Селективные методы пероксидирования β-дикарбонильных соединений и их гетероаналогов тема диссертации и автореферата по ВАК РФ 02.00.03, кандидат химических наук Борисов, Дмитрий Александрович

  • Борисов, Дмитрий Александрович
  • кандидат химических науккандидат химических наук
  • 2011, Москва
  • Специальность ВАК РФ02.00.03
  • Количество страниц 204
Борисов, Дмитрий Александрович. Селективные методы пероксидирования β-дикарбонильных соединений и их гетероаналогов: дис. кандидат химических наук: 02.00.03 - Органическая химия. Москва. 2011. 204 с.

Оглавление диссертации кандидат химических наук Борисов, Дмитрий Александрович

Введение.

Глава I. Синтез пяти- и шестичленных циклических пероксидов (литературный обзор).

1.1. Введение.

1.2. Синтез 1,2-диоксоланов.

1.3. Синтез 1,2,4-триоксоланов.

1.4. Синтез 1,2-диоксанов.

1.5. Синтез 1,2-диоксенов.

1.6. Синтез 1,2,4-триоксанов.

1.7. Синтез 1,2,4,5-тетраоксанов.

Рекомендованный список диссертаций по специальности «Органическая химия», 02.00.03 шифр ВАК

Введение диссертации (часть автореферата) на тему «Селективные методы пероксидирования β-дикарбонильных соединений и их гетероаналогов»

11.2. Селективный метод синтеза мостиковых 1,2,4,5-тетраоксанов.

Сильные кислоты как сорастворители и катализаторы присоединения пероксида водорода к р-дикетонам.105

11.3. Окисление замещенных Р-дикетонов пероксидом водорода. Синтез сложных эфиров через образование мостиковых 1,2,4,5-тетраоксанов.114

11.4. Катализированное переходными металлами (Cu, Fe, Мп, Со) пероксидирование p-дикарбонильных соединений третя-бутилгидропероксидом.118

11.5. Катализированное переходными металлами (Cu, Fe, Мп, Со) пероксидирование производных малонодинитрила и циануксусного эфира mjjew-бутилгидропероксидом.129

11.6. Заключение.137

Похожие диссертационные работы по специальности «Органическая химия», 02.00.03 шифр ВАК

Заключение диссертации по теме «Органическая химия», Борисов, Дмитрий Александрович

ВЫВОДЫ

1. В химии органических пероксидов предложены пути решения проблемы селективного пероксидирования р-дикарбонильных соединений и их гетероаналогов. Осуществлен синтез ранее недоступных структурных типов пероксидов.

2. Разработан удобный и простой в экспериментальном исполнении метод синтеза мостиковых 1,2,4,5-тетраоксанов, который позволяет получать эти соединения в граммовых количествах с выходом 44-79 %. Метод основан на кислотно-катализированной реакции р-дикетонов с пероксидом водорода. Ключевым фактором, определяющим выход и селективность образования 1,2,4,5-тетраоксанов является высокая концентрация сильной кислоты: H2SO4, HBF4 и НС104. Показана возможность модификации боковой цепи полученных соединений с сохранением 1,2,4,5-тетраоксанового цикла.

3. Обнаружено кислотно-катализированное окислительное превращение алкил- и бензилзамещенных Р-дикетонов в сложные эфиры под действием пероксида водорода, протекающее через стадию образования мостиковых 1,2,4,5-тетраоксанов.

4. Установлено, что переходные металлы (Си, Fe, Мп, Со) катализируют пероксидирование а-замещеных p-дикарбонильных соединений трет-бутилгидропероксидом в а-положение. На основе этой реакции реализован селективный и удобный в экспериментальном исполнении метод получения ранее недоступных а-шрет-бутилперокси-Р-дикарбонильных соединений. Синтезы легко масштабируются без снижения выхода целевых пероксидов, которые могут быть получены в граммовых количествах. Реакция применима к различным по структуре а-замещенным-р-дикарбонильным соединениям. С наибольшим выходом целевые пероксиды получаются из Р-кетоэфиров (до 90%), с несколько меньшим из р-дикетонов (до 72%) и малонатов (до 69%).

5. Впервые осуществлено селективное окисление а-замещенных производных малонодинитрила и циануксусного эфира в а-положение с образованием несимметричных а-тре/и-бутилпероксипроизводных. Обнаружено, что переходные металлы (Си, Fe, Мп, Со) катализируют пероксидирование а-замещеных производных малонодинитрила и циануксусного эфира итре/и-бутилгидропероксидом в а-положение. Метод пригоден для синтеза целевых пероксидов в граммовых количествах, с его помощью можно осуществлять пероксидирование различных по структуре а-замещенных производных малонодинитрила и циануксусного эфира. С наибольшим выходом целевые пероксиды образуются из производных малонодинитрила (до 94%), с меньшим — из производных циануксусного эфира (до 83%).

6. Получены вещества с высокой активностью по отношению к возбудителям распространённых гельминтных заболеваний — шистосомам (Schistosoma mansoni), фасциолам (Fasciola hepatica) и эхиностомам (Echinostoma caproni).

Список литературы диссертационного исследования кандидат химических наук Борисов, Дмитрий Александрович, 2011 год

1. Jergensen К A. Transition-Metal-Catalyzed Epoxidations. 11 Chem. Rev., 1989, 89(3), 431458.

2. Adam W., Richter M. J. Metal-Catalyzed Direct Hydroxy-Epoxidation of Olefins // Acc. ■ Chem. Res., 1994, 27, 57-62.

3. Shing T.K.M., Yeung Y.-Y., Su PL. Mild Manganese(III) Acetate Catalyzed Allylic Oxidation: Application to Simple and Complex Alkenes. // Org. Lett., 2006,- 8(14), 31493151.

4. Kharasch M.S., Pauson P., Nudenberg W. The Chemistry of Hydroperoxides. XII. The Generation and Properties of Free R02 Radicals. // J. Org. Chem., 1953,18, 322-327.

5. Kharasch M.S., Fono A. A New Method of Introducing« Peroxy Groups into Organic Molecules. // J. Org. Chem , 1958, 23, 324-325.

6. Kharasch M.S., Fono A Metal Salt-Induced Homolytic Reactions. I. A New Method of Introducing Peroxy Groups into Organic Molecules. // J. Org. Chem., 1959, 24, 72-78.

7. Shul'pin G. B., Gradinaru J., Kozlov YN. Alkane hydroperoxidation with peroxides catalysed by copper complexes. // Org. Biomol. Chem., 2003, 1, 3611-3617.

8. Araneo S., Fontana F., Minisci F., Recupero F., Serri A. Hydroperoxides as pseudohalides: oxidation, oxidative alkylation, acylation and arylation of acrylonitrile. // J. Chem. Soc., Chem. Commun., 1995, 1399-1400.

9. Leising R. A., Norman R. E., Que Jr. L. Alkane fiinctionalization by nonporphyrin iron complexes: mechanistic insights. //Inorg. Chem., 1990, 29, 2553-2555.

10. Leising R. A., Zang Y., Que Jr. L. Oxidative ligand transfer to alkanes: a model for iron-mediated C-X bond formation in .beta.-lactam antibiotic biosynthesis. // J. Am. Chem. Soc. 1991,113, 8555-8557.

11. Kojima T., Leising R. A., Yan S., Que Jr. L. Alkane fiinctionalization at nonheme iron centers. Stoichiometric transfer of metal-bound ligands to alkane. // J. Am. Chem. Soc., 1993,115,11328-11335.

12. Minisci F, Fontana F., Araneo S., Recupero F. New syntheses of mixed peroxides under Gif-Barton oxidation of alkylbenzenes, conjugated alkenes and alkanes; a free-radical mechanism. //J. Chem. Soc., Chem. Commun., 1994, 1823-1824.

13. Vangapandu S, Jam M., Kaur K, Patil P., Patel S.R., Jain R Recent Advances in Antimalarial Drug Development. // Med. Res. Rev. 2007, 27, 65-107.

14. Robert A, Dechy-Cabaret O., Cazalles J., Meunier B. From Mechanistic Studies on Artemisinin Derivatives to New Modular Antimalarial Drugs. // Acc. Chem. Res., 2002, 35, 167-174.

15. Bathurst I., Hentschel C. Medicines for Malaria Venture: sustaining antimalarial drug development. //Trends in Parasitology. 2006, 22,301-307.

16. White N.J. Qinghaosu (Artemisinin): The Price of Success. // Science. 2008, 320, 330-334.

17. Gelb M.H. Drug discovery for malaria: a very challenging and» timely endeavor. // Current Opinion in Chemical Biology, 2007, 11, 440-445.

18. Martyn D.C., Ramirez A.P., Beattie M.J., Cortese J.F., Patel V., Rush M.A., Woerpel K.A., Clardy J. Synthesis of spiro-l,2-dioxolanes and their activity against Plasmodium falciparum. // Bioorg. Med. Chem. Lett., 2008, 18, 6521-6524.

19. Givelet C„ Bernat V, Danel M., Andre-Barres C., Vial H. New Amino Endoperoxides Belonging to the Antimalarial G-Factor Series. // Eur. J. Org. Chem., 2007, 3095-3101.

