Хромосомная организация некоторых семейств повторяющейся ДНК у Allium cepa L. и Allium fistulosum L. тема диссертации и автореферата по ВАК РФ 03.02.07, кандидат биологических наук Будылин, Михаил Вячеславович
- Специальность ВАК РФ03.02.07
- Количество страниц 118
Заключение диссертации по теме «Генетика», Будылин, Михаил Вячеславович
ЗАКЛЮЧЕНИЕ
Клонирование, секвенирование и локализация с помощью in situ гибридизации семейств повторяющихся последовательностей ДНК, которые составляют значительную часть генома луковых, позволило лучше понять организацию их геномов, структуру хромосом и сделать следующие обобщения: изученные семейства ретротранспозонов Tyl-copia, ТуЗ-gypsy и LINEs распределены дисперсно по всем хромосомам у А. сера и A. fistulosum, причем отмечена закономерность в интенсивности сигнала и числе сайтов гибридизации характерная для обоих видов - больше всего сигналов давало семейство Tyl -copia, затем ТуЗ -gypsy и наименьшее LINEs, что отражает размер фракции трех изученных семейств ретротранспозонов в геномах обоих видов. Следует отметить особенность локализации Ty3-gypsy на хромосомах A. fistulosum - сигнал отсутствовал в районе ядрышкового организатора и спутника на гомологичных хромосомах 6.
Анализ локализации сайтов метилирования ДНК на хромосомах А. fistulosum с помощью антител к 5-метилцитозину выявил, что всегда были метилированы терминальные области хромосом и были отмечены различия в уровне метилирования гомологичных хромосом. Стабильные сайты метилирования совпадали с местами локализации Cot-1 фракции и субтеломерного повтора, выделенного и изученного ранее [199]. В терминальных областях, занятых субтеломерным повтором, отсутствовали сигналы гибридизации Tyl -copia. Следует отметить, что у луковых не выявлен типичный для многих растений (TTTAGGG)n теломерный повтор, который защищает хромосому от укорачивания при каждом раунде репликации [241]. До сих пор мы не знаем как луковые стабилизируют свои хромосомы.
Выделенная нами Cot-1 фракция A. fistulosum и её физическая локализация на хромосомах А. сера, A. fistulosum и гибридов между А. сера и на A. fistulosum, позволяет сделать вывод, что нам удалось выявить видоспецифичный для A. fistulosum субтеломерный повтор.
87
С помощью in situ гибридизации амликонов, полученных с ISSR праймером [AG]8C и последующим их клонированием и секвенированием был найден А. сера прицентромерный повтор, который мы назвали pCentAl-agc.
Результаты in situ гибридизации изученных семейств повторяющейся ДНК интегрированы в моделях хромосом для А. сера и A. fistulosum (Рисунок 32).
Общий да Allium c\6re.w»q»ejH тада*ный ixurrop ■ pCentAI-agc ■ а Ту!- copia > Ty3-©psy Я
LINB
Исюасстиый гсюмсрный повтор и
Ватосгкцнфичный повтор лт* A. fistulosum к Напассгсшй гсломсраий irorop ■ 6 Ту!-copia ■ ТуЗ-gypsy Ш
LINEs
Прниалромср»ая область |
Общий xa Ailium су€те.томер№й таадсмный iioerop I
Рисунок 32. Модель распределения некоторых семейств некодирующей ДНК на хромосомах А. сера (а) и A. fistulosum (б).Данные по локализации Ту\-copia на хромосомах А. сера взяты из работы Brandes et al. (1997).
Список литературы диссертационного исследования кандидат биологических наук Будылин, Михаил Вячеславович, 2012 год
1. Schmidt, A., Doudrick, R.L., Heslop-Harrison, J.S., Schmidt, Т., The Contribution of Short Repeats of Low Sequence Complexity to Large Conifer Genomes // Theor Appl Genet 2000 - 101:7-14.
2. Macas, J., Neumann, P., Navratilova, A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC // Genomics 2007 -8(1): 427-443.
3. Alix, K, Heslop-Harrison, J.S. The diversity of retroelements in diploid and allotetraploid Brassica species // Plant Molecular Biology 2004 - 54: 895-909.
4. Ohno, S. So much 'junk' DNA in our genome. In: Smith, H.H. ( Ed.) // Brookhaven Symposia in Biology No. 23. Gordon and Breach, New York, -1972 pp. 366-370.
5. Orgel, L. E., and Crick, F. H., C. Selfish DNA: the ultimate parasite // Nature 1980 - 284: 604 - 607.
6. Csink, A. K., Henikoff, S. Genetic modification of heterochromatic associations and nuclear organization in Drosophila II Nature 1996 - 381:529— 531.
7. Vagnarelli, P., Ribeiro, S. A., Earnshaw, W. C. Centromeres: old tales and new tools//FEBS Lett.-2008-582 : 1950—1959.
8. Beridze, T. Satellite DNA // Springer Verlag. Berlin, Heidelberg.1986.
9. Bostock, C. Chromosome-specific subfamilies within human alphoid repetitive DNA // Phil. Trans. Roy. Soc. Lond .B 1986 - 312, 261-273.
10. Kit, S. On the topography of the genetic fine // Mol. Biol 1961 - 7, 711-716.
11. Sueoka, N. Cheng, T. // Proc. Natl. Acad. Sei 1961 - 48, 1851—1856.
12. Ganal, M.W., Lapitan, N.L.V., and Tanksley, S.D. A molecular and cytogenetic survey of major repeated DNA sequences in tomato. MOI // Gen. Genet-1988 -213, 262-268.
