Пространственная структура медных полиядерных оксидаз - лакказ Coriolus zonatus и Cerrena maxima тема диссертации и автореферата по ВАК РФ 01.04.18, кандидат химических наук Ляшенко, Андрей Владимирович

  • Ляшенко, Андрей Владимирович
  • кандидат химических науккандидат химических наук
  • 2006, Москва
  • Специальность ВАК РФ01.04.18
  • Количество страниц 168
Ляшенко, Андрей Владимирович. Пространственная структура медных полиядерных оксидаз - лакказ Coriolus zonatus и Cerrena maxima: дис. кандидат химических наук: 01.04.18 - Кристаллография, физика кристаллов. Москва. 2006. 168 с.

Оглавление диссертации кандидат химических наук Ляшенко, Андрей Владимирович

ВВЕДЕНИЕ.

1. ОБЗОР ЛИТЕРАТУРЫ.

1.1. Полимедные голубые белки.

1.2. Пути эволюции полимедных голубых белков (ПМГБ).

1.3. Медьсвязывающие сайты ПМГБ.

1.4. Трехдоменные ПМГБ.

1.5. Лакказы.

1.5.1. Белая лакказа.

1.5.2. Лакказы насекомых.

1.5.3. Малые грибные лакказы.

1.6. Реакции, катализируемые лакказами.

1.7. Биологическое распространение и функция лакказы.

1.8. Химический состав фермента.

1.8.1. Выделение лакказы.

1.8.2. Молекулярная масса и аминокислотная последовательность.

1.8.3. Содержание углеводов.

1.8.4. Содержание металла и три типа ионов меди.

1.8.5. Обратимое удаление меди.

1.9. Спектроскопические и магнитные свойства лакказ.

1.9.1. Оптические спектры.

1.9.2. Исследования рентгеновской абсорбции.

1.9.3. Магнитная восприимчивость.

1.10. Окислительно- восстановительные свойства.

1.11. Каталитическая реакция.

2. МАТЕРИАЛЫ И МЕТОДЫ.

2.1. МАТЕРИАЛЫ.

2.1.1. Биологические материалы.

2.1.2. Химические материалы.

2.1.3. Носители.

2.2. МЕТОДЫ.

2.2.1. КРИСТАЛЛИЗАЦИЯ БИОМАКРОМОЛЕКУЛ.

2.2.2. Метод молекулярного замещения.

2.2.3. Уточнение атомной структуры.

2.2.4. Корректность решённой структуры.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

3.1. Получение препаратов лакказ.

3.1.1. Выращивание гриба Coriolus zonaíus в колбах.

3.1.2. Очистка лакказы Coriolus zonaíus.

3.1.3. Поверхностное культивирование Cerrena maxima.

3.1.4. Глубинное культивирование Cerrena maxima.

3.1.5. Очистка лакказы Cerrena maxima.

3.2. Кристаллизация лакказ.

3.2.1. Кристаллизация лакказы Coriolus zonaíus.

3.2.2. Кристаллизация лакказы Cerrena maxima.

3.3. Получение наборов рентгенодифракционных данных.

3.3.1. Набор интенсивностей дифрагированных кристаллом лакказы

Coriolus zonaíus.

3.3.2. Экспериментальный набор интенсивностей дифрагированных кристаллом лакказы Cerrena maxima.

3.4. Построение стартовой модели.

3.4.1. Построение стартовой модели структуры лакказы Coriolus zonatus.

3.4.2. Построение стартовой модели структуры лакказы Cerrena maxima.

3.5. Уточнение структуры.

3.5.1. Уточнение структуры лакказы Coriolus zonatus.

3.5.2. Уточнение структуры лакказы Cerrena maxima.

4. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ.

4.1. Получение биоматериала для выделения лакказы Coriolus zonatus.

4.2. Выделение лакказы Coriolus zonatus.

4.3. Получение биомассы для выделения лакказы Cerrena maxima.

4.3.1. Поверхностное культивирование Cerrena maxima.

4.3.2. Глубинное культивирование Cerrena maxima.

4.4. Очистка лакказы Cerrena maxima.

4.5. Кристаллизация лакказы.

4.5.1. Кристаллизация лакказы Coriolus zonatus.

4.5.2. Кристаллизация лакказы Cerrena maxima.

4.6. Получение дифракционных данных с кристаллов лакказы.

4.6.1. Получение наборов дифракционных данных от кристаллов лакказы Coriolus zonatus.

4.7. Построение стартовой модели для решения и уточнения структуры лакказы Coriolus zonatus с разрешением 3.2 Á.

4.8. Получение наборов дифракционных данных от кристаллов лакказы

Cerrena maxima.

4.9. Построение стартовой модели для решения и уточнения структуры лакказы Cerrena maxima.

4.10. Уточнение структуры лакказы Coriolus zonatus.

4.11. Уточнение структуры лакказы Cerrena maxima.

4.12. Первичная структура молекул лакказ.

4.13. Пространственная организация молекул лакказ.

4.14. Структура активного центра.

4.15. Водные каналы.

4.16. Углеводная компонента лакказы Cerrena maxima.

4.17. Особенности пространственной структуры Cerrena maxima.

4.18. Предполагаемый механизм действия фермента.

ВЫВОДЫ.

