Роль липидов в процессах нейропластичности и нейродегенерации тема диссертации и автореферата по ВАК РФ 03.00.04, доктор биологических наук Кудинов, Алексей Рудольфович

  • Кудинов, Алексей Рудольфович
  • доктор биологических наукдоктор биологических наук
  • 2007, Москва
  • Специальность ВАК РФ03.00.04
  • Количество страниц 211
Кудинов, Алексей Рудольфович. Роль липидов в процессах нейропластичности и нейродегенерации: дис. доктор биологических наук: 03.00.04 - Биохимия. Москва. 2007. 211 с.

Оглавление диссертации доктор биологических наук Кудинов, Алексей Рудольфович

ГЛАВА 1.

ВВЕДЕНИЕ.

1.1. Актуальность работы.

1.2. Цель и задачи исследования.

1.3.Положения, выносимые на защиту.

1 АНаучная новизна работы.

1.5. Научно-практическая значимость работы.

ГЛАВА 2.

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О РОЛИ ЛИПИДОВ В НЕЙРОДЕГЕНЕРАТИВНЫХ ЗАБОЛЕВАНИЯХ (ОБЗОР ЛИТЕРАТУРЫ).

2.1. ХОЛЕСТЕРИН И ЕГО ОБМЕН В ЖИВОТНОМ ОРГАНИЗМЕ.

2.1.1. Биохимия холестерина.

2.1.2. Распределение холестерина в животном организме.

2.2. ХОЛЕСТЕРИН И ФОСФОЛИПИДЫ В СТРУКТУРЕ МЕМБРАН.

2.2.1. Холестерин и фосфолипиды в строении клеточной мембраны.

2.2.2. Микродомены в плазматической мембране.

2.2.2.1 .Клатрин-окаймленные ямки.

2.2.2.2. Кавеолы.

2.2.3. ПЕРЕКИСНОЕ ОКИСЛЕНИЕ ЛИПИДОВ В СТРУКТУРЕ МЕМБРАН.

2.2.3.1. Первичные радикалы.

2.2.3.2. Активные формы кислорода.

2.2.3.3. Цепное окисление липидов.

2.2.3.4. Биологические последствия ПОЛ.

2.2.3.5. Регуляция ПОЛ.

2.2.3.6. Водорастворимые антиоксиданты.

2.2.3.7. Липидные антиоксиданты.

2.3. ГОМЕОСТАЗ ХОЛЕСТЕРИНА В КЛЕТКЕ.

2.3.1. Захват холестерина.

2.3.2. Биосинтез холестерина.

2.3.3. Регулирование биосинтеза холестерина.

2.3.4. Транспорт холестерина из клетки.

2.3.5. Холестерин модулирует внутриклеточный липидный транспорт.

2.4. ХОЛЕСТЕРИН В ТКАНИ МОЗГА.

2.4.1. Ano Е, холестерин и нейромышечные болезни.

2.4.2. Болезнь Нимана Пика тип С, холестерин и нейродегенерация.

2.4.3. Синдром Дауна и другие наследственные заболевания.

2.5. ЭЛЕКТРОФИЗИОЛОГИЧЕСКИЙ АНАЛИЗ СРЕЗОВ МОЗГА-НЕЙРОПЛАСТИЧНОСТЬ И ДОЛГОСРОЧНАЯ ПОТЕНЦИАЦИЯ.

2.5.1. Анализ нейропластичности: долгосрочная потенциация.

2.5.2. Почему электрофизиологическая запись в гиппокампе.

2.6. МОРФОЛОГИЧЕСКИЕ ПРИЗНАКИ НЕЙРОДЕГЕНЕРАЦИИ.

2.6.1. Амилоид бета. Формирование амилоидных бляшек.

2.6.2. АР, ПБА, холестерин, и нейромышечные патологии.

2.6.3. Амилоид р, нормальный функциональный белок организма?.

2.6.2. Белок тау. Образование нейрофибриллярных клубков.

ГЛАВА 3.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

3.1. ИЗУЧЕНИЕ ХОЛЕСТЕРИНА И ФОСФОЛИПИДОВ

В СРЕЗАХ ГИППОКАМПА КРЫСЫ.

3.1.1. Животные.

3.1.2. Реактивы.

3.1.3. Методы.

3.1.3.1. Приготовление срезов гиппокампа.

3.1.3.2. Метаболическое мечение липидов срезов гиппокампа.

3.1.3.3. Авторская инкубационная камера для срезов.

3.2. БИОХИМИЧЕКИЙ АНАЛИЗ ЛИПИДОВ МОЗГА.

3.2.1. Изучение синтеза липидов в ткани гиппокампа.

3.2.2. Радиоавтографический анализ срезов гиппокампа.

3.3. ИММУНОГИСТОХИМИЧЕКИЙ АНАЛИЗ СРЕЗОВ ГИППОКАМПА.

3.4. ЭЛЕКТРОФИЗИОЛОГИЧЕСКИЙ АНАЛИЗ СРЕЗОВ ГИППОКАМПА.

3.4.1. Регистрация ВПСП, ДП и парного усиления.

3.4.2. Обработка данных и статистический анализ.

3.4.3. Экспериментальная установка для двухканальной записи.

3.4.4. Изучение поведения лабораторных крыс.

3.5. БИОХИМИЧЕСКИЙ АНАЛИЗ ПРОДУКТОВ ПОЛ.

ГЛАВА 4. РЕЗУЛЬТАТЫ.

4.1. ИЗУЧЕНИЕ РОЛИ ХОЛЕСТЕРИНА И ФОСФОЛИПИДОВ В НЕЙРОПЛАСТИЧНОСТИ НЕЙРОНОВ.

4.1.1. Биохимический и гистохимический анализ холестерина и фосфолипидов срезов гиппокампа.

4.1.2. «Острый» дисбаланс холестерина и фосфолипидов вызывает нейро-дегенерацию в гиппокампе.

4.1.3. Холестерин, фосфолипиды и нейропластичность.

4.1.3.1. Роль в инициации и поддержании ДП.

4.1.3.2. Роль в пресинаптическом компоненте нейротрансмиссии.

4.1.4. Острая модуляция липидов гиппокампа не влияет на Aß.

4.2. ИЗУЧЕНИЕ КРЫС СОДЕРЖАЩИХСЯ НА ДИЕТЕ С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ ХОЛЕСТЕРИНА.

4.2.1. Хроническое повышение холестерина в пище приводит к отложению амилоида ß в ткани мозга крыс.

4.2.2. Диета с повышенным холестерином пищи вызывает нарушение поведения лабораторных крыс.

4.2.3. Диета с повышенным холестерином вызывает нарушение долгосрочной потенциации в гиппокампе крыс.

4.2.4. Пищевой холестерин усиливает синтез собственного холестерина в ткане мозге.

4.3. ИЗУЧЕНИЕ ВЛИЯНИЯ ОКСИДАТИВНЫХ РЕАКЦИЙ И ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ (ПОЛ) НА НЕЙРОПЛАСТИЧНОСТЬ.

4.3.1. Перекись водорода модулирует нейропластичность.

4.3.2. ПОЛ модулирует нейропластичность.

4.4. ВЛИЯНИЕ АМИЛОИДА БЕТА И НЕЙРОПЛАСТИЧНОСТИ НА МЕТАБОЛИЗМ ЛИПИДОВ.

4.4.1. Амилоид бета и метаболизм липидов в ткани мозга.

4.4.2. Влияние нейропластичности на синтез липидов в гиппокампе.

4.4.3. Амилоид бета, холестерин и нейропластичность,

ГЛАВА 5.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

5.1. ЛИПИДЫ И СИНАПТИЧЕСКАЯ НЕЙРОПЛАСТИЧНОСТЬ.

5.1.1. Экспериментальная система острой модуляции липидов гиппокампа крысы.

5.1.2. Биохимический анализ динамики холестерина и фосфолипидов в срезах гиппокампа.

5.1.3. Липиды важны для синаптической пластичности и нейротрансмиссии.

5.2. ЛИПИДЫ И ДЕГЕНЕРАЦИЯ ЦИТОСКЕЛЕТА.

5.3. ЛИПИДЫ, НЕЙРОПЛАСТИЧНОСТЬ, Ар и БА.

5.3.1. Холестерин и болезнь Альцгеймера.

5.3.2. «Хроническая» модуляция холестерина вызывает нарушение нейропластичности и нейродегенерацию.

5.4. ОКСИДАТИВНЫЕ РЕАКЦИИ, ПОЛ И НЕЙРОПЛАСТИЧНОСТЬ.

5.4.1. Перекись водорода и нейропластичность.

5.4.2. Перекисное окисление липидов (ПОЛ) и нейропластичность.

5.5. АМИЛОИД БЕТА - ФУНКЦИОНАЛЬНЫЙ БЕЛОК?.

5.5.1. Амилоид бета, нейропластичность и липиды.

5.5.2. Ар и ПБА - интегрированная система для регулирования холестерина и динамики мембран ейронов.

5.6. НАРУШЕНИЕ БИОХИМИИ ХОЛЕСТЕРИНА - ПЕРВИЧНАЯ ПРИЧИНА НЕЙРОДЕГЕНЕРАЦИИ?.

5.6.1. Холестерин и признаки нейродегенерации.

5.6.2. Наложение характеристических черт нейродегенерации при разных нейродегенеративных болезнях.

5.6.3. Какова первичная причина нейродегенерации?.

5.6.4. Холестерин, нейродегенерация и химическая специфичность нейротрансмиссии.

