of prokaryotes and maintenance of species identity [2, 3, 4, 5, 6]. The most common Type II RM systems can act as "addiction modules" because they were shown to stabilize plasmids where they reside by killing the cells that lose this plasmid; a phenomenon called post-segregational killing (PSK) [7, 8]. Thus, RM systems might participate in persistence of plasmids which are responsible for dissemination of clinically important determinants such as antibiotic resistance.

The intracellular amounts/activity levels of the MTase and REase enzymes shall be tightly controlled because an imbalance can either lead to the autoimmunity and death of uninfected (excess REase activity) or modification of phage DNA and death of infected (excess MTase activity) cells. Indeed, diverse regulatory mechanisms, including antisense RNAs that modulate RM genes expression, MTases that competes with RNA polymerase, and C proteins that ensure optimal levels of transcription of the RM genes, have been described (reviewed in [9]). Though these mechanisms ensure homeostasis of RM gene expression, RM protection can be overcome by phages, as methyltransferases can erroneously modify incoming viral genomes before restriction occurs [10].

Despite potential autoimmunity and imperfect phage protection, RM systems are abundant and present in 80% of prokaryotic genomes [11]. They are rarely present in isolation but clusters with other protective systems into defense islands [12]. For example, RM and CRISPR-Cas systems can act synergistically against phages, and a restriction promotes spacer acquisition [13, 14]. Another system that was suggested to participate in phage defense and likely cooperate with RM systems is RecBCD, an enzyme with two contradictory activities: DNA breaks repair and degradation of linear double-stranded DNA. It was shown that phage X DNA is degraded by RecBCD if it was previously cleaved by

restriction enzyme [15]. However, there are no works to our knowledge where phages cannot complete replication cycle solely due to RecBCD activity. Instead, a recent study showed that none of 160 phages tested were destroyed by RecBCD [16]. Creating a phage model where the cooperation of RM and RecBCD activities can be studied directly could shed a light on this contradictory data.

Understanding the costs and benefits of bacterial RM systems in nature requires future studies that take into account the complexity of natural environments, as well as their regulation and the interactions of multiple defense mechanisms in the same host genome.

Research objectives. The main goal of this work was to characterize non-canonical (plasmid stabilization and PSK) and canonical (anti-phage defense) functions of the E. coli RM systems.

To achieve the goal of the dissertation, the following problems are addressed:

1. To create a physiological model for elimination of plasmids from bacterial cell;

2. To investigate the mechanisms of plasmid stabilization and PSK mediated by Type II RM systems;

3. To develop a mathematical model for RM-mediated PSK;

4. To demonstrate the influence of RM proteins ratio on phage protection and the rate of phage DNA degradation;

5. To create a phage model with controlled number of RM recognition sites;

6. To explore the cooperation between RecBCD and RM systems in the defense process.

Scientific novelty. This thesis presents a novel physiological model based on CRISPR-Cas

interference for synchronous and rapid elimination of plasmids from E. coli cells for PSK and related studies. We also present a mathematical model that shows that unlike the case of toxin-antitoxin-mediated PSK based on different stabilities of antitoxin and toxin moieties, the loss of an RM system induced PSK even when the RM enzymes have identical lifetimes.

We demonstrated at a single-cell level that bacterial population carrying an RM system is not homogenous in terms of MTase to REase ratio in individual cells. Here, cells with stochastically increased MTase to REase ratio at the time of the infection can serve as entry points for unmodified phage into protected bacterial populations, leading to productive infection.

We showed that RecBCD does not directly cooperate with RM systems in anti-phage protection in a simple model system (phage without its own recombination pathway). As a side result, we demonstrated for the first time that MTase to REase ratio for Type I RM systems may depend on the copy number of plasmids encoding them, similarly to Type II RM systems, thus affecting frequency rate of escaper phages emergence.

Theoretical and practical significance of the results. Apart from advancing the theoretical knowledge of the traditional and non-canonical functions of RM systems, we created two biological models that can be used in further studies. Moreover, since RM systems was shown to stabilize plasmids,

they can be used instead of antibiotic resistance genes in biotechnological processes that often operate with plasmid-based expression systems.

A phage model with constrained number of RM recognition sites in phage genome can be applied for further studies, e.g., interaction of RM systems with prokaryotic argonauts (pAgos) or other phage defense systems. It can be also expanded to other phages encoding their own recombination machineries or RecBCD inhibitors to study the role of RecBCD in processing of phage DNA in more complex conditions.

A fluorescent labeling of proteins used for RM systems can be used as an alternative to standard methods (e.g., western blot) for proteins quantification in individual cells.

Methodology and research methods. The methods of molecular biology (molecular cloning, manipulations with nucleic acids, PCRs, gel electrophoresis, etc.) and microbiology (bacteria and phages cultivation, plating, PSK and plaque assays, etc.) were used throughout. Fluorescence microscopy was used in Chapter 4 and 5. A mathematical modelling was performed for Chapter 4.

Main results submitted for the defense are the following:

1. CRISPR interference-based method allows efficient elimination of plasmids from the E. coli host while minimally perturbing cell physiology.

2. PSK mediated by the loss of Type II RM system depends on restriction endonuclease activity lifetime and is not observed when it is less than two replication cycles.

3. A shift in the MTase to REase ratio caused by overproduction of MTase or REase leads, respectively, to decreased or increased protection from phage infection.

4. Cells with transiently increased MTase to REase ratio at the time of infection serve as entry points for unmodified phage DNA into protected bacterial populations.

5. Direct relationship between the number of RM sites and phage defense rate was demonstrated for the Type I and II R-M systems.

6. RecBCD-mediated clearance of RM-generated phage DNA breaks was shown not to affect overall phage defense rate in a simple model system.

Validity of the obtained results. The obtained results are consistent with published peer-reviewed experimental and mathematical data. All experiments were performed in at least three independent biological replicates, demonstrating reproducibility under our conditions. Statistical tests, where applied, confirmed that obtained results are not attributable to random variation.

Publications. The main results of this thesis resulted in 2 publications in scientific journals indexed in Web of Science and Scopus systems:

1. Kozlova S., Morozova N., Ispolatov Y., Severinov K. Dependence of post-segregational killing mediated by Type II restriction-modification systems on the lifetime of restriction endonuclease effective activity //mBio. - 2024. - V. 15 - P. e01408. (Main author)

2. Kirillov A., Morozova N., Kozlova S., Polinovskaya V., Smirnov S., Khodorkovskii M., Zeng L., Ispolatov Y., Severinov K. Cells with stochastically increased methyltransferase to restriction endonuclease ratio provide an entry for bacteriophage into protected cell population //Nucleic Acids Research. - 2022. - V. 50 - №21. - P. 12355-12368. (Co-author)

The results of the thesis were presented at the following international conferences:

1. Kozlova S., Severinov K., Isaev A. The role of RecBCD in anti-phage defense and processing of DNA breaks generated by RM systems // Genomics, metagenomics and molecular biology of microorganisms (Russia, 2024).

2. Kozlova S., Morozova N., Severinov K. Post-segregational killing by CRISPR-Cas interference-induced plasmid loss in E. coli // EMBO Workshop "Bacterial morphogenesis, survival and virulence: Dynamic genomes & envelopes" (India, 2023)

3. Kozlova S., Morozova N., Severinov K. Investigation of bacterial addiction modules by CRISPR-Cas interference-based model system // FEMS Conference on Microbiology (Serbia, 2022)

Personal contribution of the author. All key experiments and model constructions (except for mathematical model) described in Chapters 4 and 6 were performed by the author of this thesis. For Chapter 5, the author participated in most experiments summarized in Figures 5.1 and 5.2 and performed additional experiments presented in Supplementary Materials of the published paper. The author prepared manuscripts and conference abstracts described above.

Structure and volume of the dissertation. The dissertation consists of 7 chapters, including an Introduction, Literature review, Materials and Methods, and Conclusions. The dissertation is 128 pages long, including 32 figures, 3 tables and 7 objects in Appendix. The list of references contains 242 titles.

The Introduction (Chapter 1) summarizes the main blind spots in the covered topics and sets the objectives of this thesis by formulating the research questions. Chapter 2 provides a literature review and explains the background necessary for understanding the following sections. Chapter 3 describes the materials and methods. The results obtained during the work on the thesis are presented in Chapters 4-6. Each Chapter consists of a short introduction to the topic, combined results and discussion, and concluding remarks. Chapter 4 is dedicated to non-canonical functions of Type II RM systems - plasmid stabilization and post-segregational cell killing - which are studied experimentally and mathematically. Chapter 5 demonstrates the importance of RM proteins balance in phage protection. Chapter 6 is about cooperation of RM systems and RecBCD system in phage defense. Chapter 7 summarizes the obtained results, their correspondence to the set goals, and provides directions for further research.

Похожие диссертационные работы по специальности «Другие cпециальности», 00.00.00 шифр ВАК

Заключение диссертации по теме «Другие cпециальности», Козлова Светлана Юрьевна

Conclusions

This thesis aimed to characterize non-canonical (plasmid stabilization and PSK) and canonical (anti-phage defense) functions of the E. coli RM systems. The main results are:

1. CRISPR interference-based method allows efficient elimination of plasmids from the E. coli host while minimally perturbing cell physiology and can be used to study PSK and related phenomena.

2. PSK mediated by the loss of Type II RM system depends on restriction endonuclease activity lifetime and is not observed when it is less than two replication cycles. A temporal delay built in Type II RM systems to prevent autoimmunity provides an accessibility window that leads to PSK of cells that lost an RM plasmid even when the lifetimes of RM enzymes are the same.

3. A shift in the MTase to REase ratio caused by overproduction of MTase or REase leads, respectively, to decreased or increased protection from phage infection, which was explained by direct measurements of half-lives of injected unmodified phage DNA. The production of additional REase reduces the average time needed for degradation of phage DNA thus enhancing the level of protection, while in cells with additional MTase, the average time needed for invading phage DNA degradation is increased, ultimately abolishing protection.

4. Cells with transiently increased MTase to REase ratio at the time of infection serve as entry points for unmodified phage DNA into protected bacterial populations. Stochastic variation in intracellular amounts of RM enzymes leads to increased susceptibility of individual cells to infection, and DNA of progeny phage of such infection events are modified, allowing the virus to take over the initially protected population of cells.

5. Direct relationship between the number of RM sites and phage defense rate was demonstrated for the Type I and II RM systems.