Рекомендованный список диссертаций по специальности «Кристаллография, физика кристаллов», 01.04.18 шифр ВАК

Введение диссертации (часть автореферата) на тему «Пространственная структура медных полиядерных оксидаз - лакказ Coriolus zonatus и Cerrena maxima»

Ферментативные реакции, протекающие с восстановлением молекулярного кислорода до воды, могут осуществляться лишь небольшим кругом ферментов, к которому относится лакказа. Лакказа (кислород-оксидоредуктаза, ЕС 1.10.3.2) - фермент, принадлежащий семейству «голубых» мультимедийных оксидаз, которое включает помимо лакказы аскорбатоксидазу и церулоплазмин. Лакказа катализирует окисление различных соединений, включая орто- и пара-дифенолы, полифенолы, лигнины, полиамины и арилдиамины, а также некоторые неорганические ионы с сопутствующим восстановлением молекулярного кислорода до воды [1-3]. Благодаря разнообразию реакций, катализируемых лакказами, эти ферменты являются перспективными для их широкого использования в различных технологических процессах. Интерес к изучению этого фермента обусловлен также возможностью его широкого применения в биотехнологии, в том числе и для создания биосенсоров различного типа, а также альтернативных источников тока. Феномен прямого переноса электрона является теоретической базой для создания биосенсоров, могущих стать основой для создания нанобиоустройств с высокой эффективностью электронного транспорта, достаточной для нормального функционирования микробиочипов и микроманипуляторов [4, 5]. Лакказы из растений и грибов из-за их оксидазной активности вовлечены в процессы биодеградации лигнинов, которые играют значительную роль при переработке отходов на земле. Все это стимулирует фундаментальные научные исследования лакказ, т.к. для эффективного применения фермента необходимо знание механизма его действия, а, следовательно, кинетических и электрокаталитических свойств, а также пространственной организации белковой молекулы, её каталитического центра. Установление структурно-функциональной взаимосвязи является чрезвычайно актуальным для понимания принципов организации и функционирования медьсодержащих оксидаз. Лакказы из различных источников интенсивно исследовались биохимическими, спектроскопическими и физико-химическими методами. Для установления механизма действия фермента и взаимосвязи структурных данных с каталитическими свойствами необходимы именно и рентгеноструктурные исследования лакказ из различных источников как в нативной форме , так и их комплексов с функционально-важными псевдосубстратами, субстратами, ингибиторами. Анализ квазимолекулярного взаимодействия фермента в её нативной и различных модифицированных состояниях возможен лишь на основе кинетических свойств и данных о пространственной структуре при атомном разрешении.

1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Полимедные голубые белки

Голубые" медьсодержащие белки (полимедные голубые белки, ПМГБ) являются полидоменными белками, использующими уникальное окислительно-восстановительное свойство иона меди [6]. Существует множество ПМГБ, которые условно можно разбить на три различные группы, отличающиеся организацией их доменов и функциями: (1) азот-редукразный тип с двумя доменами, (и) лакказоподобные ферменты с тремя доменами и (ш) церулоплазминоподобные - с шестью доменами. Объединенные вместе вторая и третья группы обычно называются "полимедными" оксидазами (полимедные оксидазы, ПМО).

Термин «полимедные голубые белки» (ПМГБ) используется для группы ферментов, включающих нитритредуктазы и полимедные оксидазы (ПМО). ПМГБ состоят из тандема повторяющихся аналогичных по своей последовательности доменов, которые в некоторых аспектах гомологичны однодоменным белкам купредоксинового ряда, к которым относятся пластоцианин, азурин, псевдоазурин, рустицианин, стеллацианин и амицианин. Домен, пространственная организация которого напоминает купредоксин, обычно содержит в себе медьсвязывающий центр 1 типа, который обуславливает характерный синий цвет данных белков, поэтому однодоменные белки купредоксинового ряда и ПМГБ белки часто и называют "голубыми" медьсодержащими белками, а купредоксиновый домен называется "голубым" медьсвязывающим доменом (ВСВ). Семейство ВСВ доменов имеет большое количество достаточно разнообразных гомологий [7], выражающихся в сходстве последовательностей (по меньшей мере 10%-ная идентичность последовательностей), в то время как полная структурная укладка домена, состоящего из восьми бета-лент, как правило, стабильна.

Похожие диссертационные работы по специальности «Кристаллография, физика кристаллов», 01.04.18 шифр ВАК

Заключение диссертации по теме «Кристаллография, физика кристаллов», Ляшенко, Андрей Владимирович

ВЫВОДЫ

1. Получены высокогомогенные препараты лакказ Coriolus zonatus и Cerrería maxima с чистотой соответственно 90-93% с использованием модифицированной методики очистки. Гомогенность полученных препаратов оценивалась по электрофореграммам.

2. Отработана методика кристаллизации, выращены высокосовершенные кристаллы, пригодные для рентгеноструктурного анализа. Получены наборы рентгенодифракционных данных на синхротронном излучении с разрешением 2.6 и 1.9Á для лакказ Coriolus zonatus и Cerrena maxima соответственно при температуре 100К.

3. Решена и уточнена пространственная структура лакказы Coriolus zonatus с разрешением 2.6Á. Пространственная структура лакказы Coriolus zonatus характеризуется значениями: R-фактора 21.3% и Rfree 23.8% и 0.008Á R.M.S.D. длин связей и 1.18° R.M.S.D. валентных углов в случае 2.6Á соответственно.