ГЛАВА 6.

Рекомендованный список диссертаций по специальности «Биохимия», 03.00.04 шифр ВАК

Введение диссертации (часть автореферата) на тему «Роль липидов в процессах нейропластичности и нейродегенерации»

За последние десятилетие медико-биологической науке существенно возрос интерес к проблеме взаимосвязи биохимии липидов и целого ряда нейродегенеративных заболеваний, таких как болезнь Альцгеймера (БД), Синдром Дауна, болезнь Пимана Пика Тип С (НПС), нейромышечные патологии. Болезнь Альцгеймера относится к группе патологий старческого возраста и является четвертой причиной смертности развитых стран после сердечно-сосудистых в большинстве и раковых заболеваний. Напротив, Синдром Дауна и болезнь Нимана Пика тип С поражают в детском возрасте. Несмотря на это основные морфобиологические перечисленных отложения болезней почти бета идентичны. (АР) и Это характеристики внеклеточные белка-амилоида внутри наличие нейрофибриллярных клубков нейронов, обусловленных избыточным фосфорилированием белка тау, в норме ассоциированого с микротрубочками. В течение длительного времени в научной литературе существовало мнение, что главной причиной нейродегенарции при болезни Альцгеймера и синдроме Дауна являются отложения в ткани мозга амилоида бета. Считалось, что Ар, является состоящий из 39-43 аминокислотных остатков патологическим продуктом своего исключительно предшественника (ПБА) трансмембранного гликопротеина, ген которого локализован на 21 хромосоме. Однако, в 1992 году АР был обнаружен в плазме крови и спинномозговой жидкости (СМЖ) здоровых доноров, а также в культуральных средах многих клеточных линий в растворенной, неаггрегированной форме (1-3). Более того, в собственных новаторских исследованиях автора и его коллег (4-11) было показано, что в плазме крови, СМЖ и культуральной среде клеток печени HepG2 АР ассоциирован с липопротеинами высокой плотности (ЛВП). Это было позднее подтверждено другими научными группами (12-13). Десять лет назад автором было высказано предположение, что, как и многие другие белки липопротеинов (называемые апобелками или аполипопротеинами). Ар имеет функции, связанные с обменом липидов. Некоторые из таких возможных функций были обнаружены автором и его коллегами, в частности, ингибирование этерификации холестерина (ХС) в плазме крови (14-15) и снижение синтеза липидов в культуре клеток печени человека (16-17). Дальнейшее изучение биохимической роли Ар в метаболизме липидов, в частности в переживающих срезах являлось одним из направлений данной работы. Важно заметить, что причинные факторы изменения биологии АР и белка тау при болезни Альцгеймера и других патологических состояниях остаются все еще не раскрытыми (4,5). Возможно, что подобные гиппокампа крысы, Исследования ассоциации амилоида бета с липопротеинами были представлены в диссертации Кудинова А.Р. на соискание ученой степени кандидата биологических наук (январь 1995 г.) изменения являются компенсаторным ответом на другие, из более фундаментальные первичных патологические процессы. Одной возможных и причин нейродегенерации при болезни Альцгеймера родственных заболеваниях является нарушение специфичности обмена липидов, способное в свою очередь вызвать каскад вторичных компенсаторных изменений, в том числе изменение биохимии амилоида бета, белка тау, и баланса реакций оксидативного стресса. В последующих

Похожие диссертационные работы по специальности «Биохимия», 03.00.04 шифр ВАК

Список литературы диссертационного исследования доктор биологических наук Кудинов, Алексей Рудольфович, 2007 год

1. Shoij М., Golde Т.Е., Ghiso J. Production of the Alzheimers amyloid beta protein by normal proteolytic processing. Science, 1992,258,126-

2. Seubert P., Vigo-Pelfrey C, Esch F.D. et al. Isolation and characterization of soluble Alzheimerss beta-peptide from biological fluids. Nature, 1992,359,325-

3. Haass C, Schlossmacher M.G., Hung A.Y. Amyloid p-peptide is produced by cultured cells during normal metabolism. Nature, 1992,359,322-

4. Koudinov A.R., Berezov T.T. Alzheimers amyloid-beta (Ap) is an essential synaptic protein, not neurotoxic junk. Acta Neurobiol Exp, 2004, 64(1), 71-

5. Koudinov A.R., Berezov T.T. Cholesterol, statins, and Alzheimer disease. PLoS Med, 2005,2(3), e

6. Koudinov A., Matsubara E., Ghiso J., Frangione B. The soluble form of Alzheimers amyloid beta protein is complexed with high density lipoproteins 3 and very high density lipoproteins in normal human plasma. Biochem Biophys Res Commun, 1994, 205,1164-1

7. Koudinov A. R., Koudinova N.V., Kumar A., Beavis R., and Ghiso J. Biochemical characterization of Alzheimers soluble amyloid beta protein in human cerebrospinal fluid: association with high density lipoproteins. Biochem Biophys Res Commun, 1996, 223,592-

8. Кудинова H.B., Кудинов A.P., Березов T.T. Амилоид p в плазме крови и спинномозговой жидкости ассоциирован с линопротеинами высокой плотности. Вопр Мед Химии, 1996,3,253-

9. Koudinov A.R., Koudinova N.V. Soluble amyloid beta protein is secreted by HepG2 cells as an apolipoprotein. Cell Bid Internat, 1997,25,265-

10. Koudinov A. R., Berezov T. Т., Kumar A., and Koudinova N. V. Alzheimers amyloid beta interaction with normal human plasma high density lipoprotein: association with apolipoprotein and lipids. Clin ChimActa, 1998,270,75 -

11. Koudinov A.R., Berezov T.T., Koudinova N.V. The levels of soluble amyloid beta in different HDL subfractions distinguish Alzheimers and normal aging CSF: implication for brain cholesterol pathology? Neurosci Lett, 2001,314,115-

12. Fagan A.M., Younkin L.H., Morris J.C., Fryer J.D., Cole T.G., Younkin S.G., and Holtzmann D.M. (2000) Differences in the Abeta40/Abeta42 ratio associated with cerebrospinal fluid lipoproteins as a function of apolipoprotein E genotype. Ann Neurol, 2000,48,201-210 Mulder M., Terwel D. Possible link between lipid metabolism and cerebral amyloid angiopathy in Alzheimers disease: a role for high density lipoproteins? Haemostasis, 1998,28,174-

13. Koudinov A.R., Koudinova N.V., and Berezov, T. T. Alzheimers peptides Api-40 and Api-28 inhibit the plasma cholesterol esteriflcation rate. Biochem Mol Biol Inter, 1996, 38,747-

14. Koudinova N.V., Berezov T.T., Kozirev K.M., Burbaeva G.Sh., Koudinov A.R. Effect of amyloid beta on esterification of plasma cholesterol and on synthesis of lipids in cultured human hepatic cells. Vopr Biol Med Pharm Khim, 1998,2,13-

15. Koudinova N.V., Berezov T.T., Koudinov A.R. Multiple inhibitory effects of Alzheimers peptide Abetal-40 on lipid biosynthesis in HepG2 cells. FEBS Letters 1996,395,204-

16. Koudinova N., Koudinov A.R., Berezov T. Alzheimers disease: amyloid beta and lipid metabolism (review). Vopr Med Chim (1998) 44,28-34. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

17. Weisgraber КН, Roses AD, Strittmatter WJ. The role of apolipoprotein E in the nervous system. Curr Opin Lipidol. 1994,5(2), 110-116.

18. Ashford J.W. ApoE4: is it the absense of good or the presence of bad? JAlzheimers Dis, 2002,4,141-143.

19. Papassotiropoulos A., Lutjohann D., Bagli M., et al. Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker for Alzheimers disease. Neuroreport, 2000,11,1959-1962.

20. Mori Т., Paris D., Town Т., et al. Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP mice. J Neuropathol Exp Neurol, 2001, 60,778-785.

21. Refolo L.M., Pappolla M.A., Malester В., et al. Hypercholesterolemia accelerates the Alzheimers amyloid pathology in a transgenic mouse model. Neurobiol Dis, 2000, 7, 321-331.

22. Sparks D.L. Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol, 1994,126,88-94.

23. Bums M.P., Noble W.J., 01m V., Gaynor K., Casey E., LaFrancois J., Wang L., Duff K. Co-localization of cholesterol, apolipoprotein E and fibrillar Abeta in amyloid plaques. Brain Res Mol Brain Res, 2003,110,119-125.

24. Jick H., Zomberg G.L., Jick S.S., Seshadri S., Drachman D.A. Statins and the risk of dementia. Lancet, 2000,356,1627-1631.

25. Wolozin В., Kellman W., Ruosseau P., Celesia G.G., Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyl-glutaryl coenzyme A reductase itMnioxs. Arch Neurol, 2000,57,1439-1443.

26. Haley R.W., Dietschy J.M. Is there a connection between the concentration of cholesterol circulating in plasma and the rate of neuritic plaque formation in Alzheimer disease? Arch Neurol, 2000,57,1410-1412.

27. Lacko A.G., Hayes J.D., McConathy W.J., Lacko I., Redheendran R. Lecithin: cholesterol acyl-transferase in Dovms syndrome. Clin ChimActa, 1983,132,133-141.

28. Diomede L., Salmona M., Albani D., et al. Alteration of SREBP activation in liver of Trisomy 21 fetuses. Biochem Biophys Res Commun, 1999,260,499-503.

