Молекулярные механизмы регуляции продукции оксида азота в эпителиальных клетках мочевого пузыря лягушки тема диссертации и автореферата по ВАК РФ 03.01.04, кандидат биологических наук Николаева, Светлана Дмитриевна

  • Николаева, Светлана Дмитриевна
  • кандидат биологических науккандидат биологических наук
  • 2011, Санкт-Петербург
  • Специальность ВАК РФ03.01.04
  • Количество страниц 154
Николаева, Светлана Дмитриевна. Молекулярные механизмы регуляции продукции оксида азота в эпителиальных клетках мочевого пузыря лягушки: дис. кандидат биологических наук: 03.01.04 - Биохимия. Санкт-Петербург. 2011. 154 с.

Оглавление диссертации кандидат биологических наук Николаева, Светлана Дмитриевна

Список сокращений.

ВВЕДЕНИЕ.

1. ОБЗОР ЛИТЕРАТУРЫ.

1.1. Физиологическая роль оксида азота.

1.2. Биосинтез оксида азота.

1.3. Функциональная роль N0 в регуляции транспорта воды в собирательных трубках почки млекопитающих и мочевом пузыре амфибий.

1.4. Участие N0 в неспецифическом иммунном ответе в уроэпителии и почке млекопитающих.

1.5. Регуляция активности разных изоформ NOS.

1.5.1. Регуляция конститутивных NOS.

Кальций/калъмодулин

Эндогенные ингибиторы NOS.

Фосфорилирование.

Миристоилироеание и палъмитоилирование.

Регуляция экспрессии eNOS и nNOS

1.5.2. Механизмы регуляции iNOS.

1.5.2.1. Механизм действия ЛПС'на экспрессию iNOS.

1.5.2.2. Роль циклооксигеназы и простагландинов в индукции экспрессии iNOS

1.5.3. Регуляция продукции NO за счет изменения доступности субстрата.

1.5.3 Л. Транспорт аргинина.

1.5.3.2. Аргиназа.

2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1. Животные.

2.2.Получение суспензии клеток мукозного эпителия мочевого пузыря лягушки.

2.3. Получение первичной культуры клеток мукозного эпителия мочевого пузыря лягушки.

2.4. Определение концентрации нитритов в культуральной среде.

2.5. Исследование активности NO-синтазы в гомогенате эпителиальных клеток мочевого пузыря лягушки.

2.6. Определение активности NOS и аргиназы в суспензии изолированных эпителиальных клеток.

2.7. Определение параметров транспортаZ-аргинина.

2.8. Измерение активности аргиназы в гомогенатах тканей и клеток.

2.9. Измерение концентрации белка в лизате эпителиальных клеток.

2.10. Выделение РНК из эпителиальных клеток мочевого пузыря лягушки.

2.11. Обратная транскрипция - полимеразная цепная реакция (ОТ-ПЦР).

2.12. Электрофорез РНК и ДНК в агарозном геле.

2.13. Иммуноблоттинг.

2.13.1. Приготовление проб для электрофоретического разделения.

2.13.2. Электрофорез белков в полиакриламидном геле.

2.13.3. Иммуноблоттинг со специфичными антителами.

2.14. Выделение лейкоцитов из крови лягушки и крысы.

2.15. Получение перитонеальных макрофагов крысы.

2.16. Статистическая обработка результатов.

3. РЕЗУЛЬТАТЫ.

3.1. NO-синтазы в эпителиальных клетках мочевого пузыря лягушки.

3.1.1. Обнаружение NO-синтазной активности в изолированных клетках.

3.1.2. Идентификация изоформ NOS.

3.1.2.1 .Исследование кальциевой зависимости NOS в клеточных гомогенатах

3.1.2.2. Влияние селективных ингибиторов конститутивных и индуцибельной NOS на NO-синтазную активность в эпителиальных клетках.

3.1.2.3. Идентификация изоформ NOS в эпителии мочевого пузыря лягушки методом иммуноблоттинга.

3.1.2.4. Идентификация iNOS методами ОТ-ПЦР и сиквенирования. Частичная характеристика первичной структуры iNOS.

3.2 Регуляция продукции NO изменением экспрессии iNOS в эпителиальных клетках.

3.2.1. Влияние бактериального эндотоксина ЛПС Е. coli на продукцию нитритов изолированными эпителиальными клетками.

3.2.2.0бнаружение рецептора TLR4 в эпителиальных клетках мочевого пузыря.

3.2.3. Оценка вклада фагоцитирующих клеток в эффект ЛПС на продукцию нитритов.

3.2.4. Изменение экспрессии мРНК и белка iNOS под действием ЛПС Е. coli.

3.3. Роль циклооксигеназы и простагландинов в регуляции экспрессии iNOS.

3.4. Механизмы регуляции продукции NO на уровне доступности субстрата.

3.4.1. Транспорт аргинина в клетках эпителия мочевого пузыря лягушки.

3.4.1.1. Характеристика транспортера катионных аминокислот в эпителиальных клетках мочевого пузыря лягушки.

3.4.1.2. Влияние ЛПС Е. coli на вход аргинина в клетки.

3.4.2. Участие аргиназы в регуляции продукции NO.

3.4.2.1. Активность аргиназы в эпителиальных клетках и ее кинетические характеристики.

3.4.2.2. Идентификация изоформы аргиназы, присутствующей в эпителиальных клетках.

3.4.2.3. Активность NOS в условиях ингибирования аргиназы.

3.4.2.4. Конкурентные отношения NOS и аргиназы в присутствии ЛПС.

3.4.2.5. Влияние ЛПС на активность и экспрессию аргиназы.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

ВЫВОДЫ.

Список используемой литературы.

Список сокращений

АВТ - аргинин-вазотоцин

АДГ - антидиуретический гормон

БСА — бычий сывороточный альбумин

ДТТ - дитиотриитол

ЛПС - липополисахарид

НАДФН — никотинамидадениндинуклеотидфосфат

ПГЕ2 — простагландин Е nTF2a - простагландин F2a

ПГ12- простагландин

ТСХ - тонкослойная хроматография

ТХУ - трихлоруксусная кислота

ФАД - флавинадениндинуклеотид

ФМН - флавинаденинмононуклеотид

ФСБ - фосфатно-солевой буфер цАМФ — циклический аденозинмонофосфат цГМФ - циклический гуанозинмонофосфат

ЭДТА - этилендиаминтетрауксусная кислота

ВЕС - (8)-(2-бороноэтил)-Х-цистеин

ВН4 - тетрагидробиоптерин

СаМ - кальмодулин

CAT - транспортер катионных аминокислот (cationic amino acid transporter)

СОХ - циклооксигеназа (cyclooxygenase)

L-NAME — NG-nitro-Z,-arginine methyl ester

NFkB - нуклеарный фактор кВ (nuclear factor кВ)

PMSF - фенилметансульфонилфторид (phenylmethanesulfonylfluoride)

SDS - додецилсульфат натрия (sodium dodecyl sulfate)

TNFa - фактор некроза опухоли a (tumor necrosis factor a)