20. O'Neill P.M., Amewu R.K., Nixon G.L., ElGarah F.B., Mungthin M., Chadwick J., Shone A.E., Vivas L., Lander H., Barton V., Muangnoicharoen S., Bray P.G., Davies J., ParkB.K.,

21. Wittlin S, Brun R , Preschel M., Zhang K, Ward S.A. Identification of a 1,2,4,5-Tetraoxane Antimalarial Drug-Development Candidate (RKA182) with Superior Properties to the Semisynthetic Artemisinins. // Angew. Chem. Int. Ed., 2010, 49, 5693-5697.

22. Dembitsky V.M. Bioactive peroxides as potential therapeutic agents. // Eur. J. Med. Chem. 2008, 43, 223-251.

23. Dembitsky V.M., Gloriozova T.A., Poroikov V.V. Natural Peroxy Anticancer Agents. I I Mini-Rev. Med. Chem. 2007, 7, 571-589.

24. Dembitsky V.M., Gloriozova T.A., Poroikov V. V. Novel Antitumor Agents: Marine Sponge Alkaloids, their Synthetic Analogs and1 Derivatives. // Mini-Rev. Med. Chem. 2005, 5, 319336.

25. Jiménez M.S., Garzón S P, Rodríguez A.D. Plakortides M and N, Bioactive Polyketide Endoperoxides from the Caribbean Marine Sponge Plakortis halichondrioides. J. Nat. Prod. 2003, 66, 655-661.

26. Keiser J., Brun R, Fried B, Utzinger J. Trematocidal Activity of Praziquantel and Artemisinin Derivatives: In Vitro and In Vivo Investigations with Adult Echinostoma caproni. // Antimicrobial Agents And Chemotherapy, 2006, 50, 803-805.

27. Keiser J., Utzinger J., Tanner M, Dong Y., Vennerstrom J.L. The synthetic peroxide OZ78 is effective against Echinostoma caproni and Fasciola hepatica. // J. Antimicrob. Chemother., 2006, 58 (6), 1193-1197.

28. Keiser J., Utzinger J. Food-borne trematodiasis: current chemotherapy and advances with artemisinins and synthetic trioxolanes. // Trends in Parasitology. 2007, 23, 555-562.

29. Keiser J., Utzinger J. Artemisinins and synthetic trioxolanes in the treatment of helminth infections. // Current Opinion in Infectious Diseases, 2007, 20 (6), 605-612.

30. Ed. Ando W. // "Organicperoxides", N.Y., Wiley, 1992.

31. Mishra M.K; Yagci Y. II Handbook of Radical Vinyl Polymerization, CRC Press, 1998. (ISBN:0824794648).

32. Floty P.J. II Principles of Polymer Chemistry, Cornell University Press, 1953. (ISBN:0801401348).

33. Антоновский В.Л. //"Органические перекисные инициаторы", М., 1972.

34. Denisov Е.Т.; Denisova T.G.; Pokidova T.S. II Handbook of Free Radical Initiators, John Wiley & Sons, Inc., 2005. (ISBN: 9780471207535).

35. Антоновский В.JI., Хурсан С.Л. II "Физическая химия органических пероксидов", М., 2003.

36. Рахимов А.И. II "Химия и технология органических перекисных соединений", М., 1979.

37. Антоновский В.Л. И "Прогресс в химии органических пероксидов", М., 1992.51: Ed. Swern D. II "Organic peroxides", N.Y., Wiley, vol. 1 1970, vol. 2 1971, vol. 3 1972.

38. Ed. Patai S. II "The chemistry of peroxides", N.Y., Wiley, 1983.

39. Ed. Adam V. II "Peroxide chemistry", N.Y., Wiley-YCH, 2000.

40. Uhlemann A.C., Wittlin S„ Matile H., Bustamante L.Y., Krishna S. Mechanism of Antimalarial Action of the Synthetic Trioxolane RBX11160 (OZ277). // Antimicrob. Agents Chemother., 2007, 51(2), 667-672.

41. Posner G.H., O'Neill P.M. Knowledge of the Proposed Chemical Mechanism of Action and Cytochrome P450. Metabolism of Antimalarial Trioxanes Like Artemisinin Allows Rational Design of New Antimalarial Peroxides. // Acc. Chem. Res., 2004, 37, 397-404.

42. Cosledan F, Fraisse L, Pellet A., Guillou G., Mordmuller M., Kremsner P, Moreno A , Mazier D., Maffrand J.-P., Meumer B. Selection of a trioxaquine as an antimalarial drug candidate. //Proc.Natl. Acad. Sci. U.S.A, 2008,105, 17579-17584.

43. Kawanishi M., Kotoku N., Itagaki S., Horii T., Kobayashi M Structure-activity relationship of anti-malarial spongeamperoxides having a 3-methoxy-l,2-dioxane structure. // Bioorg. Med. Chem., 2004, 12, 5297-5307.

44. Murakami N., Kawanishi M., Mostaqul H.M, Li J., Itagaki S., Horii T., Kobayashi M New Anti-Malarial Peroxides with In Vivo Potency Derived from Spongean Metabolites. // Bioorg. Med. Chem. Lett., 2003,13, 4081-4084.

45. Najjar F., Gorrichon L, Balta M, André-Barrés C., Vialb H. Alkylation of natural endoperoxide G3-factor. Synthesis and antimalarial activity studies. // Org. Biomol. Chem., 2005, 3, 1612-1614.

46. Bernat V., Saffon N., Maynadier M., Vial H., André-Barrés C. a-Spiro endoperoxides: synthesis and evaluation of their antimalarial activities // Tetrahedron, 2009, 65, 7372-7379.

47. Solaja B.A., Terzic N., Pocsfalvi G., Gerena L., Tinant B., Opsenica D., Milhous W.K. Mixed steroidal 1,2,4,5-tetraoxanes: antimalarial and antimycobacterial activity. // J.Med.Chem., 2002, 45, 3331-3336.

48. Opsenica I., Opsenica D., Lanteri C.A., Anova L., Milhous W.K, Smith KS., Solaja B.A. New chimeric antimalarials with 4-aminoquinoline moiety linked to a tetraoxane skeleton. // J. Med. Chem., 2008, 51(19), 6216-6219.

49. Opsenica D.M., Terzic N., Smith P.L., Yang Y., Anova L., Smith KS., Solaja B.A. Mixed tetraoxanes containing the acetone subunit as antimalarials. // Bioorg. Med. Chem., 2008, 16, 7039-7045.

50. Terzic N., Opsenica D„ Milic D., Bernard Tinan B., Smith K.S., Milhous W.K, Solaja B.A. Deoxycholic acid-derived tetraoxane antimalarials and antiproliferatives. // J. Med. Chem., 2007, 50(21), 5118-5127.

51. Niesen A, Barthel A., Kluge R., Kowitzsch A., Strohl D„ Schwarz S., Csuk R. Antitumoractive Endoperoxides from Triterpenes. // Arch. Pharm. Chem. Life Sci., 2009, 342;569-576.

52. CsukR., Niesen-Barthel A., Barthel A., Kluge R., Strohl D. Synthesis of an antitumor active endoperoxide from 11-keto-P-boswellic acid. // Eur. J. Med. Chem., 2010, 45, 3840-3843.

53. Szpilman A.M., Korshin E.E., Rozenberg H., Bachi M.D. Total Syntheses of Yingzhaosu A and of Its C(14)-Epimer Including the First Evaluation of Their Antimalarial and Cytotoxic Activities. // J. Org. Chem., 2005, 70, 3618-3632.

54. Yao G., Steliou K. Synthetic Studies toward Bioactive Cyclic Peroxides from the Marine Sponge Plakortis angulospiculatus. // Org. Lett., 2002, 4(4), 485-488.

55. JungM., Ham J., SongJ. First Total Synthesis of Natural 6-Epiplakortolide E. // Org. Lett., 2002, 4(16), 2763-2765.

56. Wijeratne E.M.K., Liu M.X., Kantipudi N.B., Brochini C.B., Gunatilaka A.A.L., Canfield L.M. Synthesis and preliminary biological evaluation of P-carotene and retinoic acid oxidation products. // Bioorg. Med. Chem., 2006,14, 7875-7879.

57. Aldeco-Perez E., Rudler H„ Parlier A., Alvarez C., Apan M.T., Herson P., Toscano A. A simple synthesis of cytotoxic endoperoxide lactones. // Tetrahedron Lett., 2006, 47, 90539056.

58. Dong Y., Chollet J., Vargas M., Mansour N.R., Bickle Q., Alnouti Y., Huang J., Keiser J., Vennerstrom J.L. Praziquantel analogs with'activity against juvenile Schistosoma mansoni. //Bioorg. Med. Chem. Lett., 2010,20;2481 -2484.

59. Yang Z.-S., Wub W.-M., Li Y., Wub Y.-L. Design and Synthesis of Novel Artemis inin-Like Ozonides with Antischistosomal Activity. // Helv. Ghim. Acta, 2005, 88, 2865-2872.

60. Laurent S. A.-L., Boissier J., Cosledan F., Gornitzka H., Robert A., Meunier B. Synthesis of "Trioxaquantel"® Derivatives as Potential New Antischistosomal Drugs. // Eur. J: Org. Chem., 2008, 895-913.