6. RecBCD-mediated clearance of RM-generated phage DNA breaks was shown not to affect overall phage defense rate in a simple model system.

There are several areas for further development of the work undertaken in this thesis. For PSK studies, we can modify RM proteins with peptide or fluorescent tags to monitor RM proteins dynamics upon plasmid loss. We can also track methylation status of the cell to understand where DNA breaks are started to appear. A similar idea is to map DNA breaks generated by RM systems during PSK, a method which is currently developed in our laboratory. The work can be expanded to other addiction systems, such as toxin-antitoxin (TA) or bacteriocin modules. Plasmid maintenance systems are of a high interest in biotechnology, where the most established systems for heterologous productions of proteins and chemicals are plasmid-based and often requires antibiotics for plasmid selection. While TA systems are already shown to stabilize expression plasmids in industry [241, 242], the use of RM systems for these

purposes can be even more efficient because they provide both plasmid stabilization and phage protection.

Although in our relatively simple model (phage without its own reparation machinery or RecBCD inhibitors) we did not demonstrate the role of RecBCD in phage DNA processing upon RM-mediated cleavage, we will continue to dig into this topic. We will use more complex phage models (e.g., X, T7 and T4 with or without RecBCD inhibitors and recombination/ligation machinery) and create a model of "inefficient" restriction of phage DNA. Here, inducible nucleases (I-SceI or Cas9) should be used for cleaving phage DNA at later stages of infection, e.g., when it is already replicating. We are also going to expand our model using prokaryotic argonauts (pAgos), DNA-guided DNA nucleases participating in phage defense. Recent works demonstrated that pAgos can acquire guides at doublestrand breaks [127, 139], which suggests the possibility of interplay between RM, RecBCD and pAgos, where RM and/or RecBCD activity creates the substrates for guide acquisition, triggering pAgo defense against phages.

Список литературы диссертационного исследования кандидат наук Козлова Светлана Юрьевна, 2025 год

Bibliography

1. Vasu, K. Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense / K. Vasu, V. Nagaraja // Microbiology and Molecular Biology Reviews. - 2013. - Vol. 77. - № 1. -P. 53-72.

2. Alm, R. A. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori / R. A. Alm, L. S. Ling, D. T. Moir, B. L. King, E. D. Brown, P. C. Doig, D. R. Smith, B. Noonan, B. C. Guild, B. L. deJonge [et al.] // Nature. - 1999. - Vol. 397. - № 6715. -P. 176-180.

3. Casselli, T. DNA Methylation by Restriction Modification Systems Affects the Global Transcriptome Profile in Borrelia burgdorferi / T. Casselli, Y. Tourand, A. Scheidegger, W. K. Arnold, A. Proulx, B. Stevenson, C. A. Brissette. - Text: electronic // Journal of Bacteriology. - 2018. -Vol. 200. - № 24. - URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256022/ (date accessed: 27.11.2020).

4. Handa, N. Experimental genome evolution: large-scale genome rearrangements associated with resistance to replacement of a chromosomal restriction-modification gene complex / N. Handa, Y. Nakayama, M. Sadykov, I. Kobayashi // Molecular Microbiology. - 2001. - Vol. 40. - Experimental genome evolution. - № 4. - P. 932-940.

5. Jeltsch, A. Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? / A. Jeltsch // Gene. - 2003. - Vol. 317. - Maintenance of species identity and controlling speciation of bacteria. - P. 13-16.

6. Kobayashi, I. Selfishness and death: raison d'être of restriction, recombination and mitochondria / I. Kobayashi // Trends in Genetics. - 1998. - Vol. 14. - Selfishness and death. - № 9. - P. 368-374.

7. Naito, T. Selfish behavior of restriction-modification systems / T. Naito, K. Kusano, I. Kobayashi // Science. - 1995. - Vol. 267. - № 5199. - P. 897-899.

8. Kulakauskas, S. DNA restriction-modification systems mediate plasmid maintenance. / S. Kulakauskas, A. Lubys, S. D. Ehrlich // Journal of bacteriology. - 1995. - Vol. 177. - № 12. - P. 34513454.

9. Mruk, I. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems / I. Mruk, I. Kobayashi // Nucleic Acids Research. - 2014. - Vol. 42. - To be or not to be. - № 1. - P. 70-86.

10. Pleska, M. Phage-host population dynamics promotes prophage acquisition in bacteria with innate immunity / M. Pleska, M. Lang, D. Refardt, B. R. Levin, C. C. Guet // Nature Ecology & Evolution. - 2018. - Vol. 2. - № 2. - P. 359-366.

11. Tesson, F. Systematic and quantitative view of the antiviral arsenal of prokaryotes / F. Tesson, A. Hervé, E. Mordret, M. Touchon, C. d'Humières, J. Cury, A. Bernheim // Nature Communications. -2022. - Vol. 13. - № 1. - P. 2561.

12. Makarova, K. S. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems / K. S. Makarova, Y. I. Wolf, S. Snir, E. V. Koonin // Journal of Bacteriology. - 2011.

- Vol. 193. - № 21. - P. 6039-6056.

13. Dupuis, M.-È. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance / M.-È. Dupuis, M. Villion, A. H. Magadân, S. Moineau // Nature Communications. -2013. - Vol. 4. - № 1. - P. 2087.

14. Maguin, P. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response / P. Maguin, A. Varble, J. W. Modell, L. A. Marraffini // Molecular cell. - 2022.

- Vol. 82. - № 5. - P. 907-919.e7.

15. Simmon, V. F. Degradation of Bacteriophage Lambda Deoxyribonucleic Acid After Restriction by Escherichia coli K-12 / V. F. Simmon, S. Lederberg // Journal of Bacteriology. - 1972. - Vol. 112.

- № 1. - P. 161-169.

16. Zheng, C. Debunking the dogma that RecBCD nuclease destroys phage / C. Zheng, C. Furukawa, J. Liu, S. Sankaran, H. Lin, N. Munugeti, M. Wang, G. R. Smith // GENETICS. - 2024. - P. iyae199.

17. Luria, S. E. A NONHEREDITARY, HOST-INDUCED VARIATION OF BACTERIAL VIRUSES1 / S. E. Luria, M. L. Human // Journal of Bacteriology. - 1952. - Vol. 64. - № 4. - P. 557569.

18. Bertani, G. HOST CONTROLLED VARIATION IN BACTERIAL VIRUSES1 / G. Bertani, J. J. Weigle // Journal of Bacteriology. - 1953. - Vol. 65. - № 2. - P. 113-121.

19. Anderson, E. S. Variation in Vi-Phage II of Salmonella typhi / E. S. Anderson, A. Felix // Nature.

- 1952. - Vol. 170. - № 4325. - P. 492-494.

20. Dussoix, D. Host specificity of DNA produced by Escherichia coli / D. Dussoix, W. Arber // Journal of Molecular Biology. - 1962. - Vol. 5. - № 1. - P. 37-49.

21. Arber, W. Host specificity of DNA produced by Escherichia coli / W. Arber // Journal of Molecular Biology. - 1965. - Vol. 11. - № 2. - P. 247-256.

22. Kelly, T. J. A restriction enzyme from Hemophilus influenzae. II / T. J. Kelly, H. O. Smith // Journal of Molecular Biology. - 1970. - Vol. 51. - № 2. - P. 393-409.

23. Nathans, D. Restriction Endonucleases in the Analysis and Restructuring of DNA Molecules / D. Nathans, H. O. Smith // Annual Review of Biochemistry. - 1975. - Vol. 44. - № Volume 44, 1975.

- P. 273-293.

24. Koonin, E. V. Evolutionary Genomics of Defense Systems in Archaea and Bacteria / E. V. Koonin, K. S. Makarova, Y. I. Wolf // Annual review of microbiology. - 2017. - Vol. 71. - P. 233-261.

25. Galburt, E. A. Catalytic Mechanisms of Restriction and Homing Endonucleases / E. A. Galburt, B. L. Stoddard // Biochemistry. - 2002. - Vol. 41. - № 47. - P. 13851-13860.

26. Cheng, X. Structure and function of DNA methyltransferases / X. Cheng // Annual Review of Biophysics and Biomolecular Structure. - 1995. - Vol. 24. - P. 293-318.

27. Ershova, A. S. Role of restriction-modification systems in prokaryotic evolution and ecology / A. S. Ershova, I. S. Rusinov, S. A. Spirin, A. S. Karyagina, A. V. Alexeevski // Biochemistry (Moscow).

- 2015. - Vol. 80. - № 10. - P. 1373-1386.

28. Donahue, J. P. Restriction and Modification Systems / J. P. Donahue, R. M. Peek. - Text : electronic // Helicobacter pylori: Physiology and Genetics / eds. H. L. Mobley [et al.]. - Washington (DC) : ASM Press, 2001. - URL: http://www.ncbi.nlm.nih.gov/books/NBK2426/ (date accessed: 27.11.2020).

29. Phillips, Z. N. Phasevarions of bacterial pathogens - phase-variable epigenetic regulators evolving from restriction-modification systems / Z. N. Phillips, A.-U. Husna, M. P. Jennings, K. L. Seib, J. M. Atack // Microbiology. - 2019. - Vol. 165. - № 9. - P. 917-928.

30. Murray, N. E. Type I Restriction Systems: Sophisticated Molecular Machines (a Legacy of Bertani and Weigle) / N. E. Murray // Microbiology and Molecular Biology Reviews. - 2000. - Vol. 64.

- Type I Restriction Systems. - № 2. - P. 412-434.

31. Loenen, W. A. M. Type I restriction enzymes and their relatives / W. A. M. Loenen, D. T. F. Dryden, E. A. Raleigh, G. G. Wilson // Nucleic Acids Research. - 2014. - Vol. 42. - № 1. - P. 20-44.

32. Wilson, G. G. Organization of restriction-modification systems / G. G. Wilson // Nucleic Acids Research. - 1991. - Vol. 19. - № 10. - P. 2539-2566.

33. Dryden, D. T. Purification and characterization of the methyltransferase from the type 1 restriction and modification system of Escherichia coli K12 / D. T. Dryden, L. P. Cooper, N. E. Murray // The Journal of Biological Chemistry. - 1993. - Vol. 268. - № 18. - P. 13228-13236.

