Взаимодействие тмРНК с рибосомой в процессе транс-трансляции тема диссертации и автореферата по ВАК РФ 02.00.10, кандидат химических наук Бугаева, Елизавета Юрьевна
- Специальность ВАК РФ02.00.10
- Количество страниц 123
Оглавление диссертации кандидат химических наук Бугаева, Елизавета Юрьевна
Содержание
Список сокращений
Введение
Обзор литературы тмРНК
Общие сведения о тмРНК
Вторичная структура тмРНК
Процессинг тмРНК
Модификация оснований тмРНК
Аминоацилирование тмРНК
Белок SmpB
Общие сведения о SmpB
Пространственная организация SmpB
Взаимодействие белка SmpB с тмРНК
Взаимодействие SmpB и тмРНК с рибосомой
Транс-трансляция
Модель процесса тиранс-трансляции
Причины появления свободного А сайта в транслирующих рибосомах
Распознавание «арестованных» рибосом и свободного А сайта 43 Переключение на матричную область, узнавание кодона продолжения синтеза
Элонгация и терминация
Деградация белка и мРНК
Биологическая роль /ядонс-трансляции
Материалы и методы
Реактивы и биопрепараты
Буферы и растворы
Трансформация клеток Escherichia coli 57 Приготовление компетентных клеток Escherichia coli для трансформации с помощью теплового шока
Трансформация с помощью теплового шока 58 Введение мутаций в ген, кодирующий тмРНК. Сайт-направленный мутагенез
Анализ активности мутантных молекул тмРНК с помощью „генетической системы"
Выделение комплекса тмРНК с рибосомой
Выделение суммарной РНК комплекса
Окрашивание ПААГ
Выделение суммарного белка комплекса
Окрашивание ПААГ-SDS Кумасси R
Масс-спектрометрический анализ белков
Диализ
УФ-сшивание тмРНК с рибосомой
Приготовление зонда для гибридизации с тмРНК
Нозерн-блот анализ
Переосаждение антител
Определение концентрации белка по методу Брэдфорда
Вестерн-блот анализ
Выделение мутантных тмРНК
Химический пробинг
Крио-электронная томография
Компьютерное моделирование
Результаты и обсуждение
Выделение комплексов транспортно-матричной РНК с рибосомой
Анализ РНК, входящих в состав выделенных комплексов
Анализ белкового состава выделенных комплексов 79 Исследование комплекса тмРНК с рибосомой методом ковалентного сшивания 83 Исследование комплексов тмРНК с рибосомой методом химического пробинга 87 Исследование комплекса тмРНК с рибосомой методом крио-электронной томографии
Компьютерное моделирование процесса прохождения тмРНК через рибосому в ходе транс-трансляции
Выводы
Рекомендованный список диссертаций по специальности «Биоорганическая химия», 02.00.10 шифр ВАК
Функциональная топография транспортно-матричной РНК2010 год, доктор химических наук Шпанченко, Ольга Валерьевна
Структурно-функциональное исследование транспортно-матричной РНК Escherichia coli2003 год, кандидат химических наук Иванов, Павел Валерьевич
Исследование роли рибосомных белков L5 и L25 в формировании функционально-активной бактериальной рибосомы2011 год, кандидат биологических наук Коробейникова, Анна Васильевна
Структурно-функциональный анализ среднего (М) домена фактора терминации трансляции eRF1 человека2008 год, кандидат биологических наук Иванова, Елена Викторовна
Динамика формирования и структурная организация эукариотических полирибосом2013 год, кандидат биологических наук Афонина, Жанна Аркадьевна
Заключение диссертации по теме «Биоорганическая химия», Бугаева, Елизавета Юрьевна
выводы
1. Во всех выделенных тмРНК с рибосомой, в которых транс-трансляция остановлена на различных этапах, присутствует белок SmpB. Стехиометрия комплексов рибосома-тмРНК-SmpB равна 1:1:1 на всех стадиях транс-трансляции. Белок SmpB занимает канонический сайт связывания с тРНК-подобным доменом тмРНК.
2. Псевдоузел 3 тмРНК находится на поверхности рибосомы на всех этапах транстрансляции.