61. Boissier J., Cosledan F., Robert A., Meunier B. In Vitro Activities of Trioxaquines against Schistosoma mansoni. // Antimicrobial Agents And Chemotherapy, 2009, 53, 4903-4906.

62. Camuzat-Dedenis B., Provot O:, Cointeaux L., Perroux V., Berrien J.-F., Bories C., Loiseau P.M., Mayrargue J. Synthesis and in vitro Trichomonacidal activities of some new dialkylperoxides and 1,2,4-trioxanes. // Eur. J. Med. Chem., 2001, 36, 837-842.

63. Howarth J., Wilson D. l,4-Dihydroxy-2,3-dioxatricyclo8.4.0.04,9.tetradecane and Derivatives with In Vitro Activity Against Plasmodium falciparum, Trypanosoma b brucei,

64. Trypanasoma cruzi, and Leishmaniasis infantum. II Bioorg. Med. Chem.Lett., 2003, 13, 2013-2015.

65. Macreadie P., Avery T., Greatrex B., Taylor D., Macreadie I. Novel endoperoxides: Synthesis and activity against Candida species. // Bioorg. Med. Chem. Lett., 2006, 16, 920922.

66. Avery T.D., Macreadie P.I., Greatrex B.W., Robinson T.V., Taylor D.K., Macreadie I.G. Design of endoperoxides with anti-Candida activity. // Bioorg. Med. Chem., 2007, 17, 3642.

67. Macreadie I.G., Avery T.D., Robinson T.V., Macreadie P., Barraclough M., Taylor D.K., Tiekink E.R.T. Design of 1,2-dioxines with anti-Candida activity: aromatic substituted 1,2-dioxines. // Tetrahedron, 2008, 64, 1225-1232.

68. McCullough K.J, Nojima M. Recent Advances in the Chemistry of Cyclic Peroxides. // Curr. Org. Chem., 2001, 5, 601-636.

69. O'Neill P.M., Posner G.H. A Medicinal Chemistry Perspective on Artemisinin and Related Endoperoxides. // J. Med. Chem., 2004, 47(12), 2945-2964.

70. Opsenica D.M., Solaja B. A. Antimalarial peroxides. // J. Serb. Chem. Soc., 2009, 74(11), 1155-1193.

71. Muraleedharan K.M., Avery MA. Pr ogress in the development of peroxide-based antiparasitic agents. // Drug Discovery Today, 2009,14, 793-803.

72. Kumar N, Singh R., Rawat D.S. Tetraoxanes: Synthetic and medicinal chemistry perspective. //Med. Res. Rev., 2009, DOI 10.1002/med.20189.

73. Stratakis M., Orfanopoidos M. Regioselectivity in the Ene Reaction of Singlet Oxygen with Alkenes. //Tetrahedron, 2000, 56, 1595-1615.

74. Clennan E.L., Pace A. Advances in singlet oxygen chemistry. // Tetrahedron, 2005, 61(28), 6665-6691.

75. Frimer A.A., Afri' M., Baumel S.D., Gilinsky-Sharon P., Rosenthal Z„ Gottlieb H.E. Thermolysis and Photosensitized Oxygenation of Tetrasubstituted Cyclopropenes. // J. Org. Chem., 2000, 65, 1807-1817.

76. Cointeaux L., Berrien J.-F., Mayrargue J. Synthesis of cardamom peroxide analogues by radical cyclization of hydtoperoxyalkenes. // Tetrahedron Lett., 2002, 43, 6275-6277.

77. Barnier J.-P., Morisson V., Blanco L. Preparation of 2,3-epoxycycloalkanones from bicyclon. 1.0.alkan-1 -ols. // Synth. Commun., 2001, 31(3), 349-357.

78. Kirihara M, Kakuda H., Ichinose M., Ochiai Y., Takizawa S., Mokuya A., Okubo K., Hatanoa A., Shiro M. Fragmentation of tertiary cyclopropanol compounds catalyzed by vanadylacetylacetonate. //Tetrahedron, 2005, 61,4831-4839.

79. Kulinkovich O.G., Astashko D.A., Tyvorskii V.I., Ilyina N.A. Synthesis of a,p-Epoxy Ketones from Alkyl- and Arylsubstituted cyclopropanols. // Synthesis, 2001, 10, 14531455.

80. Ouhamou N., Six Y. Studies on the intramolecular Kulinkovich-de Meijere reaction of disubstituted alkenes bearing carboxylic amide groups. // Org. Biomol. Chem., 2003, 1, 3007-3009.

81. Madelaine C., Bnzas A.K., Kowalska-Six J.A., Six Y., Crousse B. Diastereoselective Ti-mediated preparation of bicyclic aminocyclopropanes from N-alkenyl amides. // Tetrahedron Lett., 2009, 50, 5367-5371.

82. ZhaO O., Wong H.N.C. Synthetic studies toward plakortide E: application of the Feldman oxygenation to synthesis of highly substituted 1,2-dioxoIanes. // Tetrahedron, 2007, 63, 6296-6305.

83. Ikeda H., Hoshi Y., Miyashi T. l,3-Bis(4-metoxyphenyl)cyclohexane-l,3-dyil cation radical: divergent reactivity depending upon electron transfer conditions. // Tetrahedron Lett., 2001, 42, 8485-8488.

84. Abe M., Kawanami S., Masuyama A., Hayashi T. A Matrix Isolation Study of 2-Isopropylidenecyclopentane-l,3-diyl (Berson-Type Diradical). // J. Org. Chem., 2006, 71, 6607-6610.

85. Tsubusaki T., Nishino H. Formation of 1,2-dioxolanes using Mn(III)-based reaction of various arylacetylenes with 2,4-pentanedione and related reaction. // Tetrahedron, 2009, 65, 3745-3752.

86. Isayama S., Mukaiyama T. Novel Method for the Preparation of Triethylsilyl Peroxides from Olefins by the Reaction with Molecular Oxygen and Triethylsilane Catalyzed by Bis(l,3-diketonato)cobalt(II) // Chem. Lett., 1989, 573-576.

87. Isayama S. An Efficient method for the Direct Peroxygenation of Various Oleflnic Compounds with Molecular Oxygen and Triethylsilane Catalyzed by a Cobalt(II) Complex //Bull. Chem. Soc. Jpn., 1990, 63(5), 1305-1310.

88. Tokuyasu T., Kunikawa S., Masuyama A., Nojima M. Co(III)-Alkyl Complex- andCo(III)-Alkylperoxo Complex-Catalyzed Triethylsilylperoxidation of Alkenes with Molecular Oxygen and Triethylsilane. // Org. Lett., 2002, 4(21), 3595-3598.

89. Tokuyasu T., Kunikawa S., McCullough KJ., Masuyama A., Nojima M. Synthesis of Cyclic Peroxides by Chemo- and Regioselective Peroxidation of Dienes with Co(II)/02/Et3SiH. // J. Org. Chem., 2005, 70,251-260.

90. Dai P, Dussault P.H. Intramolecular Reactions of Hydroperoxides and Oxetanes: Stereoselective Synthesis of 1,2-Dioxolanes andi 1,2-Dioxanes. // Org. Lett., 2005, 7(20), 4333-4335.

91. Ghorai P., Dussault P.H, Hu C Synthesis of Spiro-bisperoxyketals. // Org. Lett., 2008, 10(12), 2401-2404.

92. Kumar D.N., Sudhakar N. Rao B. V, Kishoreb K.H., Murty U.S Sy nthesis of trans-l,8,12,13-tetraoxadispiro4.1.4.2.-tridecanes — a new class of peroxides. // Tetrahedron Lett., 2006, 47, 771-774.

93. Hamann H.-J., Wlosnewski A., Greco T., Liebscher J. Novel Hydroperoxydioxolanes and -dioxanes by Hydroperoxide Rearrangement and Ozonolysis. // Eur. J. Org. Chem., 2006, 2174-2180.

94. Stewart SG., Ghisalberti EL.,. Skelton B.W., Heath C.H. Formation and reactions oftazepino4,5-6.indoles: an unprecedented ozone reaction in the formation of novel benzo[c]naphthyridinones // Org. Biomol. Chem., 2010, 8, 3563-3570.

95. Dussault PH., Lee H-J., Liu X. Selectivity in Lewis acid-mediated fragmentations of peroxides and ozonides: application to the synthesis of alkenes, homoallyl ethers, and 1,2-dioxolanes. //J. Chem. Soc., Perkin Trans. 1, 2000, 3006-3013.

96. Dussault P.H, Lee 10., Lee H.-J., Lee R.J, Niu O.J., Schultz J.A, Zope U.R. Peroxycarbenium-Mediated C-C Bond Formation: Applications to the Synthesis of Hydroperoxides and Peroxides. // J. Org. Chem., 2000, 65, 8407-8414.

97. Zhao Q, Vargas M., Dong Y., Zhou L., Wang X, Sriraghavan K., Keiser J., Vennerstrom J.L Structure-Activity Relationship of an Ozonide Carboxylic Acid (OZ78) against Fasciola hepaticaf/Z. Med. Chem., 2010, 53; 4223-4233.