34. Firman, K. Measuring motion on DNA by the type I restriction endonuclease EcoR124I using triplex displacement / K. Firman // The EMBO Journal. - 2000. - Vol. 19. - № 9. - P. 2094-2102.

35. McClelland, S. E. Continuous Assays for DNA Translocation Using Fluorescent Triplex Dissociation: Application to Type I Restriction Endonucleases / S. E. McClelland, D. T. F. Dryden, M. D. Szczelkun // Journal of Molecular Biology. - 2005. - Vol. 348. - Continuous Assays for DNA Translocation Using Fluorescent Triplex Dissociation. - № 4. - P. 895-915.

36. Bianco, P. R. The Type I Restriction Endonuclease EcoR124I, Couples ATP Hydrolysis to Bidirectional DNA Translocation / P. R. Bianco, E. M. Hurley // Journal of Molecular Biology. - 2005.

- Vol. 352. - № 4. - P. 837-859.

37. Janscak, P. DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes / P. Janscak, M. P. MacWilliams, U. Sandmeier, V. Nagaraja, T. A. Bickle // The EMBO Journal. - 1999. - Vol. 18. - № 9. - P. 2638-2647.

38. Jindrova, E. On the DNA cleavage mechanism of Type I restriction enzymes / E. Jindrova // Nucleic Acids Research. - 2005. - Vol. 33. - № 6. - P. 1760-1766.

39. Waite-Rees, P. A. Characterization and expression of the Escherichia coli Mrr restriction system. / P. A. Waite-Rees, C. J. Keating, L. S. Moran, B. E. Slatko, L. J. Hornstra, J. S. Benner // Journal of Bacteriology. - 1991. - Vol. 173. - № 16. - P. 5207-5219.

40. Panne, D. The McrBC restriction endonuclease assembles into a ring structure in the presence of G nucleotides / D. Panne, S. A. Müller, S. Wirtz, A. Engel, T. A. Bickle // The EMBO Journal. - 2001.

- Vol. 20. - № 12. - P. 3210-3217.

41. Sibley, M. H. Cassette-like variation of restriction enzyme genes in Escherichia coli C and relatives / M. H. Sibley, E. A. Raleigh // Nucleic Acids Research. - 2004. - Vol. 32. - № 2. - P. 522534.

42. Makovets, S. Is modification sufficient to protect a bacterial chromosome from a resident restriction endonuclease? / S. Makovets, L. M. Powell, A. J. B. Titheradge, G. W. Blakely, N. E. Murray // Molecular Microbiology. - 2004. - Vol. 51. - № 1. - P. 135-147.

43. Youell, J. EcoR124I: from Plasmid-Encoded Restriction-Modification System to Nanodevice / J. Youell, K. Firman // Microbiology and Molecular Biology Reviews : MMBR. - 2008. - Vol. 72. -EcoR124I. - № 2. - P. 365-377.

44. Price, C. Basis for changes in DNA recognition by the EcoR124 and EcoR124/3 type I DNA restriction and modification enzymes / C. Price, J. Lingner, T. A. Bickle, K. Firman, S. W. Glover // Journal of Molecular Biology. - 1989. - Vol. 205. - № 1. - P. 115-125.

45. Roberts, G. A. Removal of a frameshift between the hsdM and hsdS genes of the EcoKI Type IA DNA restriction and modification system produces a new type of system and links the different families of Type I systems / G. A. Roberts, K. Chen, L. P. Cooper, J. H. White, G. W. Blakely, D. T. F. Dryden // Nucleic Acids Research. - 2012. - Vol. 40. - № 21. - P. 10916-10924.

46. Gubler, M. Increased protein flexibility leads to promiscuous protein--DNA interactions in type IC restriction-modification systems. / M. Gubler, T. A. Bickle // The EMBO Journal. - 1991. - Vol. 10.

- № 4. - P. 951-957.

47. Bogdanova, E. Transcription regulation of restriction-modification system Esp1396I / E. Bogdanova, M. Zakharova, S. Streeter, J. Taylor, T. Heyduk, G. Kneale, K. Severinov // Nucleic Acids Research. - 2009. - Vol. 37. - № 10. - P. 3354-3366.

48. Tsutakawa, S. E. The structural basis of damaged DNA recognition and endonucleolytic cleavage for very short patch repair endonuclease / S. E. Tsutakawa, K. Morikawa // Nucleic Acids Research. - 2001. - Vol. 29. - № 18. - P. 3775-3783.

49. Pingoud, A. Type II restriction endonucleases: structure and mechanism / A. Pingoud, M. Fuxreiter, V. Pingoud, W. Wende // Cellular and Molecular Life Sciences. - 2005. - Vol. 62. - Type II restriction endonucleases. - № 6. - P. 685.

50. Roberts, R. J. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes / R. J. Roberts, M. Belfort, T. Bestor, A. S. Bhagwat, T. A. Bickle, J. Bitinaite, R. M. Blumenthal, S. K. Degtyarev, D. T. F. Dryden, K. Dybvig [et al.] // Nucleic Acids Research. - 2003. - Vol. 31. - № 7. - P. 1805-1812.

51. Kennedy, M. A. Structures, activity and mechanism of the Type IIS restriction endonuclease PaqCI / M. A. Kennedy, C. J. Hosford, C. M. Azumaya, Y. A. Luyten, M. Chen, R. D. Morgan, B. L. Stoddard // Nucleic Acids Research. - 2023. - Vol. 51. - № 9. - P. 4467-4487.

52. Wah, D. A. Structure of the multimodular endonuclease FokI bound to DNA / D. A. Wah, J. A. Hirsch, L. F. Dorner, I. Schildkraut, A. K. Aggarwal // Nature. - 1997. - Vol. 388. - № 6637. - P. 97100.

53. Engler, C. A one pot, one step, precision cloning method with high throughput capability / C. Engler, R. Kandzia, S. Marillonnet // PloS One. - 2008. - Vol. 3. - № 11. - P. e3647.

54. Walker, G. T. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. / G. T. Walker, M. S. Fraiser, J. L. Schram, M. C. Little, J. G. Nadeau, D. P. Malinowski // Nucleic Acids Research. - 1992. - Vol. 20. - № 7. - P. 1691-1696.

55. Cesnaviciene, E. Esp1396I restriction-modification system: structural organization and mode of regulation / E. Cesnaviciene, G. Mitkaite, K. Stankevicius, A. Janulaitis, A. Lubys // Nucleic Acids Research. - 2003. - Vol. 31. - Esp1396I restriction-modification system. - № 2. - P. 743-749.

56. Bougueleret, L. Characterization of the genes coding for the Eco RV restriction and modification system of Escherichia coli / L. Bougueleret, M. Schwarzstein, A. Tsugita, M. Zabeau // Nucleic Acids Research. - 1984. - Vol. 12. - № 8. - P. 3659-3676.

57. Semenova, E. Transcription regulation of the EcoRV restriction-modification system / E. Semenova // Nucleic Acids Research. - 2005. - Vol. 33. - № 21. - P. 6942-6951.

58. Pertzev, A. V. Eco29kI, a novel plasmid encoded restriction endonuclease from Escherichia coli / A. V. Pertzev, N. M. Ruban, M. V. Zakharova, I. V. Beletzkaja, S. I. Petrov, A. N. Kravetz, A. S. Solonin // Nucleic Acids Research. - 1992. - Vol. 20. - № 8. - P. 1991.

59. Nagornykh, M. Regulation of gene expression in restriction-modification system Eco29kI / M. Nagornykh, M. Zakharova, A. Protsenko, E. Bogdanova, A. S. Solonin, K. Severinov // Nucleic Acids Research. - 2011. - Vol. 39. - № 11. - P. 4653-4663.

60. Modrich, P. EcoRI endonuclease. Physical and catalytic properties of the homogenous enzyme. / P. Modrich, D. Zabel // Journal of Biological Chemistry. - 1976. - Vol. 251. - № 19. - P. 5866-5874.

61. Liu, Y. Negative Regulation of the EcoRI Restriction Enzyme Gene Is Associated with Intragenic Reverse Promoters / Y. Liu, I. Kobayashi // Journal of Bacteriology. - 2007. - Vol. 189. -№ 19. - P. 6928-6935.

62. Liu, Y. Regulation of the EcoRI restriction-modification system: Identification of ecoRIM gene promoters and their upstream negative regulators in the ecoRIR gene / Y. Liu, A. Ichige, I. Kobayashi // Gene. - 2007. - Vol. 400. - Regulation of the EcoRI restriction-modification system. - № 1. - P. 140149.

63. Mruk, I. Antisense RNA associated with biological regulation of a restriction-modification system / I. Mruk, Y. Liu, L. Ge, I. Kobayashi // Nucleic Acids Research. - 2011. - Vol. 39. - № 13. -P. 5622-5632.

64. Rao, D. N. Type III restriction-modification enzymes: a historical perspective / D. N. Rao, D. T. F. Dryden, S. Bheemanaik // Nucleic Acids Research. - 2014. - Vol. 42. - Type III restriction-modification enzymes. - № 1. - P. 45-55.

65. Raghavendra, N., K. Mechanistic insights into type III restriction enzymes / N. Raghavendra K. // Frontiers in Bioscience. - 2012. - Vol. 17. - № 1. - P. 1094.

66. Loenen, W. A. M. The other face of restriction: modification-dependent enzymes / W. A. M. Loenen, E. A. Raleigh // Nucleic Acids Research. - 2014. - Vol. 42. - The other face of restriction. -№ 1. - P. 56-69.

67. Ishikawa, K. Conflicts Targeting Epigenetic Systems and Their Resolution by Cell Death: Novel Concepts for Methyl-Specific and Other Restriction Systems / K. Ishikawa, E. Fukuda, I. Kobayashi // DNA Research. - 2010. - Vol. 17. - Conflicts Targeting Epigenetic Systems and Their Resolution by Cell Death. - № 6. - P. 325-342.

68. Pleska, M. Bacterial Autoimmunity Due to a Restriction-Modification System / M. Pleska, L. Qian, R. Okura, T. Bergmiller, Y. Wakamoto, E. Kussell, C. C. Guet // Current Biology. - 2016. -Vol. 26. - № 3. - P. 404-409.

69. Wilkowska, K. Low-level expression of the Type II restriction-modification system confers potent bacteriophage resistance in Escherichia coli / K. Wilkowska, I. Mruk, B. Furmanek-Blaszk, M. Sektas // DNA Research. - 2020. - Vol. 27. - № 1. - P. dsaa003.