29. Jaworska-Wilczynska M., Wilczynski. G.M., Engel W.K., Strickland D.K., Weisgraber K.H., Askanas V. (2002) Three lipoprotein receptors and cholesterol in inclusion-body myositis muscle. Neurology 58,438-445. 31. Liu Y., Peterson D.A., Schubert D. Amyloid beta peptide alters intracellular vesicle trafficking and cholesterol homeostasis. Proc Natl Acad Sci USA, 1998, 95, 1326613271.

30. Cornelius F. Cholesterol modulation of molecular activity of reconstituted shark Na+, K(+)-ATPase. Biochim Biophys Ada, 1995,1235,205-212

31. Whetton A.D., Gordon L.M., Houslay M.D. Adenylate cyclase is inhibited upon depletion of plasma-membrane cholesterol. Biochem J, 1983,212,331-338

32. Lasalde J. A., Colom, A., Resto E., and Zuazaga С Heterogeneous distribution of acetylcholine receptors in chick myocytes induced by cholesterol enrichment. Biochim Biophys Ada, 1995,1235,361-368

33. Albert A.D., Young J.E., and Yeagle P.L. Rhodopsin-cholesterol interactions in bovine rod outer segment disk membranes. Biochim. Biophys. Acta, 1996,1285,47-55.

34. Muller W.E., Hartmann H., Eckert G.P., Eckert A., and Eisert S. Cholesterol affects neuronal calcium signalling. A possible link between apolipoprotein poIymoфhism, pamyloid neurotoxocity, and neurodegeneration in Alzheimers disease. Nutr Metab Cardiovasc Dis, 1997,7,210-216

35. Brown D.A., London Е. Functions of lipid rafts in biological membranes. Ann. Rev. Cell Z)ev.5/o/., 1998,14,111-136.

36. Simons K., Ikonen E. Functional rafts in cell membranes. Nature, 1997,387,569-572.

37. Mukherjee S., Maxfield FR. Role of membrane organization and membrane domains in endocytic lipid trafficking. 7>£#c, 2000,1,203-211.

38. Stoffel W. Structural and functional aspects of phospholipid molecules/Phosphatidylcholine (polienephosphatidylcholine/PPC): effects on cell membranes and transport of cholesterol/Ed. A.I. Archakov, R.J. Gudermann, BingenRein: wbn-Verlag, 1989,15-24.

39. Jain M.K., Wagner R.C. Introduction to biological membranes, NY:John Wiley, 1980.

40. Korn E.D. Structure of biological membrane. Science, 1966,153,1491-1498. 44. Сим Э. Биохимия мембран. Пер. с англ. М: Мир, 1985,110.

41. Ивков В.Г., Берестовский Г.Н. Липидный бислой биологических мембран. М: Наука, 1982,324.

42. Simons К., Ikonen Е. How cells handle cholesterol. Science, 2000,290,1721-1726.

43. Simons K., Toomre D. Lipid rafts and signal transduction. Nature Rev. Mol Cell Biol, 2000,1,31.

44. Pralle A., Keller P., Florin EL., Simons K., Horber JK. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol., 2000,148, 997.

45. Браун Г., Уолкен Дж. Жидкие кристаллы и биологические структуры. Пер. с англ. М:Мир, 1982,198.

46. Fielding C.J, Fielding P.J. Intracellular cholesterol transport. J Lipid Res, 1997, 38, 1503-1523.

47. Pierce B.M.F.Clathrin: a unique protein associated with intracellular transfer of membrane by coated pits. Proc Natl AcadSci USA, 1976,73,1255-1259.

48. Santini F., Keen J.H. Endocytosis of activated receptors and clathrin coated pit formation: deciphering the chick or egg relationship. J Cell Biol, 1996, 1322, 10251036.

49. Hinshaw J.E. and Schmit S.L. Dinamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature, 1995,374,190-192.

50. Holstein S.H.E., Ungewickell H. and Ungewickell E. Mechanism of clathrin basket dissociation: separate ftinctions of protein domains of the DnaJ homologue auxilin. J Cell Biol, 1996,135,925-937.

51. Ungewickell E., Ungewickell H., Holstein SHE., Lindner R., Prasad K., Barouch W., Martin В., Greene LE., Eisenberg E. Role of auxilin in uncoating clathrin-coated vesicles. Nature, 1995,378,632-635.

52. Wang L.H., Sudhof Т.е., Anderson R.G.W. The appendage domain of alpha-adaptin is a high affinity binding site for dynamin. JBiol Chem, 1995,270,79-83.

53. Brodsky F.M. Living with clathrin: its role in intracellular membrane traffic. Science, 1988,242,1396-1401.

54. Anderson R.G. The calveolae membrane system. Ann Rev Biochem, 1998,67,199-225.

55. Simionescu N., Lupu F., Simionescu M. Rings of membrane sterols surround the openings of vesicles and fenestrae in capillary endothelium. JC//5/o/, 1983,97,15921600. 60. Li S., Song G.S., Lisanti M.P. Expression and characterization of recombinant caveolin. Purification by polyhistidine tagging and cholesterol-dependent incorporation into defined lipid membranes. JBiol Chem, 1996,271,573-582.

56. Murata М., Peranen J., Schreiner R., Wieland F., Kurzchalia T.V., Simons K. VIP21/caveolin is cholesterol-binding protein. Proc Natl Acad Sci USA, 1995, 92, 10339-10

57. Heino S. Dissecting the role of the golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface. Proc Natl Acad Sci USA, 2000, 97, 83758380. Fra A.M., Williamson E., Simons K., Parton R.G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveoIin. Proc Natl Acad Sci USA, 1995, 92, 8655-8

58. Scherer P.E., Tang Z., Chun M., Sargiacomo M., Lodish H.F., Lisanti M.P. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. J Biol Chem, 1995,270,16395-16

59. Schnitzer J.E., Lui J., Oh P. Endothelial caveolae have the molecular transport machinery for visicle budding, docking and fusion including VAMP, NSF, SNAP, annexins and GTFases. JBiol Chem, 1995,270,14399-14

60. Schnitzer J.E., Mclntosh D.P., Dvorak A.M. Liu J. Oh P. Separation of calveolae from associated microdomains of GPI-anchored proteins. Science, 1995,269,1435-1

61. Koleske A.J., Baltimore D., Lisanti M.P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA, 1995,92,1381-1385. Fra A.M., Williamson E., SimonsK., Parton R.G. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem, 1994, 269, 30745-30

62. Fielding C.J., Fielding P.E. Calveolae and intracellular trafficking of cholesterol. Adv. Drug Deliv Rev, 2001,49,251-

63. Fielding C.J., Fielding P.E. Cellular cholesterol efflux. Biochim Biophys Acta, 2001, 1533,175-

64. Smart E.J., Ying Y.S., Conrad P.A., Anderson R.G.W. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol, 1994,127,11851

65. Graf G.A., Connell P.M., van der Westhuyzen D.R., Smart E.J. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into calveolae. JBiol Chem, 1999,274,12043-12

66. Hoekstra D., Ijzendoom S.C.D. Lipid trafficking and sorting: how cholesterol is filling gaps. Curr Opin Cell Biol, 2000,12,496-

67. Repa J.J., Turley S.D., Lobaccaro J.-M.A., et al. Regulation of absoфtion and ABClmediated efflux of cholesterol by RXR heterodimers. Science, 2000,289,1524-1

68. Fielding P.E., Fielding C.J. Intracellular transport of low density lipoprotein derived free cholesterol begins at clathrin-coated pits and terminates at cell surface caveolae. Biochemistry, 1996,35,14939-14

69. Владимиров Ю.А. Перекисное окисление липидов. Повреждение компонентов биологических при патологических состояниях. Лекция

70. Курс лекций по биофизики. Последний просмотр 14 марта 2007 URL: http://www.biophysics.hotmail.ru/lect_/d05.htm Liscum L., Munn N.J. Intracellular cholesterol transport. Biochem Biophys Acta, 1999, 1438,19-

71. Goldstein J.L., Brown M.S. Regulation of low density lipoprotein receptors; implications for pathogenesis and therapy of hypercholesterolemia and atherosclerosis. Circulation, 1987,76,504-

72. Lange Y., Ye J., Steck T.L. Circulation of cholesterol between lysosomes and plasma membrane. J Л/о/С/гш, 1998,273,18915-18922. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79.

73. Neufeld E.B., Wastney M., Patel S., Suresh S., Cooney A.M., Dwyer N.K., Roff C.F et al. The Niemann-Pick Cl protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. JBiol Chem, 1999,274,9627-9635.

74. Patel S.C., Suresh S., Kumar U., Hu C.Y., Cooney A., Patel Y.C. et al. Localization of Niemann-Pick Cl protein in astrocytes: implications for neuronal degeneration in Niemann-Pick type С disease. Proc Natl AcadSci USA, 1999,96,1657-1662.

75. Keller P., Simons K. Post-Golgi biosynthetic trafficking. J Cell Sci, 1997, 110, 30013019.

76. Meer G. Lipid traffic in animal cells. Arm Rev Cell Biol, 1989,5,247-275.

77. Fielding C.J., Fielding PE. Intracellular cholesterol transport. J Lipid Res, 1997, 38, 1503-1521.

78. Климов A.H.. Васильева Л.Е., Климова T.A., Диже Э.Б. Участвует ли малонат в синтезе стеринов Биохимш, 1990,55,549-553.

79. Климов А.Н., Климова Т.А., Петрова Л.А., Полякова Э.Д. Торможение биосинтеза холестерина производными мевалоновой кислоты. Биохимия, 1971,36,851-856.