98. Ramirez А., К A. Woerpel К.A. Synthesis of 1,2-Dioxolanes by Annulation Reactions of Peroxycarbenium Ions with Alkenes. // Org. Lett., 2005, 7(21), 4617-4620.

99. Dai P., Trullinger Т.К., LiuX., Dussault P.H. Asymmetric Synthesis of 1,2-Dioxo lane-3-acetic Acids: Synthesisand Configurational Assignment of Plakinic Acid A. // J. Org. Chem. 2006, 71, 2283-2292.

100. LuX., Liu Y., Sun В., Cindric В., Deng L. Catalytic Enantioselective Peroxidation of a./?-Unsaturated Ketones. //J. Am. Chem. Soc. 2008, 130, 8134-8135.

101. Reisinger C.M., Wang X., List B. Catalytic Asymmetric Hydroperoxidation of a,P-Unsaturated Ketones: An Approach to» Enantiopure Peroxyhemiketals, Epoxides, and Aldols. // Angew. Chem. Int. Ed., 2008, 47, 8112-8115.

102. Guerra F.M., Zubia E., Ortega M.J., Moreno-Dorado F.J., Massanet G.M. Synthesis of disubstituted 1,2-dioxolanes, 1,2-dioxanes, and 1,2-dioxepanes. // Tetrahedron 2010, 66, 157-163.

103. Singh C., Srivastav N.C., Srivastava N., Puri S.K. Synthesis of P-peroxy-lactones using 30% H202. // Tetrahedron Lett., 2005, 46, 2757-2759.

104. Kishali N., Sahin E., Kara Y. An Intramolecular Substitution of Hydroperoxy-endoperoxide to a Bis-endoperoxide // Org. Lett., 2006, 8(9), 1791-1793.

105. Dussault P.H., Xu C. Curtius rearrangement and Wolff homologation of functionalized peroxides // Tetrahedron Let., 2004, 45, 7455-7457.

106. Criegee R. Mechanism of Ozonolysis // Angew. Chem. Int. Ed. Engl., 1975, 87, 745-752.

107. Geletneky, C., Berger, S. The Mechanism of Ozonolysis Revisited by 170-NMR Spectroscopy//Eur. Ji Org. Chem., 1998, 1625-1627.

108. TokuyasuiT., Ito Т., Masuyama A., Nojima M. Synthesis of 3-hydroperoxy (or hydroxy)-substituted 1,2-dioxanes and 1,2-dioxepanes by the ozonolysis of unsaturated hydroperoxy acetals. //Heterocycles, 2000, 53(6), 1293-1304.

109. Hon Y.-S., Lu L., Chang R.-C., Lin S.-W., Sun P.-P., Lee C.-F. Syntheses of cc,p-Unsaturated Carbonyl Compounds from the Reactions of Monosubstituted Ozonides with Stable Phosphonium Ylides. // Tettaliedron, 2000, 56, 9269-9279.

110. B.H.Одинокое, В.Р.Ахметова, Р.Г.Савченко, М.В.Базунова, Е.А.Парамонов, Л.М.Халилов. Озониды перфтор-1-октена и перфтор-2-октена. // Изв. АН Сер. хим., 2000, 49(6), 1109-1111. Odinokov V.N., Akhmetova V.R., Savchenko R.G., BazunovaM.V.,

111. Paramonov E.A., Khalilov L.M. Ozonides of perfluorooct-l-ene and perfluorooct-2-ene. // Russ. Chem. Bull., 2000, 49(6), 1103-1105.

112. Dussault P.H., Raible J.M. Ozonolysis in the Presence of Lewis Acids: Directed Addition to Carbonyl Oxides. // Org. Lett., 2000,2(21), 3377-3379.

113. Jung J.C. Reaction of l,2,4,5-Tetramethyl-l,4-cyclohexadiene with Ozone Competition between Oxidative Cleavage and Oxydehydrogenation. // Eur. J. Org. Chem. 2001, 18991901. '

114. Caronna Т., Gabbiadini S., Mele A., Recupero F. Approaches to the Azahelicene System: Synthesis and Spectroscopic Characterization of Some Diazapentahelicenes. // Helv. Chim. Acta, 2002,85, 1-8.

115. Chen L., Wiemer D.F. Synthesis of a Carbon Analogue of JV-Acetylmannosamine via Acetolysis on a Relatively Stable Ozonide. I I J. Org. Chem., 2002, 67, 7561-7564.

116. Rucker G., Manns D., Schenkel E.P., Hartmann R., Heinzmann B.M. A Triterpene Ozonide from Senecio Selloi. // Arch. Pharm. Pharm. Med. Chem., 2003, 336, 205-207.

117. Hitchcock P.В., Papadopoulos K, Young D.W. P-Lactams as versatile synthons for homochiral ibotenate analogues with potential for activity at glutamate receptors. // Org. Biomol. Chem., 2003, 1, 2670-2681.

118. Wattanasereekul S„ Maier M.E. Synthesis of the 8-Hydroxy Acid of Jasplakinolide. // Adv. Synth. Catal., 2004, 346, 855-861.

119. SchankK., BeckH., Pistorius S. Ozonolyse von Enolethern. // Helv. Chim. Acta, 2004, 87, 2025-2049.

120. Laventine D.M., Davies M„ Evinson E.L., Jenkins P.R., Cullisa P.M., Fawcetta J. Ring-closing double reductive animation route to aza-heteroannulated sugars. // Tetrahedron Lett. 2005, 46,307-310.

121. Laventine D.M., Davies M., Evinson E.L., Jenkins P.R, Cullis P.M., Garcia M.D. Stereoselective synthesis by double reductive amination ring closure of novel aza-heteroannulated sugars. // Tetrahedron, 2009, 65, 4766-4774.

122. Wang C., Jikai Liu J., Ji Y., Zhao J., Li L., Zhang H. Total Synthesis of (±)-Paeonilide. // Org. Lett., 2006, 8(12), 2479-2481.

123. Schwartz C., Raible J., Mott K., Dussault P.H. Fragmentation of Carbonyl Oxides by NOxides: An Improved Approach to Alkene Ozonolysis. // Org. Lett., 2006, 8(15), 31993201.

124. Schwartz C., Raible J., Mott K., Dussault P.H. 'Reductive ozonolysis' via a new fragmentation of carbonyl oxides. // Tetrahedron, 2006, 62, 10747-10752.

125. Schiaffo C.E., Patrick H. Dussault P.H. Ozonolysis in Solvent/Water Mixtures: Direct Conversion of Alkenes to Aldehydes and Ketones. I I J. Org. Chem. 2008, 73,4688-4690.

126. Percy J.M., Ricard Roig R., Singh K. Fluorinated Analogues of Amicetose and Rhodinose -Novel Racemic and Asymmetric Routes. // Eur. J. Org. Chem., 2009, 1058-1071.

127. Shin H.S., Lee C., Joo Yeon Lee J.Y., Huh T.S. Ozonolyses of Cycloalkenes in the Presence of Carbonyl Compounds. // Eur. J. Org. Chem. 2000, 335-348.

128. ParkS.H., Lee J. Y., Huh T.S. Unsaturated Ozonides from the Ozonolysis of Cyclodienes in the Presence of Carbonyl Compounds. // Eur. J. Org. Chem., 2001, 3083-3087.

129. Griesbaum K, Frank A., McCullough K.J. Syn- and anti- Isomers of a O-Methyloxime-Substituted Tricyclic Ozonide. // Eur. J. Org. Chem., 2006, 1978-1980.

130. Griesbaum K., Bikem 0., Huh, T. S., Dong, Y. Ozonolyses of O-methyloximes in the presence of acid derivatives: A new access to substituted ozonides. // Liebigs Ann., 1995, 1571-1574.

131. Kamata M., Komatsu K, Akaba R. Formation of 1,2,4-trioxolanes via 9,10-dicyanoanthracene(DCA)-sensitized photo-oxygenation of 2,2-diaryl-3-(2,2-diarylvinyl)oxyranes. // Tetrahedron Lett., 2001, 42, 9203-9206.

132. Li Y., Hao H.-D., Zhang O., WuY. A Broadly Applicable Mild Method for the Synthesis of gem-Diperoxides from Corresponding Ketones or 1,3-Dioxolanes. // Org. Lett., 2009, 11(7), 1615-1618.

133. La Clair J.J. Total Syntheses of Hexacyclinol, 5-epi-Hexacyclinol, and Desoxohexacyclinol Unveil an Antimalarial Prodrug Motif. // Angew. Chem. Int. Ed., 2006, 45, 2769-2773.

134. Griesbeck A. G., Cho M. Singlet oxygen addition to homoallylic substrates in solution and microemulsion: novel secondary reactions. // Tetrahedron Lett., 2009, 50, 121-123.

135. Iwahama«T., Sakaguchi S., Yasutaka Ishii Y. Catalytic radical addition of ketones to alkenes by a metal-dioxygen redox system. // Chem. Commun., 2000,2317-2318.

136. Kitmabe R., Nishino H., Yasutake M., Nguyen V.-H., Kurosawa K. Catalytic oxidation of 4-piperidone-3-carboxylates with manganese(III) acetate in the presence of 1,1-disubstituted alkenes. I I Tetrahedron Lett., 2001, 42, 69-72.