70. Heitman, J. DNA nicks inflicted by restriction endonucleases are repaired by a RecA- and RecB-dependent pathway in Escherichia coli: Recombinational repair of DNA single-strand breaks / J. Heitman, T. Ivanenko, A. Kiss // Molecular Microbiology. - 2002. - Vol. 33. - DNA nicks inflicted by restriction endonucleases are repaired by a RecA- and RecB-dependent pathway in Escherichia coli. -№ 6. - P. 1141-1151.

71. Taylor, J. D. Fidelity of DNA recognition by the EcoRV restriction/modification system in vivo / J. D. Taylor, A. J. Goodall, C. L. Vermote, S. E. Halford // Biochemistry. - 1990. - Vol. 29. - № 48. -P. 10727-10733.

72. Nagamalleswari, E. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival / E. Nagamalleswari, S. Rao, K. Vasu, V. Nagaraja // Nucleic Acids Research. - 2017.

- Vol. 45. - № 14. - P. 8423-8434.

73. Burenina, O. Y. Peculiarities of the Regulation of Gene Expression in the Ecl18kI Restriction-Modification System / O. Y. Burenina, E. A. Fedotova, A. Y. Ryazanova, A. S. Protsenko, M. V. Zakharova, A. S. Karyagina, A. S. Solonin, T. S. Oretskaya, E. A. Kubareva // Acta Naturae. - 2013. -Vol. 5. - № 2. - P. 70-80.

74. Rezulak, M. Natural C-independent expression of restriction endonuclease in a C protein-associated restriction-modification system / M. Rezulak, I. Borsuk, I. Mruk // Nucleic Acids Research.

- 2016. - Vol. 44. - № 6. - P. 2646-2660.

75. Bogdanova, E. Transcription regulation of the type II restriction-modification system AhdI / E. Bogdanova, M. Djordjevic, I. Papapanagiotou, T. Heyduk, G. Kneale, K. Severinov // Nucleic Acids Research. - 2008. - Vol. 36. - № 5. - P. 1429-1442.

76. Day, R. S. UV-induced alleviation of K-specific restriction of bacteriophage lambda / R. S. Day // Journal of Virology. - 1977. - Vol. 21. - № 3. - P. 1249-1251.

77. Ishikawa, K. Cleavage of a model DNA replication fork by a Type I restriction endonuclease / K. Ishikawa, N. Handa, I. Kobayashi // Nucleic Acids Research. - 2009. - Vol. 37. - № 11. - P. 35313544.

78. Makovets, S. ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems / S. Makovets, A. J. B. Titheradge, N. E. Murray // Molecular Microbiology. - 1998. - Vol. 28. - № 1. - P. 25-35.

79. Makovets, S. Regulation of endonuclease activity by proteolysis prevents breakage of unmodified bacterial chromosomes by type I restriction enzymes / S. Makovets, V. A. Doronina, N. E. Murray // Proceedings of the National Academy of Sciences of the United States of America. - 1999. -Vol. 96. - № 17. - P. 9757-9762.

80. Skutel, M. RecA-dependent or independent recombination of plasmid DNA generates a conflict with the host EcoKI immunity by launching restriction alleviation / M. Skutel, D. Yanovskaya, A. Demkina, A. Shenfeld, O. Musharova, K. Severinov, A. Isaev // Nucleic Acids Research. - 2024. -Vol. 52. - № 9. - P. 5195-5208.

81. Kulik, E. M. Regulation of the activity of the type IC EcoR124I restriction enzyme / E. M. Kulik, T. A. Bickle // Journal of Molecular Biology. - 1996. - Vol. 264. - № 5. - P. 891-906.

82. Negri, A. Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors: C protein and the Rac prophage repressor / A. Negri, M. J^kalski, A. Szczuka, L. P. Pryszcz, I. Mruk // Nucleic Acids Research. - 2019.

- Vol. 47. - Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors. - № 18. - P. 9542-9556.

83. Morozova, N. Temporal dynamics of methyltransferase and restriction endonuclease accumulation in individual cells after introducing a restriction-modification system / N. Morozova, A. Sabantsev, E. Bogdanova, Y. Fedorova, A. Maikova, A. Vedyaykin, A. Rodic, M. Djordjevic, M. Khodorkovskii, K. Severinov // Nucleic Acids Research. - 2016. - Vol. 44. - № 2. - P. 790-800.

84. Negri, A. Regulator-dependent temporal dynamics of a restriction-modification system's gene expression upon entering new host cells: single-cell and population studies / A. Negri, O. Werbowy, E. Wons, S. Dersch, R. Hinrichs, P. L. Graumann, I. Mruk // Nucleic Acids Research. - 2021. - Vol. 49. -№ 7. - P. 3826-3840.

85. Wei, H. The Fidelity Index provides a systematic quantitation of star activity of DNA restriction endonucleases / H. Wei, C. Therrien, A. Blanchard, S. Guan, Z. Zhu // Nucleic Acids Research. - 2008.

- Vol. 36. - № 9. - P. e50-e50.

86. Vasu, K. Promiscuous restriction is a cellular defense strategy that confers fitness advantage to bacteria / K. Vasu, E. Nagamalleswari, V. Nagaraja // Proceedings of the National Academy of Sciences of the United States of America. - 2012. - Vol. 109. - № 20. - P. E1287-E1293.

87. Tock, M. R. The biology of restriction and anti-restriction / M. R. Tock, D. T. F. Dryden // Current Opinion in Microbiology. - 2005. - Vol. 8. - № 4. - P. 466-472.

88. Murphy, J. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence / J. Murphy, J. Mahony, S. Ainsworth, A. Nauta, D. van Sinderen // Applied and Environmental Microbiology. - 2013. - Vol. 79. - Bacteriophage orphan DNA methyltransferases.

- № 24. - P. 7547-7555.

89. Marinus, M. G. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more / M. G. Marinus, J. Casadesus // FEMS microbiology reviews. - 2009. - Vol. 33. - Roles of DNA adenine methylation in host-pathogen interactions. - № 3.

- P. 488-503.

90. Lindsay, J. A. Genomic variation and evolution of Staphylococcus aureus / J. A. Lindsay // International Journal of Medical Microbiology. - 2010. - Vol. 300. - № 2-3. - P. 98-103.

91. Rusinov, I. S. Avoidance of recognition sites of restriction-modification systems is a widespread but not universal anti-restriction strategy of prokaryotic viruses / I. S. Rusinov, A. S. Ershova, A. S. Karyagina, S. A. Spirin, A. V. Alexeevski // BMC Genomics. - 2018. - Vol. 19. - № 1. - P. 885.

92. Gelfand, M. S. Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes / M. S. Gelfand, E. V. Koonin // Nucleic Acids Research. - 1997.

- Vol. 25. - Avoidance of palindromic words in bacterial and archaeal genomes. - № 12. - P. 24302439.

93. Shaw, L. P. Restriction-modification systems have shaped the evolution and distribution of plasmids across bacteria / L. P. Shaw, E. P. C. Rocha, R. C. MacLean // Nucleic Acids Research. - 2023.

- Vol. 51. - № 13. - P. 6806-6818.

94. Furuta, Y. Restriction-Modification Systems as Mobile Epigenetic Elements / Y. Furuta, I. Kobayashi. - Text : electronic // Madame Curie Bioscience Database [Internet]. - Landes Bioscience, 2013. - URL: https://www.ncbi.nlm.nih.gov/books/NBK63963/ (date accessed: 13.03.2025).

95. Kobayashi, I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution / I. Kobayashi // Nucleic Acids Research. - 2001. - Vol. 29. - № 18. -P. 3742-3756.

96. Gerdes, K. Unique type of plasmid maintenance function: postsegregational killing of plasmidfree cells. / K. Gerdes, P. B. Rasmussen, S. Molin // Proceedings of the National Academy of Sciences.

- 1986. - Vol. 83. - Unique type of plasmid maintenance function. - № 10. - P. 3116-3120.

97. Harms, A. Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology / A. Harms, D. E. Brodersen, N. Mitarai, K. Gerdes // Molecular Cell. - 2018. - Vol. 70. - Toxins, Targets, and Triggers. - № 5. - P. 768-784.

98. Wilbaux, M. Functional Interactions between Coexisting Toxin-Antitoxin Systems of the ccd Family in Escherichia coli O157:H7 / M. Wilbaux, N. Mine, A.-M. Guérout, D. Mazel, L. Van Melderen // Journal of Bacteriology. - 2007. - Vol. 189. - Functional Interactions between Coexisting Toxin-Antitoxin Systems of the ccd Family in Escherichia coli O157. - № 7. - P. 2712-2719.

99. Gerdes, K. Antisense RNA-regulated programmed cell death / K. Gerdes, A. P. Gultyaev, T. Franch, K. Pedersen, N. D. Mikkelsen // Annual Review of Genetics. - 1997. - Vol. 31. - P. 1-31.

100. Ichige, A. Stability of EcoRI Restriction-Modification Enzymes In Vivo Differentiates the EcoRI Restriction-Modification System from Other Postsegregational Cell Killing Systems / A. Ichige, I. Kobayashi // Journal of Bacteriology. - 2005. - Vol. 187. - № 19. - P. 6612-6621.

101. Ohno, S. Maintenance forced by a restriction-modification system can be modulated by a region in its modification enzyme not essential for methyltransferase activity / S. Ohno, N. Handa, M. Watanabe-Matsui, N. Takahashi, I. Kobayashi // Journal of Bacteriology. - 2008. - Vol. 190. - № 6. -P. 2039-2049.

102. O'Neill, M. The restriction-modification genes of Escherichia coli K-12 may not be selfish: They do not resist loss and are readily replaced by alleles conferring different specificities / M. O'Neill, A. Chen, N. E. Murray // Proceedings of the National Academy of Sciences of the United States of America.

- 1997. - Vol. 94. - The restriction-modification genes of Escherichia coli K-12 may not be selfish. -№ 26. - P. 14596.

103. Sayeed, S. The Stability Region of the Large Virulence Plasmid ofShigella flexneri Encodes an Efficient Postsegregational Killing System / S. Sayeed, L. Reaves, L. Radnedge, S. Austin // Journal of Bacteriology. - 2000. - Vol. 182. - № 9. - P. 2416-2421.