80. Goldstein J.L., Brown M.S. Regulation of the mevalonate pathway. Nature, 1990, 343, 425-430.

81. Brown M.S., Goldstein J.L. A receptor mediated pathway for cholesterol homeostasis. Science, me, 232,34-47.

82. Briggs M.R., Yokoyama C, Wang X., Brown M.S., Goldstein J.L. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter.

83. Identification of the protein and delineation of its target nucleotide sequence. J Biol Chem, 1993,268,14490-14496.

84. Wang X., Briggs M.R., Hua X., Yokoyama C, Goldstein J.L., Brown M.S. Nuclear protein that binds sterol regulatory element of LDL receptor promoter П. Purification and characterization. JBiol Chem, 1993,268,14497-14504.

85. Schoenheimer R., Breusch F. Synthesis and destruction of cholesterol in the organism. J Biol Chem, 1933,103,43948.

86. Gould R.G., Taylor C.B., Hagerman J.S., Warner I., and Campbell D.J. Cholesterol metabolism: effect of dietary cholesterol on the synthesis of cholesterol in dog tissue in vitro. JBiol Chem, 1953,201,519-523.

87. Siperstein M.D., Fagan V.M. Feedback control of mevalonate synthesis by dietary cholesterol. JBiol Chem, 1966,241,602-609.

88. Bucher N.L.R., Overath P., Lynen F, 3-Hydroxy-methyIglutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim BiophysActa, 1960,40,491-501,

89. Guan G., Jiang G., Koch R.L., and Shechter, I. Molecular cloning and functional analysis of the promoter of the human squalene synthase gene. J Biol Chem, 1995,270, 21958-21965.

90. Ericsson J., Jackson S.M., and Edwards P.A. Synergistic binding of sterol regulatory element-binding protein and NF-Y to the famesyl diphosphate synthase promoter is critical for sterol-regulated expression of the gene. J Biol Chem, 1996, 271, 2435924364.

91. Osbome T.F. Transcriptional control mechanisms in the regulation of cholesterol balance. Crit Rev Eukaryot Gene Expr, 1995,5,317-335.

92. Duncan E.A., Brown M.S., Goldstein J.L., and Sakai, J. (1997) Cleavage site for sterolregulated protease localized to a Leu-Ser bond in lumenal loop of sterol regulatory element binding protein-2.JВ/о/C/zw, 1997,272,12778-12785.

93. Duncan E.A., Brown M.S., Goldstein J.L., Sakai J. Cleavage site for sterol-regulated protease localized to a Leu-Ser bond in lumenal loop of sterol regulatory element binding protein-2. J5/o/CAm, 1997,272,12778-12785. 101. Hua X., Sakai J., Brown M.S., Goldstein J.L. Regulated cleavage of sterol regulatory element binding proteins (SREBPs) requires sequences on both sides of endoplasmatic reticulum membrane. J5/o/C/zew, 1996,271,10379-10384.

94. Wang X., Sato R., Brown M.S., Hua X., Goldstein J.L. SREBP-1, membrane-bound transcription factor released by sterol-regulated proteolysis. Cell, 1994,77,53-62.

95. Sakai J., Duncan E.A., Rawson R.B., Hua X., Brown M.S., and Goldstein J.L. Sterolregulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell, 1996, 85,1037-1046.

96. Brown M, Goldstein J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell, 1997,89,331-340.

97. Sabine J.R. Cholesterol, NY: Marcel Dekker, 1977,489.

98. Hasan, M.T., Chang, C.C.Y., Chang, T.Y. Somatic cell genetic biochemical characterization of cell lines resulting from human genomic DNA transfections of Chinese hamster ovary cell mutants defective in sterol-dependent activation of sterol synthesis and LDL receptor expression. Somatic Cell Mol. Genet.,1994,20,183-194. 107. liidgway ND.Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim. Biophys. Acta, 2000,1484,129-141.

99. Laitinen S., Olkkonen VM., Ehnholm C, Ikonen E.Family of human oxysterol binding protein (OSBP) homologues. A novel member implicated in brain sterol metabolism. J. LipidRes., 1999,40,2204-2211.

100. Ridgway ND., Dawson PA, Ho YK., Brown M.S., Goldstein J.L.Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J. Cell Biol. 1992,116,307-319.

101. Ridgway ND., Lagace HW., Cook HW., Byers DM. Differential effects of sphingomyelin hydrolysis and cholesterol transport on oxysterol-binding protein phosphorylation and golgi Realization. J. Biol. Chem., 1998,273,31621-31628.

102. Kutchai H.C. Cellular membrane and transmembrane transport of solutes and water in R.M. Berne, M.N. Levy (Eds.), Physiology, Mosby PubL, St. Louis, MO, 1993,1-26.

103. Haberland M.E., Reynolds J.A. Self-association of cholesterol in aqueous solution. Proc. Natl. Acad. Sci. USA, 1973,70,2313-2316.

104. Broccardo C, Luciani M., Chimini G The ABCA class of mammalian transporters. Biochim. Biophys. Acta, 1999,1461,395-404.

105. Rotblat G.H., Mahlbergm F.H., Johnson W.J., Phillips M.C. Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol efflux. J. Lipid Res.,1992, 33,1091-1097.

106. Orso E., Broccardo C, Kaminski WE., Bottcher A., Liebisch G., Drobnik W., Gotz A., et al. Transport of lipids from Golgi to plasma membrane is defective in Tangier disease patients and ABC 1-deficient mice. Nature Genet, 2000,23,192-196.

107. Bodzioch M. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature Genet., 1999,22,347-353.

108. Brooks-Wilson A.Mutations of ABC 1 in Tangier disease and familial high density lipoprotein deficiency. Nature Genet, 1999,22,336-343.

109. Rust S. Tangier disease is caused by mutations in the gene encoding ATP- binding cassette transporter

110. Ломге Genet, 1999,22,352-360.

111. Lavie Y., Fiucci G., Gzamy M, Liskovitch M.Changes in membrane microdomains and calveolae constituents in multidrug-resistant cancer cells. Lipids, 1999,34,S57-63.

112. Hamon Y. ABCl promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nature CellBiol, 2000,2,399-406.

113. Rothblat G.H. Cell cholesterol effluxrintegration of old and new observations prodides new insights. JLipidRes, 1999,40,781-796.

114. Eisenberg S. High density Iipoprotein metabolism. JZ,/p/W/?e5, 1984,25,1017-1023.

115. Sergest J.P., Jones M.K., DeLoof H., Brouillette Y.V., Anantharamaiah G.M. Amphipathic helix in the exchangeable apolipoproteins: a reiew of secondary structure and function. У I/p/Wi?w, 1992,33,141-166.

116. Fielding C.J., Fielding P.E. Molecular physiology of reverse cholesterol transport. J LipidRes, \995,36,2U-227

117. Fielding C.J., Moser K. Exidence for the separationof albumin- and apoA-I-dependent mechanisms of cholesterol efflux from cultured fibroblasts into human plasma. J BiolChem, 1982,257,10955-10960.

118. Sparks D.L., Pritchard P.H. The neutral lipid composition and size of recombinant high density lipoproteins regulates lecithin-cholesterol acyl transferase activity. Biochem Cell Biol 1989,67,358-364.

119. Fielding C.J., Shore V.G., Fielding P.E. A protein cofactor of lecithin: cholesterol acyltransferase. Biochem Biophys Res Comm, 1972,46,1493-1498.

120. Gotto A.R., Pownall H.J., Havel R.J. Introduction to the plasma lipoproteins. Methods in Enzymology. Plasma Lipoproteins, Edt. Sergest J.P., Alberts J.J. Academic Press, Inc. 1986,128.

121. Jonas A. Lecithin-cholesterol acyltransferase in the metabolism of high density lipoproteins. Biochim. Biophys. Acta, 1991,1084,205-220.

122. Marcel Y.L., Vezina C, Teng В., Sniderman A. Transfer of cholesterol esters between human high density lipoproteins controlled by plasma protein factor. Atherosclerosis, 1980,35,127-132. 131. Ha Y.C., Barter PJ. Differences in plasma cholesreryl ester-transfer activity in sixteen vertebrate species. Comp Biochem Physiol, 1982,71,265-271.

123. Hopkins G.J., Chang L.B.F., Barter P.J. Role of lipid transfer in the formation of a subpopulation of small high density lipoproteins. JLipidRes, 1985,26,218-233.

124. Khoo C, Innerarity T.L., Mahley R.W. Obligatory role of cholesterol and apolipoprotein E in the formation of large cholesterol-enriched and receptor-active high density lipoproteins. J Л/о/C/zew, 1985,260,11934-11943.

125. Sherrill B.C., Innerarity T,L., Mahley R.W. Rapid hepatic clearence of the canine lipoproteins containing only E apoprotein by a high affinity receptor: identity with chylomicron remnant transport process. JBiol Chem, 1982,255,11442-11453.

126. Glass C, Pittman R.C. Weisten D., Steinberg D. Dissociation of tissue uptake of cholesterol ester from that apoprotein A-I of rat plasma high density lipoprotein. Selective delivery of cholesterol ester to liver, adrenal and gonad. Proc Natl Acad Sci USA, 1983,80,5435-5443.

127. Delamatre J.G., Saфhie T.G., Archibold R.C., Homick C.A. Metabolism of apoE-free high density lipoproteins in rat hepatoma cells: evidence for a retroendocytic pathway. J Lipid Res, 1990,2\,m-20\.