137. Christoffers J., Werner T., Frey W, Angelika Baro A. Cerium-Catalyzed Reaction of P-Dicarbonyl Compounds with Styrene and Atmospheric Oxygen. // Eur. J. Org. Chem., 2003, 4879-4886.

138. Rossle AL, Werner T., Frey W., Christoffers J. Cerium-Cataiyzed, Aerobic Oxidative Synthesis of 1,2-Dioxane Derivatives from Styrene and Their Fragmentation into 1,4-Dicarbonyl Compounds. // Eur. J. Org. Chem., 2005, 5031-5038.

139. Kumabe R, Nishino H. A unique peroxide formation based on the Mn(III)-catalyzed aerobic oxidation. // Tetrahedron Lett., 2004, 45, 703-706:

140. Asahi K, Nishino H. Manganese(III)-based oxidation of 2,4-piperidinediones in the presence of alkenes. // Tetrahedron, 2005, 61j 11107-11124.

141. Asahi K, Nishino H. Manganese(III)-based dioxapropellane synthesis using tricarbonyl compounds. //Tetrahedron, 2008, 64, 1620-1634.

142. Asahi K, Nishino.H. Facile Endoperoxypropellane Synthesis by Manganese(III) Acetate-Mediated Aerobic Oxidation. // Eur. J. Org. Chem., 2008, 2404-2416.

143. Beckwith A.L.J., Wagner R.D. Formation of cyclic peroxides by oxygenation of thiophenol-diene mixtures. // J. Am. Chem. Soc., 1979,101(23), 7099-7100.

144. Beckwith A.L.J., Wagner R.'D. Regiospecific, stereospecific ring closure of alkenylperoxyl radicals generated by oxygenation of benzenethiol-triene mixtures. // J. Chem. Soc., Chem. Commun., 1980,485-486.

145. Kim J., Li H.B., Rosenthal A.S., Sang D., Shapiro T.A., Bachi M.D., Posner G.H. Ground state oxygen in synthesis of cyclic peroxides. Part 1: Benzofused ketals. // Tetrahedron, 2006, 62, 4120-4127.

146. Tokuyasu T., Kunikawa S., Abe M., Masuyama A., Nojima M., Kim H.-S., Begum K, Wataya Y. Synthesis of Antimalarial Yingzhaosu A Analogues by the Peroxidation of Dienes with Co(II)/02/Et3SiH. // J. Org. Chem., 2003, 68, 7361-7367.

147. Murakami N., Kawanishi M., Itagaki S., Horii T., KobayashiiM. Facile construction of 6-carbomethoxymethyI-3-methoxy-l,2-dioxane, a core structure of spongean anti-malarial peroxides. // Tetrahedron Lett., 2001, 42, 7281-7285.

148. Murakami N., Kawanishi M., Itagaki S., Horii T., Kobayashi M. New Readily Accessible Peroxides with High Anti-Malarial Potency. // Bioorg. Med. Chem. Lett., 2002,12, 69-72:

149. Murakami N., Kawanishi M., Itagaki S., Horii T„ Kobayashi M. Synthesis of a bioprobe for elucidation of target molecule of spongean anti-malarial peroxides. // Bioorg. Med. Chem. Lett., 2004,14, 3513-3516.

150. Jin H.-X., Liu H.-H., Zhang O., Wu Y. Synthesis of l,6,-7-trioxa-spiro4.5.decanes. // Tetrahedron Lett., 2005, 46, 5767-5769.

151. Jin H.-X., Zhang O., Kim H.-S., Wataya Y, Liu H.-H., Wu Y. Design, synthesis and in vitro antimalarial activity of spiroperoxides. // Tetrahedron, 2006, 62, 7699-7711.

152. Jin H.-X., Liu H.-H., Zhang O., Wu Y. On the Susceptibility of Organic Peroxy Bonds to Hydride Reduction. // J- Org. Chem., 2005, 70, 4240-4247.

153. Li Y, Zhang O., Wittlin S., Jin H.-X., Wu Y. Synthesis and in vitro antimalarial activity of spiro-analogues of peroxyplakoric acids. // Tetrahedron, 2009, 65, 6972-6985.

154. Xu C, Raible J.M., Dussault F.H. Total Synthesis of Peroxyacarnoates A and D: MetalMediated Couplings as a Convergent Approach to Polyunsaturated Peroxides. // Org. Lett., 2005, 7(12), 2509-2511-.

155. Fontana A., d'Ippolito G., D'Souza L., Mollo E., Parameswaram P.S., Cimino G. New Acetogenin Peroxides from the Indian Sponge Acarnus bicladotylota. II J. Nat. Prod., 2001,64,131-133.

156. Zhang Q., Li Y., Wu Y.-K. Synthesis of a l,2,7,8-Tetraoxa-spiro5.5.undecane. // Chin. J. Chem., 2007, 25(9), 1304-1308.

157. Xu C., Schwartz C., Raible J., Dussault P.H. Asymmetric synthesis of 1,2-dioxanes: approaches to the peroxyplakoric acids. // Tetrahedron, 2009, 65, 9680-9685.

158. Tokuyasu T., Masuyama A, Nojima M., Kim H.-S., Wataya Y. Synthesis and anti-malarial activity of yingzhaosu A analogues from unsaturated hydroperoxy acetals. // Tetrahedron Lett., 2000, 41,3145-3148.

159. Kim H-S, Begum K., Ogura N., Wataya Y., Tokuyasu T., Masuyama A., Nojima M., McCullough KJ. Antimalarial Activity of Yingzhaosu A Analogues. I I J. Med. Chem. 2002, 45, 4732-4736.

160. Harris J.R., Waetzig S.R., Woerpel KA. Palladium(II)-Catalyzed Cyclization of Unsaturated Hydroperoxides for the Synthesis of 1,2-Dioxanes. // Org. Lett., 2009, 11(15), 3290-3293.

161. Rostami A., Wang Y., Arif A.M., McDonald R., West F.G. Intramolecular Azide Trapping of the Nazarov Intermediate: Formation of Peroxy-Bridged Indolizidinones via a Deep-Seated Rearrangement and Aerobic Oxidation. // Org. Lett., 2007, 9(4), 703-706.

162. Lopez D., Quinod E, Riguera R. The 4 + 2. Addition of Singlet Oxygen to Thebaine: New Access to Highly Functionalized Morphine Derivatives via Opioid Endoperoxides. // J. Org. Chem., 2000, 65, 4671-4678.

163. Takabatake T., Miyazawa T., Hasegawa M., Foote C.S. Reaction of 4,7-dimethylbenzofurazan with singlet oxygen. // Tetrahedron Lett., 2001, 42, 987-989.

164. Da§tan A., Saracoglu N., Balci M. A New Method for the Synthesis of Stipitatic Acid Isomers: Photooxygenation of Ethyl 6//-CycloheptaJ.[l,3]dioxole-6-carboxylate. // Eur. J. Org. Chem., 2001, 3519-3522.

165. Guney M, Ceylan Z.C., Dalian A., Balci M. Substituent effects of the cycloaddition reaction of 7-substituted 5//-benzocycloheptenes with singlet oxygen and the chemistry of the benzocycloheptene endoperoxides. // Can. J. Chem., 2005, 83, 227-235.

166. Gu X., Zhang W, Salomon R.G. Fe2+ Catalyzes Vitamin E-Induced. Fragmentation of Hydroperoxy and Hydroxy Endoperoxides That Generates y-Hydroxy Alkenals. // Ji Am. Chem. Soc., 2007,129, 6088-6089.

167. Blay G., Garcia B., Molina E„ Pedro J.R. Total Syntheses of Four Stereoisomersof 4a-Hydroxy-1 /?,7/?-peroxy-10y8//-guaia-5-ene. // Org. Lett., 2005, 7(15), 3291-3294.

168. Yang Y.-K., Lee S., Tae J Synthesis of Cyclic Peroxides via Enyne-RCM/Diels-Alder Reaction Sequence. // Bull. Korean Chem. Soc., 2004,25(9), 1307-1308.

169. Yang Y.-K., Choi J.-H., Tae J. Synthesis of 2,3-Di- and 2,3,4-Trisubstituted Furans from 1,2-Dioxines Generated by an Enyne-RCM/Diels-Alder Reaction Sequence. // J. Org, Chem., 2005, 70, 6995-6998.

170. Avery T.D., Caiazza D., CulbertJ.A., Taylor D.K, TiekinkE.R.T. 1,2-Dioxines Containing Tethered Hydroxyl Functionality as Convenient Precursors for Pyran Syntheses. // J. Org. Chem., 2005, 70, 8344-8351:

171. Van der Westhuyzen C.W., Parkinson C.J. Synthesis of a Structurally Constrained Endoperoxide having Antimalarial Activity from a-Santonin. // S. Afr. J. Chem., 2005, 58, 41-45.

172. Valente P., Avery T.D, Taylor D.K, Tiekink E.R.T. Synthesis and Chemistry of 2,3-Dioxabicyclo2.2.2.octane-5,6-diols. // J. Org. Chem., 2009, 74, 274-282.