13. Schweizer, G., Ganal, M., Ninnemann, H., Hemleben, V. Species specific DNA sequences for identification of somatic hybrids between Lycopersicon esculentum and Solanum acaule // Theor Appl Genet 1988 -75:679-684.
14. Britten, R.J., and Kohne, D.E. Repeated sequences in DNA // Science (Washington, D.C.) 1968 - 161: 529-540.
15. Peterson, D.G., Schulze, S.R., Sciara, E.B., Lee, S.A., Bowers, J.E., Nagel, A., Jiang, N., Tibbitts, D.C., Wessler, S.R., Paterson, A.H. Integration of Cot Analysis, DNA Cloning, and High-Throughput Sequencing Facilitates
16. Genome Characterization and Gene Discovery // Genome Res 2002 - 12(5): 795807.
17. Miguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D. Nested retrotransposons in the intergenic regions of the maize genome // Science -1996- 765-68.
18. San Miguel, P., Bennetzen, J.L. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons // Annals of Botany 1998 - 82 (Supp. A.): 3744.
19. Knoop, V., Unseld, M., Marienfeld, J., Brandt, P., Siinkel, S., Ullrich, H., Brennicke, A. copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana // Genetics 1996 - 142: 579-585.
20. Kunze, R., Saedler, H., Lonnig, W.E. Plant transposable elements // Adv. Bot. Res 1997 - 27:331^170.
21. Berger, S.L. Histone modifications in transcriptional regulation // Curr. Opin. Genet.Devel 2002 — 12, 142-148.
22. Carlson, C.M., Largaespada, D.A. Insertional mutagenesis in mice: new perspectives and tools // Nature Rev. Genet 2005 - 6, 568-580.
23. Xiong, Y., Eickbush, T.H. Origin and evolution of retroelements based upon their reverse transcriptase sequences // EMBO J 1990 - 9:3353-62
24. Smit, A. The origin of interspersed repeats in the human genome // Curr. Opin. Genet. Dev 1996 - 6:743-48 168.
25. Boeke, J.D., Corces, V.G. Transcription and reverse-transcription of retrotransposons // Annu. Rev. Microbiol 1989 - 43:403-34.
26. Xiong, Y., Eickbush, T.H. Origin and evolution of retroelements based upon their reverse transcriptase sequences // EMBO J -1990 9:3353-62
27. Temin, H.M. Origin of retroviruses from cellular moveable genetic elements // Cell 1980 - 21:599-600.
28. Cost, G.J., Boeke, J.D. Targeting of human retrotransposon integration is directed by the specificity of the LI endonuclease for regions of unusual DNA structure // Biochemistry 1998 - 37:18081-93.91
29. Moore, J.K., Haber, J.E. Capture of retrotransposon DNA at the sites of chromosomal double-strand DNA breaks // Nature 1996 - 383:644^5.
30. Irifune, K., Hirai, K., Zheng, J., Tanaka, R., Morikawa, H. Nucleotide sequence of a highly repeated DNA sequence and its chromosomal localization in Allium fistulosum II Theor Appl Genet 1995 V. 90. P. 312-316.
31. Kurose, K., Hata, K., Hattori, M., Sakaki, Y. RNA polymerase III dependence of the human LI promoter and possible participation of the RNA polymerase II factor YY1 in the RNA polymerase III transcription system // Nucleic Acids Res -1995-23:3704-9.
32. Moore, J.K., Haber, J.E. Capture of retrotransposon DNA at the sites of chromosomal double-strand DNA breaks // Nature 1996 - 383:644-45.
33. Tautz, D., and Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes // Nucl. Acids Res 19841 - 2, 4127-4138.
34. Biessmann, H., Mason, J.M. Telomeric repeat sequences // Chromosoma- 1994- 103, 154-161.
35. Condit, R., Hubbell, S.P. Abundance and DNA sequence oftwo-base repeat regions in tropical tree genomes // Genome 1991 - 34:66-71.
36. Schug, M.D., Hutter, C.M., Wetterstrand, K.A., Gaudette MS, Mackay, TFC, Aquadro, C.F. The mutation rates of di-, tri- and tetra-nucleotide repeats in Drosophila melanogaster II Mol Biol Evol 1998 - 15:1751-1760.
37. Liu, Z., W., Biyashev, R. M., Saghai-Maroof, M. A. Development of simple sequence repeat DNA markers and their integration into a barley linkage map // Theor Appl Genet -1996 93:869-876.
38. Innan, H., Terauchi, R., Miyashita, N.T. Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana //Genetics — 1997— 1441-1452.
39. MacHugh, D.E., Shriver, M.D., Loftus, R.T., Cunningham, P., Bradley, D.G. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indiens) II Genetics 1997-146:1071-1086.
40. Pedersen, C., Rasmussen, S.K., Linde-Laursen, I. Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence // Genome -1996-39: 93 -104.
41. Ramsay, L. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley // Plant J. -1999 17, 415-425.
42. Schmidt, T., and Heslop-Harrison, J.S. The physical and genomic organization of microsatellites in sugar beet // Proc. Natl. Acad. Sci. USA 1996 -93:8761-8765.
43. Gortner, G., Nenno, M., Weising, K., Zink, D., Nagl, W., Kahl, G. Chromosomal localization and distribution of SSRs and the Arabidopsis-type telomere sequence in the genome of Cicer arietinum L. // Chrom -1998 Res 6:97-104.