4. Решена и уточнена атомная структура лакказы Cerrena maxima с разрешением 1.9Á. Окончательная структура, уточненная в области разрешения 20-1.9 Á, соответствовала значениям Rfact и Rfree 0.1919 и 0.2383 и 0.006Á R.M.S.D. длин связей и 1.069° R.M.S.D. валентных углов.

5. На основании решенных нами пространственных структур лакказ Coriolus zonatus и Cerrena maxima впервые определены их первичные структуры.

6. Установлена пространственная организация активных центров лакказ Coriolus zonatus и Cerrena maxima. Показано наличие моноядерного и трехядерного медных кластеров, составляющих активный центр. Трехядерный медный кластер состоит из ионов меди двух типов. На картах электронной плотности активного центра локализованы 4 атома

Cu. В структуре трехъядерного медного кластера лакказ найдено два кислородных лиганда (молекулы воды), один из которых связан с атомом Си(4) типа Т2, а другой является мостиковым между Си(2) и Си(3).

7. Локализованы два водных канала, обеспечивающие доступ к трехъядерному центру. Внутри этих каналов обнаружены молекулы воды, образующие многочисленные водородные связи (в пределах 2.5 -3.2 Á и 2.53 -3.19 Á для лакказ Cerrena maxima и Coriolus zonatus соответственно) или между собой, или с аминокислотными остатками, формирующими стенки канала. Первый канал обеспечивает доступ молекул кислорода с поверхности белковой молекулы к ионам меди ТЗ- типа. Второй канал служит для транспорта молекул воды от Т2-центра на поверхность белка. Молекулы воды, размещенные в первом канале, связаны между собой водородными связями, образуя цепочку.

8. Локализована обширная система карбогидратов, образующая сеть водородных связей с атомами основной цепи и атомами боковых радикалов белковой молекулы или непосредственно, или через молекулы воды. Образуемые водородные связи являются как внутримолекулярными, так и межмолекулярными; последние образуются между независимой молкекулой и молекулой, размноженной оператором симметрии -х, !4+у, Уг-ъ и вектором трансляции 1-10. Таким образом, описанная система гликозидных остатков, связанная с Asn54, во-первых, жестко присоединяется к поверхности белковой молекулы, а во-вторых, связана с соседними белковыми молекулами в кристаллической ячейке, что, вероятно, важно для кристаллизации.

9. В случае лакказы С. maxima для остатков Туг 196 и Туг372 в орто-положениях обнаружена избыточная электронная плотность в тирозиновых циклах. Этот участок электронной плотности принят за N02-rpynny. В исследованной нами лакказе С. zonatus не найдено ни одного остатка тирозина, имеющего М02-заместитель в тирозиновом цикле.

Список литературы диссертационного исследования кандидат химических наук Ляшенко, Андрей Владимирович, 2006 год

1. McMillin D.R., Eggleston М.К. I I Multi-Copper Oxidases / Ed. Messerschmidt A. (World Scientific Publishing Co. Pte. Ltd). 1997. Chap. 5. P. 129.

2. Reinhammar B. // Copper Proteins and Copper Enzymes / Ed. Lontie R. (CRC Press, Boca Raton, Florida): 1984. V. 3. P. 1.

3. Yaropolov A.I., Skorobogat'ko O.V., Vartanov S.S., Varfolomeev S.D. // Appl. Biochem. Biotech. 1994. V.49.1 3. P.257.

4. Shleev S., Tkac J., Christenson A., Ruzgas Т., Yaropolov A., Whittaker J., Gorton L. Direct electron transfer between copper containing proteins and electrodes. Biosensors and Bioelectronics, 2005, 20(12), 2517-2554.

5. Messerschmidt A. (ed) (1997) Multi-Copper Oxidases. World Scientific, Singapore

6. Nersissian A.M., Shipp E.L. 2002. Blue copper-binding domains. // Adv. Prot. Chem. V.60.Pp.271-340.

7. Messerschmidt A., Huber R., Poulos T. and Wieghardt K.(eds) (2001) Handbook of Metalloproteins, vol. 2,Wiley, New York.

8. Winge D. J. (2002) Copper metalloregulation of gene expression. Adv. Prot. Chem. 60: 51-92.

9. Voskoboinik I., Camakaris J. and Mercer J. F. B. (2002) Understanding the mechanism and function of copper P-type ATPases.Adv. Prot. Chem. 60: 123-150.

10. Band L. and Rosato A. (2003) Structural genomics of proteins involved in copper homeostasis. Acc. Chem. Res. 36:215-221.

11. Lu Z. H. and Solioz M. (2002) Bacterial copper transport. Adv. Prot. Chem. 60: 93-122.

12. Finney L. A. and O'Halloran T. V. (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300: 931936.

13. Rensing C. and Grass G. (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol.Rev. 27: 197— 213.

14. Solioz M. and Stoyanov J. V. (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol. Rev. 27: 183-195.

15. Cavet J. S., Borrelly G. P. and Robinson N. J. (2003) Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol. Rev. 27: 165-181.

16. De Freitas J., Wintz H., Kim J. H., Poynton H., Fox T. and Vulpe C. (2003) Yeast, a model organism for iron and copper metabolism studies. Biometals 16: 185-197.

17. Бойченко E.A. (1987) Изв. АН СССР, Сер. биол., №2, c.237-244.

18. Frieden E. (1974) In: Protein-Metal Interact, v.48, Friedman M. ed., Plenum, N.Y.-London, p. 1-31.20.0chiai E.I. (1983) BioSystems, v. 16, №2, p.81-86.