128. Rodal SK., Skretting G., Garred Q.,Vilhardt F., Van Deurs В., Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. M?/5/o/Ce//, 1999,10,961-974.

129. Subtil A., Gaidarov I., Kobylatz K., Lampson MA., Keen JH., McGraw TW. Acute cholesterol depletion inhibits clatrin-coated pit budding. Proc Natl Acad Sci USA, 1999, 96,6775-6780.

130. Thiele C, Hannah M.J., Fahrenholz F., Hutter W.B. Cholesterol binds to synaptophysin and its required for biogenesis of synaptic vesicles. Nature Cell Biol, 2000,2,42-49.

131. Rodgway ND., Lagace ТА., Cook HW., Byers DM Differential effects of sphingomyelin hydrolysis and cholesterol transport of oxysterol-binding protein phosphorylation and Golgi localization. J. Biol. Chem., 1998,273,31621-31628.

132. Posse de Chaves El, Rusinol AE, Vance DE et al. Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. J. Biol Chem, 1997,272,30766-30773

133. Steiner R.D., Linck L.M., Flavell D.P. et al. Sterol balance in the Smith-Lemli-Opitz syndrome: reduction in whole body cholesterol synthesis and normal bile acid production. JLipidRes, 2000,41,1437-1447.

134. Osono Y., Woollett LA., Herz J., Dietschy JM. Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse, y. Clin. Invest., 1995,95,1124-1132.

135. Turley SD., Bums DK., Rosenfeld CR., Dietschy JM. Brain does not utilize low density lipoprotein-cholesterol during fetal and neonatal development in the sheep. J. LipidRes., 1996,37,1953-1961.

136. Lund EG., Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxyIase, a mediator of cholesterol homeostasis in the brain. Proc. Natl. Acad. Sci. USA, 1999, 96, 7238-7243.

137. Bjorkhem 1., Lutjohann D., Diczfalusy U. et al. Cholesterolo homeostasis in human brainUurnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J. LipidRes., 1998,39,1594-1600.

138. Bjorkhem 1., Lutjohann D., Breuer 0. et al. Importance of the novel oxidative mechanism for elimination of brain cholesterol. J. Biol. Chem., 1997, 272, 3017830184. 151. The role of apoE in Alzheimers disease: an alternative view: live discussion held on 11 Dec 2

139. Alzh Res Forum. Available at: http://www.alzforum.org/res/for/joumal/ crutcher/crutcher_transcript.asp (2001)

140. Bedlack R.S., Strittmatter W.J., Morgenlander J.C. Apolipoprotein E and neuromuscular disease: a critical review of the literature. Arch Neurol. 2000,57,1561-1565.

141. Saito Y., Suzuki K., Nanba E., Yamamoto Т., Ohno K., Murayama S. Niemann-Pick type С disease: accelerated neurofibrillary tangle formation and amyloid beta deposition associated with apolipoprotein E epsilon 4 homozygosity. Ann Neurol. 1QQ2,52,7>5\-35S. 154. Xie C, Bums DK., Turley SD., Dietschy JM. Cholesterol is sequestered in the brain of mice with Niemann-Pick type С disease but turnover is increased. J. Neuropathol. Exp. Neurol.,2000,59,1040-1052.

142. Erickson RP., Garver WS., Camargo F. et al. Pharmacological and genetic modifications of somatic cholesterol do not substantially alter the course of CNS disease in NiemannPick С mice. J. Inherit. Metab. Dis., 2000,23,54-62. 156. Ong W.Y., Kumar U., Switzer R.C., Sidhu A., Suresh G., Hu C.Y., Patel S.C. (2001) Neurodegeneration in Niemann-Pick type С disease mice. Exp Brain Res, 2001, 141, 218-231.

143. German D.C., Liang C.L., Song Т., Yazdani U., Xie C, Dietschy J.M. Neurodegeneration in the Niemann-Pick С mouse: glial involvement. Neuroscience. 2002,109,437-450.

144. Distl R., Treiber-Held S., Albert F., Meske V., Harzer K., Ohm T.G. Cholesterol storage and tau pathology in Niemann-Pick type С disease in the brain. J Pathol, 2003, 200, 104-111.

145. Irons M., Elias E.R., Tint G.S. et al. Abnormal cholesterol metabolism in the SmithLemli-Opitz syndrome: report of clinical and biochemical fmdings in four patients and treatment in one patient. Am JMed Genet, 1994,50,347-352.

146. Nwokoro N.A., Hyde В., Mulvihill J.J., Smith-Lemli-Opitz syndrome: biochemical before clinical diagnosis; early dietary management. Am J Med Genet, 1994, 50, 375376.

147. Malenka R.C. and Nicoll R.A. Long-term potentiation-a decade of progress? Science, 1999,285,1870-1874.

148. Cain D.P. LTP, NMDA, genes and leaning. Curr. Opin. Neurobiol, 1997,7,235-242. 166. McEachem J.C., Shaw C.A. An alternative to the LTP orthodoxy:a plasticity-pathology continuum model. Brain Res. Rev., 1996,22,51-92.

149. Воронин Л.Л. Анализ пластических свойств центральной нервной системы. Тбилиси, Мецниереба, 1982, с.ЗО1

150. Клещевников A.M. Синаптическая пластичность в гиннокамне при афферентной активации, воспроизводящей паттерн тета-ритма (тета-пластичность). Журнал высш. нервн. деят. и нейрофизиологии, 1998, .№1, с.3-18.

151. Bliss T.V., Lomo Т. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Phisiol (Zo«;, 1973,232,331-356. 152. Bliss T.V., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993,361,31-39.

153. Malenka R.C. Synaptic plasticity in the hippocampus LTP and LTD. Cell, 1994, 78, 535-538.

154. Teyler T.J. Multideterminant role of calcium in hippcampal synaptic plasticity. Hippocampus, 1994,4,623-628.

155. Nicoll R.A., Malenka R.C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature, 1995,377,115-118.

156. Lisman J. The CAM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci., 1994, \l,me-4\2.

157. Kennedy М.В. The postsynaptic density at glutamatergic synapses. Trends Neurosci., 1997,20,264-270.

158. Silva A.J., Stevens C.F., Tonegawa S., Wang Y.Deficient hippocampal long term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science, 1992, 257, 201-209.

159. Pettit D.L., Perlman S., Malinow R. Potentiated transmission and prevention of further LTP by increased CAMKII activity in postsynaptic hippocampal slice neurons. Science, 1994,266,1881-1883.

160. Braun A.P. and Schulman H. The multifunctional calcium calmodulin dependent protein kinase: from form to function. Annu Rev Physiol, 1995,57,417-423.

161. Fukunaga K., Muller D., Miyamoto E.Increased phophorylation of Ca2+/calmodulin dependent protein kinase II and its endogeneous substrates in the induction of long term potentiation. JBiol Chem, 1995,270,6119-6125.

162. Barria A. Regulatory phosphrilation of AMPA-type glutamate receptors by CAMK II during long-term potentiation. Science, 1997,276,2042-2047.

163. Giese K.P., Fedorov N.B., Filipkowski R.K., Silva A.J.Autophosphorilation at Thr286 of the alpha calcium calmodulin kinase II in LTP and learning. Science, 1998,279, 870875.

164. Carroll R.C., Nicoll R.A., Malenka R.C. Effects of PKA and PKC on miniature excitatory postsynaptic currents in CAl pyramidal cells. J. NeurophysioL, 1998, 80, 2797-2802.

165. Biltzer R.D. Science, 1998,280,1940-1945. 184. Lu Y.M. Src activation in the induction of long-term potentiation in CAl hippocampal neurones. Science, 1998,279,1363-1367.

166. English J.D., Sweatt J.D. Activation of p42 mutogen-activated protein kinase in hippocampal long term potentiation. JBiol Chem, 1996,271,24329-24335.

167. Hawkins R.D., Son H., Arancio Q. Nitric oxide as a retrograde, messenger during long term potentiation in hippocampus. Prog Brain Res, 1998,118,155-161.

168. Schuman E.M., and Madison D.V. Nitric oxide and synaptic function. Ann. Rev. Neurosci., 1994,17,153-161.

169. Clark K.A. and Collingridge G.L. Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. Nature, 1995,482,39-44.

170. Liao D., Hesser N.A. Malinow R.Activation of postsynaptic sicent synapses during pairing-induced LTP in CAl region of hippocampal slices. Nature, 1995,375,400-404.

171. Kuhnt U., and Voronin L.L. Interaction between paired pulse facilitation and long term potentiation in area CAl os guinea pig hippocampal slices: application of quantial analysis. Neuroscience, 1994,62,391-396.

172. Mammen A.L., Kameyma K., Roche K.W., Hunair R.L. Phosphorylation of the alphaamino-3-hydroxy-5 methyl-isoxazole-4-propionic acid receptor GIuRl subunit by calcium-calmodulin dependent kinase 11. JBiol Chem, 1997,272,35528-32532.

173. Derkach V., Barria A., Soderling T.R. Ca2+/calmodulin kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxarolepropionate type glutamate receptors. Proc Natl Acad Sci USA, 1999,96,3269-3271.

174. Benke T.A., Luthi A., Isaac J.T.R., Collingridge G.L. Modulation of AMPA receptors unitary conductance by synaptic activity. Nature, 1998,393,793-801.

175. Zamanillo D. Importance of AMPA receptors of hippocampal synaptic plasticity but not for spatial learning. Science, 1999,284,1805-1809. 195. Lee H.K. Involvment of a postsynaptic protein kinase A substrate in the expression of homosynaptic long term depression. Neuron, 1998,21,1151-1159.