3. Псевдоузлы 2, 3 и 4 образуют петлю на поверхности 70S рибосомы. Эта петля подвижна в растворе и может занимать различные положения от «плеча» до вершины «головы» 30S субчастицы рибосомы. Положения концов данной петли тмРНК на рибосоме соответствуют входу и выходу канала мРНК, предполагая размещение в нем мРИК-подобной части тмРНК.
4. Структура и контакты тмРНК, за исключением мРНК-подобного домена и спирали 5, практически не изменяются в ходе транс-трансляции. Спираль 5 стабилизируется или защищается при взаимодействии тмРНК с рибосомой. Спектр модификаций нуклеотидов мРНК-подобного домена изменяется по мере прохождения тмРНК через рибосому в ходе транс-трансляции.
5. Изменения последовательности в мРНК-подобном домене тмРНК влияют на реакционную способность нуклеотидов в спирали 2, что предполагает существование третичного контакта между этими областями.
6. Полученные данные позволили предложить механизм прохождения тмРНК через рибосому в ходе транс-трансляции.
Список литературы диссертационного исследования кандидат химических наук Бугаева, Елизавета Юрьевна, 2008 год
1. Lee, S.Y., Bailey, S.C. and Apirion, D. (1978) Small stable RNAs from Escherichia coli: evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J Bacteriol, 133, 1015-23.
2. Inouye, M. and Delihas, N. (1988) Small RNAs in the prokaryotes: a growing list of diverse roles. Cell, 53, 5-7.
3. Jain, S.K., Gurevitz, M. and Apirion, D. (1982) A small RNA that complements mutants in the RNA processing enzyme ribonuclease P. J Mol Biol, 162, 515-33.
4. Keiler, K.C., Shapiro, L. and Williams, K.P. (2000) tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caulobacter. Proc Natl Acad Sci USA, 97, 77/8-83.
5. Jacob, Y., Seif, E., Paquet, P.O. and Lang, B.F. (2004) Loss of the mRNA-like region in mitochondrial tmRNAs of jakobids. RNA, 10, 605-614.
6. Komine, Y., Kitabatake, M., Yokogawa, Т., Nishikawa, K. and Inokuchi, H. (1994) A tRNA-like structure is present in lOSa RNA, a small stable RNA from Escherichia coli. Proc. Natl Acad. Sci. USA, 91, 9223-9227.
7. Komine, Y. and Inokuchi, H. (1991) Physical map locations of the genes that encode small stable RNAs in Escherichia coli. J Bacteriol, 173, 5252.
8. Chauhan, A.K. and Apirion, D. (1989) The gene for a small stable RNA (lOSa RNA) of Escherichia coli. Mol Microbiol, 3, 1481-5.
9. Moore, S.D. and Sauer, R.T. (2005) Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol. Microbiol., 58, 456-466.
10. Hallier, M., Ivanova, N., Rametti, A., Pavlov, M., Ehrenberg, M. and Felden, B. (2004) Pre-binding of small protein В to a stalled ribosome triggers trans-translation. J Biol Chem, 279, 25978-85.
11. Karzai, A.W., Susskind, M.M. and Sauer, R.T. (1999) SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J., 18, 3793-3799.
12. Hong, S.J., Tran, Q.A. and Keiler, K.C. (2005) Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB. Mol Microbiol, 57, 565-75.
13. Hanawa-Suetsugu, K., Takagi, M., Inokuchi, H., Himeno, H. and Muto, A. (2002) SmpB functions in various steps of trans-translation. Nucleic Acids Res, 30, 1620-1629.
14. Keiler, K.C. and Shapiro, L. (2003) TmRNA is required for correct timing of DNA replication in Caulobacter crescentus. J. Bacteriol., 185, 573-80.
15. Oh, B.K. and Apirion, D. (1991) lOSa RNA, a small stable RNA of Escherichia coli, is functional. Mol. Gen. Genet., 229, 52-56.
16. Zwieb, С., Wower, I. and Wower, J. (1999) Comparative sequence analysis of tmRNA. Nucleic Acids Res, 27, 2063-71.
17. Williams, K.P. and Bartel, D.P. (1996) Phylogenetic analysis of tmRNA secondary structure. Rna, 2, 1306-10.
18. Felden, В., Himeno, H., Muto, A., McCutcheon, J.P., Atkins, J.F. and Gesteland, R.F. (1997) Probing the structure of the Escherichia coli lOSa RNA (tmRNA). Rna, 3, 89-103.