19. Ryden L. G. and Hunt L. T. (1993) Evolution of protein complexity: the blue copper-containing oxidases and related proteins. J. Mol. Evol. 36: 4166.

20. Adman E. T. and Murphy M. E. P. (2001) Copper nitrite reductase. In: Handbook of Metalloproteins, vol. 2, pp. 1381-1390, Messerschmidt A., Huber R., Poulos T. and Wieghardt K. (eds), Wiley, Ltd, New York.

21. K. Nakamura and N. Go, Function and molecular evolution of multicopper blue proteins.

22. Nakamura K., Kawabata T., Yura K. and Go N. (2003) Novel types of two-domain multi-copper oxidases: possible missing links in the evolution. FEBS Lett. 553: 239-244.

23. Kawabata T. and Nishikawa K. (2000) Protein structure comparison using the Markov transition model of evolution. Proteins 41: 108-122.

24. Solomon E. L, Sundaram U. M. and Machonkin T. E. (1996) Multicopper oxidases and oxygenases. Chem. Rev. 96: 2563- 2606.

25. Solomon E. I., Szilagyi R. K., DeBeer George S. and Basumallick L. (2004) Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. Chem. Rev. 104: 419-458.

26. Alexandre G. and Zhulin I. B. (2000) Laccases are widespread in bacteria. Trends Biotechnol. 18: 41-42.

27. Claus H. (2004) Laccases: structure, reactions, distribution. Micron 35: 9396.

28. Claus H. (2003) Laccases and their occurrence in prokaryotes. Arch. Microbiol. 179: 145-150.

29. Suzuki T., Endo K., Ito M., Tsujibo H., Miyamoto K. and Inamori Y. (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci. Biotechnol. Biochem. 67: 2167-2175.

30. Xu F., Berka R. M., Wahleithner J. A., Nelson B. A., Shuster J. R., Brown S. H. et al. (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem. J. 334: 63-70.

31. Cherry J. R. and Fidantsef A. L. (2003) Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14: 438-443.

32. Ruijssenaars H. J. and Hartmans S. (2004) A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl. Microbiol. Biotechnol. 65: 177-182.

33. Hoegger P. J., Navarro-Gonzalez M., Kilaru S., Hoffmann M.,Westbrook E. D. and Kues U. (2004) The laccase gene family in Coprinopsis cinerea (Coprinus cinereus). Curr. Genet. 45: 9-18.

34. Palmieri G., Giardina P., Bianco C., Scaloni A., Capasso A. and Sannia G. (1997) A novel white laccase from Pleurotus ostreatus. J. Biol. Chem. 272: 31301-31307.

35. Min K. L., Kim Y. H., Kim Y. W., Jung H. S. and Hah Y. C. (2001) Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Arch. Biochem. Biophys. 392: 279-286.

36. Chen S., Ge W. and Buswell J. A. (2004) Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea. Eur. J. Biochem. 271: 318-328.

37. Binnington K. C. and Barrett F. M. (1988) Ultrastructural localization of phenoloxidases in cuticle and haemopoietic tissue of the blowfly Lucilia cuprina. Tissue Cell 20: 405^119.

38. Sugumaran M., Giglio L., Kundzicz H., Saul S. and Semensi V. (1992) Studies on the enzymes involved in puparial cuticle sclerotization in Drosophila melanogaster. Arch. Insect Biochem. Physiol. 19: 271-283.

39. Sugumaran M. and Nellaiappan K. (1990) On the latency and nature of phenoloxidase present in the left colleterial gland of the cockroach Periplaneta americana. Arch. Insect Biochem. Physiol. 15: 165-181.

40. Ng T. B. and Wang H. X. (2004) A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius. Biochem. Biophys. Res. Commun. 313: 37-41.

41. Wang H. X. and Ng T. B. (2004) Purification of a novel lowmolecular- mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochem. Biophys. Res. Commun. 315: 450-454.

42. Wang H. X. and Ng T. B. (in press) Purification of a dimeric laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl. Microbiol. Biotechnol.

43. Fahracus. G. and Ljunggren, II., Monophenolase and polyphenolase activity of fungal laccase, Biochim. Biophys. Acta. 54. 192. 1961.

44. Benfield, G., Bocks, S. M., Bromley, K., and Brown, B. R., Studies of fungal and plant laccases. Phytochemistry. 3. 79. 1964.

45. Mayer, A. M. and Harel, E., A laccase- like enzyme in peaches. Phytochenistry. 7. 1253. 1968.

46. Gregory, R. P. F. and Bendall. D. S., The purification and some properties of the polyphenol oxidase from tea (Camellia sinensis L.) Biochem, J., 101. 569. 401.

47. Yoshida, H., Zur Chemie des Urushi- Firniss, J. Chem. Soc. (Tokyo). 43. 472. 1883.

48. Bertrand, G., Sur le latex de l'arbre a laque. C. R. Herd. Acad. Sci. (Paris). 118. 1215.1894.

49. Keilin, D. and Mann, T., Laccase, a blue copper- protein oxidase from the latex of Rhus succedanea. Nature (London). 143. 23. 1939.

50. Tissieres, A., Reconstruction of laccase from its protein and copper. Nature (London). 162. 340. 1948.

51. Fahraeus, G., Tullander. V., and Ljunggren, H., Production of high laccase yields in cultures of fungi. Physiol. Plant., 11. 631. 1958.