44. Cuadrado, A., Jouve, N. Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes // Cytogenet Genome 2007a - Res 119:91-99.
45. Levinson, G., Gutman, G.A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution // Mol Biol Evol 1987 - 4:203-221.
46. Rico, C., Rico, I., Hewitt, G. 470 million years of conservation of microsatellite loci among fish species // Proc R Soc Lond 1996 - 263:549-557.
47. Johnson, J.M., Edwards, S., Shoemaker, D., Schadt, E.E. Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments // Trends Genet -2005 21, 93-102.
48. Kapranov, F., Cawley, S.E., Drenkow, J., Bekiranov, S., Strausberg, R.L., Fodor, S.P.A., Gingeras, T.R. Large-scale transcriptional activity in Chromosomes 21 and 22 // Science 2002 - 296, 916-919.
49. Costantini, M., Clay, O., Federico,C., Saccone, S., Auletta, F., Bernardi, G. Human chromosomal bands: nested structure, high-definition map and molecular basis // Chromosoma 2007 - 116, 29-40.
50. Daniels, G.R., Fox, M., Lowensteiner, D., Schmid, C., and Deininger, P.L. Species specific homogeneity of the primate Alu family of repeated DNA sequence // Nucleic Acids Res -1983 -11: 7579-7593.
51. Leeton, P.R.J., and Smyth, D.R. An abundant LINE-like element amplified in the genome of Lilium speciosum II Mol. Gen. Genet 1993 - 237: 97104.
52. Bureau, T.E., and Wessler, S.R. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses // Proc. Natl. Acad. Sci. U.S.A 1994 -91:1411-1415.
53. McCouch, S.R., and Tanskley, S.D. The world rice economy: challenges ahead. In Rice biotechnology; biotechnology in agriculture No. 6. Edited by G.S. Khush and G.H. Toenniessen // Commonwealth Agricultural Bureaux International, Wallingford, U.K. 1991.
54. Flavell, R.B., Bennett, M.D., Smith, J.B., and Smith, D.B. Genome size and the proportion of repeated sequence DNA in plants // Biochem. Genet. -1974-12: 257-269.
55. Barrett, M.T. CHO chromosome in situ hybridization suppression with hamster Cot-1 DNA // Focus (Gaithersburg, Md.) 1992 - 14: 124- 126.
56. Zwick, M.S., Hanson, R.E., McKnight, T.D. A rapid procedure for the isolation of COM DNA from plants // Genome 1997 - 40, 138-142.
57. Currah, L., MAUDE, R. B. Laboratory tests for leaf resistance to Botrytis squamosa in onions // Annals of Applied Biology 1984 - 105 : 277283.
58. Netzer, D., Rabinowitch, H. D., and Weintal CH. Greenhouse technique to evaluate onion resistance to pink root // Euphytica 1985 - 32 : 385391.
59. Galvân, G. A., Wietsma, W.A., Putrasemedja, S., Permadi, A.H., and Kik, C. Screening for resistance to anthracnose (colletotrichum glorosporioides Penz.) in Allium cepa and its wild relatives // Euphytica 1997 - 95: 173 — 178.
60. Chase, M. Molecular systematics of Lilianae. In monocotyledons: Systematics and evolution, P. Rudal, P.Crib, D. Culter, and C.Humphries // eds London:Royal Botanic, gardens, KEW-1995-pp. 107- 137.
61. Watson, J.D. Molecular biology of the gene. 3rd ed. W.A. Benjamin // Inc., Menlo Park, California -1976.
62. Gall, J.G., and Pardue, M . Formation and detection RNA-DNA hybrid molecules in cytological preparations // Proc.Natl.Acad.Sci. USA —1969— 63:378-383.
63. John, H.A., Bimstiel, M.L. and Jones, K.W. RNA-DNA hybrids in the cytological level // Nature (London) 1969 -223:582 - 587.
64. Flavell, A.J., Pearce, S.R., Heslop-Harrison, J.S., Kumar, A. The evolution of Tyl-copia group retro transposons in eukaryote genomes // Genetica -1997- 100: 185-195.
65. Watson, J.D., and Crick, F.H.C. Molecular structure of nucleic acids — a structure for deoxyribose nucleic acids //Nature (London) -1953 —171: 737738.
66. Schwarzacher, Т. Leitch, A. R., Bennett, M. D., and Heslop-Harrison, J. S. In situ localization of parental genomes in a wide hybrid // Ann. Bo t-1989 -№64. C. 315-324.
67. Хрусталева Л.И. Молекулярная цитогенетика в селекции растений // Известия ТСХА 2007 - № 1 с.45-55.
68. Wang. Z., Zemetra, R.S., Hansen, J. Determination of the Paternity of Wheat (Triticum aestivum L) x Jointed Goatgrass (Aegilops cylindrica Host) BCi Plants by Using Genomic In Situ Hybridization (GISH) Technique // Crop Science -2002-№42. C. 939-943.
69. Dong, F., Novy, R.G., Helgeson, J.P., and Jiang, J. Cytological characterization of potato- Solanum etuburosum somatic hybrids and their backcross progenies by genomic in situ hybridization // Genome -1999 №42. C. 987-992.
70. Gavrilenko, Т., J. Larkka, E. Pehu, and V. -M Rokka Identification of mitotic chromosomes of tuberous and non-tuberous Solanum species {Solanum tuberosum and Solanum brevidens) by GISH in their interspecific hybrids // Genome -2002 №45. C. 442-449.