173. Kao T.-C., Chuang G.J., Liao C.-C. Photooxygenation of Masked o-Benzoquinones: An Efficient Entry into Highly Functionalized Cyclopentenones from 2-Methoxyphenols. // Angew. Chem. Int. Ed., 2008, 47, 7325-7327.

174. Robinson T.V., Pedersen D.S., Taylor D.K, Tiekink E.R.T. Dihydroxylation of 4-Substituted 1,2-Dioxines: A Concise Route to Branched Erythro Sugars. // J. Org. Chem., 2009, 74, 5093-5096.

175. Schobert R., Stehle R., Milius W. Hydroperoxide and Endoperoxide Lactones from Photooxygenation of 3-Alkylidenedihydrofuran-2,4-diones. // J. Org. Chem., 2003, 68, 9827-9830.

176. Gavrilan M., Andre-Barres C., Baltas M, Tzedakis T., Gorrichon L. Bicyclic peroxides in the G factors series: synthesis and electrochemical studies. // Tetrahedron Lett., 2001-, 42, 2465-2468.

177. Margaros I., Montagnon T., Vassilikogiannakis G. Spiroperoxy Lactones from Furans in One Pot: Synthesis of (+)-Premnalane A. // Org. Lett., 2007, 9(26), 5585-5588.

178. Robinson T.V., Taylor D.K, Tiekink E.R.T. Osmium Catalyzed Dihydroxylation of 1,2-Dioxines: A New Entry for Stereoselective Sugar Synthesis. // J. Org. Chem., 2006, 71, 7236-7244.

179. Macreadie P., Avery T., Greatrex B., Taylor D„ Macreadie I. Novel endoperoxides: Synthesis and activity against Candida species. // Bioorg. Med. Chem. Lett., 2006, 16, 920-922.

180. Taylor D.K, Avery T.D., Greatrex B.W., Tiekink E.R.T, Macreadie I.G., Macreadie P.I., Humphries A.D., Kalkanidis M„ Fox E.N., Klonis N., Tilley L. Novel Endoperoxide

181. Antimalarials: Synthesis, Heme Binding, and Antimalarial Activity. // J. Med. Chem., 2004,47, 1833-1839.

182. Emerzian M.A., Davenport W., Song J., Li J., Erden I. Palladium-Catalyzed Cyclopropanation of Unsaturated Endoperoxides. A New Peroxide-Preserving Reaction. // Adv. Synth. Catal., 2009, 351, 999-1004.

183. Ozer G„ Saraqoglu N., Bald M. Synthesis and Chemistry of Unusual Bicyclic Endoperoxides Containing the Pyridazine Ring. // J. Org. Chem., 2003, 68, 7009-7015.

184. Singh C. Preparation of 3-hydroxyhydroperoxides by photooxygenation of allylic alcohols, and their elaboration into 1,2,4-trioxanes. // Tetrahedron Lett., 1990, 31, 6901-6902.

185. Griesbeck A.G., El-Idreesy T.T., Fiege M., Brun R. Synthesis of Antimalarial" 1,2,4-Trioxanes via Photooxygenation of a Chiral Allylic Alcohol. // Org. Lett., 2002, 4(24), 4193-4195.

186. Singh C., Gupta N., Puri S.K. Geraniol-Derived 1,2,4-Trioxanes with Potent In-Vivo Antimalarial Activity. // Bioorg. Med. Chem. Lett., 2003, 13, 3447-3450.

187. Singh C., Gupta N., Puri S.K. Photo-Oxygenation of Geraniol: Synthesis of a Novel Series of Hydroxy-Functionalized Anti-Malarial 1,2,4-Trioxanes. // Bioorg. Med. Chem. Lett., 2002,12, 1913-1916.

188. Singh ■ C., Malik H., Puri S.K Orally active amino functionalized antimalarial 1,2,4-trioxanes // Bioorg. Med. Chem. Lett., 2004,14, 459-462.

189. Singh C., Malik H., Puri S.K New orally active spiro 1,2,4-trioxanes with high antimalarial potency. // Bioorg. Med. Chem. Lett., 2005,15, 4484-4487.

190. Singh C., Malik H. Protection of the Carbonyl Group as 1,2,4-Trioxane and Its Regeneration under Basic Conditions. // Org. Lett., 2005, 7(25), 5673-56, 76.

191. Singh C., Malik H., Puri S.K. Synthesis and antimalarial activity of a new series of trioxaquines. // Bioorg. Med. Chem., 2004, 12, 1177-1182.

192. Singh C., Kanchan R., Srivastava N.C., Puri S.K. 8-(l-Naphthalen-2-yl-vinyl)-6,7,10-trioxaspiro (4.5) decane, a new 1,2,4-trioxane effective against rodent and simian malaria. // Bioorg. Med. Chem. Lett., 2006, 16, 584-586.

193. Singh C., Gupta N. Puri S.K. Synthesis of new 6-alkylvinyl/arylalkylvinyl substitutedl,2,4-trioxanes active against multidrug-resistant malaria in mice. // Bioorg. Med. Chem., 2004, 12, 5553-5562.

194. Singh C., Gupta N., Puri S.K Photooxygenation of 3-aryl-2-cyclohexenols: synthesis of a, new series of antimalarial 1,2,4-trioxanes. // Tetrahedron Lett., 2005, 46, 205-207.

195. Singh C., Srivastava N.C., Puri S.K Synthesis and antimalarial activity of 6-cycloalkylvinyl substituted 1,2,4-trioxanes. // Bioorg. Med. Chem., 2004; 12, 5745-5752.

196. Griesbeck A.G., El-Jdreesy T.T., HoinckL.-O., Lex J., Brun R. Novel spiroanellated 1,2,4-trioxanes with high in vitro antimalarial activities. // Bioorg. Med. Chem. Lett., 2005, 15, 595-597.

197. Sabbani S., La Pensere L., Bacsa J., Hedenstrom E., O'Neill P.M. Diastereoselective schenck ene reaction of singlet oxygen with chiral allylic alcohols; access to enantiomerically enriched 1,2,4-trioxanes. // Tetrahedron, 2009, 65, 8531-8537.

198. Griesbeck A.G., Hoinck L.-0., Lex J., Neudorfl J., Blunk D., El-Idreesy T.T. l,2,5,10,ll,14-Hexaoxadispiro5.2.5.2.hexadecanes: Novel Spiro fused Bis-Trioxane Peroxides. // Molecules, 2008,13, 1743-1758.

199. Singh C., Kanchan R., Sharma U., Puri S. New Adamantane-Based Spiro 1,2,4-Trioxanes Orally Effective against Rodent and Simian Malaria. // J. Med. Chem., 2007, 50, 521-527.

200. Posner G.H., Maxwell J.P., O^Dowd H., Krasavin M., Xie S., Shapiro T.A. Antimalarial Sulfide, Sulfone, and Sulfonamide Trioxanes. // Bioorg. Med. Chem., 2000; 8; 1361-1370.

201. Posner G.H., Jeon H.B., Parker M.H., Krasavin M., Paikl.-H., Theresa A. Shapiro T.A. Antimalarial Simplified 3-Aryltrioxanes: Synthesis and Preclinical Efflcacy/Toxicity Testing in Rodents. // J. Med. Chem., 2001, 44, 3054-3058:

202. Posner G.H., Jeon H.B., Ploypradith P., Paik I.-H., Borstnik K, Xie S., Shapiro T.A. Orally Active, Water-Soluble Antimalarial 3-Aryltrioxanes: Short Synthesis and Preclinical Efficacy Testing in Rodents // J. Med. Chem., 2002, 45, 3824-3828.

203. Dechy-Cabaret 0., Benoit-Vical F., Loup C., Robert A., Gornitzka H., Bonhoure A., Vial II., Magnaval J.-F, Seguela J.-P., Meunier B. Synthesis and Antimalarial Activity of Trioxaquine Derivatives. I I Chem. Eur. J., 2004,10, 1625-1636.

204. Singh R., Ishar M.P.S. UV irradiation of arylidene-p-ionones in the presence of dioxygen: regioselective formation of stable endoperoxides. // Tetrahedron Lett., 2003; 44, 19431945.

205. Cole K.P., Hsung R.P. Unique structural topology and reactivities of the ABD tricycle in phomactin A. // Chem. Commun., 2005, 5784-5786.

206. Tang Y, Cole KP., Buchanan G.S., Li G., Hsung R.P. Total Synthesis of Phomactin A. // Org. Lett., 2009,11(7), 1591-1594.

207. Borsarelli C.D., Mischne M., La Venia A., Moran Vieyra F.E. UVA Self-Photosensitized Oxygenation of p-Ionone. // Photochemistry and Photobiology, 2007, 83; 1313-1318.

208. O'Neil P.M., Pugh M., Davies J., Ward S.A., Park B.K Regioselective Mukaiyama hydroperoxysilylation of 2-alkyl- or 2-aryl-prop-2en-lols: application to a new synthesis of 1,2,4-trioxanes. // Tetrahedron Lett., 2001, 42, 4569-4571.