52. Leonowiez, A., Troyanowski, J., and Orliez, B., Induction of laccase in Basidiomycetes. Appartent activity of the inducible and constitutive forms of the enzyme with phenolic substrates. Acta Biochim. Pol. 25. 369. 1978.

53. Frochner, S. C. and Eriksson, K.-E., Induction of Neurospora crassa laccase with protein sintesis inhibitors, J. Bacterid., 120. 450. 1974.

54. Esser, K., Die Phenoloxydasen des Ascomyceten Podospora anserine. I. Die Identifizierung von Laccase und Tyrosinase beim Wildstamm. Arch. Microbiol., 46. 217. 1963.

55. Law, D. J. and Timberlake, W. E., Developmental regulation of laccase levels in Aspergillus nidulans. J. Bacterid., 144. 509.1980.

56. Frochner, S. C. and Eriksson, K.-E., Induction of Neurospora crassa laccase with protein sintesis inhibitors, J. Bacteriol., 120.450.1974.

57. Kirk, T. K., Effects of microorganisms on lignin, Annu. Rev. Phytopatol., 9. 185. 1971.

58. Ander, P. and Eriksson, K.-e., The importance of phenol oxidase activity in lignin degradation by the white- rot fungus Sporotrishum pulverulentum. Arch. Microbiol., 109. 1. 1976.

59. Kirk, T. K., Harkin, J. M., and Cowling, E. B., Degradation of the lignin model compound synngyl-glycol-P- guaiacyl ether by Polyporus versicolor and Stereum frustulatum. Biochim. Biophys. Acta. 165. 145. 1968.

60. Lindqvist, I. and Lindqvist, Y., On the formation of humic acids by oxidation of phenolic compounds, Lantbrukshogskolans Ann. (Sweden). 35. 815. 1969.

61. Fahraeus, G., Tullander. V., and Ljunggren, H., Production of high laccase yields in cultures of fungi. Physiol. Plant., 11. 631. 1958.

62. Frochner, S. C. and Eriksson, K.-E., Induction of Neurospora crassa laccase with protein sintesis inhibitors, J. Bacteriol., 120.450. 1974.

63. Leonowiez, A. and Trojanowski, J., Induction of laccase by ferulic acid in Basidiomycetes, Acta Biochim. Pol. 22. 291. 1975.

64. Fahraeus, G., Tullander. V., and Ljunggren, H., Production of high laccase yields in cultures of fungi. Physiol. Plant., 11. 631. 1958.Frochner, S. C. and

65. Eriksson, K.-E., Induction of Neurospora crassa laccase with protein sintesis inhibitors, J. Bacterid., 120. 450. 1974.

66. Bertrand, G., Sur le latex de l'arbre a laque. C. R. Herd. Acad. Sci. (Paris). 118. 1215. 1894.

67. Keilin, D. and Mann, T., Laccase, a blue copper- protein oxidase from the latex of Rhus succedanea. Nature (London). 143. 23. 1939.

68. Tissieres, A., Reconstruction of laccase from its protein and copper. Nature (London). 162. 340. 1948).

69. Berch. K., Deimun. J., and Reinhammar, B., The state of copper in Neurospora laccase. Biochim. Biophys. Acta. 534. 7. 1978.

70. Frochner. S. C. and Eriksson. K.- E., Purification and properties of Neurospora crassa laccase. 120.458. 1974.

71. Mosbach. R., purification and some properties of laccase from Polyporus versicolor, Biochim. Biophys. Acta. 73. 204. 1963.

72. Jonsson. M., Petersson. E., and Reinhammar. B., Isoelectric fractionation, analysis and characterization of ampholytes in natural pH gradients. VII. The isoelectric spectra of iungal laccase A and B. Acta Chem. Scand. 22. 2135. 1968.

73. Briving, C., Fungal Laccase B. Studies on Molecular Properties. Primary Structure and Chemical Modifications. Ph. D. thesis. University of Goteborg. Goteborg. Sweden. 1975.

74. Molitoris. II. P., Die Laccasen des Ascomyceeten anserine, in Bibliotheca Mycologica. Vol. 52. Cramer. J., Gantner Verlag. Vaduz. 1976.

75. Nakamura, T., Purification and physico- chemical properties of laccase, Biochim. Biophys. Acta. 30. 44. 1958.

76. Briving, C., Fungal Laccase B. Studies on Molecular Properties. Primary Structure and Chemical Modifications. Ph. D. thesis. University of Goteborg. Goteborg. Sweden. 1975.

77. Reinhammar, B., Purification and properties of laccase and stellacyanin from Rhus vernicifera, Biochim Biophys. Acta. 205. 35. 1970.

78. Nakamura, T., Purification and physico- chemical properties of laccase, Biochim. Biophys. Acta. 30. 44. 1958.

79. Blumberg. W. E., Levine. W. G., Margolis, S., and Peisach. J., On the nature of copper in two proteins obtained from Rhus vernicifera latex. Biochem. Biophys. Res. Commun. 15. 277. 1964.

80. Broman. L., Malmstorm. B. G., Aasa, R., and Vanngard. T., Quantitative electron spin resonance studies on native and denatured ceruliplasmin and laccase. J. Mol. Biol., 5. 301. 1962.