71. Bennett, S.T., Kenton, A. Y., and Bennett, M. D. Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Gramineae) // Chromosoma- 1992-№101. C. 420-424.
72. Khrustaleva, L. I. and Kik, C.Cytogenetical studies in the bridge cross Allium сера x (A. fistulosum xA. roylei) II Theor Appl Genet 1998 - №96. C. 814.
73. Khrustaleva, L.I., and Kik, C. Introgression of Allium fistulosum into А. сера mediated by A. roylei И Theor Appl Genet 2000 - №100. C. 17-26.
74. Rogers, S.O., Bendich, A.J . Extraction of DNA from plant tissues / Gelvin SB, Schilperoot RA Plant molecular biology manual A6 // Kluwer Academic Publ, Dordrecht, The Netherlands 1988 - C. 1 - 10.
75. Pijnacker, L. P, Ferwerda, M. A . Giemsa C-banding of potato chromosomes // Can J Genet Cytol -1984 №26. C. 415-419.
76. Khrustaleva, L, I., Kik, C. Cytogenetical studies in the bridge cross Allium cepa x (A. fistulosam x A. roylei) II Theor Appl, Genet 1988 - № 96. C. 8 -14.
77. Wright, D.A., Ke, N., Smalle, J., Hauge, B.M., Goodman, H.M., Voytas, D.F. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana II Genetics 1996 - 142:569.
78. Kim, J.M., Vanguri, S., Boeke, J.D., Gabriel. A., Voytas. D.F. Transposable elements and genome organisation: A comparative survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence // Genome Res 1998 - 8:464-78.
79. Suzuki, G., Ura, A., Saito, N., Sook, G., Bo, B., Yamamoto, M.,and Mukai, Y. BAC FISH analysis in Allium cepa //Genes Genet. Syst 2001 -76, p. 251-255.
80. Hudson, D.F., Fowler, K.J., Earle, E. Centromere protein B null mice are mitotically and meiotically normal but havelower body and testis weights // J. Cell Biol-1998 -141, 309-319.
81. Ikeno, M., Grimes, B., Okazaki, T., Nakano, M., Saitoh, K., Hoshino, H., McGill, N.I., Cooke, H. and Masumoto, H. Construction of YAC-based mammalian artificial chromosomes // Nature Biotechnol -1998 -16, 431-439.
82. Alix, K., Heslop-Harrison, J.S. The diversity of retroelements in diploid and allotetraploid Brassica species // Plant Molecular Biology 2004 -54 : 895-909.
83. He, D., Zeng, C., Woods, K., Zhong, L., Turner, D., Busch, R.K., Brinkley, B.R. and Busch, H. CENP-G: a new centromeric protein that isassociated with the a-1 satellite DNA subfamily // Chromosoma 1998 -107, 189— 197.
84. Stack, S. M, Comings, D.E. The chromosomes and DNA of Allium сера 11 Chromosoma 1979 - 70:161-181.
85. Durante, M., Tagliasacchi, S., Avanzi. Fast reannealing sequences of DNA in Allium сера: characterization and chromosomal localization // Cytobios -1985 -44:263 -271.
86. Havey. Restriction enzyme analysis of the nuclear 45s ribosomal DNA of six cultivated Alliums (Alliaceae) // Plant System Evolution 1992 -181:45-55.
87. Maggini, F., and Carmona, M. J. Sequence heterogeneity of the ribosomal DNA m Allium сера (Liliaceae) // Protoplasma — 1981 108, 163-171.
88. Ricroch, A., Peffley, E. В., Baker, R. J. Chromosomal location of rDNA in Allium in situ hybridization using biotin- and fluorescein-labelled probe // Theor Appl Genet 1992-83:413-418.
89. Hizume, M. Allodiploid nature of Allium wakegi Araki revealed by genomic in situ hybridization and localization of 5S and 18S rDNAs // Jpn J Genet. 1994-69:407-15.
90. Lee, S.H., Do, G.S., Seo, B.B. Chromosomal localization of 5S rRNA gene loci and the implications for relationships within the Allium complex // Chromosome Res 1999 - 7:89 - 93.
91. Ванюшин, Б. Ф. Метилирование ДНК и эпигенетика // Генетика. 2006 - Т. 42, № 9. с. 1186 -1199.
92. Bird, A., Tate, P., Nan, X., Campoy, J., Meehan, R., Cross, S., Tweedie, S., Charlton, J., Macleod, D. Studies of DNA methylation in animals // J Cell Sci Suppl 1995 -19:37-9.
93. Gowher, H., Leismann, O., Jeltsch, A. DNA of Drosophila melanogaster contains 5-methylcytosine // The EMBO Journal 2000.
94. Law J.A., Jacobson S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Review // Nature genetics, -20101. V. 11. P. 203-220.
95. Toyota, M, Ahuja, N, Suzuki, H, Itoh, F, Ohe-Toyota, M, Imai, K, Stephen B. Baylin, and Jean-Pierre J. Issa. Aberrant Methylation in Gastric Cancer Associated with the CpG Island Methylator Phenotype // Cancer Res 1999 -59:5438-5442.
96. Friesen, N, Brandes, A, Heslop-Harrison, J.S. Diversity, origin and distribution of retrotransposons (gypsy and copia) in conifers // Molecular Biology and Evolution-2001 18: 1176-1188.
97. Doerfler, W. Patterns of de novo DNA methylation and promoter inhibition: studies on the adenovirus and the human genomes.// 1993 64:262-99.