TLR - Toll-like receptor

NOS - NO-синтаза (nitric oxide synthase) eNOS, NOS3 - эндотелиальная NO-синтаза nNOS, NOS1 - нейрональная NO-синтаза iNOS, NOS2 - индуцибельная NO-синтаза Arg — аргинин

Asp — аспарагиновая кислота

Glu - глутаминовая кислота

Leu — лейцин

Lys — лизин

Met — метионин

Phe - фенилаланин

Ser - серин

Туг — тирозин

Val - валин

Рекомендованный список диссертаций по специальности «Биохимия», 03.01.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Молекулярные механизмы регуляции продукции оксида азота в эпителиальных клетках мочевого пузыря лягушки»

Актуальность проблемы

Оксид азота (NO) является важнейшим ауто/паракринным регулятором огромного спектра физиологических реакций. Низкомолекулярное и не несущее заряда соединение NO способно быстро диффундировать и свободно проникать через плотные клеточные слои и межклеточное пространство, не требуя специальных переносчиков. Внутриклеточные эффекты NO включают в себя его связывание с гем-содержащими белками, из которых наиболее важное значение во внутриклеточной сигнализации имеет цитозольная гуанилатциклаза, нитрозилирование различных белков, что приводит к изменению их функциональной активности, образование активных форм кислорода и азота [см. обзоры Stamler, 1994; MacMicking, 1997; Liu & Huang, 2008] и др. Эндогенный NO образуется в организме при ферментативном окислении аминокислоты L-аргинина. Эта реакция катализируется ферментом NO-синтазой (NOS), для которой известны 3 изоформы: нейрональная (nNOS, NOS1), первоначально обнаруженная в нейронах центральной и периферической нервной системы; эндотелиальная (eNOS, NOS3), впервые идентифицированная в клетках эндотелия кровеносных сосудов; и индуцибельная (iNOS, NOS2), которая, в отличие от nNOS и eNOS, как правило, не экспрессируется постоянно, а индуцируется в клетках различных типов в ответ на действие патологических стимулов. Изоформы NOS различаются аминокислотной последовательностью, молекулярной массой, локализацией в органах и тканях и механизмами, регулирующими их экспрессию и активность.

Образующийся при участии NOS оксид азота обладает крайне разнообразным биологическим действием, играя важную роль в различных физиологических процессах, таких как поддержание тонуса сосудов, воспалительный и иммунный ответ, нейротрансмиссия, модуляция ионных каналов, агрегация тромбоцитов, секреция ренина, ангиогенез и другие [см. обзоры Bredt, 1994; Reid, 1995; MacMicking, 1997; Ванин, 2000; Ziehe, 2000; Garthwaite, 2008; Kolluru, 2010]. Конститутивные NOS обеспечивают участие NO в процессах внутриклеточной сигнализации, опосредованных, главным образом, активацией цитозольной гуанилатциклазы и увеличением уровня цГМФ. Функция ÎNOS преимущественно связана с участием образовавшегося NO в воспалительных реакциях и обеспечении неспецифической иммунной защиты [Dai et al., 1995; Calza et al., 1997; Виноградов, 1998]. Токсическое действие NO на бактериальные патогены основано на его взаимодействии с активными формами кислорода, нитрозилировании различных реакционно-способных групп и на других механизмах, что приводит к повреждениям! белков, ДНК и липидов бактериальной клетки [Fang, 1997]. Наиболее эффективными индукторами iNOS, стимулирующими транскрипцию гена, являются цитокины (интерлейкин-1, фактор некроза опухолей, у-интерферон), а также бактериальные липополисахариды - компоненты клеточной стенки грамотрицательных бактерий [Ziesche et al., 1996; Galea, Feinstein, 1999; Kleinert et al., 2003].

Большой объем существующей информации свидетельствует о наличии огромного разнообразия механизмов регуляции образования NO. К ним относится регуляция уровня экспрессии NO-синтезирующих ферментов, их различные посттрансляционные модификации, Са2+/кальмодулин-зависимое изменение активности NOS, наличие кофакторов, доступность субстрата, регулируемая как на уровне поступления аргинина в клетку, так и изменением активности ферментов, конкурирующей с NOS за общий субстрат [Копе, 2000; Closs et al, 2000; Mori, Gotoh, 2000; Li, Poulos, 2005]. Наиболее полно регуляция образования NO и механизмы его физиологического действия исследованы в клетках нейронов и глии [Espluques, 2002; Saha, Pahan, 2006], эндотелии сосудов [Fleming, Busse, 1999;

Sessa, 2005] и в различных типах макрофагов [Mori, Gotoh, 2004; Kobayashi, 2010]. Эпителиальная ткань представляет большой интерес для изучения регуляции продукции и действия NO, так как эпителии являются первым барьером на пути проникновения бактериальных патогенов и помимо этого выполняют присущие каждому типу данной ткани специализированные функции. Тем не менее, данные по эпителиальной ткани в отношении способов регуляции образования NO и разнообразию экспрессируемых изоформ NOS немногочисленны.

Данная работа посвящена исследованию регуляции продукции NO в клетках осморегулирующего эпителия, специализированного на поддержании водно-электролитного баланса. В качестве экспериментальной модели были выбраны изолированные эпителиальные клетки мочевого пузыря лягушки- — классического объекта, используемого в изучении механизмов гормональной регуляции транспорта воды. В основе интереса к этому объекту лежит функциональное сходство и общность молекулярных механизмов, обеспечивающих действие антидиуретического гормона (АДГ) на реабсорбцию воды, в эпителии мочевого пузыря бесхвостых амфибий и собирательных трубок почки млекопитающих [Наточин, 1983; Hasegawa et al., 2005; Uchiyama, Konno, 2005]. Имеющиеся данные свидетельствуют о несомненной роли NO в механизмах регуляции водного транспорта. Так, на перфузируемых фрагментах собирательных трубок почки крысы и изолированном мочевом пузыре лягушки было показано, что доноры NO вызывают снижение действия АДГ на увеличение осмотической проницаемости [Garcia et al., 1996; Fock et al., 2004; Klokkers et al., 2009]. Есть данные, что ингибирующее действие простагландина Е2 на АДГ-стимул ированную осмотическую проницаемость обусловлено ЕР 1-рецептор-опосредованной мобилизацией Са2+, которая приводит к увеличению продукции NO [Bachteeva et al.,2007].

Важной предпосылкой проведения данной работы является тот факт, что мочевой пузырь амфибий может быть колонизирован грамотрицательной бактериальной флорой, главным образом, представителями семейства Enterobacteriaceae [Hutchinson, Porter, 1972], эндогенное присутствие которых рассматривается как одна из причин низкого эффекта АДГ на увеличение осмотической проницаемости. Совокупность этих данных позволяет предполагать наличие в эпителии мочевого пузыря лягушки как конститутивных NOS, участвующих в осморегуляции, так и индуцибельной NOS, обеспечивающей неспецифическую иммунную защиту.