81. Ehrenberg, A., Malmstorm, B. G., Broman, L., and Mosbach. R., A magnetic scsceptibility of copper valence in ceruloplasmin and laccase. J. Mol. Biol. 5. 450. 1962.

82. Nakamura, T., Ikal, A., and Ogura. Y., The nature of copper in Rhus vernicifera laccase. J. Biochem. (Tokyo) 57. 808. 1965.

83. Reinhammar, B. and Oda, Y., spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper. J. Inorg. Biochem., 11. 115. 1979.

84. Malkin. R., Malmstrom B. G., and Vanngard, T., The reversible removal of one specific copper (II) from fungal laccase. Eur. J. Biochem. 7.253. 1969.

85. Malkin. R. and Malmstorm, B, G., The state and function of copper in biological systems. Adv. Enzymol. 33. 177. 1970.

86. Katoh, S., Shiratori, L., and Takamiya, A., Purification and some properties of spinach plastocyanin. .Biochem. Okyo. 51. 32. 1962.

87. Solomon, E. L., Hare, J. W., and Gray, H. B., Spectroscopis studies and structural model for blue copper centers in proteins. Proc. Natl.Acad. Sci. U.S.A. 73. 1389. 1976.

88. Falk, K.- E. and Reinhammar, B., Visible and near- infrared circular dichroism of some blue copper proteins, Biochem. Biophys. Acta. 285. 84. 1972.

89. Dooley. D. M., Rawlings, J., Dawson, J. H., Stephens, P. J., Andreasson, L.- E., Malmstrom. B. G., and Gray. H. B., Spectroscopic studies of Rhus vernicifera laccase. Electronic structures of the copper sites. J. Am. Chem. Soc., 101.5038.1979).

90. Miskowski, V., Tang, S.- P. W., Spiro, Th. G., Shapiro, E., and Moss, T. H., The copper coordination group in "blue" copper proteins: evidence from resonance Raman spectra. Biochemistry. 14. 1244. 1975.

91. Larrabee, J. A., Woorlery, G., Reinhammar. B., and Spiro, Th., Resonance Raman spectra of blue copper proteins: azurin, stellacyanin and tree and fungal laccase. Submitted).

92. Colman. P. M., Freeman II. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M., and Veniatappa, M. P., X- ray crystal structure analysis of plastocyanin at 2.7 A resolution. Nature (London). 272. 319. 1978.

93. Adman, E. T., Stenkamp. R. E., Sieker, L. C. and Jensen, L. II, A crystallographic model for azurin at 3 A resolution. J. Mol. Biol., 123. 35. 1978.

94. Malmstrom, B. G., Reinhammar, B., and Vanngard, T., Two forms of copper (II) in fungal laccase. Biochim. Biophys. Acta. 156. 67. 1968).

95. Nakamura, T., Magnetic susceptibility of oxidized and reduced laccase. Biochim. Biophys. Acta. 30. 640. 1958.

96. Nakamura, T. and Ogura, Y., The state of copper in Rhus laccase as compared with those in other copper complexes. J. Biochem. (Tokyo). 59. 449. 1966.

97. Petersson, L., Angstrom, J. and Ehrenberg, A., Magnetic susceptibility of laccases and ceruloplasmin. Biochim. Biophys. Acta. 526. 311. 1978.

98. Dooley, D. M., Scott, R. A., Ellinghaus, J., Solomon, E. I., and Gray, H. B., Magnetic susceptibility studies of laccase and ceruloplasmin, Proc. Natl. Acad. Sci. U.S.A., 75. 3019. 1978.

99. Fee, J. A., Malkin, R., Malmstrom, B. G., and Vanngard, T., Anaerobic oxidation- reduction titration of fungal laccase. Evidence for several high potential electron- accepting sites. J. Biol. Chem. 244. 4200. 1969.

100. Fee J. A. and Malmstrom, B. G., The redox potential of fungal laccase, Biochim. Biophys. Acta. 153. 299. 1968.

101. Malkin, R., Malmstrom, B. G. and Vanngard, T., Spectroscopic differentiation of the electron- accepting sites in fungal laccase. Association of a near ultraviolet band with a two electron- accepting unit. Eur. J. Biochem. 10. 324. 1969.

102. Reinhammar, B. R. M., Oxidation- reduction potentials of the electron acceptors in laccases and stellacyanin. Biochim. Biophys. Acta. 275. 245. 1972.

103. Reinhammar, B. R. M. and Vanngard, T. I., The electron accepting sites in Rhus vernicifera laccase as studied by anaerobic oxidation- reduction titrations. Eur. J. Biochem. 18. 463. 1971.

104. Eicman, N. C., Solomon, E. I., Larrabee, J. A., Spiro, Th. G., and Lerch, K., Ultraviolet resonance Raman study of oxytyrosinase. Comparison with oxyhemocyanins. J. Am. Chem. Soc. 100. 6529. 1978.

105. Makino, N., McMahill, P., Mason, H. S., and Moss, T. H., The oxidation state of copper in resting tyrosinase. J. Biol. Chem. 249. 6062. 1974.

106. Holwerda, R. A. and Gray, H. B., Mechanistic studies of Rhus vernicifera laccase by hydroquinone. J. Am. Chem. Soc. 98. 6008. 1976.

107. McPherson A. A bit of advice on crystallizing proteins. The book: Protein crystallization. Techniques, strategies, and tips. A laboratory manual. Edited by T.M. Bergfors. International University Line, La Jolla, California, 1999,306 р.