176. Carroll R.C. Rapid redistribution of glutamate receptors contributes to long term depression in hippocampal cultures. Nature Neurosci, 1999,2,454-457,

177. Проничев И.В. Роль лимбической системы в формировании эмоций. Лекции по физиологаи центральной нервной системы. Биолого-химический факультет УдГУ. (Последний просмотр 14 апреля 2007) URL: http://www.distedu.ru/edu4/p_13_2_3

178. Koudinov A.R., Berezov Т.Т., Koudinova N.V, Rodent hippocampal slice technology: essential tool for molecular neurologist? Society for Neuroscience Annual Meeting, 5 November 2000, Program No. 20.15.

179. Гаврилова СИ. Газета «Аргументы и факты», 1997,41 (886), 25.

180. Ойфа А.И. Сенильный церебрачьный аиилоидоз, 1987, Изд. Медицина, Москва.

181. Terry R.G., Gonatas N.K., Weiss М. The ultrastructjure of the cerebral cortex in Alzheimers disease. Am JPathol, 1964,44,269-281.

182. Glenner G.G., Wong C.S. Alzheimers disease and Downs syndrome sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun, 1984, 120,885-890.

183. Tagliavini F., Giaccone G., Frangione B. Preamyloid deposits in the cerebral cortex of patients with Alzheimers disease and nondemented individuals. Neurosci Lett, 1988, 93,191-196.

184. Goldgaber D., Lerman M.I., Saffiotti U., Gajdusek D.C. Localization of amyloid beta protein messenger RNAS in brains from patients with Alzheimers disease. Science, 1987,235,877-880.

185. Groner Y. Transgenic models for chromosome 21 gene dosage effects. Prog Clin Biol i?e5,1995,393,193-212.

186. Koenig G., Monning U., Czech C. Identification and differential expression of a novel alternative splice isoform of the beta A4 amyloid precursor protein (APP) mRNA in leukocytes and brain microglial cells. JBiol Chem, 1992,267,10804-10809.

187. Golde Т.Е., Estus S., Younkin L.H., Younkin S.G. Expression of beta amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in Alzheimers disease using PCR. Neuron, 1990,4,253-267.

188. Rosen D.R., Martin-Morris L., LuoL., White K. A Drosophila gene encoding a protein resembling the human beta amyloid protein precursor. Proc Natl Acad Sci USA, 1989, 86,2478-2482.

189. Podlisny M.B., Tolan D., Selkoe D.J. ИomoIogy of the amyloid beta precursor protein in monkey and human supports a primate model for beta amyloidosis in Alzheimers disease. Am JPathol, 1991,138,1423-1435.

190. Multhaup G., Schlicksupp A., Hesse L. The amyloid precursor protein of Alzheimers disease in the reduction of copper (II) to copper (I). Science, 1996,271,1406-1409.

191. Zhong Z., Higaki J., Murakami K. Secretion of beta amyloid precursor protein involves multiple cleavage sites. JBiol Chem, 1994,269,627-632. 212. Xia W., Zhang J., Rezer R., Koo E.H., Selkoe D.J. Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathgenesis of Alzheimers disease. Proc Natl Acad Sci USA, 1997,94(15), 8208-8213.

192. Shoji M., Golde Т.Е., Ghiso J., Cheung T.T., Estus S., Cai X.D., McKay D.M., Frangione B. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Л/еисе, 1992,258,126-129.

193. Overfurth H.W., Jiang J., Geiger J.P. Caffeine stimulates amyloid beta peptide release from beta amyloid precursor protein transfected HEK293 cells. J Neurochem, 1997, 69(4), 1580-1592.

194. Nostrand W., Rozemuller A.J.M., Chung R. Amyloid. IntJClin Invest, 1994,1,1-7.

195. Smith R., Higuchi D., Broze G. Platelet coagulation factor XIa-inhibitor, a form of Alzheimer amyloid precursor protein. Science, 1990,248,1126-1128.

196. Strittmatter W., Saunders A., Schmechel D., Pericak-Vance M., Roses A.Apolipoprotein E: high avidity binding to beta-amyloid and increased frequency of type 4 allele in lateonset familial Alzheimers disease. Proc NatlAcadSci USA, 1993,90,1977-1981.

197. Schellenberg G.D. Genetic linkage evidence for a familial Alzheimers disease locus on chromosome

199. Koudinov A.R, Koudinova N.V. (2003) Amyloid beta protein restores hippocampal long term potentiation: a central role for cholesterol? Neurobiol Lipids 2003, 1,

200. Available at: http://neur0bi0l0gy0flipids.0rg/c0ntent/l/8/

201. Sherrington R., Rogaev E.I., Liang Y., Rogaeva E.A., Levesgue G., Ikeda M.,Chi H., Li G., Holman K. Cloning of a gene bearing missense mutations in early onset familial Alzheimers disease. Nature, 1995,375,754-760.

202. Rogaev E.L, Sherrington R., Rogaeva E.A., Levesque G., Ikeda M,, Liang Y,, Chi H,, Lin C, Tsuda T, Familial Alzheimers disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimers disease type 3 gene. Nature, 1995, 376,775-778.

203. Esch F.S., Keim P.S., Beatii E.C., Blacher R.W., Curwell A.R., Olterdorf Т., McCIure D,, Ward P,J, Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science, 1990,248,1122-1124.

204. Busciglio J., Gabuzda D.H., Matsudaira P., Yanker B.A. Generation of beta amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA, 1993,90,2092-2096.

205. Golde Т.Е., Estus S., Younkin L.H., Selkoe D.J., Younkin S.G. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science, 1992, 255, 728-730.

206. Bodovitz S., Klein W.L. Cholesterol modulates x-secretase clevage of amyloid precursor protein. JBiol Chem, 1996,271,4436-4440.

207. Howland D.S., Trusko S.P., Savage M.J., et al. Modulation of secreted b-amyloid precursor protein and b-amyloid peptide in brain by cholesterol. JBiol Chem, 1998,273, 16576-16582

208. Masliah E., MalloryM., Veinberds I, Alterations in apolipoprotein E expression during aging and neurodegeneration. ProgNeurol, 1996,50,493-503.

209. Simons M., Keller P., De Strooper В., et al. Cholesterol depletion inhibits the generation of p-amyloid in hippocampal neurons. Proc Natl Acad Sci USA, 1998,95,6460-6464.

210. Askanas V., Engel W.K., Alvarez R.B. (1992) Strong immunoreactivity of beta-amyloid precursor protein, including the beta-amyloid protein sequence, at human neuromuscular )mcuor&. Neurosci Lett, 1992,143,96-100.

211. Torroja L, Packard M, Gorczyca M, White K, Budnik V. (1999) The Drosophila betaamyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. УЛемгош., 1999,19,7793-7803.

212. Kamenetz F.R., Tomita Т„ Borchelt D.R., Sisodia S.S., Iwatsubo Т„ Malinow R. Activity dependent secretion of P-amyloid: roles of P-amyloid in synaptic transmission. Soc Neurosci Abstr, 2000, 26,491.

213. Kamenetz F,, Tomita T,, Hsieh H,, et al. APP processing and synaptic function. Neuron 2003, 37,925-937,

214. Kidd M, Alzheimers disease: an electron microscopical study. Brain, 1964, 87, 307320.

215. Terry R,D,, Gonatas N.K., Weiss M. Ultrastructural studies in Alzheimers presenile dementia. Am JPathol, 1964,44,269-297.

216. Iqbal К., Alonso A.D., Gondal J.A., Gong G.X., Haque N., lOiatoon S., Sengupta A et al. Inhibition of neurofibrillary degeneration: a rational and promising therapeutic target. ln:Alzheimer disease and related disorders: etiology, pathogenesis and therapeutics. Eds. Igubal K. et al, Wiley, England, 1999, p.269.

217. Grundke-Iqbal I., Iqbal K., Quinlan M., Tung Y.C., Zaidi M.S., Wisniewski H.M. Microtubule-associated protein tau: a component of Alzheimer paired helical filaments. JBiol Сйет, 1986,261,6084-6989.

218. Grundke-Iqbal I., Iqbal K., Quinlan M., Tung Y.C., Zaidi M.S., Wisniewski H.M. Abnormal phosphorylation of the microtubule associated protein x (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA, 1986,83,4913-4917.

219. Poorkaj P., Bird T.P., Garruto R., Anderson L., Schellenberg G.P. Tau is a candidate gene for chromasome 17 fronto temporal dementia. Ann Neurol, 1998,43, 815.

220. Hutton M., Lendon L., Houlden H., Baker M., Ritza P. et al Association of missen and 5 splice site mutation in tau with inverted dementia FIDP-A. Nature, 1998,393,702.

221. Spillantini M.G., Murrell J.R., Goedert M., Farlow M.R. et al. Mutation in the tau gene in familial multiple system taupathy with preseniline dementia. Proc Natl Acad Sci USA, \9%, 95, 7737-7741.

222. Tomlinson B.E., Blessed G., Roth M. Observations on the brains of demented old people. JNeurol Sci, 1970,11,205-242.

223. Alafuzoff I., Iqubal K,, Friden H., Adolfsson R. Histopathological criteria for progressive dementia disordersxlinical-pathological correlation and classification by multivariate data analysis. Acta Neuropathol (Berl), 1987,74,209-225.

224. Arigada P.A., Growdon J.H., Hedley-White E.T. Hyman B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimers disease. Neurology, 1992,42,631-639.