209. Erhardt S., Macgregor S.A., McCullough K.J., Savill K, Taylor B J. Model Studies of/7-Scission Ring-Opening Reactions of Cyclohexyloxy Radicals: Application to Thermal Rearrangements of Dispiro-l,2,4-tnoxanes. I I Org. Lett., 2007, 9(26), 5569-5572.

210. Sabbam S, Stocks P.A., Ellis G.L., Davies J., Hedenstrom E., Ward S.A., O'Neill P.M. Piperidine dispiro-l,2,4-trioxane analogues. // Bioorg. Med. Chem. Lett., 2008, 18, 58045808.

211. Ramirez A P., Thomas A.M., Woerpel K.A. Preparation ofBicyclic 1,2,4-Trioxanes from y,¿-Unsaturated Ketones. // Org. Lett., 2009,11(3), 507-510.

212. Zhang O., Jin H.-X., Wu Y. A facile access to bridged 1,2,4-trioxanes // Tetrahedron, 2006, 62, 11627-11634.278.» Zhang O., Wu Y. Further explorations on bridged 1,2,4-trioxanes. // Tetrahedron, 2007, 63, 10189-1020L

213. Riveira M.J., La-Venia A., Mischne M.P. Advances in bridged 1,2,4-trioxane-based chemistry. A divergent approach to oxa-heterocycles based on ambident reactivity. // Tetrahedron Lett., 2010, 51, 804-807.

214. Bellot F., Cosledan F„ Vendier L., BrocardJ, Meunier B, Robert A. Trioxaferroquinesas New Hybrid Antimalarial Drugs. // J. Med. Chem., 2010,53,4103-4109.

215. McCullough KJ., Wood JK Bhattacharjee A.K, Dong K, Kyle D.E., Milhous W.K, Vennerstrom J.L. Methyl-substituted dispiro-l,2,4,5-tetraoxanes: correlations of structural studies with antimalarial activity. // J. Med. Chem, 2000, 43,1246-1249.

216. Berkessel A., Andreae M.R.M., Schmickler H., Lex J. Baeyer-Villiger oxidation with hydrogen peroxide in fluorinated alcohols: lactone formation by a nonclassical mechanism.// Ang. Chem. Int. Ed., 2002, 41,4481-4484.

217. Opsenica D., Angelovski G., Pocsfalvi G, Juranic Z, Zizak Z, Kyle D., Milhous W. K, Solaja B. A. Antimalarial and antiproliferative evaluation of bis-steroidal tetraoxanes. // Bioorg. Med. Chem., 2003, 11, 2761-2768.

218. Iskra J., Bonnet-Delpon D, Bégué J.P. One-pot synthesis of non-symmetric tetraoxanes with the H202/ МТО/ fluorous alcohol system. // Tetrahedron Lett., 2003, 44, 6309-6312.

219. Zmitek K, Stavber S., Zupan M, Bonnet-Delpon D., Charneau S., Grellier P., Iskra J. Synthesis and antimalarial activities of novel 3,3,6,6-tetraalkyl-l,2,4,5-tetraoxanes. // Bioorg. Med. Chem., 2006,14, 7790-7795.

220. Zmitek K, Stavber S., Zupan M., Bonnet-Delpon D., Iskra J. Fluorinated alcohol directed formation of dispiro-1,2,4,5-tetraoxanes by hydrogen peroxide under acid conditions. // Tetrahedron, 2006, 62, 1479-1484.

221. Atheaya H., Khan S.I., Mamgain R, Rawat D.S. Synthesis, thermal ¡stability, antimalarial activity of symmetrically and asymmetrically substituted tetraoxanes. // Bioorg. Med. Chem. Lett., 2008,18, 1446-1449.

222. Ghorai P., Dussault P.H. Broadly applicable synthesis of 1,2,4,5-tetraoxanes. // Org. Lett., 2009,11(1), 213-216.

223. Terent'ev A.O., Kutkin A.V, Starikova ZA., Antipin M.Yu., Ogibin Yu.N., Nikishin G.I. New preparation of 1,2,4,5-tetraoxanes. // Synthesis, 2004,14, 2356-2366.

224. Kumar N, Khan S.I., Beena, Rajalakshmi G., Kumaradhas P., Rawat D.S. Synthesis, antimalarial activity and1 cytotoxicity of substituted 3,6-diphenyl-l,2,4,5.tetraoxanes. // Bioorg. Med. Chem., 2009, 17, 5632-5638.

225. Kukovinets O.S., Zvereva T.I., Kabalnova N.N., Kasradze V.G., Salimova E.V., Khalitova L.R., Abdullin M.I., Spirikhin L.V. Ozonolysis of verbenone in aprotic solvents. // Mendeleev Commun., 2009,19, 106-107.

226. Dong Y., Vennerstrom J.L Differentiation between 1,2,4,5-tetraoxanes and 1,2,4,5,7,8-hexaoxonanes using *H and 13C NMR analyses. // J. Heterocyclic Chem., 2001, 38(2), 463466.

227. Dubnikova F., Kosloff R., Almog J., Zeiri Y., Boese R:, Itzhaky H., Alt A., Keinan E. Decomposition of triacetone triperoxide is an entropic explosion. // J. Am. Chem. Soc., 2005, 127(4), 1146-1159.

228. Opsenica I., Opsenica D., Smith K S., Milhous W. K, Solaja B. A. Chemical Stability of the Peroxide Bond Enables Diversified Synthesis of Potent Tetraoxane Antimalarials. // J. Med. Chem., 2008, 51, 2261-2266.

229. Mil as N.A., Mageli O.L., Golubovic A., Arndt R.W., Ho J.C.J. Studies in Organic Peroxides. XXIX. The Structure of Peroxides Derived from 2,4-Pentanedione and Hydrogen Peroxide. //J. Am. Chem. Soc., 1963, 85, 222-226.

230. Rieche A., Bischojf C. Alkylperoxyde, XXX. Peroxyde Von Diketonen, I. Peroxyde des Acetylacetons. //Chem. Ber., 1962, 95, 77-82.

231. Cocker W., Grayson D.H. Reactions of some dicarbonyl compounds. Part III. Oxidation of some p-diketones with alkaline hydrogen peroxide. // J. Chem. Soc. Perkin Trans. I, 1975, 1347-1352;

232. Виноградова Л.П., Завьялов С.И. Взаимодействие p-дикарбонильных соединений с перекисью водорода. //Изв. АН СССР Сер. Хим., 1961, 1482-1486.

233. Виноградова Л.П., Завьялов С.И Взаимодействие 2-ацилциклоалканонов с перекисью водорода. //Изв. АН СССР Сер. Хим., 1961, 2050-2054.

234. Виноградова Л.П., Руденко Б.А., Завьялов С.И. Взаимодействие 2-ацилциклоалканонов с перекисью водорода. // Изв. АН СССР Сер. Хим., 1962, 14361441.

235. Rieche A., Eberhard S„ Brand F. Isolierung von Dibenzylather-hydroperoxid aus den Peroxygenaten von Benzylalkohol und Dibenzylather. // Liebigs. Ann. Chem., 1969, 725, 93-98.

236. Terent'ev A.O., Borisov D.A, Yaremenko I.A., Ogibin Y.N., Nikishin G.I. Oxidation of Substituted P-Diketones with Hydrogen Peroxide: Synthesis of Esters through the Formation of Bridged 1,2,4,5-Tetraoxanes. // Synthesis, 2010, 7, 1145-1149.

237. Terent'ev A. O., Chodykin S. V. New transformation of cycloalkanone acetals by peracids a,co-dicarboxylic acids synthesis. // Centr. Eur. J. Chem., 2005, 3, 417-431.

238. Abu-Omar M. M., Espenson J. H. Oxidations of Cyclic p-Diketones Catalyzed by Methylrhenium Trioxide. // Organometallics, 1996,15, 3543-3549.

239. Li C.-J. Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations. // Acc. Chem. Res., 2009, 42, 335-344.

240. Li Z., Li C.-J. Catalytic Allylic Alkylation via the Cross-Dehydrogenative-Coupling Reaction between Allylic sp3 C-H and Methylenic sp3 C-H Bonds. // J. Am. Chem. Soc., 2006, 128, 56-57.

241. Yoo W.-J., Li C.-J. Highly Stereoselective Oxidative Esterifxcation of Aldehydes with p-Dicarbonyl Compounds. // J. Org. Chem., 2006, 71, 6266-6268.

242. Li Z, Cao L., Li C.-J. FeCl2-Catalyzed Selective C-C Bond Formation by Oxidative Activation of a Benzylic C-H Bond. // Angew. Chem. Int. Ed., 2007, 46, 6505-6507.

243. Borduas N. Powell D.A. Copper-Catalyzed Oxidative Coupling of Benzylic C-H Bonds with 1,3-Dicarbonyl Compounds. // J. Org. Chem., 2008, 73, 7822-7825.

244. Correia C.A., Li C-J. Catalytic alkylation of benzylic C-H bonds with 1,3-dicarbonyl compounds utilizing oxygen as terminal oxidant. // Tetrahedron Lett., 2010, 51, 11721175.

245. Minisci F., Fontana, F., Araneo S., Recupero, F., Zhao L. Free-Radical Mechanisms in the Oxidation and Halogenation of Alkanes, Alkenes and Alkylbenzenes by t-BuOOH under, Gif-Barton Catalysis. // Synlett, 1996, 119-125.