98. Kumar, A. and Bennetzen, J.L. Plant retrotransposons // Annu. Rev. Genet 1999-33:479-532
99. Herman, J.G., Graff, J.R., Myôhânen, S., Nelkin, B.D., Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands // Proceedings of the National Academy of Sciences 1996 - Vol. 93, pp. 9821-9826.
100. Clark, A. L., Docherty, K. Negative regulation of transcription in eukaryotes // Biochem. J -1993 Vol. 295. p. 521-541.
101. Côté, S., Sinnett, D., Momparler, R.L. Demethylation by 5-aza-2'-deoxycytidine of specific 5-methylcytosine sites in the promoter region of theretinoic acid receptor beta gene in human colon carcinoma cells // Anticancer Drugs 1998 - 0ct;9(9):743-50.
102. Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman Stephen, J.G., Baylin, B., Jean-Pierre, J. Issa. CpG island methylator phenotype in colorectal cancer // PNAS 20 1999 - vol. 96 no. 15 8681-8686.
103. Arbi, Q., Naceur, B., Chokri, M. A simple, rapid and efficient method for the extraction of genomic DNA from Allium roseum (Alliaceae) / African J.Biotechnol.,v 2009 - 8,17, 4020-4024.
104. Madlung, A. Genomic changes in synthetic Arabidopsis polyploids II Plant J 2005 - № 41, p. 221-230.
105. Nucleic Acids Res 2003 -31: 4490-4496.101
106. Lodish, H. Molecular cell biology: Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell, J. // 2000 1083стр.
107. Doerfl er W. DNA Methylation — a regulatory signal in eukaryotic gene expression // J. Gen. Virol 1981 - V. 57. P. 1-20.
108. Erlich, M. and Wang. R.Y. 5-methylcytosine in eukaryotic DNA // Science 1981- V. 212. P. 1350-1357.
109. Хемлебен, В., Беридзе, Т.Г., Бахман, JT. Сателлитные ДНК // Успехи биологической химии 2003 - Т. 43. С. 267-306.
110. Bennett, M.D., Johnston, S., Hodnett,G.L., Price, H.J. Allium сера L. Cultivars from Four Continents Compared by Flow Cytometry show Nuclear DNA Constancy // Annals Bot 2000 - 85, 351-357.
111. Schmidt, T. and Heslop-Harrrison, J.S. Genomes, genes and junk: the larrgescale organization of plant chromosomes // Trends Plant Sci 1998 - № 3, p. 195-199.
112. Castiglione, R.M., Giraldi, E., Frediani, M. The DNA Methylation of Allium сера Metaphase Chromosmes // Biol. Zent. B1 1995 - № 114, p. 52-66.
113. Barnes, S. R., James, A. M., Jamiesson, G. The organization, nucleotide sequence, and chromosomal distribution of a satellite DNA from A. сера II Chromosoma 1985- 92, 185.
114. Sook Do, G., Bo Seo, В., Yamamoto, M., Suzuki, G., Mukai, Y. Identification and Chromosomal Location of Tandemly Repeated DNA Sequences in Allium сера II Genes Genet. Syst- 2001 № 76, p.53-60.
115. Wei, W., Zhao, W., Wang, L., Chen, В., LI, Y., and SONG, Y. Karyotyping of Brassica napus L. Based on COM DNA Banding by Fluorescence
116. Situ Hybridization — 2005 — 47(12): 1479-1484.102
117. Zhou, J., Lan, W., Qin, R. Comparative karyotypic analysis of A and C genomes in the genus Oryza with C0t-1 DNA and RFLP // Front. Agric. China -2011 -5(2): 173-180.
118. Bennetzen, J. L., Ma, J., Devos, K. M. Mechanisms of recent genome size variation in flowering plants // Ann Bot 2005 - 95(1): 127-132.
119. Brooke, D., Peterson-Burch D., Nettleton and Voytas, D. F. Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae // Genome Biology 2004 - 5:R78.
120. Heslop-Harrison, J.S. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes // Plant Cell 2000 -V. 12. P. 617-635.
121. Miller O.J., Schnedl W., Allen J.B. Erlanger 5-methyl cytosine localised in mammalian constitutive heterochromatin // Nature, 1974. Vol. 251. P. 636-637.
122. Reeves, A., Tear, J. Mlirromasure for Windows, Version 3.2. 1999. Free program distributed by the authors at www/colostate /edu/depts/biology/ micromeasure.
123. Finnegan, E.J., Peacock, W.J., Dennis, E.S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development // Proc. Natl. Acad. Sci 1996 -V. 93. P. 8449-8454.
124. Патрушев JI.И., Минкевич, И.Г. Проблема размера генома эукариот // Успехи биологической химии 2007 - 293-370.
125. Pich, U., & Schubert, I. Terminal heterochromatin and alternative telomeric sequences in Allium сера II Chromosome Res 1998 - 6:315-321.
126. Shibata, F., Hizume, M., Kuroki, Y. Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa II Chromosoma 1999 - 108: 266-270.
127. Lengerova, M., Kejnovsky, E., Hobza, R., Macas, J., Grant, S. R., Vyskot, B. Multicolor FISH mapping of the dioecious model plant, Silene latifolia II Theor Appl Genet 2004 - 108:1193-1199.
128. Rayburn, A.L., and Gill, B.S. Repeated DNA sequences in Triticum (Poaceue): chromosomal mapping and its bearing on the evolution of В and G genomes //Plant Syst. Evol 1988 - 159: 229-235.