108. Chernov A.A. Protein crystals and their growth. J. Struct. Biol. 2003. V.142, pp. 3-21.

109. McPherson A. Introduction to protein crystallization. Methods. 2004, V.34, pp. 254-265.

110. Dobler M., Dover S.D., Laves K., Binder A., Zuber H. Crystallization and preliminary crystal data of C-phycocyanin. J. Mol. Biol. 1972, V.71, pp. 785-787.

111. Jancarik J., Kim S.H. Sparse Matrix Sampling, a screening method for crystallization of proteins. J. Appl. Cryst. 1991, V.24, pp. 409 -411.

112. Chayen, Shaw Steward P.D., Maeder D.L., Blow D.M. An automated system for microbatch protein crystallization and screening. J. Appl. Cryst., 1990, V.23, pp. 297 302.

113. Baldock P., Mills V., Shaw Steward P. Increasing the number of crystallization conditions by using microbatch screening. The Sixth Internetional Conference on Crystallization of Biological Macromolecules, Collected Abstracts, 1995, 114 p.

114. Гарбер М.Б. Подготовка белков к рентгеноструктурному анализу. Успехи современной биологии, 1978, Т.86, вып. №3, с. 432 446.

115. Zeppenzauer М., Ekiund Н., Zeppenzauer Е. Microdiffusion cells for the growth of single protein crystals by means of equilibrium dialysis. J. Arch. Biochem. Biophvs. 1968, V.126, pp. 564 568.

116. Ducruix A., Giege R. (ed.) Crystallization of Nucleic Acids and Proteins. A Practical Approach, Oxford Univ, Press, N.Y., 1992.

117. Thomas D.H., Rob A., Rice D.W. A novel dialysis procedure for the crystallization of proteins. J. Prot. Engineering. 1989, V.2, pp. 489 491.

118. Hampel A., Labananskas M., Conners P.G., Kirkegard L., RajBhandary U.L., Sigler P.B., Bock R.M. Single crystals of transfer RNA from formylmethionine and phenylalanine transfer RNAs. J. Science. 1968, V. 162, pp. 1384-1387.

119. Davies D., Segal D. Protein crystallization: microtechniques involving vapor diffusion. J. Methods Enzymol. 1971, V.22, pp. 266-269.

120. Givargizov E.I. Oriented crystallization on amorphous substrates plenum. NY., 1990.

121. Feigelson R.S. The relevance of small molecule crystal growth theories and techniques to the growth of biological macromolecules. J. Crystal Growth. 1988, V.90, pp. 1-13.

122. McPherson A. The use of heterogeneous and epitaxial nucleants to promote the growth of protein crystals. J. Crystal Growth. 1988, V.90, pp. 47-50.

123. Givargizov E.I., Kliya M.O., Melik-Adamvan V.R., Grebenko A.I. Artificial epitaxy (graphoepitaxy) of proteins. J. Crystal Growth. 1991, V.l 12, pp. 758-772.

124. Provost K., Robert M.C. Application of gel growth to hanging drop technique. J. Crystal Growth. 1991, V.l 10, pp.258-264.

125. Litke W., John C. Protein crystal growth under microgravity. J. Science. 1984, V.225, pp. 203-208.

126. DeLucas L.J., Smith H.W., Vijay-Kumar S., Senadhi S.E., Ealick S.E., Carter D.C. et al. Protein crystal growth in microgravity. J. Science. 1989, V.246, pp. 651 -654.

127. Траханов С.Д., Гребенко А.И., Широков B.A., Гудков A.B., Егоров

128. A.B., Бармнн И.В., Ваинштейн Б.К., Спирин A.C. Кристаллизация белков и рибосомных частиц в условиях микрогравитации. Доклады АН СССР, 1989, Т. 305, вып. №5, с. 1128- 1132.

129. Vahedi-Faridi A., Porta J., Borgstahl G.E. Improved three-dimensional growth of manganese superoxide dismutase crystals on the International Space Station. J. Acta Crystallogr. 2003, D59, pp. 385 388.

130. Mikhailov A.M., Smirnova E.A., Tsuprun V.L., Tagunova I.V., Vainshtein

131. B.K., Linkova E.V., Komissarov A.A., Siprashvili Z.Z., Mironov A.S. Isolation, crystallization in the macrogravitation field, preliminary X-ray investigation of uridine phosphorylase from Escherichia coli К-12. J. Biochem. Int. 1992, V.26, pp. 607-615.

132. Salemme F.R. A free interface diffusion technique for crystallization of protein for X-ray crystallography. J. Arch. Biochem. Biophys. 1972, V. 151, pp. 533-539.

133. Бландел Т., Джонсон JI. Кристаллография белка. "Мир", М. 1979, 576 с.

134. McPherson A. Crystallization of protein by variation of pH or temperature. In: Methods in Enzymology, ed. Wyskoff H.W, Acad. Press, N.Y., 1985, V.114, pp. 125-127.

135. P.J. Loll, A Tretiakova, F. Soderblom, Acta Crystallogr. D 59 (2003) 1114-1116.

136. J.P. Allen, G. Feher, Proc. Natl. Acad. Sci. USA 81 (1984) 4795-4799.

137. T. Tsukihara, H. Aoyama. E. Yamashita, T. Tomizaki. H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima. R Yaono, S. Yoshikawa, in: Tenth Symposium of the Protein Society, vol 5 (Supplement), San Jose, CA, p. 59, 1996.