104. Boe, L. Effects of genes exerting growth inhibition and plasmid stability on plasmid maintenance. / L. Boe, K. Gerdes, S. Molin // Journal of Bacteriology. - 1987. - Vol. 169. - № 10. -P. 4646-4650.

105. Fedorec, A. J. H. Two New Plasmid Post-segregational Killing Mechanisms for the Implementation of Synthetic Gene Networks in Escherichia coli / A. J. H. Fedorec, T. Özdemir, A. Doshi, Y.-K. Ho, L. Rosa, J. Rutter, O. Velazquez, V. B. Pinheiro, T. Danino, C. P. Barnes // iScience.

- 2019. - Vol. 14. - P. 323-334.

106. Handa, N. Post-segregational killing by restriction modification gene complexes: Observations of individual cell deaths / N. Handa, I. Kobayashi // Biochimie. - 1999. - Vol. 81. - Post-segregational killing by restriction modification gene complexes. - № 8. - P. 931-938.

107. Melderen, L. Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria / L. Melderen, P. Bernard, M. Couturier // Molecular Microbiology. -1994. - Vol. 11. - № 6. - P. 1151-1157.

108. Gil, D. ColE1-type vectors with fully repressible replication / D. Gil, J.-P. Bouché // Gene. -1991. - Vol. 105. - № 1. - P. 17-22.

109. Gerdes, K. The parB (hok/sok) Locus of Plasmid R1: A General Purpose Plasmid Stabilization System / K. Gerdes // Nature Biotechnology. - 1988. - Vol. 6. - The parB (hok/sok) Locus of Plasmid R1. - № 12. - P. 1402-1405.

110. Jensen, R. B. Comparison of ccd of F, parDE of RP4, and parD of R1 using a novel conditional replication control system of plasmid R1 / R. B. Jensen, E. Grohmann, H. Schwab, R. Díaz-Orejas, K. Gerdes // Molecular Microbiology. - 1995. - Vol. 17. - № 2. - P. 211-220.

111. Gerdes, K. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. / K. Gerdes, F. W. Bech, S. T. Jorgensen, A. Lobner-Olesen, P. B. Rasmussen, T. Atlung, L. Boe, O. Karlstrom, S. Molin, K. von Meyenburg // The EMBO Journal. - 1986. - Vol. 5. - № 8. - P. 2023-2029.

112. Messer, W. Mini-chromosomes: Plasmids which carry the E. coli replication origin / W. Messer, H. E. N. Bergmans, M. Meijer, J. E. Womack, F. G. Hansen, K. von Meyenburg // Molecular and General Genetics MGG. - 1978. - Vol. 162. - Mini-chromosomes. - № 3. - P. 269-275.

113. Ogura, T. Mini-F plasmid genes that couple host cell division to plasmid proliferation. / T. Ogura, S. Hiraga // Proceedings of the National Academy of Sciences of the United States of America. - 1983.

- Vol. 80. - № 15. - P. 4784-4788.

114. Fraikin, N. Single-cell evidence for plasmid addiction mediated by toxin-antitoxin systems / N. Fraikin, L. Van Melderen // Nucleic Acids Research. - 2024. - P. gkae018.

115. Effe, J. Persistence of large conjugative plasmids relies on the combination of active partitioning and addiction mechanisms. - 2025. - URL: http://biorxiv.org/lookup/doi/10.1101/2025.02.11.637630 (date accessed: 13.03.2025). - Text: electronic.

116. Chen, Y. RES-Xre toxin-antitoxin locus knaAT maintains the stability of the virulence plasmid in Klebsiella pneumoniae / Y. Chen, Y.-X. Goh, P. Li, J. Guan, Y. Chao, H. Qu, H.-Y. Ou, X. Wang // Emerging Microbes & Infections. - 2024. - Vol. 13. - № 1. - P. 2316814.

117. Floras, F. The Putative Virulence Plasmid pYR4 of the Fish Pathogen Yersinia ruckeri Is Conjugative and Stabilized by a HigBA Toxin-Antitoxin System / F. Floras, C. Mawere, M. Singh, V. Wootton, L. Hamstead, G. McVicker, J. C. Leo // Biology. - 2024. - Vol. 13. - № 9. - P. 652.

118. Li, M. A plasmid-encoded inactive toxin-antitoxin system MtvT/MtvA regulates plasmid conjugative transfer and bacterial virulence in Pseudomonas aeruginosa / M. Li, H. Guo, L. Wang, R. Tao, G. Song, L. Cao, W. Yan, Z. Wu, Q. Liu, Y. Chen, L. Gong, T. Wang, Y. Zhang // Nucleic Acids Research. - 2025. - Vol. 53. - № 4. - P. gkaf075.

119. Sadykov, M. Multiplication of a restriction-modification gene complex / M. Sadykov, Y. Asami, H. Niki, N. Handa, M. Itaya, M. Tanokura, I. Kobayashi // Molecular Microbiology. - 2003. - Vol. 48.

- № 2. - P. 417-427.

120. Szekeres, S. Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection / S. Szekeres, M. Dauti, C. Wilde, D. Mazel, D. A. Rowe-Magnus // Molecular Microbiology. - 2007. - Vol. 63. - № 6. - P. 1588-1605.

121. Sabbagh, P. Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens / P. Sabbagh, M. Rajabnia, A. Maali, E. Ferdosi-Shahandashti // Iranian Journal of Basic Medical Sciences. - 2021. - Vol. 24. - Integron and its role in antimicrobial resistance. - № 2. -P. 136-142.

122. Richard, E. Cassette recombination dynamics within chromosomal integrons are regulated by toxin-antitoxin systems / E. Richard, B. Darracq, E. Littner, C. Vit, C. Whiteway, J. Bos, F. Fournes, G. Garriss, V. Conte, D. Lapaillerie, V. Parissi, F. Rousset, O. Skovgaard, D. Bikard, E. P. C. Rocha, D. Mazel, C. Loot // Science Advances. - 2024. - Vol. 10. - № 2. - P. eadj3498.

123. Zavilgelsky, G. B. Comparative analysis of anti-restriction activities of ArdA (ColIb-P9) and Ocr (T7) proteins / G. B. Zavilgelsky, V. Y. Kotova, S. M. Rastorguev // Biochemistry. Biokhimiia. - 2008.

- Vol. 73. - № 8. - P. 906-911.

124. Hutinet, G. Hypermodified DNA in Viruses of E. coli and Salmonella / G. Hutinet, Y.-J. Lee, V. de Crécy-Lagard, P. R. Weigele // EcoSal Plus. - Vol. 9. - № 2. - P. eESP-0028-2019.

125. Williams, M. C. Restriction endonuclease cleavage of phage DNA enables resuscitation from Cas13-induced bacterial dormancy / M. C. Williams, A. E. Reker, S. R. Margolis, J. Liao, M. Wiedmann, E. R. Rojas, A. J. Meeske // Nature microbiology. - 2023. - Vol. 8. - № 3. - P. 400-409.

126. Fernández-García, L. Toxin/antitoxin systems induce persistence and work in concert with restriction/modification systems to inhibit phage / L. Fernández-García, S. Song, J. Kirigo, M. E. Battisti, M. E. Petersen, M. Tomás, T. K. Wood // Microbiology Spectrum. - Vol. 12. - № 1. -P. e03388-23.

127. Kuzmenko, A. DNA targeting and interference by a bacterial Argonaute nuclease / A. Kuzmenko, A. Oguienko, D. Esyunina, D. Yudin, M. Petrova, A. Kudinova, O. Maslova, M. Ninova, S. Ryazansky, D. Leach, A. A. Aravin, A. Kulbachinskiy // Nature. - 2020. - Vol. 587. - № 7835. - P. 632637.

128. Picton, D. M. The phage defence island of a multidrug resistant plasmid uses both BREX and type IV restriction for complementary protection from viruses / D. M. Picton, Y. A. Luyten, R. D. Morgan, A. Nelson, D. L. Smith, D. T. F. Dryden, J. C. D. Hinton, T. R. Blower // Nucleic Acids Research. - 2021. - Vol. 49. - № 19. - P. 11257-11273.

129. Smith, G. R. RecBCD Enzyme and Pathway / G. R. Smith. - Text: electronic // Brenner's Encyclopedia of Genetics. - Elsevier, 2013. - P. 56-62. - URL: https://linkinghub.elsevier.com/retrieve/pii/B978012374984001264X (date accessed: 14.03.2025).

130. Mutte, S. K. Distribution of bacterial DNA repair proteins and their co-occurrence with immune systems / S. K. Mutte, P. Barendse, P. B. Ugarte, D. C. Swarts. - Text : electronic // Cell Reports. -2025. - Vol. 44. - № 1. - URL: https://www.cell.com/cell-reports/abstract/S2211-1247(24)01461-X (date accessed: 14.03.2025).

131. Montague, M. The evolution of RecD outside of the RecBCD complex / M. Montague, C. Barnes, H. O. Smith, R.-Y. Chuang, S. Vashee // Journal of Molecular Evolution. - 2009. - Vol. 69. -№ 4. - P. 360-371.

132. Smith, G. R. How RecBCD Enzyme and Chi Promote DNA Break Repair and Recombination: a Molecular Biologist's View / G. R. Smith // Microbiology and Molecular Biology Reviews : MMBR.

- 2012. - Vol. 76. - How RecBCD Enzyme and Chi Promote DNA Break Repair and Recombination.

- № 2. - P. 217-228.

133. Dillingham, M. S. RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks / M. S. Dillingham, S. C. Kowalczykowski // Microbiology and Molecular Biology Reviews : MMBR. - 2008.

- Vol. 72. - № 4. - P. 642-671.

134. Garzón, A. recB recJ mutants ofSalmonella typhimurium are deficient in transductional recombination, DNA repair and plasmid maintenance / A. Garzón, C. R. Beuzón, M. J. Mahan, J. Casadesús // Molecular and General Genetics MGG. - 1996. - Vol. 250. - № 5. - P. 570-580.

135. Biek, D. P. Identification and Characterization of recD, a Gene Affecting Plasmid Maintenance and Recombination in Escherichia coli / D. P. Biek, S. N. Cohen // J. BACTERIOL. - 1986. - Vol. 167.

136. Dermic, D. RecBCD enzyme overproduction impairs DNA repair and homologous recombination in Escherichia coli / D. Dermic, E. Halupecki, D. Zahradka, M. Petranovic // Research in Microbiology. - 2005. - Vol. 156. - № 3. - P. 304-311.