129. Lapitan, N.L.V., Gill, B.S., and Sears, R.G. Genomic and phylogenetic relationships among rye and perennial species in the Triticeae // Crop Sci- 1987-27: 682-686.
130. Navratilova, A., Neumann, P., and Macas, J. Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences // Ann. Bot. (London) 2003-91:921-926.
131. Koo, D.H., Choi, H.W., Cho, J., Hur, Y., and Bang, J.W. A highresolution karyotype of cucumber (Cucumis sativus L.) revealed by C-banding, pachytene analysis, and RAPD aided fluorescence in situ hybridization // Genome - 2005-48: 534-540.
132. Dong, F., Song, J., Naess, S.K., Helgeson, J.P., Gebhardt, C., and Jiang, J. Development and applications of a set of chromosome specific cytogenetic DNA markers in potato // Theor. Appl. Gent - 2000 - 101: 1001 -1007.
133. Kim, J.S., Childs, K.L., Islam-Foridi, M.N., Menz, M.A., Klein, R.R., Klein, P.E. Integrated karyotyping of sorghum by in situ hybridization of landed BACs // Genome 2002 - 45: 402-412.
134. Zhang, P., Li, W.L., Fellers, J., Friebe, B., and Gill, B.S. BAC FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements // Chromosoma - 2004a- 112: 288-299.
135. Koumbaris, G. L., Bass, H. W. A new single locus cytogenetic mapping system for maize {Zea mays L.); overcoming FISH detection // 2003 - 35. 647-659.
136. Kaszas, E., Birchler, J.A. Meiotic transmission rates correlate with physical features of rearranged centromeres in maize // Genetics 1998— 150:1683-1692.
137. Kubis, S, Schmidt, T, Heslop-Harrison J.S. Repetitive DNA elements as a major component of plant genomes // Annals of Botany -1998-82S: 45-55.
138. Olin-Fatih, M., Heneen, W.K. C-banded karyotypes of Brassica campestris, B. oleracea, and B. napus II Genome 1992 - 35, 583-589.
139. Cheng, B.F., Heneen, W.K., Chen, B.Y. Mitotic karyotypes of Brassica campestris and Brassica alboglabra and identification of the B. alboglabra chromosome in an addition line // Genome — 1995 38, 313-319.
140. Snowdon, R. J., Friedt, W., Köhler, A. Molecular cytogenetic location and characterization of 5S and 25 S rDNA loci for chromosome identification in oilseed rape {Brassica napus L.) // Ann Bot 2000 - 86, 201-204.
141. Hasterok, R., Maluszynska, J. Cytogenetic markers of Brassica napus chromosomes // JAppl Genet 2000- 41, 1-9.
142. Hasterok, R., Jenkins, G., Langdon, T. Ribosomal DNA is an effective marker of Brassica chromosomes // Theor Appl Genet 2001 - 103, 486-490.
143. Kulak, S., Hasterok, R., Maluszynska, J. Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers // Hereditas -2002- 136, 144-150.
144. Wen-Hui, W., Wan-Peng, Z., Li-Jun, W., Bo, C., Yun-Chang, L., and Yun-Chun, S. Karyotyping of Brassica napus L. Based on COM DNA Banding by Fluorescence In Situ Hybridization // 2005 47 (12): 1479- 1484.
145. Zakrzewski, F., Wenke, T., Holtgräwe, D., Weisshaar, B., Schmidt, T. Analysis of a c0t-l library enables the targeted identification of minisatellite andsatellite families in Beta vulgaris. Zakrzewski et al // BMC Plant Biology 2010 -10:8.
146. Schmid, C.W. Does SINE evolution preclude Alu function? // Nucleic Acids Res 1998-26: 4541 - 50.
147. Matsunaga, S., Yagisawa, F., Yamamoto, M., Uchida, W., Nakao, S., Kawano, S. LTR retrotransposons in the dioecious plant Silene latifolia // Genome -2002-745-751(7).
148. Anja, G.J., Kuipers, J.S., (Pat) Heslop-Harrison, and Evert Jacobsen. Characterisation and physical localisation of Ty\-copia-\\ks, retrotransposons in four Alstroemeria species // 1998 41: 357.367.
149. Aragon-Alcaide L. A cereal centromeric sequence // Chromosoma -1996 -105, pp. 261-268.
150. Jiang, J. A conserved repetitive DNA element located in the centromeres of cereal chromosomes // Proc. Natl. Acad. Sci. U. S. A -1996 -93, pp. 14210-14213.
151. Miller J.T. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes // Genetics 1998 - 150, pp. 1615-1623.
152. Presting, G.G. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes // Plant J 1998 - 16, pp. 721— 728.
153. Langdon, T. Retrotransposon evolution in diverse plant genomes // Genetics 2000 -156 , pp. 313-325.
154. Nunes Fregonezi, J., Laurival, A., Vilas-Boas, Pelegrinelli, M., Letaif Gaeta M., Vanzela A. Distribution of a Ty3>lgypsy-\\k.Q retroelement on the A and B-chromosomes of Cestrum strigilatum Ruiz & Pav. And Cestrum intermedium
155. Sendtn. (Solanaceae) // Genetics and Molecular Biology 2007 - 30, 3, 599-604.107
156. Kejnovsky, E., Kubat, Z., Macas, J., Hobza, R., Mracek, J., and Vyskot, B. Retand : a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat // Molecular genetics and genomics 2006 - 254-263.