19. Felden, В., Himeno, II., Muto, A., Atkins, J.F. and Gesteland, R.F. (1996) Structural organization of Escherichia coli tmRNA. Biochimie, 78, 979-83.
20. Gaudin, C., Zhou, X., Williams, K.P. and Felden, B. (2002) Two-piece tmRNA in cyanobacteria and its structural analysis. Nucleic Acids Res, 30, 2018-24.
21. Sharkady, S.M. and Williams, K.P. (2004) A third lineage with two-piece tmRNA. Nucleic Acids Res, 32,4531-8.
22. Lin-Chao, S., Wei, C.L. and Lin, Y.T. (1999) RNase E is required for the maturation of ssrA RNA and normal ssrA RNA pepti de-tagging activity. Proc Natl Acad Sci USA, 96, 1240611.
23. Li, Z., Pandit, S. and Deutscher, M.P. (1998) 3' exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc Natl Acad Sci U S A, 95,2856-61.
24. Ray, B.K. and Apirion, D. (1979) Characterization of 10S RNA: a new stable rna molecule from Escherichia coli. Mol Gen Genet, 174, 25-32.
25. Felden, В., Atkins, J.F. and Gesteland, R.F. (1996) tRNA and mRNA both in the same molecule. Nat Struct Biol, 3, 494.
26. Suddath, F.L., Quigley, G.J., McPherson, A., Sneden, D., Kim, J.J., Kim, S.H. and Rich, A. (1974) Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0angstroms resolution. Nature, 248, 20-4.
27. Tamura, K., Asahara, H., Himeno, H., Hasegawa, T. and Shimizu, M. (1991) Identity elements of Escherichia coli tRNA(Ala). J Mol Recognit, 4, 129-32.
28. Kealey, J.T. and Santi, D.V. (1994) High-level expression and rapid purification of tRNA (m5U54)-methyltransferase. Protein Expr Purif, 5, 149-52.
29. Nurse, K., Wrzesinski, J., Bakin, A., Lane, B.G. and Ofengand, J. (1995) Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. Rna, 1, 102-12.
30. Cusack, S., Hartlein, M. and Leberman, R. (1991) Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res, 19, 3489-98.
31. Francklyn, C. and Schimmel, P. (1989) Aminoacylation of RNA minihelices with alanine. Nature, 337, 478-81.
32. Beuning, P.J., Yang, F., Schimmel, P. and Musier-Forsyth, K. (1997) Specific atomic groups and RNA helix geometry in acceptor stem recognition by a tRNA synthetase. Proc Natl Acad Sci USA, 94, 10150-4.
33. Shi, J.P. and Schimmel, P. (1991) Aminoacylation of alanine minihelices. "Discriminator" base modulates transition state of single turnover reaction. J Biol Chem, 266, 2705-8.
34. Hou, Y.M. and Schimmel, P. (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature, 333, 140-5.
35. McClain, W.H. and Foss, K. (1988) Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science, 240, 793-6.
36. Nameki, N., Tadaki, Т., Muto, A. and Himeno, H. (1999) Amino acid acceptor identity switch of Escherichia coli tmRNA from alanine to histidine in vitro. J Mol Biol, 289, 1-7.
37. Barends, S., Wower, J. and Kraal, B. (2000) Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli. Biochemistry, 39, 2652-8.
38. Barends, S., Karzai, A.W., Sauer, R.T., Wower, J. and Kraal, B. (2001) Simultaneous and functional binding of SmpB and EF-Tu-TP to the alanyl acceptor arm of tmRNA. J. Mol. Biol., 314, 9-21.
39. Corvaisier, S., Bordeau, V. and Felden, B. (2003) Inhibition of transfer messenger RNA aminoacylation and trans-translation by aminoglycoside antibiotics. J Biol Chem, 278, 14788-97.
40. Miczak, A., Chauhan, A.K. and Apirion, D. (1991) Two new genes located between 2758 and 2761 kilobase pairs on the Escherichia coli genome. J. Bacteriol., 173, 3271-3272.
41. Wower, J., Wower, I.K., Kraal, B. and Zwieb, C.W. (2001) Quality control of the elongation step of protein synthesis by tmRNP. J Nutr, 131, 2978S-82S.
42. Withey, J.H. and Friedman, D.I. (2003) A salvage pathway for protein structures: tmRNA and trans-translation. Annu Rev Microbiol, 57, 101-23.