137. Benzinger, R. Transfection of Escherichia coli spheroplasts. V. Activity of recBC nuclease in rec+ and rec minus spheroplasts measured with different forms of bacteriophage DNA. / R. Benzinger, L. W. Enquist, A. Skalka // Journal of Virology. - 1975. - Vol. 15. - № 4. - P. 861-871.

138. Levy, A. CRISPR adaptation biases explain preference for acquisition of foreign DNA / A. Levy, M. G. Goren, I. Yosef, O. Auster, M. Manor, G. Amitai, R. Edgar, U. Qimron, R. Sorek // Nature. -2015. - Vol. 520. - № 7548. - P. 505-510.

139. Esyunina, D. Specific targeting of plasmids with Argonaute enables genome editing / D. Esyunina, A. Okhtienko, A. Olina, V. Panteleev, M. Prostova, A. A. Aravin, A. Kulbachinskiy // Nucleic Acids Research. - 2023. - Vol. 51. - № 8. - P. 4086-4099.

140. Olina, A. Bacterial Argonaute Proteins Aid Cell Division in the Presence of Topoisomerase Inhibitors in Escherichia coli / A. Olina, A. Agapov, D. Yudin, D. Sutormin, A. Galivondzhyan, A. Kuzmenko, K. Severinov, A. A. Aravin, A. Kulbachinskiy // Microbiology Spectrum. - Vol. 11. - № 3. - P. e04146-22.

141. Appasani, K. Bacteriophage T4 gp2 Interferes with Cell Viability and with Bacteriophage Lambda Red Recombination / K. Appasani, D. S. Thaler, E. B. Goldberg // Journal of Bacteriology. -1999. - Vol. 181. - № 4. - P. 1352-1355.

142. Bhattacharyya, S. Phage Mu Gam protein promotes NHEJ in concert with Escherichia coli ligase / S. Bhattacharyya, M. M. Soniat, D. Walker, S. Jang, I. J. Finkelstein, R. M. Harshey // Proceedings of the National Academy of Sciences of the United States of America. - 2018. - Vol. 115. - № 50. -P. E11614-E11622.

143. Wilkinson, M. Structures of RecBCD in complex with phage-encoded inhibitor proteins reveal distinctive strategies for evasion of a bacterial immunity hub / M. Wilkinson, O. J. Wilkinson, C. Feyerherm, E. E. Fletcher, D. B. Wigley, M. S. Dillingham // eLife. - Vol. 11. - P. e83409.

144. Murphy, K. C. Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. / K. C. Murphy // Journal of Bacteriology. - 1991. -Vol. 173. - № 18. - P. 5808-5821.

145. Henderson, D. Recombination-deficient deletions in bacteriophage lambda and their interaction with chi mutations / D. Henderson, J. Weil // Genetics. - 1975. - Vol. 79. - № 2. - P. 143-174.

146. Hossain, A. A. Viral recombination systems limit CRISPR-Cas targeting through the generation of escape mutations / A. A. Hossain, J. McGinn, A. J. Meeske, J. W. Modell, L. A. Marraffini // Cell host & microbe. - 2021. - Vol. 29. - № 10. - P. 1482-1495.e12.

147. Touzain, F. DNA motifs that sculpt the bacterial chromosome / F. Touzain, M.-A. Petit, S. Schbath, M. El Karoui // Nature Reviews. Microbiology. - 2011. - Vol. 9. - № 1. - P. 15-26.

148. Cheng, K. A conformational switch in response to Chi converts RecBCD from phage destruction to DNA repair / K. Cheng, M. Wilkinson, Y. Chaban, D. B. Wigley // Nature structural & molecular biology. - 2020. - Vol. 27. - № 1. - P. 71-77.

149. Subramaniam, S. RecBCD enzyme and Chi recombination hotspots as determinants of self vs. non-self: Myths and mechanisms / S. Subramaniam, G. R. Smith // Advances in genetics. - 2022. -Vol. 109. - RecBCD enzyme and Chi recombination hotspots as determinants of self vs. non-self. - P. 137.

150. Roberts, R. J. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes / R. J. Roberts, T. Vincze, J. Posfai, D. Macelis // Nucleic Acids Research. - 2015. - Vol. 43. - REBASE—a database for DNA restriction and modification. - № Database issue. - P. D298-D299.

151. Mruk, I. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems / I. Mruk, I. Kobayashi // Nucleic Acids Research. - 2014. - Vol. 42. - To be or not to be. - № 1. - P. 70-86.

152. Takahashi, N. IS-Linked Movement of a Restriction-Modification System / N. Takahashi, S. Ohashi, M. R. Sadykov, Y. Mizutani-Ui, I. Kobayashi // PLoS ONE. - 2011. - Vol. 6. - № 1. -P. e16554.

153. Cury, J. Host Range and Genetic Plasticity Explain the Coexistence of Integrative and Extrachromosomal Mobile Genetic Elements / J. Cury, P. H. Oliveira, F. de la Cruz, E. P. C. Rocha // Molecular Biology and Evolution. - 2018. - Vol. 35. - № 9. - P. 2230-2239.

154. Birkholz, N. A mobile restriction-modification system provides phage defence and resolves an epigenetic conflict with an antagonistic endonuclease / N. Birkholz, S. A. Jackson, R. D. Fagerlund, P. C. Fineran // Nucleic Acids Research. - 2022. - Vol. 50. - № 6. - P. 3348-3361.

155. Koonin, E. V. Coupling immunity and programmed cell suicide in prokaryotes: Life-or-death choices / E. V. Koonin, F. Zhang // BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. - 2017. - Vol. 39. - Coupling immunity and programmed cell suicide in prokaryotes. - № 1. - P. 1-9.

156. Oliveira, P. H. Regulation of genetic flux between bacteria by restriction-modification systems / P. H. Oliveira, M. Touchon, E. P. C. Rocha // Proceedings of the National Academy of Sciences of the United States of America. - 2016. - Vol. 113. - № 20. - P. 5658-5663.

157. Shmakov, S. Pervasive generation of oppositely oriented spacers during CRISPR adaptation / S. Shmakov, E. Savitskaya, E. Semenova, M. D. Logacheva, K. A. Datsenko, K. Severinov // Nucleic Acids Research. - 2014. - Vol. 42. - № 9. - P. 5907-5916.

158. Moore, S. D. Assembling new Escherichia coli strains by transduction using phage P1 / S. D. Moore // Methods in Molecular Biology (Clifton, N.J.). - 2011. - Vol. 765. - P. 155-169.

159. Baba, T. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection / T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita, B. L. Wanner, H. Mori // Molecular Systems Biology. - 2006. - Vol. 2. - Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants. - № 1. - P. 2006.0008.

160. Guzman, L. M. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. / L. M. Guzman, D. Belin, M. J. Carson, J. Beckwith // Journal of Bacteriology. - 1995. - Vol. 177. - № 14. - P. 4121-4130.

161. Bolivar, F. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system / F. Bolivar, R. L. Rodriguez, P. J. Greene, M. C. Betlach, H. L. Heyneker, H. W. Boyer, J. H. Crosa, S. Falkow // Gene. - 1977. - Vol. 2. - № 2. - P. 95-113.

162. Osterman, I. A. Sorting Out Antibiotics' Mechanisms of Action: a Double Fluorescent Protein Reporter for High-Throughput Screening of Ribosome and DNA Biosynthesis Inhibitors / I. A. Osterman, E. S. Komarova, D. I. Shiryaev, I. A. Korniltsev, I. M. Khven, D. A. Lukyanov, V. N. Tashlitsky, M. V. Serebryakova, O. V. Efremenkova, Y. A. Ivanenkov, A. A. Bogdanov, P. V. Sergiev, O. A. Dontsova // Antimicrobial Agents and Chemotherapy. - 2016. - Vol. 60. - Sorting Out Antibiotics' Mechanisms of Action. - № 12. - P. 7481-7489.

163. Chang, A. C. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. / A. C. Chang, S. N. Cohen // Journal of Bacteriology. -1978. - Vol. 134. - № 3. - P. 1141-1156.

164. Cohen, S. N. Construction of Biologically Functional Bacterial Plasmids In Vitro / S. N. Cohen, A. C. Y. Chang, H. W. Boyer, R. B. Helling // Proceedings of the National Academy of Sciences of the United States of America. - 1973. - Vol. 70. - № 11. - P. 3240-3244.

165. Yanisch-Perron, C. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors / C. Yanisch-Perron, J. Vieira, J. Messing // Gene. - 1985. - Vol. 33. - Improved M13 phage cloning vectors and host strains. - № 1. - P. 103-119.

166. Kudryavtseva, A. A. [Anti-Restriction Activity of ArdB Protein against EcoAI Endonuclease] / A. A. Kudryavtseva, V. A. Alekhin, M. D. Lebedeva, E. Csefalvay, M. Weiserova, I. V. Manukhov // Molekuliarnaia Biologiia. - 2023. - Vol. 57. - № 1. - P. 101-105.

167. Skutel, M. T5-like phage BF23 evades host-mediated DNA restriction and methylation / M. Skutel, A. Andriianov, M. Zavialova, M. Kirsanova, O. Shodunke, E. Zorin, A. Golovshchinskii, K. Severinov, A. Isaev // microLife. - 2023. - Vol. 4. - P. uqad044.

168. Taylor, A. F. Control of RecBCD Enzyme Activity by DNA Binding- and Chi Hotspot-Dependent Conformational Changes / A. F. Taylor, S. K. Amundsen, M. Guttman, K. K. Lee, J. Luo, J. Ranish, G. R. Smith // Journal of molecular biology. - 2014. - Vol. 426. - № 21. - P. 3479-3499.

169. Taylor, A. F. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity / A. F. Taylor, G. R. Smith // Nature. - 2003. - Vol. 423. - № 6942. - P. 889-893.

170. Amundsen, S. K. RecBCD Enzyme "Chi Recognition" Mutants Recognize Chi Recombination Hotspots in the Right DNA Context / S. K. Amundsen, J. W. Sharp, G. R. Smith // Genetics. - 2016. -Vol. 204. - № 1. - P. 139-152.

171. Pickard, D. J. J. Preparation of bacteriophage lysates and pure DNA / D. J. J. Pickard // Methods in Molecular Biology (Clifton, N.J.). - 2009. - Vol. 502. - P. 3-9.