157. Evan Staton, S., Mark, C., Ungerer and Richard, Moore, C. The genomic organization of Ty3/ gypsy like retrotransposons in helianthus (Astereceae) homoploid hybrid species // American Journal of Botany -2009-96(9): 1646-1655.
158. Heitkam, T., and Schmidt, T. BNR a LINE family from Beta vulgaris - contains a RRM domain in open reading frame 1 and defines a LI sub-clade present in diverse plant genomes // The Plant Journal - 2009 - 59, 872-882.
159. Sakamoto, K., Ohmido, N., Fukui, K., Kamada, H. and Satoh, S. Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa II Plant Mol. Biol 2000 - 44,723-732.
160. Vershinin, A.V., Druka, A., Alkhimova, A.G., Kleinhofs, A. and Heslop-Harrison, J.S. LINEs and gypsy-like retrotransposons in Hordeum species // Plant Mol. Bio 2002 - 49, 1-14.
161. Leeton, P.R., Smyth, D.R. An abundant LINE-like element amplified in the genome of Lilium speciosum II Mol. Gen. Genet -1993 237:97-104.
162. Wright, D.A., Ke, N., Smalle, J., Hauge, B.M., Goodman, H.M., Voytas, D.F. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana II Genetics 1996 -142: 569 - 578.
163. Higashiyama, T., Noutoshi, Y., Fujie, M., Yamada, T. Zepp, a LINElike retrotransposon accumulated in the Chlorella telomeric region // EMBO J. -1995 -16:3715-23.
164. Cuadrado, A., Schwarzacher, T., Jouve, N. Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides // Theor Appl Genet- 2000 — 101:711—717.
165. Havey, M. J. Restriction enzyme analysis of the chloroplast and nuclear 45s ribosomal DNA of Allium sections Cepa and Phyllo- dolon (Alliaceae) II PI. Syst. Evol- 1992- 183:17-31.
166. Kumar, A. The adventures of the Tyl-copia group of retrotransposons in plants // Trends Genet 1996 -12: 41-43.
167. Pearce, S.R., Harrison, G., Li, D., Heslop-Harrison, J.S., Kumar, A and Flavell, A.J. The Tyl-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localization // Mol. Gen. Genet. 1996a-250: 305 —315.
168. Jiang, J., Birchler, J.A., Parrott, W.A., Kelly Dawe, R. A molecular view of plant centromeres // Trends in plant science 2003 - 570-575.
169. Irifune, K., Hirai, K., Zheng, J., Tanaka, R., Morikawa, H. Nucleotide sequence of a highly repeated DNA sequence and its chromosomal localization in Allium fistulosum II Theor Appl Genet 1995 - 90: 312-316.
170. Фесенко, И.А., Хрусталева, Л.И., и Карлов, Г.И. Изучение организации сателлитного повтора 378 п.н. в терминальном гетер охр оматине Allium fistulosum //Генетика-2001-38: 7.С. 893-903.
171. Clarke, L. Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes // Curr. Opin. Genet. Dev 1998 - 8, 212-218.
172. Csink, A. K., and Henikoff, S. Something from nothing: the evolution and utility of satellite repeats // Trends Genet 1998 -14, 200-204.
173. Round, E. K. Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure // Genome Res 1997 - 7, 1045-1053.
174. Jackson, S. A. Application of Fiber-FISH in physical mapping of Arabidopsis thaliana II Genome 1998 - 41, 566-572.
175. Cheng, Z. K. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon // Plant Cell 2002 - 14, 1691— 1704.
176. Henikoff, S. The centromere paradox: stable inheritance with rapidly evolving DNA // Science 2001 - 293, 1098-1102.
177. Cheng, Z. K. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon // Plant Cell — 2002 -14, 1691— 1704.
178. Harrison, G.E., and Heslop-Harrison, J.S. Centromeric repetitive DNA sequences in the genus Brassica II Theor. Appl. Genet 1995 - 90, 157-165.
179. Kamm, A. Molecular and physical organization of highly repetitive, undermethylated DNA from Pennisetum glaucum II Mol. Gen. Genet-1994 244, 420^125.
180. Kamm, A. Analysis of a repetitive DNA family from Arabidopsis arensa and relationship between Arabidopsis species // Plant Mol. Biol 1995 —2 7, 853-862.
181. Miller, J.T. Cloning and characterization of a centromerespecific repetitive DNA element from Sorghum bicolor II Theor. Appl. Genet 1998 - 96, 832-839.
182. Gindullis, F. The large-scale organization of the centromeric region in beta species // Genome Res 2001 - 11, 253-265.
183. Sun, X.P. Molecular structure of a functional Drosophila centromere //Cell-1997-91, 1007-1019.
184. Mroczek, R.J., and Dawe, R.K. Distribution of retroelements in centromeres and neocentromeres of maize // Genetics 2003 - 165: 809-819.
185. Shelby, R.D. Chromatin assembly at kinetochores is uncoupled from DNA replication // J. Cell Biol 2000 -115,1113-1118.
186. Barnes, S. R., James, A. M. and Jamieson, G. The organization, nucleotide sequence, and chromosomal distribution of a satellite DNA from Allium cepa// Chromosoma 1985 -№92. C. 185-192.
187. Irifune, K., Hirai, K., Zheng, J. Nucleotide sequence of a highly repeated DNA sequence and its chromosomal localization in Allium fistulosum // Theor. Appl. Genet 1995 -№90. C. 312-316.