225. Dickson D.W., Crystal H.A., Mattiace L.A., Masur D.M. et al Identification of normal and pathological aging in prospectively studied non-demented elderly humans. Neurobiol Aging, 1991,13,179-189.

226. Games D., Adams P., Alessandrini R., Carr Т., Blackwell С Azheimer type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature, 1995,373,523.

227. Hsiao K., Nilsen S., Harigaya Y., Cole G. et al. Correlative memory deficits Ap evaluation and amyloid plaques in transgenic mice. Science, 1996,274,99.

228. Duff K. Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenic. Neurobiol Dis, 2000,7,87.

229. Lewis J., Dikson D., Chisholmj L., McGowa E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science, 2001,293,1487.

230. Gotz J., Chen F., van Бофе R., Nitsh R.M. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Ap42fibrils.Science, 2001,293,1491.

231. Irizarry M.C., McNamars M., Hsiao K. AppSw transgengenic mice develop age related A beta deposits andf neurophil abnormalities, but no neuronal loss in CAl.JNeuropath Exp Neurol, 1997,56,965.

232. Irizarry M.C., Soriano F., McNamas M., et al. Abeta deposition is associatede with neurophil changes but not with overt neuronal loss in human amyloid precursor protein (PDAPP) transgenic mouse. JNeurosci, 97,17, 7053.

233. Ishihara Т., Hong M., Zhang В., Trojanowki J.Q., Lee V.M. Age dependent emergence and progression of a taupathy in transgenic mice overexpressing in shortest human tau isoform. Neuron, 1999,24,751.

234. Lewis J., KnighH., Refolo L.M., Adamson J., Davies P., et al. Characretization of pathology in transgenic mice overexpressing human genomic and cDNA tau transgenes. Nature Genet., 2000,25,402. 254. Lee V.M. Taurists and Paptists united-well almost. Science, 2001,24,1446-1447.

235. Friedman L., Koudinov A.R. Unilateral GluR2(B) hippocampal knockdown: a novel partial seizure model in the developing rat. JNeurosci, 1999,19(21), 9412-9425.

236. Koudinov A.R., Koudinova N.V. Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J., 2001,15,1858-1860, originally published online June 27,2001,10.1096/fi.00-0815fie 257. DHooge R., De Deyn P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev, 2001,36(1), 60-90.

237. Wegiel J., Wisniewski H.M., and Soltysiak Z. Region- and cell-type-specific pattern of tau phosphorylation in dog brain. Brain Res, 1999, 802,259-266.

238. Goussakov I.V., Fink K., Elger C.E., and Beck H. Metaplasticity of mossy fiber synaptic transmission involves altered release probability J Neurosci, 2000, 20, 34343441.

239. Bales K.R., Verina Т., Cummins D.J., Du Y., et al. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimers disease. Proc Natl AcadSci USA ,1999,96,15233-15238.

240. Runz, H., Bergmann, C Reitdorf, J., Pepperkok, R., and Hartmann, T. Evidence for a possible association of Ap-generation with the intracellular trafficking of lipoproteinderived cholesterol. NeurobiolAging, 2000,21, SI89.

241. Geriai R. Behavioral tests of hippocampal function: simple paradigms complex problems. Behav Brain Res, 2001,125(1-2), 269-77.

242. Auerbach J.M., Segal M. Peroxide modulation of slow onset potentiation in rat hippocampus. J Neurosci, 1997,17, 8695-8701.

243. Green P., Glozman S., Weiner L., Yavin E. Enhanced free radical scavenging and decreased lipid peroxidation in the rat fetal brain after treatment with ethyl docosahexaenoate. Biochim Biophys Acta 2001,1532(3), 203-212.

244. Crews F.T., Camacho A., and Philips M.L Cholinergic stimulation of hippocampal pyramidal cells is inhibited by increasing membrane cholesterol. Brain Res., 1983, 261, 155-158.

245. Naguib M., Flood P., McArdle J.J., Brenner H.R. Advances in neurobiology of the neuromuscular junction: implications for the anesthesiologist. Anesthesiology. 2002, 96, 202-231.

246. Scanlon S.M., Williams D.C., Schloss P. Membrane cholesterol modulates serotonin transporter activity. Biochem, 2001,40,10507-10513.

247. Scalzitti J.M., Holstein D., Jeske N.A., Vela J., Berg K.A., Clarke W. 5-HTlA receptormediated ERK activation, but not adenylyl cyclase inhibition, is sensitive to membrane cholesterol depletion. Soc Neurosci Abstr, Program No. 362.14 Neurobiol Lipids. 2003, 2,3. available at: http://neurobiologyoflipids.Org/content/2/3/

248. Laube B. (2003) Membrane cholesterol affects the pharmacology of the recombinant inhibitory glycine receptor Soc Neurosci Abstr, Program No. 797.10 Neurobiol Lipids. 2003,2,3. available at: http://neurobiologyoflipids.Org/content/2/3/

249. Eisensamer В., Rammes G., Hapfelmeier G., ZeiglgSnsberger W., and Rupprecht R. Membrane cholesterol modulates the kinetics of 5-НТз and G A B A A receptor. Soc Neurosci Abstr, 2000,26,2159.

250. Sooksawate Т., Simmonds M.A. Influence of membrane cholesterol on modulation of the GABA(A) receptor by neuroactive steroids and other potentiators. Br J Pharmacol, 2001,134,1303-1311.

251. Butchbach ME, Guo H, Lin C-IG. (2003) The association of excitatory amino acid transporters and their interacting proteins with cholesterol-rich microdomains of the plasma membrane Soc Neurosci Abstr. Program No. 254.10 Neurobiol Lipids. 2, 3, Available at: http://neurobiologyoflipids.Org/content/2/3/

252. Martens J.R., Navarro-Polanco R., Coppock E.A., Nishiyama A., Parshley L., Grobaski T.D., and Tamkun M.M. Differential targeting of Shaker-like potassium channels to lipid rafts. JBiol Chem, 2000,275,7443-7446.

253. Beretta N., Rossokhin A.V., Kasyanov A.M., Sokolov M.V., Cherubini, E., and Voronin, L. L. Postsynaptic hyperpolarization increases the strength of AMPA-mediated synaptic transmission at large synapses between mossy fibers and CA3 pyramidal cells Neuropharm, 2000,39,2288-2301.

254. Engert F., Bonhoeffer T. Dendritic spine changes associated with hippocampal longterm synaptic plasticity. Nature, 1999,399,66-70.

255. Maletic-Savatic M., Malinow R., Svoboda K. Rapid dendritic morphogenesis in CAl hippocampal dendrites induced by synaptic activity. Science, 1999,283,1923-1927.

256. Boyles J.K., Pitas R.E., Wilson E.R., Mahley R.W., and Taylor, J. M. Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. JC/w Invest, 1985,76,1501-1513.

257. Rebeck G.W., Alonzo N.C., Berezovska 0., Harr S.D,, tCnowles R.B., et al. Structure and functions of human cerebrospinal fluid lipoproteins from individuals of different APOE gsnotyipes. Exp Neurol, 1998,149,175-182.

258. Demeester N., Castro G., Desrumaux C, De Geitere C, et al. Characterization and functional studies of lipoproteins, lipid transfer proteins, and lecithin:cholesterol acyltransferase in CSF of normal individuals and patients with Alzheimers disease. J Lipid Res, 2000,41,963-97A.

259. Zhuo M., Holtzman D.M., Li Y., Osaka H., DeMaro J., Jacquin M., and Bu G. Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci, 2000,20,542-549.

260. Igbavboa U., Avdulov N.A., Chochina S.V., and Wood W.G. Transbilayer distribution of cholesterol is modifled in brain synaptic plasma membranes of knockout mice deflcient in the low-density-lipoprotein receptor, apolipoprotein E, or both proteins. J Neurochem, 1997,69,1661-1667.

261. Mason R.P., Shoemaker W.J., Shajenko L., Chambers Т.Е., and Herbette L.G. Evidence for changes in the Alzheimers disease brain cortical membrane structure mediated by cho\QsXQxo\. Neurobiol Aging, 1992,13,413-419.

262. Binder L.L, Frankfurter A., and Rebhun L.I. Differential localization of MAP-2 and tau in mammalian neurons in situ. In Dynamic Aspects of Microtubule Biology (Soifer, D., ed), 1986, pp. 145-166, New York Academy of Sciences, New York, USA

263. Perry G., Kawai M., Tabaton M., Onorato M., Mulvihill P., Richey P., Morandi A., Connolly J.A., and Gambetti P. Neuropil threads of Alzheimers disease show a marked alteration of the normal cytoskeleton, JiVeMroc/, 1991,11,1748-1755

264. Hall G.F., Chu В., Lee S., Liu Y., and Yao J. The single neurofllament subunit of the lamprey forms filaments and regulates axonal caliber and neuronal size in vivo. Cell MotCytoskel, 1999,46,166-182.

265. Takei Y., Teng J., Harada A., Hirokawa N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and maplb genes. J Cell Biol, 2000, 150, 9891000.

266. Krucker Т., Siggins G.R., Halpain S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CAl of the hippocampus. Proc NatlAcadSci USA, 2000,97,6856-6861.

267. Lewis J., McGowan E., Rockwood J., Melrose V., et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Gen, 2000,25,402-405. 289. Fan Q.W., Yu W., Senda Т., Yanagisawa K., Michikawa M. Cholesterol-dependent modulation of tau phosphorylation in cultured neurons. J Neurochem, 2001, 76, 391400.