43. Baumler, A.J., Kusters, J.G., Stojiljkovic, I. and Heffron, F. (1994) Salmonella typhimurium loci involved in survival within macrophages. Infect. Immun., 62, 1623-1630.
44. Wower, J., Zwieb, C.W., Hoffman, D.W. and Wower, I.K. (2002) SmpB: a protein that binds to double-stranded segments in tmRNA and tRNA. Biochemistry, 41, 8826-8836.
45. Barends, S., Bjork, K., Gultyaev, A.P., de Smit, M.H., Pleij, C.W. and Kraal, B. (2002) Functional evidence for D- and T-loop interactions in tmRNA. FEBS Lett., 514, 78-83.
46. Sundermeier, T.R., Dulebohn, D.P., Cho, H.J. and Karzai, A.W. (2005) A previously uncharacterized role for small protein В (SmpB) in transfer messenger RNA-mediated trans-translation. Proc Natl Acad Sci USA, 102, 2316-21.
47. Jacob, Y., Sharkady, S.M., Bhardwaj, K., Sanda, A. and Williams, K.P. (2005) Function of the SmpB tail in transfer-messenger RNA translation revealed by a nucleus-encoded form. J. Biol. Chem., 280, 5503-5509.
48. Dong, G., Nowakowski, J. and Hoffman, D.W. (2002) Structure of small protein B: the protein component of the tmRNA-SmpB system for ribosome rescue. EMBO J., 21, 18451854.
49. Someya, T. et al. (2003) Solution structure of a tmRNA-binding protein, SmpB, from Thermus thermophilus. FEBS Lett., 535, 94-100.
50. Dulebohn, D.P., Cho, H.J. and Karzai, A.W. (2006) Role of conserved surface amino acids in binding of SmpB protein to SsrA RNA. J Biol Chem, 281, 28536-45.
51. Hallier, M., Desreac, J. and Felden, B. (2006) Small protein В interacts with the large and the small subunits of a stalled ribosome during trans-translation. Nucleic Acids Res, 34, 1935-43.
52. Shimizu, Y. and Ueda, T. (2002) The role of SmpB protein in trans-translation. FEBS Lett, 514, 74-7.
53. Nameki, N. et al. (2005) Interaction Analysis between tmRNA and SmpB from Thermus thermophilus. J Biochem (Tokyo), 138, 729-39.
54. Ivanova, N., Lindell, M., Pavlov, M., Holmberg Schiavone, L., Wagner, E.G. and Ehrenberg, M. (2007) Structure probing of tmRNA in distinct stages of trans-translation. RNA, 13, 713-722.
55. Bessho, Y. et al. (2007) Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA. Proc. Natl Acad. Sci. USA, 104, 8293-8298.
56. Gutmann, S., Haebel, P.W., Metzinger, L., Sutter, M., Felden, B. and Ban, N. (2003) Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature, 424, 699-703.
57. Metzinger, L., Hallier, M. and Felden, B. (2005) Independent binding sites of small protein В onto transfer-messenger RNA during trans-translation. Nucleic Acids Res, 33, 2384-94.
58. Konno, Т., Kurita, D., Takada, K., Muto, A. and Himeno, H. (2007) A functional interaction of SmpB with tmRNA for determination of the resuming point of trans-translation. Rna, 13, 1723-31.
59. Stagg, S.M., Frazer-Abel, A.A., Hagerman, P.J. and Harvey, S.C. (2001) Structural studies of the tRNA domain of tmRNA. J. Mol. Biol., 309, 727-735.
60. Ivanova, N., Pavlov, M.Y., Bouakaz, E., Ehrenberg, M. and Schiavone, L.H. (2005) Mapping the interaction of SmpB with ribosomes by footprinting of ribosomal RNA. Nucleic Acids Res., 33, 3529-3539.
61. Kurita, D., Sasaki, R., Muto, A. and Himeno, H. (2007) Interaction of SmpB with ribosome from directed hydroxyl radical probing. Nucleic Acids Res, 35, 7248-55.
62. Kurita, D., Konno, Т., Takada, K., Muto, A. and Himeno, H. (2007) Molecular mechanism of trans-translation. Nucleic Acids Symp Ser (Oxf), 43-4.