Цель и задачи исследования

Целью данной работы было изучение молекулярных механизмов, участвующих в регуляции продукции N0 в эпителиальных клетках мочевого пузыря лягушки Rana temporaria. В данном исследовании рассматривались два аспекта регуляции синтеза NO изучаемыми клетками: (1) регуляция экспрессии фермента и (2) регуляция NO-синтазной активности за счет доступности субстрата. Для этого были поставлены следующие задачи:

1. Идентифицировать изоформы NOS, экспрессируемые эпителиальными клетками мочевого пузыря лягушки.

2. Оценить влияние ЛПС Е. coli на экспрессию NOS и продукцию NO изучаемыми клетками. Исследовать возможность экспрессии TLR4, рецепторов ЛПС, в эпителиальных клетках.

3. Исследовать роль циклооксигеназы и продуктов ее каталитической активности в регуляции экспрессии NOS и продукции NO.

4. Охарактеризовать кинетические параметры транспорта L-аргинина и изучить влияние ЛПС на активность транспортера.

5. Оценить активность аргиназы, использующей аргинин в качестве субстрата катализируемых ею реакций, и выявить экспрессию отдельных изоформ фермента в изучаемых клетках. Исследовать участие аргиназы в регуляции активности NOS.

Научная новизна работы

Впервые была выявлена NO-синтазная активность в клетках эпителия мочевого пузыря лягушки и показана экспрессия nNOS и iNOS в изучаемых клетках. Впервые определена и проанализирована последовательность участка кДНК iNOS у лягушки Rana temporaria. Впервые была показана способность клеток эпителия мочевого пузыря лягушки экспрессировать TLR4, рецептор бактериального ЛПС, и отвечать на ЛПС рецептор-опосредованным усилением экспрессии мРНК и белка iNOS и увеличением продукции NO. Доказано, что экспрессия iNOS в этих клетках критично зависит от активности циклооксигеназы.

Впервые на клетках осморегулирующего эпителия охарактеризованы особенности входа /--аргинина, его кинетические характеристики, установлена зависимость входа аргинина от присутствия ионов натрия, что позволило отнести транспортер к транспортерам катионных аминокислот системы у+. Для данного типа клеток было впервые показано, что вход аргинина в клетку стимулируется ЛПС и зависит от уровня активности iNOS.

Впервые показано, что клетки осморегулирующего эпителия обладают относительно высокой аргиназной активностью, которая обеспечивается экспрессией аргиназы II. Для данного типа ткани были впервые продемонстрированы конкурентные отношения двух ферментов - NOS и аргиназы.

Теоретическая и практическая значимость

Исследование имеет фундаментальное значение для понимания механизмов регуляции биосинтеза N0 в эпителиальных тканях, механизмов развития неспецефического иммунного ответа и N0 в поддержании водно-солевого баланса, что имеет большое значение для разработки новых фармакологических препаратов для лечения заболеваний выделительной, сердечно-сосудистой и других систем организма человека и животных, а также для разработки методических подходов в диагностике этих заболеваний. Полученные результаты могут быть включены в курсы лекций по физиологии и биохимии для студентов биолого-почвенного и медицинского факультетов Санкт-Петербургского государственного университета, Санкт-Петербургского медицинского университета и других вузов.

Апробация работы

Результаты исследования доложены и обсуждены на Всероссийской межвузовской научно-технической конференции студентов и' аспирантов (Санкт-Петербург, 2005), на 10-й Пущинской школе-конференции молодых ученых «Биология - наука XXI века» (Пущино, 2006), на XIII Международном совещании и VI Школе по эволюционной физиологии (Санкт-Петербург, 2006), на VI Сибирском физиологическом съезде (Барнаул, 2008), на Международной конференции «Физиология и патология иммунной системы» (Москва, 2008), на XX и XXI съездах Физиологического общества им. И.П.Павлова (Москва, 2007; Калуга 2010).

Публикации.

По теме диссертации опубликовано 13 работ, 6 из которых — статьи в рецензируемых журналах, 7 - тезисы докладов.

Объем и структура диссертации.

Диссертация состоит из введения, обзора литературы, описания материалов и методов исследования, обсуждения результатов, выводов и списка литературы, включающего 10 отечественных и 202 зарубежных источников. Работа изложена на 154 страницах машинописного текста, иллюстрирована 5 таблицами и 46 рисунками.

Похожие диссертационные работы по специальности «Биохимия», 03.01.04 шифр ВАК

Заключение диссертации по теме «Биохимия», Николаева, Светлана Дмитриевна

ВЫВОДЫ

1. Продукция NO в эпителиальных клетках мочевого пузыря лягушки Rana temporaria обеспечивается экспрессией двух изоформ NOS: nNOS и iNOS.

2. Определена нуклеотидная последовательность фрагмента кДНК iNOS, соответствующая участку белка, содержащему часть оксигеназного домена, полноразмерный СаМ-связывающий домен и часть редуктазного домена (GenBank: GU086402).

3. Экспрессия мРНК и белка iNOS и продукция NO в эпителиальных клетках стимулируется ЛПС Е. coli. Этот эффект обусловлен связыванием ЛПС с рецептором TLR4, экспрессия которого была выявлена в данных клетках. В исследуемой суспензии обнаружены макрофагоподобные клетки, способные к фагоцитозу, однако эффект ЛПС реализуется в эпителиальных клетках.

4. Продукция NO изолированными эпителиальными клетками тормозится в присутствии ингибиторов СОХ1 и СОХ2, которые полностью предотвращали стимулирующее действие ЛПС Е. coli на экспрессию мРНК iNOS. ПГЕ2 обладал способностью частично восстанавливать ингибирующий эффект диклофенака на продукцию NO. Таким образом, в эпителиальных клетках мочевого пузыря лягушки экспрессия iNOS критично зависит от уровня активности СОХ.

5. Охарактеризованы параметры входа Z-аргинина в эпителиальные клетки, которые позволяют предположить активность системы транспорта катионных аминокислот у+ типа. Транспорт Х-аргинина в клетку усиливается при действии ЛПС и тормозится ингибитором iNOS, что свидетельствует о наличии сопряжения между уровнем активности iNOS и системой доставки субстрата в клетку.

6. В исследуемых клетках обнаруживается относительно высокая аргиназная активность, обеспечиваемая экспрессией аргиназы И. ЛПС не влияет на активность и уровень ее экспрессии, однако, угнетение активности аргиназы ее специфическим ингибитором приводит к увеличению продукции NO эпителиальными клетками, по-видимому, за счет изменения доступности L-аргинина для NOS.

ЗАКЛЮЧЕНИЕ

Таким образом, проведенное исследование показало, что в эпителии мочевого пузыря лягушки экспрессируются, по крайней мере, две изоформы NOS - нейрональная и индуцибельная. Продуцируемый ими NO может играть как регуляторную роль, участвуя в модуляции действия АДГ на транспорт воды, так и защитную роль, обеспечивая неспецифический иммунный ответ. Полученные данные демонстрируют, что эпителиальные клетки имеют систему распознавания бактериальных патогенов и отвечают на их присутствие индукцией iNOS, опосредованной продуктами каталитической активности СОХ. Регуляция синтеза NO в изучаемых клетках осуществляется посредством дополнительных молекулярных механизмов, включающих iNOS-зависимое увеличение транспорта ¿-аргинина в клетку и вовлечение аргиназы как ферментной системы, конкурирующей с NOS за общий субстрат.