268. Distl R., and Meske, V. Microdensitofluorometrically determined free cholesterol is higher in tangled-bearing neurons than in tangle-free neurons Neurobiol. Aging, 2000, 21,S21.

269. Sparks D.L. Intraneuronal beta-amyloid immunoreactivity in the CNS. Neurobiol Aging, 1996,17,291-299.

270. Llinas R., Gruner J.A., Sugimori M., McGuinness T.L., and Greengard P. Regulation by synapsin I and Cs* calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. JPhysiol, 1991,436,257-282.

271. Mattson M.P. Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca* infiux in cultured hippocampal neurons. Neuron, 1990,2, 105-117. 294. Liu Q., Lee H.G., Honda K., et al. Tau modifiers as therapeutic targets for Alzheimers disease. Biochim Biophys Acta. 2005,1739(2-3), 211-215

272. Knebl J., DeFazio P., Clearfield M.B., et al. Plasma lipids and cholesterol esterification in Alzheimers disease. Mech Aging Dev, 1994,73,69-77.

273. Demeester N., Castro G., Desrumaux C, et al. Characterization and functional studies of lipoproteins, lipid transfer proteins, and lecithin:cholesterol acyltransferase in CSF of normal individuals and patients with Alzheimers disease. J Lipid Res, 2000, 41, 963974.

274. Koudinov A.R., Berezov T.T., Koudinova N.V. Alzheimers amyloid beta and lipid metabolism: a missing link? F5£5J, 1998,12,1097-1099.

275. Hamanaka H., Katoh-Fukui Y., Suzuki K., et al. Altered cholesterol metabolism in human apolipoprotein E4 knock-in mice. Human Mol Gen, 2000,9,353-361. 299. Qiu ZH, Strickland DK, Hyman ВТ, Rebeck GW. Elevation of LDL receptor-related protein levels via ligand interactions in Alzheimer disease and in vitro. J Neuropath Exp Лемго/, 2001,60,430-440.

276. Auerbach J.M., Segal M. Peroxide modulation of slow onset potentiation in rat hippocampus. JiVeMro5c/, 1997,17,8695-8701.

277. Pellmar T.C., Hollinden G.E., Sarvey J.M. Free radicals accelerate the decay of longterm potentiation in field CAl of guinea-pig hippocampus. Neuroscience. 1991, 44(2), 353-9.

278. Nilova N.S., Polezhaeva L.N. Lipid peroxidation in slices of rat olfactory cortex under long-term potentiation. Fiziol Zh Im IM Sechenova. 1994,80(8), 43-47

279. Murray C.A., Lynch M.A. Dietary supplementation with vitamin E reverses the agerelated deficit in long term potentiation in dentate gyrus. J Biol Chem, 1998, 273(20), 12161-8

280. Akaishi Т., Nakazawa K., Sato K., Ohno Y., Ito Y. 4-Hydroxynonenal modulates the long-term potentiation induced by L-type Ca2+ channel activation in the rat dentate gyms in vitro. Neurosci Lett. 2004,370(2-3), 155-9. 305. Xie Z., Sastry B.R. Induction of hippocampal long-term potentiation by alphatocopherol. Brain Res, 1993,604(l-2),173-179

281. Walters СЕ., Austen В.М. Intracellular cholesterol and P-amyloid as factors in Alzheimers disease. iVijMroWo/gwg, 1998,19,49S.

282. Yamazaki Т., Chang T.Y., Haass C. Accumulation and aggregation of amyloid betaprotein in late endosomes of Niemann-Pick Type С Cells. J Biol Chem, 2001, 276, 4454-4460.

283. Manni M.E., Cescato R., Paganetti P.A. Lack of p-amyloid production in M19 cells deficient in site 2 processing of the sterol regulatory element binding proteins. FEBS Lett. 1998,427,367-370.

284. Michikawa M., Gong J.S., Fan Q.W., Sawamura N., Yanagisawa K. A novel action of Alzheimers amyloid beta-protein (AP): oligomeric Ap promotes lipid release. J. Neurosci.. 2001,21,7226-7235.

285. Igbavboa, U., Avdulov, N. A., Chochina, S. V., Sun, G. Y., and Wood, W. G. Amyloid beta peptides and cholesterol dynamics. Neurosci. Lett, 2000, S55, S25.

286. Koudinov A.R., Koudinova N.V., Berezov T.T., and Ivanov Y.D. HDL Phospholipid: a Natural Inhibitor of Alzheimers Amyloid beta Fibrillogenesis? Clin Chem Lab Med, 1999,37,993-994.

287. Muller W.E., Kirsch C Eckert G.P. Membrane-disordering effects of beta-amyloid peptides. Biochem Soc Trans, 2001,29,617-623.

288. Chochina S.V., Avdulov N.A., Igbavboa U., Cleary J.P., OHare E.O., Wood W.G. Amyloid beta-peptide(l-40) increases neuronal membrane fluidity. Role of cholesterol and brain region. J Lipid Res, 2001,42,1292-1297.

289. Gimpl G., Burger K., Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry, 1997,36,10959-10974.

290. Koudinova N.V., Koudinov A.R., and Yavin E. Alzheimers Abetal-40 Peptide Modulates Lipid Synthesis In Neuronal Cultures And Intact Rat Fetal Brain Under Normoxic And Oxidative Stress Conditions. Neurochem Res. 2000,25,653-660.

291. Schamagl H., Tisljar U., Winkler K., Huttinger M., et al. The betaA4 amyloid peptide complexes to and enhances the uptake of beta-very low density lipoproteins by the \a density lipoprotein receptor-related protein and heparan sulfate proteoglycans pathway. Lab Invest, 1999,79,1271-1286.

292. Koudinova N.V., Koudinov A.R. APP and amyloid beta protein are integrated sensoreffector system for neural cholesterol and membrane dynamics regulation Soc Neurosci Abstr. Program No. 23.8 Neurobiol Lipids, 2003, 2, 3. available at: http://neurobiologyoflipids.Org/content/2/3/

293. Kontush A., Donarski N., Beisiegel U. Resistance of human cerebrospinal fluid to in vitro oxidation is directly related to its amyloid-beta content. Free Radic Res, 2001, 35, 507-17.

294. Zhang M., MacKenzie Ingano L., Kovacs D.M. (2003) Presenilin function regulates Niemann-Pick Cl protein levels. Soc Neurosci Abstr. Program No. 729.5 Neurobiol Lipids, 2003,2,3. available at: http://neurobiologyoflipids.Org/content/2/3/

295. Hartmann Т., Grimm M., Paetzhold A., Grimm H., Ruppert T. Presenilin is essential for cellular lipid homeostasis. Soc Neurosci Abstr. Program No. 666.3 Neurobiol Lipids, 2003,2,

296. Available at: http://neurobiologyoflipids.Org/content/2/3/

297. Kontush A. Amyloid-beta as a lipid antioxidant: how excess becomes damaging. Abstract 145.00. 3rd International Congress on Vascular Dementia. Prague, Czech Republic, Oct. 25,2003. (2003) Available at: http://neurobiologyoflipids.org/symposia

298. Koudinova N.V., Kontush A., Berezov T.T., Koudinov AR. Amyloid beta, neural lipids, cholesterol and Alzheimers disease. Neurobiol Lipids, 2003 1, 6. available at: http://neur0bi0l0gy0flipids.0rg/c0ntent/l/6/

299. Primavera J., Lu B.X., Riskind P,J., Iulian M., De La Monte S.M. Brain Accumulation of amyloid-beta in non-Alzheimer neurodegeneration. J Alzheimers Dis, 1999, 1, 183193.

300. Koudinov A.R., Koudinova N.V. Beware the simplification in defining neurodegenerative diseases. BMJ online. (2002) Available at: http:/mj.com/cgi/ eletters/324/7352/1465#23278

301. Koudinov A.R., Koudinova N.V. Is neurodegeneration a unique multifarious human brain disease? British Medical Journal. (2002) Available at; http://bmj.bmjjoumals.com/cgi/eletters/324/7352/1465#23308

302. Dunnett A.B., Bjorklund A. Prospects for new restorative and neuroprotective treatments in Parkinson disease. Nature Neurological disorders. 1999,399, A32-A39.

303. Wood G.W., Koudinov A.R., Michikawa K., et al. Symposium Abstracts: Cholesterol and Alzheimers disease. Neurobiol Lipids 2002, 1, 4. available at: http://neurobiologyoflipids.Org/content/l/4

304. Dalziel A.W., Rollins E.S., McNamee M.G. The effect of cholesterol on agonistinduced fiux in reconstituted acetylcholine receptor vesicles. FEBSLett, 1980,122,193196.

305. Sooksawate Т., Simmonds M.A. Effects of membrane cholesterol on the sensitivity of the GABAA receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharm, 2001,40,178-184.

306. Simmonds M.A. The emerging neurobiology of cholesterol. Neurobiol. Lipids. 2002, 1,

307. Available at: http://neurobiologyofiipids.Org/content/l/l/ 331. DAlonzo A.J., McArdle J.J. Effects of 20,25- diazacholesterol treatment on the decay of end- plate currents. Exp Neurol. 1982,76,681-683.

308. Sogaard R., Werge T.M., Bertelsen C, Lundbye C, Madsen K.L., Nielsen C.H., Lundbaek J.A. GABA(A) receptor function is regulated by lipid bilayer elasticity. Biochemistry, 2006,45(43), 13118-13129.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.