246. Paul H., Small R. D., Scaiano J. C. Hydrogen'abstraction by tert-butoxy radicals. A laser photolysis and electron spin resonance study. // J. Am. Chem. Soc., 1978, 100, 4520-4527.

247. Barton D. H R., Le Gloahec V. N., Patin K, Launay F. Radical chemistry of tert-butyl hydroperoxide (TBHP). Part 1. Studies of the Fem-TBHP mechanism. // New J. Chem., 1998,22, 559-563.

248. Punniyamurthy T., Rout L. Recent advances in copper-catalyzed oxidation of organic compounds. // Coord. Chem. Rev., 2008, 252,134-154.

249. Dryden R., Winston A. The Infrared Spectra of Some metal Chelates of P-Diketones. // J. Phys. Chem., 1958, 62, 635-637.

250. El-Ayaan U., El-Metwally N. M, Youssef M. M., El Bialy S. A. A. Perchlorate mixed-ligand copper(II) complexes of p-diketone and ethylene diamine derivatives: Thermal, spectroscopic and biochemical studies. // Spectr. Acta Part A, 2007, 68/ 1278-1286.

251. Sekine T., Inaba K, Morimoto T. Distribution Equilibria of Five fi-Diketones and, Their Complexes of Copper(II) and Iron(III) in 4-Methyl-2-pentanone-Aqueous Perchlorate Solution Systems. //Anal. Sciences, 1986, 2, 535-540.

252. Kratochvil B., Zatko D. A., Markuszewski R. Copper(II) as an Analytical Oxidant in Acetonitrile. //Anal. Chem. 1966,38, 770-772.

253. Kratochvil B., Quirk P. F. Ferrocene as a primary standard for oxidation-reduction titrations in acetonitrile. // Anal. Chem., 1970, 42, 492-495.

254. Mruthyunjaya H.C., Murthy A.R.V. Anion Effects In Copper(II) Redoximetry In Acetonitrile. // Indian J. Chem., 1973,11,481-484.

255. Senne J. K, Kratochvil B. Potentiometric study of copper(I) complexes with univalent anions in acetonitrile. // Anal. Chem., 1971, 43, 79-82.

256. Meder M В., Gade L. H. Coordination Chemistry of l,3-Bis(2-pyridylimino)- and 1,3-Bis(2-thiazolylimino)soindole Copper Complexes: Investigation of Their Catalytic Behavior in Oxidation Reactions. // Eur. J. Inorg. Chem., 2004, 2716-2722.

257. Kochi J. K. The mechanism of the copper salts catalysed reactions of peroxides. // Tetrahedron, 1962,18,483-497.

258. Citterio A., Santi R., Fiorani Т., Strologo S. Oxidation of malonic acid derivatives by manganese(III) acetate. Aromatic malonylation reaction. Scope and limitations. // J. Org. Chem., 1989, 54, 2703-2712.

259. Iqbal J., Bhatia В., Nayyar N. K. Transition Metal-Promoted Free-Radical Reactions in Organic Synthesis: The Formation of Carbon-Carbon Bonds. // Chem. Rev., 1994, 94, 519564.

260. Liu Y. C., Romero J. R. Chemical and electrochemical oxidative dimerization of carbonyl compounds by cerium(IV) salts. A comparative study. // Tetrahedron Lett., 1995, 36, 87578760.

261. Snider В. B. Manganese(III)-Based Oxidative Free-Radical Cyclizations. // Chem. Rev., 1996, 96, 339-363.

262. Виноградов M.B, Беретиков С.П., Никишин Г.И. Получение ацетонильных радикалов при окислении ацетона триацетатом марганца. // Изв. АН СССР Сер. Хим., 1971, 200-20 Í.

263. Snider В. В., Kwon Т. Preparation of epoxides by oxidative decarboxylation of .beta.-hydroxy acids. Stereo- and regio chemistry of oxidative elimination of secondary radicals with cupric acetate. // J. Org. Chem., 1990, 55, 1965-1968.

264. СаГцкап R., Pekel, Т., Watson W. H., Bald M. Unusual oxidative free-radical additions of 1,3-dicarbonyl compounds to benzonorbornadiene and oxabenzonorbornadiene. // Tetrahedron Lett., 2005, 46, 6227-6230.

265. Nair V., Mathew J., Prabhakaran J. Carbon-carbon bond forming reactions mediated by cerium(IV) reagents. //Chem. Soc. Rev., 1997, 26, 127-132.

266. Огибгт Ю.Н., Терентьев А.О., Анаников В.П., Никишин Г.И. Синтез 9-, 10- и Л 5-членных алкенолидов окислительным расщеплением мостиковой С=С связи в 2-оксабициклоалкенах. //Изв. АН Сер. хим., 2001, 2052-2057.

267. Hirase К., Iwahama Т., Sakaguchi S, Ishii Y. Catalytic Radical Addition of Carbonyl Compounds to Alkenes by Mn(II)/Co(II)/02 System. // J. Org. Chem. 2002, 67, 970-973.

268. Kukushkin V. Yu., Armando J.L. Metal-mediated and metal-catalyzed hydrolysis of nitriles. //Inorg. Chim. Acta, 2005, 358, 1-21.

269. Yang L.-Z., Li Y„ Zhuang X.-M., Jiang L., Chen J.-M., Luck R.L., Lu T.-B. Mechanistic Studies of C-C Bond Cleavage of Nitriles by Dinuclear Metal Cryptates. // Chem. Eur. J., 2009, 15, 12399-12407.

270. Bloomfield J.J. Alkylation Reactions in Dimethyl Sulfoxide. // J. Org. Chem., 1961-, 26, 4112-4115.

271. Shono Т., Kashimura, S., Sawamura M., Soejima T. Selective C-alkylation of .beta.-diketones. //J. Org. Chem., 1988, 53, 907-910.

272. Kalaitzakis D., Rozzell J. D., Smonou I., Kambourakis S. Synthesis of Valuable Chiral Intermediates by Isolated Ketoreductases: Application in the Synthesis of a-Alkyl-p-hydroxy Ketones and 1,3-Diols. // Adv. Synth. Cat., 2006, 348, 1958-1969

273. Markisz J.A., Gettler J.D. Quantitative aspects of base-catalyzed Michael addition: Mechanistic study of structural and,medium effects on'rate. // Can. J. Chem., 1969, 47, 1965-1979:

274. Kluiber R. W, Oberender F., Rossi С. С opper and Beryllium Chelates of 4-Acetyl-5-ketohexanoic Esters. //J. Org. Chem., 1960, 25, 1069-1070.

275. Климочкин Ю.Н., Тилли T.C., Моисеев И.К. Адамантилирование ацетилацетона. // Журн. орган, химии, 1988, 24(8), 1780-1781.

276. House И.О., Gannon-W.F. Reaction of p-Diketones with Peracids. // J. Org. Chem., 1958, 23, 879-884.

277. Nelson J. H., Howells P. N., DeLullo G. C., Landen G. L., Henry R. A. Nickel-catalyzed Michael additions of .beta.-dicarbonyls. // J. Org. Chem., 1980, 45, 1246-1249.

278. Renfrew W. В., Renfrow A. A. Study of Alternate Methods for the Alkylation of Acetoacetic Esters. // V. Am. Chem. Soc., 1946, 68, 1801-1804.

279. Bachmann W. E„ Dreiding A. S. The Synthesis of Alicyclic Compounds Related'to The Steroids. // J. Org. Chem., 1948,13, 317-328.

280. Albertson N. F. Piperidines and Azabicyclo Compounds. I. Via Michael Condensations. // J. Am. Chem. Soc., 1950, 72, 2594-2599.

281. Linstead R. P., Rydon H. N. Investigations of the olefinic acids. Part XI. The formation of lactones from some Ay-unsaturatcd acids, and an example of ring-chain (lacto-enoic) tautomerism. //J. Chem. Soc., 1933, 580-586.

282. Dunham J.C., Richardson A.D., Sammelson R.E. Sodium Borohydride as the Only Reagent for the Efficient Reductive Alkylation of Malononitrile with Ketones and Aldehydes. // Synthesis, 2006, 4, 680-686.

283. Ramachary D.B., Reddy G.B. Towards Organo-Click Reactions: Development of Pharmaceutical Ingredients by Using Direct Organocatalytic Bio-Mimetic Reductions. // Org. Bio mo 1. Chem., 2006, 4, 4463-4468.

284. Abd El Samii Z.K.M., Al Ashmawy M.I., Mellor J.M. Trifluoroacetoxysulphenylation of unsaturated nitriles and transformation of the adducts into lactones. I I J. Chem. Soc., Perkin Trans. 1, 1988, 2523-2531.

285. Seela F., Liipke U. Mannich-Reaktion am 2-Amino-3,7-dihydropyrrolo2,3-d.-pyrimidin-4-on, dem Chromophor des Ribonucleosids ,,Q". // Chem. Ber., 1977, 110, 1462-1469.

286. Koelsch C.F. A Synthesis of 3-Alkylpiperidones. // J. Am. Chem. Soc., 1943, 65, 24582459.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.