Список литературы диссертационного исследования кандидат биологических наук Николаева, Светлана Дмитриевна, 2011 год

1. Бахтеева В.Т., Федотов Т.М., Николаева С.Д., Лаврова Е.А., Фок Е.М.,

2. Парнова Р.Г. Регуляторные взаимоотношения циклооксигеназы и индуцибельной NO-синтазы в эпителиальных клетках мочевого пузыря лягушки при действии бактериальных стимулов. // Журн. эеол. биохим. физиол. 2011. Т. 92. N8. С. 1022-1028.

3. Ванин А.Ф. Оксид азота в биомедицинских исследованиях. // Вестн. Росс. АМН. 2000. N4. С. 3-5.

4. Виноградов H.A. Антимикробные свойства окиси азота и регуляция еебиосинтеза в макроорганизме. // Антибиотики и химиотерапия. 1998. Т. 43. N2. С. 24-29.

5. Гервазиев Ю.В., Соколов H.H. Механизмы регуляции кальмодулиномактивности синтазы окиси азота. // Вопросы медицинской химии. 1999. Т. 45. N3. С. 187-199.

6. Лаврова Е.А., Николаева С.Д., Фок Е.М., Бахтеева В.Т., Парнова Р.Г.

7. Липополисахарид Е. coli ингибирует увеличение осмотической проницаемости мочевого пузыря лягушки-, стимулированное аргинин-вазотоцином. // Росс, физиол. журн. им. И.М.Сеченова. 2009. Т. 95. N 3. С. 215-224.

8. Меныцикова Е.Б., Зенков Н.К., Реутов В.П. Оксид азота и NO-синтазы ворганизме млекопитающих при различных функциональных состояниях. // Биохимия. 2000. Т. 65. Вып. 4. С. 485-503.

9. Наточин Ю.В. Эволюция водно-солевого обмена • и почки. // В кн.

10. Эволюционная физиология» под ред. Е.М. Крепса. 1983. Ленинград, Наука. Ч. 2. С. 371-426.

11. Проскуряков С .Я., Бикетов С.И., Иванников А.И., Скворцов В.Г. Оксидазота в механизмах патогенеза внутриклеточных инфекций. // Иммунология. 2000. N 4. С. 9-20.

12. Сомова Л.М., Плехова Н.Г. Оксид азота как медиатор воспаления. // Вестник ДВО РАН. 2006. №2. С. 77 80.

13. Сосунов А.А. Оксид азота как межклеточный посредник. // Соросовский образовательный журнал. 2000. N 12. С. 27-34.

14. Alderton W.K., Cooper C.E., Knowles R.G. Nitric oxide synthases: structure, function and inhibition. II Biochem. J. 2001. V. 357. P. 593-615.

15. Andre M., Latado H., Felley-Bosco E. Inducible nitric oxide synthase-dependent stimulation of PKGI and phosphorylation of YASP in human embryonic kidney cells. // Biochem. Pharmacol. — 2005, v. 69, p. 595-602.

16. Armant M.A., Fenton M.J. Toll-like receptors a family of pattern-recognition receptors in mammals. // Genome Biol. 2002. V.3. N. 8. P. R3011-R3021.

17. Ash D. E. Structure and Function of Arginases II J. Nutr. 2004. V. 134. P. 2760S-2764S.

18. Ben Mkaddem S., Chassin C., Vandewalle A. Contribution of renal tubule epithelial cells in the innate immune response during renal bacterial infections and ischemia-reperfusion injury. // Chang. Gung. Med. J. 2010. V. 33. N 3. P. 225-240.

19. Bôger R.H., Vallance P., Cooke J.P. Asymmetric dimethylarginine (ADMA): a key regulator of nitric oxide synthase. // Atheroscler. Suppl. 2003. V. 4. N4. P. 13.

20. Bôger R.H., Bode-Bôger S.M., Matsuoka H., Miyazaki H., Usui M., Ueda S., Okuda S., Imaizumi T., Cooke J.P. Is asymmetric dimethylarginine a novel marker of atherosclerosis? // Circulation. 2000. V. 101. N 14. P. 160-161.

21. Boo Y.C., Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. II Am. J. Physiol. Cell Physiol. 2003. V. 285. N 3. P. 499508.

22. Boucher J.L., Moali C., Tenu J.P. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for Z-arginine utilization // Cell. Mol. Life Sci. 1999. V. 55. P. 1015-1028.

23. Bradford M.M. A rapid and sensitive method for the quantification microgram quantités of protein utilizing the principle of protein dye binding. // Anal. Biochem. 1976. V. 72. P. 248-254.

24. Breder C.D., Smith W.L., Raz A., Masferrer J., Seibert K., Needleman R, Saper C.B. Distribution and characterization of cyclooxygenase immunoreactivity in the ovine brain. II J. Comp. Neurol. 1992. V. 322. N 3. R 409-438.

25. Bredt D.S., Snyder S.H. Nitric oxide: a physiologic messenger molecule. // Annu. Rev. Biochem. 1994. V. 63. R 175-195.

26. Buga G.M., Wei L.H., Bauer P.M., Fukuto J.M., Ignarro L.J. NG-hydroxi-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms II Am. J. Physiol. 1998. V. 275. R 1256-1264.

27. Carraway M.S., Piantadosi C.A., Jenkinson C.P., Huang Y.G. Differential expression of arginase and iNOS in the lung in sepsis. // Exp. Lung. Res. 1998. V. 24. N 3 P. 253-68.

28. Castrop H., Schweda R, Schumacher K., Wolf K., Kurtz A. Role of renocortical cyclooxygenase-2 for renal vascular resistance and macula densa control of renin secretion. // J. Am. Soc. Nephrol. 2001. V. 12. N 5. P. 867-874.

29. Ceccatelli S., Grandison L., Scott R.E., Pfaff D.W., Kow L.M. Estradiol regulation of nitric oxide synthase mRNAs in rat hypothalamus. // Neuroendocrinology. 1996. V. 64. P. 357-363.

30. Chakravortty D, Hensel M. Inducible nitric oxide synthase and control of intracellular bacterial pathogens. // Microbes Infect. 2003. V. 5. N 7. P. 621-627.

31. Chen C.-C., Chiu K.-T., Sun Y.-T., Chen W.-C. Role of the cyclic AMP-protein kinase A pathway in lipopolysaccharide-induced nitric oxide synthase expression in RAW 264.7 macrophages. // J. Biol. Chem. 1999. V. 274. P. 31559-31564.

32. Chowdhury P., Sacks S.H., Sheerin N.S. Minireview: functions of the renal tract epithelium in coordinating the innate immune response to infection. // Kidney Int. 2004. V. 66. N 4. P. 1334-1344.

33. Closs E.I., Boissel J.P., Habermeier A., Rotmann A. Structure and function, of cationic amino acid transporters (CATs). // J. Membr. Biol. 2006. V. 213. N 2. P. 67-77.

34. Closs E.I., Scheld J.S., Sharafi M:, Forstermann U. Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. // Mol. Pharmacol. 2000. V. 57. N 1. P. 68-74.