172. Livak, K. J. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method / K. J. Livak, T. D. Schmittgen // Methods (San Diego, Calif.). - 2001. -Vol. 25. - № 4. - P. 402-408.

173. Edelstein, A. D. Advanced methods of microscope control using ^Manager software / A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, N. Stuurman // Journal of biological methods. - 2014. - Vol. 1. - № 2. - P. e10.

174. Schindelin, J. Fiji: an open-source platform for biological-image analysis / J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona // Nature Methods. - 2012. - Vol. 9. - Fiji. - № 7. - P. 676-682.

175. Racine, J. S. Rstudio: A Platform-Independent Ide for R and Sweave / J. S. Racine // Journal of Applied Econometrics. - 2012. - Vol. 27. - Rstudio. - № 1. - P. 167-172.

176. Kirillov, A. Cells with stochastically increased methyltransferase to restriction endonuclease ratio provide an entry for bacteriophage into protected cell population / A. Kirillov, N. Morozova, S. Kozlova, V. Polinovskaya, S. Smirnov, M. Khodorkovskii, L. Zeng, Y. Ispolatov, K. Severinov // Nucleic Acids Research. - 2022. - Vol. 50. - № 21. - P. 12355-12368.

177. Gerdes, K. Unique type of plasmid maintenance function: postsegregational killing of plasmidfree cells. / K. Gerdes, P. B. Rasmussen, S. Molin // Proceedings of the National Academy of Sciences

of the United States of America. - 1986. - Vol. 83. - Unique type of plasmid maintenance function. -№ 10. - P. 3116-3120.

178. Wilbaux, M. Functional interactions between coexisting toxin-antitoxin systems of the ccd family in Escherichia coli O157:H7 / M. Wilbaux, N. Mine, A.-M. Guérout, D. Mazel, L. Van Melderen // Journal of Bacteriology. - 2007. - Vol. 189. - Functional interactions between coexisting toxin-antitoxin systems of the ccd family in Escherichia coli O157. - № 7. - P. 2712-2719.

179. Ichige, A. Stability of EcoRI restriction-modification enzymes in vivo differentiates the EcoRI restriction-modification system from other postsegregational cell killing systems / A. Ichige, I. Kobayashi // Journal of Bacteriology. - 2005. - Vol. 187. - № 19. - P. 6612-6621.

180. Engelberg-Kulka, H. rexB of bacteriophage lambda is an anti-cell death gene / H. Engelberg-Kulka, M. Reches, S. Narasimhan, R. Schoulaker-Schwarz, Y. Klemes, E. Aizenman, G. Glaser // Proceedings of the National Academy of Sciences of the United States of America. - 1998. - Vol. 95. -№ 26. - P. 15481-15486.

181. Coray, D. S. Exploring the parameters of post-segregational killing using heterologous expression of secreted toxin barnase and antitoxin barstar in an Escherichia coli case study / D. S. Coray, B. Kurenbach, J. A. Heinemann // Microbiology. - 2017. - Vol. 163. - № 2. - P. 122-130.

182. Cooper, T. F. Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids / T. F. Cooper, J. A. Heinemann // Proceedings of the National Academy of Sciences. - 2000. - Vol. 97. - № 23. - P. 12643-12648.

183. Naito, Y. Selfish restriction modification genes: resistance of a resident R/M plasmid to displacement by an incompatible plasmid mediated by host killing / Y. Naito, T. Naito, I. Kobayashi // Biological Chemistry. - 1998. - Vol. 379. - Selfish restriction modification genes. - № 4-5. - P. 429436.

184. Kozlova, S. Dependence of post-segregational killing mediated by Type II restriction-modification systems on the lifetime of restriction endonuclease effective activity / S. Kozlova, N. Morozova, Y. Ispolatov, K. Severinov. - Text : electronic // mBio. - 2024. - URL: https://journals.asm.org/doi/10.1128/mbio.01408-24 (date accessed: 25.09.2024).

185. Loenen, W. A. M. Highlights of the DNA cutters: a short history of the restriction enzymes / W. A. M. Loenen, D. T. F. Dryden, E. A. Raleigh, G. G. Wilson, N. E. Murray // Nucleic Acids Research. - 2014. - Vol. 42. - Highlights of the DNA cutters. - № 1. - P. 3-19.

186. Glatman, L. I. A novel plasmid-mediated DNA restriction-modification system in E. coli / L. I. Glatman, A. F. Moroz, M. B. Yablokova, B. A. Rebentish, G. V. Kcholmina // Plasmid. - 1980. - Vol. 4. - № 3. - P. 350-351.

187. Nakayama, Y. Restriction-modification gene complexes as selfish gene entities: Roles of a regulatory system in their establishment, maintenance, and apoptotic mutual exclusion / Y. Nakayama,

I. Kobayashi // Proceedings of the National Academy of Sciences. - 1998. - Vol. 95. - Restriction-modification gene complexes as selfish gene entities. - № 11. - P. 6442-6447.

188. Handa, N. Cellular responses to postsegregational killing by restriction-modification genes / N. Handa, A. Ichige, K. Kusano, I. Kobayashi // Journal of Bacteriology. - 2000. - Vol. 182. - № 8. -P. 2218-2229.

189. Ishikawa, K. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems / K. Ishikawa, E. Fukuda, I. Kobayashi // DNA research: an international journal for rapid publication of reports on genes and genomes. - 2010. -Vol. 17. -№ 6. - P. 325-342.

190. Kusano, K. Restriction-modification systems as genomic parasites in competition for specific sequences. / K. Kusano, T. Naito, N. Handa, I. Kobayashi // Proceedings of the National Academy of Sciences. - 1995. - Vol. 92. - № 24. - P. 11095-11099.

191. Shao, B. Single-cell measurement of plasmid copy number and promoter activity / B. Shao, J. Rammohan, D. A. Anderson, N. Alperovich, D. Ross, C. A. Voigt // Nature Communications. - 2021. - Vol. 12. - № 1. - P. 1475.

192. Werbowy, O. Plasmid stability analysis based on a new theoretical model employing stochastic simulations / O. Werbowy, S. Werbowy, T. Kaczorowski // PLoS ONE. - 2017. - Vol. 12. - № 8. -P. e0183512.

193. Semenova, E. Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex / E. Semenova, E. Savitskaya, O. Musharova, A. Strotskaya, D. Vorontsova, K. A. Datsenko, M. D. Logacheva, K. Severinov // Proceedings of the National Academy of Sciences. - 2016. - Vol. 113. - № 27. - P. 7626-7631.

194. Musharova, O. Systematic analysis of Type I-E Escherichia coli CRISPR-Cas PAM sequences ability to promote interference and primed adaptation / O. Musharova, V. Sitnik, M. Vlot, E. Savitskaya, K. A. Datsenko, A. Krivoy, I. Fedorov, E. Semenova, S. J. J. Brouns, K. Severinov // Molecular Microbiology. - 2019. - Vol. 111. - № 6. - P. 1558-1570.

195. McKenzie, R. E. Single cell variability of CRISPR-Cas interference and adaptation / R. E. McKenzie, E. M. Keizer, J. N. A. Vink, J. van Lopik, F. Büke, V. Kalkman, C. Fleck, S. J. Tans, S. J. J. Brouns // Molecular Systems Biology. - 2022. - Vol. 18. - № 4. - P. e10680.

196. Mamontov, V. Persistence of plasmids targeted by CRISPR interference in bacterial populations / V. Mamontov, A. Martynov, N. Morozova, A. Bukatin, D. B. Staroverov, K. A. Lukyanov, Y. Ispolatov, E. Semenova, K. Severinov // Proceedings of the National Academy of Sciences. - 2022. -Vol. 119. - № 15. - P. e2114905119.

197. Trusca, D. Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein / D. Trusca, S. Scott, C. Thompson, D. Bramhill // Journal of Bacteriology. - 1998. -Vol. 180. - № 15. - P. 3946-3953.

198. Morimatsu, K. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair / K. Morimatsu, S. C. Kowalczykowski // Molecular Cell. - 2003. - Vol. 11. - № 5. - P. 1337-1347.

199. Persky, N. S. Mechanisms of recombination: lessons from E. coli / N. S. Persky, S. T. Lovett // Critical Reviews in Biochemistry and Molecular Biology. - 2008. - Vol. 43. - Mechanisms of recombination. - № 6. - P. 347-370.

200. Sobecky, P. A. Characterization of the stable maintenance properties of the par region of broad-host-range plasmid RK2. / P. A. Sobecky, C. L. Easter, P. D. Bear, D. R. Helinski // Journal of Bacteriology. - 1996. - Vol. 178. - № 7. - P. 2086-2093.

201. Enikeeva, F. N. Restriction-modification systems and bacteriophage invasion: Who wins? / F. N. Enikeeva, K. V. Severinov, M. S. Gelfand // Journal of Theoretical Biology. - 2010. - Vol. 266. -№ 4. - P. 550-559.

202. Jahn, M. Copy number variability of expression plasmids determined by cell sorting and Droplet Digital PCR / M. Jahn, C. Vorpahl, T. Hübschmann, H. Harms, S. Müller // Microbial Cell Factories. -2016. - Vol. 15. - № 1. - P. 211.

203. Lin-Chao, S. High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II / S. Lin-Chao, W. T. Chen, T. T. Wong // Molecular Microbiology. - 1992. - Vol. 6. - № 22. - P. 3385-3393.

204. Xia, G. X. A copy-number mutant of plasmid pSC101 / G. X. Xia, D. Manen, T. Goebel, P. Linder, G. Churchward, L. Caro // Molecular Microbiology. - 1991. - Vol. 5. - № 3. - P. 631-640.

205. Werbowy, O. Genetic analysis of maintenance of pEC156, a naturally occurring Escherichia coli plasmid that carries genes of the EcoVIII restriction-modification system / O. Werbowy, R. Boratynski, A. Dekowska, T. Kaczorowski // Plasmid. - 2015. - Vol. 77. - P. 39-50.

206. Mruk, I. Real-time kinetics of restriction-modification gene expression after entry into a new host cell / I. Mruk, R. M. Blumenthal // Nucleic Acids Research. - 2008. - Vol. 36. - № 8. - P. 25812593.

207. Mruk, I. Natural tuning of restriction endonuclease synthesis by cluster of rare arginine codons / I. Mruk, T. Kaczorowski, A. Witczak // Scientific Reports. - 2019. - Vol. 9. - № 1. - P. 5808.