63. Valle, M., Gillet, R., Kaur, S., Henne, A., Ramakrishnan, V. and Frank, J. (2003) Visualizing tmRNA entry into a stalled ribosome. Science, 300, 127-30.
64. Nissen, P., Kjeldgaard, M., Thirup, S., Polekhina, G., Reshetnikova, L., Clark, B.F. and Nyborg, J. (1995) Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science, 270, 1464-1472.
65. Wimberly, B.T., Brodersen, D.E., demons, W.M., Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T. and Ramakrishnan, V. (2000) Structure of the 30S ribosomal subunit. Nature, 407, 327-339.
66. Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman, K., Earnest, T.N., Cate, J.H. and Noller, H.F. (2001) Crystal structure of the ribosome at 5.5 A resolution. Science, 292, 883896.
67. Valle, M., Sengupta, J., Swami, N.K., Grassucci, R.A., Burkhardt, N., Nierhaus, K.H., Agrawal, R.K. and Frank, J. (2002) Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J., 21, 3557-3567.
68. Valle, M. et al. (2003) Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol., 10, 899-906.
69. Knudsen, В., Wower, J., Zwieb, C. and Gorodkin, J. (2001) tmRDB (tmRNA database). Nucleic Acids Res, 29, 171-2.
70. Stark, H., Rodnina, M.V., Wieden, II.J., Zemlin, F., Wintermeyer, W. and van Heel, M. (2002) Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol., 9, 849-54.
71. Haebel, P.W., Gutmann, S. and Ban, N. (2004) Dial tm for rescue: tmRNA engages ribosomes stalled on defective mRNAs. Curr Opin Struct Biol, 14, 58-65.
72. Kaur, S., Gillet, R., Li, W., Gursky, R. and Frank, J. (2006) Cryo-EM visualization of transfer messenger RNA with two SmpBs in a stalled ribosome. Proc Natl Acad Sci USA, 103, 16484-9.
73. Sundermeier, T.R. and Karzai, A.W. (2007) Functional SmpB-ribosome interactions require tmRNA. J Biol Chem, 282, 34779-86.
74. Gillet, R., Kaur, S., Li, W., Hallier, M., Felden, B. and Frank, J. (2007) Scaffolding as an organizing principle in trans-translation. The roles of small protein В and ribosomal protein SI. J. Biol. Chem., 282, 6356-6363.
75. Karzai, A.W. and Sauer, R.T. (2001) Protein factors associated with the SsrA.SmpB tagging and ribosome rescue complex. Proc. Natl Acad. Sci. USA, 98, 3040-3044.
76. Moore, S.D. and Sauer, R.T. (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem., 76, 101-124.
77. Tu, G.F., Rcid, G.E., Zhang, J.G., Moritz, R.L. and Simpson, R.J. (1995) C-terminal extension of truncated recombinant proteins in Escherichia coli with a lOSa RNA decapeptide. J Biol Chem, 270, 9322-6.
78. Keiler, K.C. and Sauer, R.T. (1996) Sequence determinants of C-terminal substrate recognition by the Tsp protease. J. Biol. Chem., 271, 2589-2593.
79. Keiler, K.C., Waller, P.R. and Sauer, R.T. (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science, 271, 990-993.
80. Withey, J. and Friedman, D. (1999) Analysis of the role of trans-translation in the requirement of tmRNA for lambdaimmP22 growth in Escherichia coli. J. Bacteriol., 181, 2148-2157.
81. Gottesman, S., Roche, E., Zhou, Y. and Sauer, R.T. (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev., 12, 1338-1347.
82. Herman, C., Thevenet, D., Bouloc, P., Walker, G.C. and D'Ari, R. (1998) Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev, 12, 1348-55.
83. Ivanov, P.V. et al. (2002) How does tmRNA move through the ribosome? FEBS Lett, 514, 55-9.
84. Abo, Т., Inada, Т., Ogawa, K. and Aiba, H. (2000) SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J., 19, 3762-3769.
85. Yamamoto, Y., Sunohara, Т., Jojima, K., Inada, T. and Aiba, II. (2003) SsrA-mediated trans-translation plays a role in mRNA quality control by facilitating degradation of truncated mRNAs. RNA, 9, 408-418.
86. Ueda, K., Yamamoto, Y., Ogawa, K., Abo, Т., Inokuchi, H. and Aiba, H. (2002) Bacterial SsrA system plays a role in coping with unwanted translational readthrough caused by suppressor tRNAs. Genes Cells, 7, 509-19.