188. Khrustaleva, L. I., Kik, C. Localization of single-copy T-DNA insertion in transgenic shallots {Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification // The plant journal 2001 - 699 - 707.
189. Nagaki, K., Cheng, Z., Ouyang, S., Talbert, P.B., Kim, M. Sequencing of a rice centromere uncovers active genes // Nature Genetics -200436, 138- 145 .
190. Schmidt, T., Kubis, S., and Heslop-Harrison, J.S. Analysis and chromosomal localization of retrotransposons in sugar beet {Beta vulgaris L.): LINEs and Ty\-copia-\\k& elements as major components of the genome // Chromosome Res 1995 - 3:335-345.
191. Van Sluys, M., Scortecci, K.C., and Costa. A.P. O genoma instâvel, seqiiências genéticas moveis. In: Matioli SR (ed) Biologia Molecular e Evoluçâo // Holos Editora, Ribeirâo Preto -2001-pp 70-81.
192. Marin, I., and Lloréns, C. Ty3/Gypsy Retrotransposons: Description of New Arabidopsis thaliana Elements and Evolutionary Perspectives Derived from Comparative Genomic Data // Molecular Biology and Evolution 2000 -Volume 17. Pp. 1040-1049.
193. Rayburn, A.L., and Gill, B.S. Use of biotin labeled probs to map specific DNA sequence on wheat chromosomes // J. Hered - 1985 - 76. 78 - 81.
194. Flavell, R.B. Repetitive DNA and chromosome evolution in plants // Phil. Trans. R. Soc. Lond. B 1986 - 312: 227-242.
195. Sun, X., Wahlstrom, J., Karpen, G.H. Molecular structure of a functional Drosophila centromere // Cell 1997 - 92:1007-1019.
196. Kamm, A. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationship between Arabidopsis species 11 Plant Mol. Biol — 1995 — 27, 853-862.
197. Martinez-Zapater, J.M. A high repeated DNA sequence in Arabidopsis thaliana II Mol. Gen. Genet 1996 - 204, 417-423.
198. Maluszynsak, J., and Heslop-Harrison, J.S. Localization of tandemly repeated DNAsequences in Arabidopsis thaliana II Plant J 1991-1, 159-166.
199. Gindullis, F. The large-scale organization of the centromeric region in beta species // Genome Res 2001 - 11, 253-265.
200. Leach, C. R. Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica II Chromosoma -1995-103, 708714.
201. Aragón-Alcaide, L. A cereal centromeric sequence // Chromosoma -1996- 105,261-268.
202. Iwabuchi, M. et al. Molecular and cytorogical characterization of repetitive DNA sequences in Brassica. Theor. Appl. Genet. 1991 - 81, 349-355.
203. Presting, G. G. ATy3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes // Plant J 1998 - 16, 721-728.
204. Hudakova, S. Sequence organization of barley centromeres // Nucleic Acids Res-2001 -29, 5029-5035.
205. Cheng, Z. K. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon // Plant Cell 2002-14, 16911704.
206. Dong, F. Rice (Oryza sativa) centromeric regions consist of complex DNA // Proc. Natl. Acad. Sci. U. S. A. 1998 - 95, 8135-8140.
207. Nonomura, K.I., and Kurata, N. Organization of the 1.9-kb repeat unit RCE1 in the centromeric region of rice chromosomes // Mol. Gen. Genet. 1999 -261, 1-10.
208. Sykorova E., Lim K. Y, Kunicka. Z, Chase, M.W, Bennett, M. D., Fajkus, J.and Leitch, A.R. Telomere variability in the monocotyledonous plant order Asparagales // Journal of Biological Sciences 2003- 270, 1893-1904.
209. Entani, T. Centromeric localization of an S-RNase gene in Petunia hybrid// Vilm. Theor. Appl. Genet 1999 - 99, 391-397.
210. Nagaki, K. A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions // Chromosome Res- 1998 -6,295-302.
211. Francki, M.G. Identification of Bilby, a diverged centromeric Tyl-copia retrotransposon family from cereal rye (Secale cereale L.) // Genome 2001 -44, 266-274.
212. Miller, J.T. Cloning and characterization of a centromerespecific repetitive DNA element from Sorghum bicolor II Theor. Appl. Genet 1998 - 96, 832-839.
213. Jiang, J. A conserved repetitive DNA element located in the centromeres of cereal chromosomes // Proc. Natl. Acad. Sci. U. S. A 1996 - 93, 14210-14213.
214. Miller, J.T. Retrotransposon-relatedDNA sequences in the centromeres of grass chromosomes // Genetics -1998-150, 1615-1623.
215. Zwick, M.S. Distribution and sequence analysis of the centromere-associated repetitive element CEN38 of Sorghum bicolor (Poaceae) // Am. J. Bot. -2000-87, 1757-1764.
216. Kishii, M. A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes // Chromosome Res. -2001-9,417-428.
217. Cheng, Z-J. and Murata M. A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives // Genetics -2003 164, 665-672.
218. Nagaki, K. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres // Genetics 2003 -163, 759-770.
219. Ananiev, E.V. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions // Proc. Natl. Acad. Sci. U. S. A. -1998 -95, 13073-13078.
220. Alfenito, M.R., and Birchler, J.A. Molecular characterization of a maize B chromosome centric sequence // Genetics 1993 -135, 589-597.
221. Page, B.T. Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere // Genetics 2001 -159, 291-302.
222. СПИСОК ИЛЛЮСТРАТИВНОГО МАТЕРИАЛА