35. Closs E.I., Simon A., Vekony N., Rotmann A. Plasma membrane transporters for arginine: // J.) Nutr. 2004. V. 134; R 2752Sr2759S; 2765S-2767S;

36. Coleman J.W. Nitric oxide in: immunity and inflammation.: // Int. Immunopharmacol. 2001. V. 8. P. 1397-406.

37. Corraliza I.M., Campo M.L., Soler G., Modolell M. Determination of arginase activity in macrophages: a micromethod // J. Immunol. Methods. 1994. V. 174. P. 231-235.

38. Dai A., Zhang Z., Niu R. The effects of hypoxia on nitric oxide synthase activity and mRNA expression of pulmonary artery endothelial cells in pigs. // Chung Hua Chieh Ho Ho Hu Hsi Tsa Chih. 1995. V. 18. P. 164-166

39. Dala E., Szajani B. Immobilization, characterization, and laboratory-scale application of bovine liver arginase // Appl. Biochem. Biotechnol. 1994. V. 49. P. 203-215.

40. Dauphinee S.M., Karsan A. Lipopolysaccharide signaling in endothelial cells. // Lab. Invest. 2006. V. 86. N 1. P. 9-22.

41. Dedio J., König P., Wohlfart P., Schroeder C., Kummer W., Müller-Esterl W. NOSTP, a novel modulator of endothelial nitric oxide synthase activity. // FASEB J. 2001. V. 15. N 1. P. 79-89.

42. Dhakal B.K., Kulesus R.R., Mulvey M.A. Mechanisms and consequences of bladder cell invasion by uropathogenic Escherichia coli. // Eur. J. Clin. Invest. 2008. V. 38. Suppl. 2. P. 2-11.

43. Doyle S.L., O'Neill L.A. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. // Biochem. Pharmacol. 2006. V. 72. N 9. P. 1102-1113.

44. Dreyer J., Hirlinger D., Müller-Esterl W., Oess S., Kuner R. Spinal upregulation of the nitric oxide synthase-interacting protein NOSIP in a rat model of inflammatory pain. // Neurosci. Lett. 2003. V. 350. N 1. P. 13-16.

45. Fan J.S., Zhang Q., Li M., Tochio H., Yamazaki T., Shimizu M., Zhang M. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. // J. Biol. Chem. 1998. V. 273. N 50. P. 33472-33481

46. Fang F.C. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. II J. Clin. Invest. 1997. V. 99. N 12. P. 28182825.

47. Fleming I., Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003. V. 284. P. R1 -R12.

48. Fleming I., Busse R. Signal transduction of eNOS activation. // Cardiovasc. Res. 1999. V. 43. N3. P. 532-541.

49. Fock E.M., Lavrova E.A., Bachteeva V.T., Chernigovskaya E.V., Parnova R.G. Nitric oxide inhibits arginine-vasotocin-induced increase of water osmotic permeability in frog urinary bladder. // Pflugers Arch. 2004. V. 448. N 2. P. 197203.

50. Forstermann U., Boissel J.-P., Kleinert H. Expressional control of the 'constitutive' isoforms of nitric oxide synthase (NOS I and NOS III). // FASEB Journal. 1998. V. 12. N 10. P. 773-790.

51. Freedman J.E., Sauter R., Battinelli E.M., Ault K., Knowles C., Huang P.L., Loscalzo J. Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene. // Circ. Res. 1999. V. 84. N 12. P. 1416-1421.

52. Fulton D., Church J. E., Rúan L., Li C., Sood S. G., Kemp B. E., Jennings 1. G., Venema R. C. Src kinase activates endothelial nitric-oxide synthase by phosphorylating Tyr-83. II J. Biol. Chem. 2005. V. 280. P. 35943-35952.

53. Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. // Nature. 1980. V. 288. N 5789. P. 373-376.

54. Galea E., Feinstein D.L. Regulation of the expression of the inflammatory nitric oxide synthase-(NOS2) by cyclic AMP// FASEB Journal. 1999. V. 13. P. 21252137.

55. Garcia N.H., Stoos BA., Carretero O.A., Garvin J.L. Mechanism of the nitric oxide-induced blockade of collecting duct water permeability. // Hypertension. 1996. V.27. N 3. Pt 2. P. 679-683.

56. Garg U.C., Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. II J. Clin. Invest. 1989. V. 83. N 5. P. 1774-1777.

57. Garthwaite J. Concepts of neural nitric oxide-mediated transmission. // Eur. J. Neurosci. 2008. V. 27. N 11. P. 2783-2802.

58. Garthwaite J., Balázs R. Supersensitivity to the cyclic GMP response to glutamate during cerebellar maturation. II Nature. 1978. V. 275. N 5678. P. 328329.

59. Gatti G., Rivero V., Motrich R.D., Maccioni M. Prostate epithelial cells can act as early sensors of infection by up-regulating TLR4 expression and proinflammatory mediators upon LPS stimulation. // J. Leukoc. Biol. 2006. V. 79. N5. P. 989-998.

60. Goetz R.M., Morano I., Calovini T., Studer R., Holtz J. Increased expression of endothelial constitutive nitric oxide synthase in rat aorta during pregnancy. // Biochem. Biophys. Res. Commun. 1994. V. 205. P. 905-910.

61. Gotoh T., Mori M. Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. II J. Cell. Biol. 1999. V. 144. N 3. P. 427-434.

62. Green L., Wagner D., Glogowski J., Skipper P., Wishnok J.S., Tannenbaum S.R. Analysis of nitrate, nitrite, and 15N.nitrate in biological fluids. I I Anal. Biochem. 1982. V. 126. P. 131-134.

63. Gu Z:, Kaul M:, Yan B:, Kridel S.J., Cui J., Strongin A, Smith J.W., Liddington R.C., Lipton S.A. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. // Science. 2002. V. 297. N 5584. P. 1186-1190.

64. Guzik T.J., Korbut R., Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. // J. Physiol. Pharmacol. 2003. V. 54. N 4. P. 469-487.

65. Hammermann R., Stichnote C., Closs E.I., Nawarth H., Racke K. Inhibition of nitric oxide synthase abrogates lipopolysaccharides-induced up-regulation of L-arginine uptake in rat alveolar macrophages. // Br. J. Pharmacol. 2001. V. 133. N 3. P. 379-386.

66. Hao C.M., Komhoff M., Guan Y., Redha R., Breyer M.D. Selective targeting of cyclooxigenase-2 reveals its role in renal medullary interstitial cell survival. // Am. J. Physiol. 1999. V. 277. N 3. Pt. 2. P. F352-F359.

67. Harris R.C., McKanna J.A., Akai Y., Jacobson H.R., Dubois R.N., Breyer M.D. Cyclooxigenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. II J. Clin. Invest. 1994. V. 94. N 6. R 2504-2510.

68. Hattori Y., Kasai K., Gross S. S. Cationic amino acid transporter gene expression in cultured vascular smooth muscle cells and in rats. // Am. J. Physiol. 1999. V. 276. N 6. Pt. 2. P. 2020-2028.

69. Hiraku Y., Kawanishi S., Ichinose T., Murata M. The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis. // Ann. N. Y. Acad. Sci. 2010. V. 1203. P. 15-22.