87. Abo, Т., Ueda, K., Sunohara, Т., Ogawa, K. and Aiba, H. (2002) SsrA-mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia coli. Genes Cells, 7, 629-638.
88. Roche, E.D. and Sauer, R.T. (1999) SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J., 18, 4579-4589.
89. Roche, E.D. and Sauer, R.T. (2001) Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J Biol Chem, 276, 28509-15.
90. Collier, J., Binet, E. and Bouloc, P. (2002) Competition between SsrA tagging and translational termination at weak stop codons in Escherichia coli. Mol Microbiol, 45, 74554.
91. Hayes, C.S., Bose, B. and Sauer, R.T. (2002) Proline residues at the С terminus of nascent chains induce SsrA tagging during translation termination. J Biol Chem, 277, 33825-32.
92. Sunohara, Т., Abo, Т., Inada, T. and Aiba, H. (2002) The C-terminal amino acid sequence of nascent peptide is a major determinant of SsrA tagging at all three stop codons. Rna, 8, 1416-27.
93. Hayes, C.S., Bose, B. and Sauer, R.T. (2002) Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci USA, 99, 3440-5.
94. Li, X., Yokota, Т., Ito, К., Nakamura, Y. and Aiba, H. (2007) Reduced action of polypeptide release factors induces mRNA cleavage and tmRNA tagging at stop codons in Escherichia coli. Mol. Microbiol., 63, 116-126.
95. Hayes, C.S. and Sauer, R.T. (2003) Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol. Cell, 12, 903-911.
96. Sunohara, Т., Jojima, K., Tagami, H., Inada, T. and Aiba, H. (2004) Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. J. Biol. Chem., 279, 15368-15375.
97. Sunohara, Т., Jojima, K., Yamamoto, Y., Inada, T. and Aiba, H. (2004) Nascent-peptide-mediated ribosome stalling at a stop codon induces mRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA. RNA, 10, 378-86.
98. Collier, J., Bohn, C. and Bouloc, P. (2004) SsrA tagging of Escherichia coli SecM at its translation arrest sequence. J. Biol. Chem., 279, 54193-54201.
99. Li, X., Hirano, R., Tagami, H. and Aiba, H. (2006) Protein tagging at rare codons is caused by tmRNA action at the 3' end of nonstop mRNA generated in response to ribosome stalling. RNA, 12, 248-255.
100. Li, X., Yagi, M., Morita, T. and Aiba, H. (2008) Cleavage of mRNAs and role of tmRNA system under amino acid starvation in Escherichia coli. Mol Microbiol, 68, 462-73.
101. Garza-Sanchez, F., Janssen, B.D. and Hayes, C.S. (2006) Prolyl-tRNA(Pro) in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfer-messenger RNA. J. Biol. Chem., 281, 34258-34268.
102. Asano, K., Kurita, D., Takada, K., Konno, Т., Muto, A. and Himeno, H. (2005) Competition between trans-translation and termination or elongation of translation. Nucleic Acids Res., 33, 5544-5552.
103. Ivanova, N., Pavlov, M.Y., Felden, B. and Ehrenberg, M. (2004) Ribosome rescue by tmRNA requires truncated mRNAs. J. Mol. Biol., 338, 33-41.
104. Yusupova, G.Z., Yusupov, M.M., Cate, J.H. and Noller, H.F. (2001) The path of messenger RNA through the ribosome. Cell, 106, 233-241.
105. Jenner, L. et al. (2005) Translational operator of mRNA on the ribosome: How repressor proteins exclude ribosome binding. Science, 308, 120-123.
106. Ivanova, N., Pavlov, M.Y. and Ehrenberg, M. (2005) tmRNA-induced release of messenger RNA from stalled ribosomes. J. Mol. Biol., 350, 897-905.
107. Williams, K.P., Martindale, K.A. and Bartel, D.P. (1999) Resuming translation on tmRNA: a unique mode of determining a reading frame. EMBO J., 18, 5423-33.
108. Lim, V.I. and Garber, M.B. (2005) Analysis of recognition of transfer-messenger RNA by the ribosomal decoding center. J. Mol. Biol., 346, 395-8.
109. O'Connor, M. (2007) Minimal translation of the tmRNA tag-coding region is required for ribosome release. Biochem Biophys Res Commun, 357, 276-81.