208. Luria, S. E. A nonhereditary, host-induced variation of bacterial viruses / S. E. Luria, M. L. Human // Journal of Bacteriology. - 1952. - Vol. 64. - № 4. - P. 557-569.

209. Kuzminov, A. Collapse and repair of replication forks in Escherichia coli / A. Kuzminov // Molecular Microbiology. - 1995. - Vol. 16. - № 3. - P. 373-384.

210. Miranda, A. Chromosomal lesion suppression and removal in Escherichia coli via linear DNA degradation. / A. Miranda, A. Kuzminov // Genetics. - 2003. - Vol. 163. - № 4. - P. 1255-1271.

211. Rakonjac, J. Filamentous Phage: Structure and Biology / J. Rakonjac, M. Russel, S. Khanum, S. J. Brooke, M. Rajic. - Text : electronic // Recombinant Antibodies for Infectious Diseases : Advances in Experimental Medicine and Biology / ed. T. S. Lim. - Cham : Springer International Publishing, 2017.

- Vol. 1053. - Filamentous Phage. - P. 1-20. - URL: http://link.springer.com/10.1007/978-3-319-72077-7_1 (date accessed: 27.03.2025).

212. Smeal, S. W. Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation / S. W. Smeal, M. A. Schmitt, R. R. Pereira, A. Prasad, J. D. Fisk // Virology. - 2017. - Vol. 500. - Simulation of the M13 life cycle I. - P. 259-274.

213. Lerner, T. J. The "steady state" of coliphage f1: DNA synthesis late in infection / T. J. Lerner, P. Model // Virology. - 1981. - Vol. 115. - The "steady state" of coliphage f1. - № 2. - P. 282-294.

214. Enquist, L. W. Replication of bacteriophage lambda DNA dependent on the function of host and viral genes. I. Interaction of red, gam and rec / L. W. Enquist, A. Skalka // Journal of Molecular Biology.

- 1973. - Vol. 75. - № 2. - P. 185-212.

215. Pleska, M. Effects of mutations in phage restriction sites during escape from restriction-modification / M. Pleska, C. C. Guet // Biology Letters. - 2017. - Vol. 13. - № 12. - P. 20170646.

216. Rambach, A. Bacteriophage X Having EcoRI Endonuclease Sites Only in the Nonessential Region of the Genome / A. Rambach, P. Tiollais // Proceedings of the National Academy of Sciences of the United States of America. - 1974. - Vol. 71. - № 10. - P. 3927-3930.

217. Kasarjian, J. K. A. New restriction enzymes discovered from Escherichia coli clinical strains using a plasmid transformation method / J. K. A. Kasarjian // Nucleic Acids Research. - 2003. - Vol. 31.

- № 5. - P. 22e-222.

218. Dimitriu, T. Various plasmid strategies limit the effect of bacterial restriction-modification systems against conjugation / T. Dimitriu, M. D. Szczelkun, E. R. Westra // Nucleic Acids Research. -2024. - Vol. 52. - № 21. - P. 12976-12986.

219. Szczelkun, M. D. Selection of non-specific DNA cleavage sites by the type IC restriction endonuclease EcoR124I / M. D. Szczelkun, P. Janscak, K. Firman, S. E. Halford // Journal of Molecular Biology. - 1997. - Vol. 271. - № 1. - P. 112-123.

220. Kuzminov, A. Chi sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating exoV activity of RecBCD nuclease. / A. Kuzminov, E. Schabtach, F. W. Stahl // The EMBO Journal. - 1994. - Vol. 13. - № 12. - P. 2764-2776.

221. Stahl, F. W. RECOMBINATION PATHWAY SPECIFICITY OF CHI / F. W. Stahl, M. M. Stahl // Genetics. - 1977. - Vol. 86. - № 4. - P. 715-725.

222. Lam, S. T. Rec-Mediated Recombinational Hot Spot Activity in Bacteriophage Lambda II. a Mutation Which Causes Hot Spot Activity / S. T. Lam, M. M. Stahl, K. D. McMilin, F. W. Stahl // Genetics. - 1974. - Vol. 77. - № 3. - P. 425-433.

223. Bobay, L.-M. Manipulating or Superseding Host Recombination Functions: A Dilemma That Shapes Phage Evolvability / L.-M. Bobay, M. Touchon, E. P. C. Rocha // PLoS Genetics. - 2013. -Vol. 9. - Manipulating or Superseding Host Recombination Functions. - № 9. - P. e1003825.

224. Clark, A. J. Isolation and characterization of recombination-deficient mutants of escherichia coli k12* / A. J. Clark, A. D. Margulies // Proceedings of the National Academy of Sciences. - 1965. -Vol. 53. - № 2. - P. 451-459.

225. Amundsen, S. K. RecBCD enzyme: mechanistic insights from mutants of a complex helicase-nuclease / S. K. Amundsen, G. R. Smith // Microbiology and Molecular Biology Reviews. - 2023. -Vol. 87. - RecBCD enzyme. - № 4. - P. e00041-23.

226. Palas, K. M. Biochemical and physical characterization of exonuclease V from Escherichia coli. Comparison of the catalytic activities of the RecBC and RecBCD enzymes. / K. M. Palas, S. R. Kushner // Journal of Biological Chemistry. - 1990. - Vol. 265. - № 6. - P. 3447-3454.

227. Jain, K. RecA-independent recombination: Dependence on the Escherichia coli RarA protein / K. Jain, E. A. Wood, Z. J. Romero, M. M. Cox // Molecular Microbiology. - 2021. - Vol. 115. - RecA-independent recombination. - № 6. - P. 1122-1137.

228. Del Val, E. RecA and DNA recombination: a review of molecular mechanisms / E. Del Val, W. Nasser, H. Abaibou, S. Reverchon // Biochemical Society Transactions. - 2019. - Vol. 47. - RecA and DNA recombination. - № 5. - P. 1511-1531.

229. Koukalova, B. Protection of nonmodified phage lambda against EcoK restriction mediated by recA protein / B. Koukalova, V. Kuhrova, J. Reich // Folia Microbiologica. - 1985. - Vol. 30. - № 1. -P. 17-24.

230. Wendel, B. M. Completion of DNA replication in Escherichia coli / B. M. Wendel, C. T. Courcelle, J. Courcelle // Proceedings of the National Academy of Sciences of the United States of America. - 2014. - Vol. 111. - № 46. - P. 16454-16459.

231. Sinha, A. K. The Roles of Bacterial DNA Double-Strand Break Repair Proteins in Chromosomal DNA Replication / A. K. Sinha, C. Possoz, D. R. F. Leach // FEMS Microbiology Reviews. - 2020. -Vol. 44. - № 3. - P. 351-368.

232. Hamilton, N. A. RecBCD, SbcCD and Exol process a substrate created by convergent replisomes to complete DNA replication / N. A. Hamilton, B. M. Wendel, E. A. Weber, C. T. Courcelle, J. Courcelle // Molecular Microbiology. - 2019. - Vol. 111. - № 6. - P. 1638-1651.

233. Krüger, D. H. Active protection by bacteriophages T3 and T7 against E. coli B- and K-specific restriction of their DNA / D. H. Krüger, C. Schroeder, S. Hansen, H. A. Rosenthal // Molecular & general genetics: MGG. - 1977. - Vol. 153. - № 1. - P. 99-106.

234. Werbowy, O. Genetic analysis of maintenance of pEC156, a naturally occurring Escherichia coli plasmid that carries genes of the EcoVIII restriction-modification system / O. Werbowy, R. Boratynski, A. Dekowska, T. Kaczorowski // Plasmid. - 2015. - Vol. 77. - P. 39-50.

235. Chase, C. D. Transfection of Escherichia coli spheroplasts with a bacteriophage Mu DNAprotein complex. / C. D. Chase, R. H. Benzinger // Journal of Virology. - 1982. - Vol. 42. - № 1. -P. 176-185.

236. Benzinger, R. Transfection of Escherichia coli Spheroplasts IV. Transfection of rec+ and rec-Spheroplasts by Native, Denatured, and Renatured T5 Bacteriophage DNA After Repair of SingleStrand Breaks by Polynucleotide Ligase / R. Benzinger, P. Scheible // Journal of Virology. - 1974. -Vol. 13. - № 5. - P. 960-966.

237. Benzinger, R. Transfection of Escherichia coli spheroplasts. VI. Transfection of nonpermissive spheroplasts by T5 and BF23 bacteriophage DNA carrying amber mutations in DNA transfer genes. / R. Benzinger, D. J. McCorquodale // Journal of Virology. - 1975. - Vol. 16. - № 1. - P. 1-4.

238. Seroka, K. In vivo effects of recBC DNase, exonuclease I, and DNA polymerases of Escherichia coli on the infectivity of native and single-stranded DNA of bacteriophage T7. / K. Seroka, W. Wackernagel // Journal of Virology. - 1977. - Vol. 21. - № 3. - P. 906-912.

239. Unger, R. C. Interaction of the recombination pathways of bacteriophage X and its host Escherichia coli K12: Effects on exonuclease V activity / R. C. Unger, A. J. Clark // Journal of Molecular Biology. - 1972. - Vol. 70. - Interaction of the recombination pathways of bacteriophage X and its host Escherichia coli K12. - № 3. - P. 539-548.

240. Wang, G. R. Bacteriophage T4 Self-Assembly: In Vitro Reconstitution of Recombinant gp2 into Infectious Phage / G. R. Wang, A. Vianelli, E. B. Goldberg // Journal of Bacteriology. - 2000. -Vol. 182. - Bacteriophage T4 Self-Assembly. - № 3. - P. 672-679.

241. Khodak, Y. A. Location and Orientation of the Genetic Toxin-Antitoxin Element hok/sok in the Plasmid Affect Expression of Pharmaceutically Significant Proteins in Bacterial Cells / Y. A. Khodak, R. R. Shaifutdinov, D. S. Khasanov, N. A. Orlova, I. I. Vorobiev // Biochemistry (Moscow). - 2023. -Vol. 88. - № 9. - P. 1326-1337.

242. Kan, A. Plasmid Vectors for in Vivo Selection-Free Use with the Probiotic E. coli Nissle 1917 / A. Kan, I. Gelfat, S. Emani, P. Praveschotinunt, N. S. Joshi // ACS Synthetic Biology. - 2021. - Vol. 10. - № 1. - P. 94-106.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.