70. Icking A., Matt S., Opitz N., Wiesenthal A., Miiller-Esterl W., Schilling K. NOSTRIN functions as a homotrimeric adaptor protein facilitating internalization of eNOS. // J. Cell Sci. 2005. V. 118. Pt 21. P. 5059-5069.

71. Jenkinson C.P., Grody W.W., Cederbaun S.D., Comparative properties of arginases // Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 1996. V. 114. P. 107-132.

72. Joerink M., Savelkoul H.F., Wiegertjes G.F. Evolutionary concervation of alternative activation of macrophages: structural and functional characterization of arginase 1 and 2 in carp (Cyprinus carpio L.) // Mol. Immunol. 2006. V. 43. P. 1116-1128.

73. Johann A.M., Barra V., Kuhn A.M., Weigert A., von Knethen A., Brüne B. Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production. // FASEB J. 2007. V. 21. N 11. P. 2704-2712.

74. Kavanaugh M.P., Wang H., Zhang Z., Zhang W., Wu Y.N., Dechant E., North R.A., Kabat D. Control of cationic amino acid transport and retroviral receptor functions in a membrane protein family. // J. Biol. Chem. 1994. V. 269. N 22. P. 15445-15450.

75. Kim S.F., Huri D.A., Snyder S.H. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. // Science. 2005. V. 310. N 5756. P. 1966-1970.

76. Kleinert H., Pautz A., Linker K., Schwarz P.M. Regulation of the expression of inducible nitric oxide synthase. // Eur. J. Pharmacol. 2004. V. 500. N 1-3. P. 255266.

77. Kleinert H., Schwarz P.M., Förstermann U. Regulation of the expression of inducible nitric oxide synthase. II Biol Chem. 2003. V. 384. N 10-11. P. 13431364.

78. Kobayashi O., Miwa H., Watanabe S., Tsujii M., Dubois R.N., Sato N. Cyclooxygenase-2 downregulates inducible nitric oxide synthase in rat intestinalepithelial cells. II Am. J. Physiol. Gastrointest. Liver Physiol 2001. V. 281. P. G688-G696.

79. Kobayashi Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. // J. Leukoc. Biol. 2010. V. 88. N6. P. 1157-1162.

80. Kolluru G.K., Siamwala J.H., Chatterjee S. ENOS phoshorylation in helth and disease. H Biochimie. 2010. V. 92. N 9. P. 1186-1198.

81. Kone B.C., Baylis C. Biosynthesis and homeostatic roles of nitric oxide in normal kidney. II Am. J. Physiol. Renal Physiol. 1997. V. 272. P. F561-F578.

82. Kone B.C. Protein-protein interactions controlling nitric oxide synthases. // Acta Physiol. Scand. 2000. V. 168. N 1. P. 27-31.

83. König P., Dedio J., Müller-Esterl W., Kummer W. Distribution of the novel eNOS-interacting protein NOSIP in the liver, pancreas, and gastrointestinal tract of the rat. // Gastroenterology. 2002. V. 123. N 1. P. 314-324.

84. Kubes P., Suzuki M., Grander D.N., Nitric oxide: an endogenous modulator of leukocyte adhesion. // Proc. Natl. Acad. Sei. USA. 1991. V. 88, N 11. P. 46514655.i

85. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. II Nature. 1970. V. 227. N 5259. P. 680-685.

86. Lahera V., Salom M. G., Miranda-Guardiola F., Moncada S., Romero J. C. Effects of NG-nitro-L-arginine methyl ester on renal function and blood pressure. II Am. J. Physiol. 1991. V. 261. N 6. Pt. 2. P. F1033-1037.

87. Lam H.H., Hanley D.F., Trapp B.D., Saito S., Raja S., Dawson T.M., Yamaguchi H. Induction of spinal cord neuronal nitric oxide synthase (NOS) after formalin injection in the rat hind paw. // Neurosci. Lett. 1996. V. 210. P. 201-204

88. Lee S.J., Beckingham K., Stull J.T. Mutations at lysine 525 of induciblenitric-oxide synthase affect its Ca2+-independent activity. // J. Biol. Chem. 2000. V. 275. N 46. P. 36067-36072.

89. Leiper J., Vallance P. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. // Cardiovasc. Res. 1999. V. 43. N3. P. 542-548.

90. Li H., Poulos T.L. Structure-function studies on nitric oxide synthases. // J. Inorg. Biochem. 2005. V. 99. N 1. P. 293-305.

91. Liao J.K., Zulueta J.J., Yu F.S., Peng H.B., Cote C.G., Hassoun P.M. Regulation of bovine endothelial constitutive nitric oxide synthase by oxygen. // J. Clin. Invest. 1995. V. 96 P. 2661-2666

92. Liu V.W., Huang P.L. Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. // Cardiovasc. Res. 2008. V. 77. N 1. P. 19-29.

93. Louis C.A., Reichner J.S., Henry W.L., Mastrofrancesco B., Gotoh Y., Mori M., Albina J.E. Distinct arginase isoforms expressed in primary and transformed macrophages: regulation by oxygen tension // Am. J. Physiol. 1998. V. 274. P. R775-R782.

94. Lu Y.C., Yeh W.C., Ohashi P.S. LPS/TLR4 signal transduction pathway. // Cytokine. 2008. V. 42. N 2. P. 145-151.

95. Lumme A., Vanhatalo S., Sadeniemi M., Soinila S. Expression-of nitric oxide synthase in hypothalamic nuclei following axonal injury or colchicine treatment. II Exp. Neurol. 1997. V. 144. P. 248-257

96. MacAllister R.J., Rambausek M.H., Vallance P., Williams D., Hoffmann K.H., Ritz E. Concentration of dimethyl-L-arginine in the plasma of patients with end-stage renal failure. // Nephrol. Dial. Transplant. 1996. V. 11. N 12. P. 2449-2452.

97. MacMicking J., Xie Q.W., Nathan C. Nitric oxide and macrophage function. // Annu. Rev. Immunol. 1997. V. 15. P. 323-350.

98. Majid D.S., Williams A., Kadowitz P.J., Navar L.G. Renal responses to intraarterial administration of nitric oxide donor in dogs. // Hypertension. 1993. V. 22. N4. P. 535-541.

99. Mann G.E., Yudilevich D.L., Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. // Physiol. Rev.2003. V. 83. N 1. P. 183-252.

100. Manner C.K., Nicholson B., MacLeod C.L. CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytes. // J. Neurochem. 2003. V. 85. N 2. P. 476-482.

101. Martin P.Y., Bianchi M., Roger F., Niksic L., Féraille E. Arginine vasopressin modulates expression of neuronal NOS in rat renal medulla. // Am. J. Physiol. Renal Physiol. 2002. V. 283. P. F559-F568.

102. Massion P.B., Feron O., Dessy C., Balligand J.L. Nitric oxide and cardiac function: ten years after, and continuing. // Circ. Res. 2003. V. 93. N 5. P. 388398.

103. Meulemans A. Diffusion coefficients and half-lives of nitric oxide and N-nitroso-L-arginine in rat cortex. // Neurosci. Lett. 1994. V. 171. N 1-2. P. 89-93.