110. Sauer, R.T. et al. (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell, 119, 9-18.
111. Weber-Ban, E.U., Reid, B.G., Miranker, A.D. and Horwich, A.L. (1999) Global unfolding of a substrate protein by the HsplOO chaperone ClpA. Nature, 401, 90-93.
112. Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. and Baker, T.A. (2000) Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell, 5, 639-648.
113. Wiegert, T. and Schumann, W. (2001) SsrA-mediated tagging in Bacillus subtilis. J. Bacteriol., 183,3885-3889.
114. Farrell, C.M., Grossman, A.D. and Sauer, R.T. (2005) Cytoplasmic degradation of ssrA-tagged proteins. Mol. Microbiol., 57, 1750-1761.
115. Bohn, C., Binet, E. and Bouloc, P. (2002) Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease. Mol. Genet. Genomics, 266, 827-831.
116. Baker, T.A. and Sauer, R.T. (2006) ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem Sci., 31, 647-653.
117. Flynn, J.M., Levchenko, I., Seidel, M., Wickner, S.H., Sauer, R.T. and Baker, T.A. (2001) Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl Acad. Sci. USA, 98, 10584-10589.
118. Levchenko, I., Grant, R.A., Wah, D.A., Sauer, R.T. and Baker, T.A. (2003) Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag. Mol. Cell, 12, 365-372.
119. Flynn, J.M., Levchenko, I., Sauer, R.T. and Baker, T.A. (2004) Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev, 18, 2292-301.
120. Levchenko, I., Seidel, M., Sauer, R.T. and Baker, T.A. (2000) A specificity-enhancing factor for the ClpXP degradation machine. Science, 289, 2354-2356.
121. Lessner, F.H., Venters, B.J. and Keiler, K.C. (2007) Proteolytic adaptor for transfer-messenger RNA-tagged proteins from alpha-proteobacteria. J. Bacteriol., 189, 272-275.
122. Dougan, D.A., Reid, B.G., Horwich, A.L. and Bukau, B. (2002) ClpS, a substrate modulator of the ClpAP machine. Mol. Cell, 9, 673-683.
123. Ito, К. and Akiyama, Y. (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol, 59, 211-231.
124. Herman, C., Prakash, S., Lu, C.Z., Matouschek, A. and Gross, C.A. (2003) Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell, 11, 659-669.
125. Choy, J.S., Aung, L.L. and Karzai, A.W. (2007) Lon protease degrades transfer-messenger RNA-tagged proteins. J Bacteriol, 189, 6564-71.
126. Mehta, P., Richards, J. and Karzai, A.W. (2006) tmRNA determinants required for facilitating nonstop mRNA decay. Rna, 12, 2187-98.
127. Richards, J., Mehta, P. and Karzai, A.W. (2006) RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol. Microbiol., 62, 1700-1712.
128. Okan, N.A., Bliska, J.B. and Karzai, A.W. (2006) A Role for the SmpB-SsrA system in Yersinia pseudotuberculosis pathogenesis. PLoS Pathog, 2, e6.
129. Muto, A., Fujihara, A., Ito, K.I., Matsuno, J., Ushida, C. and Himeno, H. (2000) Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells, 5, 627-35.
130. Julio, S.M., Heithoff, D.M. and Mahan, M.J. (2000) ssrA (tmRNA) plays a role in Salmonella enterica serovar Typhimurium pathogenesis. J. Bacteriol., 182, 1558-1563.
131. Braud, S., Lavire, C., Bellier, A. and Mazodier, P. (2006) Effect of SsrA (tmRNA) tagging system on translational regulation in Streptomyces. Arch. Microbiol., 184, 343-352.
132. Huang, C., Wolfgang, M.C., Withey, J., Koomey, M. and Friedman, D.I. (2000) Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J., 19, 1098-1107.
133. Hutchison, C.A., Peterson, S.N., Gill, S.R., Cline, R.T., White, O., Fraser, C.M., Smith, H.O. and Venter, J.C. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Scicnce, 286, 2165-2169.
134. Shin, J.H. and Price, C.W. (2007) The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures. J Bacteriol, 189, 3729-37.
135. Munavar, H., Zhou, Y. and Gottesman, S. (2005) Analysis of the Escherichia coli Alp phenotype: heat shock induction in ssrA mutants. J. Bacteriol., 187, 4739-4751.