104. Michel T., Vanhoutte P.M. Cellular signaling and NO production. // Pflugers Arch. 2010. V. 459. N 6. P. 807-816.

105. Mohamed S.A., Fahmy A.S., Mohamed T.M., Hamdy S.M. Urea cycle of Fasciola gigantica: purification and characterization of arginase // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005. V. 142. P. 308-316.

106. Mori M., Gotoh T. Arginine metabolic enzymes, nitric oxide and infection. // JNutr. 2004. V. 134. N 10. P. 2820S-2825S

107. Mori M., Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. // Biochem. Biophys. Res. Commun. 2000. V. 275. N 3. P. 715-719.

108. Mori T., Dickhout J.G., Cowley A.W.Jr. Vasopressin increses intracellular NO concentration via Ca(2+) signaling in inner medullary collecting duct. // Hypertension. 2002. V. 39. N 2. Pt. 2. P. 465-469.

109. Morris S.M., Bhamidipati D., Kepka-Lenhart D. Human type II arginase: sequence analysis and tissue-specific expression // Gene. 1997. V. 193. P. 157161.

110. Morris S.M Jr., Kepka-Lenhart D., Chen L.C. Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. // Am. J. Physiol. 1998. V. 275. N 5. Pt. 1. P. E740-E747.

111. Morrissey J.J., McCracken R., Kaneto H., Vehaskari M., MontanLD., Klahr S. Location of an inducible nitric oxide synthase mRNA in the normal kidney. // Kidney Int. 1994. V. 45. N 4. P. 998-1005.

112. Musicki B., Ross A. E., Champion H. C., Burnett A. L., Bivalacqua T. J. Posttranslational modification of constitutive nitric oxide synthase in the penis. // J. Androl. 2009. V. 30. N 4. P. 352-362.

113. Nicholson B., Manner C.K., Kleeman J., MacLeod C.L. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. // J. Biol Chem. 2001. V. 276. N 19. P. 15881-15885.

114. Nicholson B., Sawamura T., Masaki T., MacLeod C. L. Increased Cat3-mediated cationic amino acid transport functionally compensates in Catl knockout cell lines. II J. Biol. Chem. 1998. V. 273. N 24. P. 14663-14666.

115. Niese K.A., Chiaramonte M.G., Ellies L.G., Rothenberg M.E., Zimmermann N. The cationic amino acid transporter 2 is induced in inflammatory lung models and and regulates lung fibrosis. // Respir. Res. 2010. V. 11. P. 87-96.

116. Nowicki B., Singhal J., Fang L., Nowicki S., Yallampalli C. Inverse relationship between severity of experimental pyelonephritis and nitric oxide production in C3H/HeJ mice. I I Infect. Immun. 1999. V. 67.N 5. P. 2421-2427.

117. Palacin M., Estevez R., Bertran J., Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. // Physiol. Rev. 1998. V. 78. N4. P. 969-1054.

118. Palmer R.M., Ferrige A.G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. //Nature. 1987. V. 327. N6122. P. 524-526.

119. Palsson-McDermott E.M., O'Neill L.A. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. // Immunology. 2004. V. 113. N 2. P. 153-162.

120. Pan M., Souba W.W., Karinch A.M., Lin C.M., Stevens B.R. Specific reversible stimulation of system y(+) L-arginine transport activity in human intestinal cells. II J. Gastrointest. Surg. 2002. V. 6. N 3. P. 379-386.

121. Poljakovic M., Karpman D., Svanborg C., Persson K. Human renal epithelial cells express iNOS in response to cytokines but not bacteria. // Kidney Int. 2002. V. 61. N 2. P. 444-455.

122. Poljakovic M., Persson K. Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide. // Am. J. Physiol. Renal Physiol. 2003. V. 284. N 1. P. F22-F31.

123. Poljakovic M., Svensson M.L., Svanborg C., Johansson K., Larsson B., Persson K. Escherichia coli-induced inducible nitric oxide synthase and cyclooxygenase expression in the mouse bladder and kidney. // Kidney Int. 2001. V. 59.N3.P. 893-904.

124. Prestes-Carneiro L.E., Shio M.T., Fernandes P.D., Jancar S. Cross-regulation of iNOS and COX2 by its products in murine macrophages under stress conditions. // Cell Physiol.Biochem. 2007. V.20. P. 283-292.

125. Raetz C.R., Whitfield C. Lipopolysaccharide endotoxins. // Annu. Rev. Biochem. 2002. V. 71. P. 635-700.

126. Ratovitski E.A., Bao C., Quick R.A., McMillan A., Kozlovsky C., Lowenstein CJ. An inducible nitric oxide synthase (NOS)-associated protein inhibits NOS dimerization and actyivity. // J. Biol. Chem. 1999. V. 274. R 30250-30257.

127. Rebl A., Goldammer T., Seyfert H.M. Toll-like receptor signaling in bony fish. // Vet. Immunol. Immunopathol. 2010 V. 134. N 3-4. P. 139-150.

128. Reid I.A., Chiu YJ. Nitric oxide and the control of renin secretion. // Fundam. Clin. Pharmacol. 1995. V. 9. N 4. P. 309-323.

129. Reiser P.J., Kline W.O., Vaghy P.L. Induction of neuronal type nitric oxide synthase in skeletal muscle by chronic electrical stimulation in vivo. // J. Appl. Physiol. 1997. V. 82. P. 1250-1255

130. Rodriguez S., Schleiffer R., Raul F., Richert L., Berthelot A. How could aortic arginase activity enhancement be involved in DOCA-salt hypertension? // Clin. Exp. Hypertens. 2004. V. 26. P. 1-12.

131. Roman L.J., Masters B.S. Electron transfer by neuronal nitric-oxide synthase is regulated by concerted interaction of calmodulin and two intrinsic regulatory elements. // J. Biol. Chem: 2006 V. 281. P. 23111 -23118.

132. Ronald A. The etiology of urinary tract infection: traditional, and emerging pathogens. II Am. J. Med. 2002. V. 113. P. 14S-19S.

133. Saibara T., Ono M., Iwasaki S., Maeda T., Onishi S., Hayashi Y., Enzan H. Effects of ethanol on L-arginine transport in rat Ito cells in relation to nitric oxide production. II Alcohol Clin. Exp. Res. 2001. V. 25 (6 Suppl). P. 39S-45S.

134. Schilling J.D., Mulvey M.A., Vincent C.D., Lorenz R.G., Hultgren S.J. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. II J. Immunol. 2001. V. 166. P. 1148-1155.

135. Scolnick L.R., Kanyo Z.F., Cavalli R.C., Ash D.E., Christianson D.W. Altering the binuclear manganese cluster of arginase diminishes termostability and catalic function II Biochemistry. 1997. V. 36 N 34. P. 10558-10565.

136. Sessa W.C. eNOS at a glance. // J. Cell Sei. 2004. V. 117. P. 2427-2429

137. Sessa W.C. Regulation of endothelial derived nitric oxide in health and disease. II Mem. Inst. Oswaldo Cruz. 2005. V. 100 (Suppl 1). P. 15-18.