136. Ranquet, C., Geiselmann, J. and Toussaint, A. (2001) The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Proc. Natl Acad. Sci. USA, 98, 10220-5.
137. Billington, S.J., Johnston, J.L. and Rood, J.I. (1996) Virulence regions and virulence factors of the ovine footrot pathogen, Dichelobacter nodosus. FEMS Microbiol Lett, 145, 147-56.
138. Ebeling, S., Kundig, C. and Hennecke, H. (1991) Discovery of a rhizobial RNA that is essential for symbiotic root nodule development. J. Bacteriol., 173, 6373-6382.
139. Keiler, K.C. and Shapiro, L. (2003) tmRNA in Caulobacter crescentus is cell cycle regulated by temporally controlled transcription and RNA degradation. J. Bacteriol., 185, 1825-1830.
140. Hong, S.J., Lessner, F.H., Mahen, E.M. and Keiler, K.C. (2007) Proteomic identification of tmRNA substrates. Proc. Natl Acad. Sci. USA, 104, 17128-17133.
141. Bugaeva, E.Y., Shpanchenko, O.V., Felden, В., Isaksson, L.A. and Dontsova, O.A. (2008) One SmpB molecule accompanies tmRNA during its passage through the ribosomes. FEBS Lett, 582, 1532-6.
142. Shpanchenko, O.V. et al. (2005) Stepping transfer messenger RNA through the ribosome. J Biol Chem, 280, 18368-74.
143. Nowotny, P., Nowotny, V., Voss, H. and Nierhaus, K. (1988) Preparation and activity measurements of deuterated 50S subunits for neutron-scattering analysis. Meth. Enzymol., 164, 131-147.
144. Krutchinsky, A.N., Kalkum, M. and Chait, B.T. (2001) Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. Anal Chem, 73, 5066-77.
145. Kalkum, M., Lyon, G.J. and Chait, B.T. (2003) Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc Natl Acad Sci USA, 100, 2795-800.
146. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 24854.
147. Moazed, D., Stern, S. and Noller, H. (1986) Rapid chcmical probing of conformation in 16S ribosomal rRNA and 30S subunits using primer extension. J. Mol. Biol., 187, 399-416.
148. Moazed, D. and Noller, H.F. (1986) Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell, 47, 985-94.
149. Adrian, M., Dubochet, J., Lepault, J. and McDowall, A.W. (1984) Cryo-electron microscopy of viruses. Nature, 308, 32-6.
150. Lindahl, E., Hess, B. and van der Spoel, D. (2001) Gromacs 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Mod., 7, 306-317.
151. Van Der Spoel, D., Lindahl, E., Hess, В., Groenhof, G., Mark, A.E. and Berendsen, H.J. (2005) GROMACS: fast, flexible, and free. J Comput Chem, 26, 1701-18.
152. Srisawat, C. and Engelke, D.R. (2001) Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. Rna, 7, 632-41.
153. Jurica, M.S., Licklider, L.J., Gygi, S.R., Grigorieff, N. and Moore, M.J. (2002) Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA, 8, 426-39.
154. Leonov, A.A., Sergiev, P.V., Bogdanov, A.A., Brimacombe, R. and Dontsova, O.A. (2003) Affinity purification of ribosomes with a lethal G2655C mutation in 23 S rRNA that affects the translocation. J. Biol. Chem., 278, 25664-25670.
155. Nameki, N., Tadaki, Т., Himeno, H. and Muto, A. (2000) Three of four pseudoknots in tmRNA are interchangeable and are substitutable with single-stranded RNAs. FEBS Lett, 470, 345-9.
156. Bjornsson, A. and Isaksson, L.A. (1996) Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res, 24, 1753-1757.
157. Mukherjee, S., Shukla, A. and Guptasarma, P. (2003) Single-step purification of a protein-folding catalyst, the SlyD peptidyl prolyl isomerase (PPI), from cytoplasmic extracts of Escherichia coli. Biotechnol. Appl. Biochem., 37, 183-186.
158. Tate, W., Greuer, B. and Brimacombe, R. (1990) Codon Recognition in Polypeptide Chain Termination : Site Directed Crosslinking of Termination Codon to Escherichia coli Release Factor-2. Nucleic Acids Res., 18, 6537-6544.
Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.