138. Singh R., Pervin S., Karimi A., Cederbaum- S., Chaudhuri G. Arginase activity in human breast cancer cell lines: NG-hydroxi-L-arginine inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells // Cancer Res. 2000. V.60. P. 3305-3312.

139. Sivick K.E., Mobley H.L. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. // Infect. Immun. 2010. V.78. N 2. P. 568585.

140. Smith W.L., Langenbach R. Why there are two cyclooxygenase isozymes. II J. Clin. Invest. 2001. V. 107. N 12. P. 1491-1495.

141. Stamler J.S., Jia L., Eu J.P., McMahon T.J., Demchenko I.T., Bonaventura J., Gernert K., Piantadosi C.A. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. // Science. 1997. V.276. N 5321. P. 20342037.

142. Stamler J.S. Redox signaling: nitrosylation and related target interactions of nitric oxide. // Cell. 1994. V. 78. N 6. P. 931-936.

143. Steppan J., Ryoo S., Schuleri K.H., Gregg C., Hasan R.K., White A.R.,i

144. Bugaj L.J., Khan M., Santhanam L., Nyhan D., Shoukas A.A., Hare J.M., Berkowitz D.E. Arginase modulates myocardial contractility by a nitric oxide synthase 1-dependent mechanism // Proc. Nat. Acad. Sei. USA. 2006. V. 103. P. 4759-4764.

145. Swain P., Nayak S.K., Nanda P.K., Dash S. Biological effects of bacteriali lipopolysaccharide (endotoxin) in fish: a review. // Fish Shellfish Immunol. 2008.1. V. 25.N3.P. 191-201.

146. Takeda K, Akira S. TLR signaling pathways. // Semin. Immunol. 2004. V.16. N l.P. 3-9.

147. Terasaki K., Spector E.B., Hendrickson R., Cederbaum S.D. Properties of arginase from liver of Macaca fascicularis; comparison of normals with redblood cell arginase deficient monkeys // Biochem. Genet. 1980. V. 18. P. 829841.

148. Tan C., Mui A., Dedhar S. Integrin-linked kinase regulates inducible nitric oxide synthase and cyclooxygenase-2 expression in an NF-kappa B-dependent manner. II J. Biol. Chem. 2002. V. 277. N 5. P. 3109-3116.

149. Torok N.J., Higuchi H., Bronk S., Gores G.J. Nitric Oxide Inhibits Apoptosis Downstream of Cytochrome c Release by Nitrosylating Caspase 9. // Cancer Res. 2002. V. 62. P. 1648-1653.

150. Uchiyama M., Konno N. Hormonal regulation of ion and water transport in anuran amphibians. // Gen. Comp. Endocrinol. 2006. V. 147. N 1. P. 54-61.

151. Vallance P., Collier J. Biology and clinical relevance of nitric oxide. // BMJ. 1994. Y. 309. N 6952. P. 453-457.

152. Verrey F., Closs E.I., Wagner C.A., Palacin M., Endou H., Kanai Y. FCATs and HATs: the SLC7 family of of amino acid transporters. // Pfliigers Arch. Europ. J. Physiol 2003. V. 447. N 5. P. 532-542.

153. Wang X., Lu M., Gao Y., Papapetropoulos A., Sessa W.C., Wang W. Neuronal nitric oxide synthase is expressed in principal cell of collecting duct. // Am. J. Physiol 1998. V. 275. N 3. Pt 2. P. F395-399.

154. Weber C.M., Eke B.C., Maines M.D. Corticosterone regulates heme oxygenase-2 and NO synthase transcription and protein expression in rat brain. // J. Neurochem. 1994. V. 63. P. 953-962.

155. Weiner C.P., Knowles R.G., Stegink L.D., Dawson J., Moncada S. Myometrial arginase activity increases with advancing pregnancy in the guinea pig II Am. J. Obstet. Gynecol 1996. V. 174. P. 779-782.

156. Weiner C.P., Lizasoain I., Baylis S.A., Knowles R.G., Charles I.G., Moncada S. Induction of calcium-dependent nitric oxide synthases by sex hormones. // Proc. Natl. Acad. Sci. USA. 1994. V. 91. P. 5212-5216.

157. West S.D., Suliburk J.W., Helmer K.S., Mercer D.W. Cyclooxygenase-1 suppresses lipopolysaccharide-induced changes in rat gastric inducible nitric oxide synthase. // Crit. Care Med. 2008. V. 36. N 2. P. 572-579.

158. White A.R., Ryoo S., Li D., Champion H.C., Steppan J., Wang D., Nyhan D., Shoukas A.A., Hare J.M., Berkowitz D.E. Knockdown of arginase I restores

159. NO signaling in the vasculature of old rats // Hypertension. 2006. V. 47. P. 245251.

160. Xia C., Misra I., Iyanagi T., Kim J-J. P. Regulation of Interdomain Interactions by Calmodulin in Inducible Nitric Oxide Synthase. // J. Biol. Chem. 2009. V. 284. N 44. P. 30708-30717.

161. Xia Y., Zweier J.L. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. // Proc. Natl. Acad. Set USA. 1997. V. 94. N 13. P. 6954-6958.

162. Xu L., Eu J.P., Meissner G., Stamler J.S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. // Science. 1998. V. 279. N 5348. P. 234-237.

163. Yang T., Singh I., Pham H., Sun D., Smart A., Schnermann J.B., Briggs J.P. Regulation of cyclooxygenase expression in the kidney by dietary salt intake. // Am. J. Physiol. 1998. V. 274. N 3. Pt. 2. P. F481-489.

164. Yang T., Sun D., Huang Y.G., Smart A., Briggs J.P., Schnermann J.B. Differential regulation of COX2 expression in the kidney by lipopolysaccharide: role of CD14. II Am. J. Physiol. 1999. V. 277. N 1. Pt. 2. P. F10-16.

165. Yilmaz A., Shen S., Adelson D.L., Xavier S., Zhu J.J. Identification and sequence analysis of chicken Toll-like receptors. H Immunogenetics. 2005. V. 56. N 10. P. 743-753.

166. Yip M.C.M., Knox W.E. Function of arginase in lactating mammary gland. II Biochem. J. 1972. V. 127. P. 893-899.

167. Zhang C., Hein T.W., Wang W., Miller M.W., Fossum T.W., McDonald M.M., Humphrey J.D., Kuo L. Upregulation of vascular arginase in hypertension decreases nitric oxide-meditated dilation of coronary arterioles. // Hypertension. 2004. V. 44. P. 935-943.

168. Zhou J., Kim D.D., Peluffo R.D. Nitric oxide can acutely modulate its biosynthesis through a negative feedback mechanism on L-arginine transport in cardiac myocytes. // Am. J. Physiol. Cell Physiol. 2010. V. 299. N 2. P. C230-239.

169. Zhou L., Zhu D.Y. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. // Nitric Oxide. 2009. V. 20. N 4. P. 223-230.

170. Ziche M., Morbidelli L. Nitric oxide and angiogenesis. // J. Neurooncol. 2000. V. 50. N 1-2. P. 139-148.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.