138. R.G. Laughlin, The Aqueous Phase Behavior of Surfactants, Academic Press, London, 1994.

139. L. Song, J.E. Gouaux, Methods Enzymol. 276 (1997) 60-74.

140. P.J. Loll, M. Allaman, J. Wiencek, J. Crystal Growth 232 (2001) 432-438.

141. M.C. Wiener, C.F. Snook, J. Crystal Growth 232 (2001) 426-431.

142. H. Michel, Trends Biol. Sci. 8 (1983) 56-59.

143. H. Sui, B.-G. Han, J.K. Lee, P. Walian, B.K. Jap, Nature 414 (2001) 872878.

144. R. Putzler, E.B. Campbell, R. MacKinnon, Science 300 (2003) 108-112.

145. E.M. Landau, J.P. Rosenbusch, Proc. Natl. Acad. Sci. USA 93 (1996) 14532-14535.

146. Zuk W.M., Ward K.B. Methods of analysis of protein crystal images. J. Crystal Growth. 1991, V.l 10, pp.148-155.

147. Rubin В., Talafous J., Larson D. Minimal intervention robotic protein crystallization. J. Crystal Growth. 1991, V.l 10, pp. 156-163.

148. Wilson L., Bray Т., Suddath F. Crystallization of proteins by dinamic control of evaporation. J. Crystal Growth. 1991, V.l 10, pp. 142-147.

149. Smith H.W., DeLucas LJ. A method for programmable control of reservoir concentrations for protein crystal growth. J. Crystal Growth. 1991, V.110, pp. 137-141.

150. Kelders H., Kalk K., Gros P., Hoi W. Automated protein crystallization and a new-crystal form of a subtilisin: eglin complex. J. Protein Eng. 1987, V.l,pp.301 -303.

151. Brunger A.T. (1997) Patterson Correlation Searches and Refinement. In Methods in Enzymology, 276, 558-580, Academic Press.

152. Konnert,J.H. (1976) A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units. Acta Cryst., A32, 614617.

153. Hendrickson,W.A., Konnert,J.H. (1980) Incorporation of stereochemical information into crystallographic refinement. Intern.Winter School on Cryst.Computing, Bangalore, India.

154. Sussman,J.L., Holbrook.S.R., Church.G.M., Kim,S.-H. (1977) A structure-factor least-square refinement procedure for macromolecular structures using constrained and restrained parameters. Acta Cryst., A33, 800-804.

155. Sussman,J.L. (1985) Constrained-resntained least-squares (CORELS) refinement of proteins and nucleic acids. In Methods in Enzymology, 115, 271-303, Academic Press.

156. G.Jack,A., Levitt,M. (1978) Refinement of large structures by simultaneous minimization of energy and R factor. Acta Cryst., A34, 931935.

157. Agarwal,R.C. (1978) A new least-square refinement technique based on the fast Fourier transforn algorithm. Acta Cryst., A34, 791-809.

158. Brunger,A.T., Kuriyn.J., Karplus,M. (1987) Crystallographic R factor refinement by molecular dynamics. Science, 235,458-460.

159. Brunger,A.T., Karplus.M., Petsko,G.A. (1989) Crystallographic refinement' by simulated annealing: application to crambin. Acta Cryst., A45, 51-61.

160. Kuriyn,J., Brunger,A.T., Karplus.M., (1989) X-ray refinement of protein structures by simulated annealing: test of method on myohemerythrin. Acta Cryst., A45, 396-409.

161. Brunger,A.T., Krukovski,A., Erickson,J.W. (1990) Slow-cooling protocol for crystallographic refinement by simulated annealing. Acta Cryst., A46, 585-593.

162. Jones,T.A., Zou.J.Y., Cowan,S.W., Kjeldgaard,M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst., A47,110-119.

163. Rossmann,M.G., Blow,D.M. (1963) Determination of phases by the conditions of non-crystallographic symmetry. Acta Cryst., 16,39-45.

164. Zhang,K.Y.J., Main,P. (1990) Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Cryst., A46,41-46.

165. Lunin,V.Yu., Urzhumtsev,A.G., Skovoroda,T.P. (1990) Direct low-resolution phasing from electron-density histograms in protein crystallography. Acta Cryst., A46, 540-544.

166. Lunin,V.Yu. (1993) Electron density histograms and the phase problem. Acta Cryst., D49,90-99.

167. Lunin,V.Yu., Skovoroda,T.P. (1991) Frequencies-restrained structure factor refinement. I. Histogram simulation. Acta Cryst., A47,45-52.

168. Lunin,V.Yu., Vernoslova,E.A. (1991) Frequencies-restrained structure factor refinement. II. Comparison of methods. Acta Cryst., A47,238-243.

169. Cowtan,K.D., Main,P. (1993) Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Cryst., D49, 148-157.

170. Jiang,J.-S., Brunger,A.T. (1994) Protein hydration observed by X-ray diffraction. J. Mol. Biol, 243, 100-115.

171. Roberts,A.L.U., Brunger,A.T. (1995) Phase improvement by cross-validation density modification. Acta Cryst., D51,990-1002.

172. Cowtan,K.D. (1994) DM\ An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM newsletter on protein crystallography, 31,34-38.

173. Collaboratiove Computational Project, Number 4. (1994), Acta Cryst., D50, 760-763.

174. Lunin,V.Yu., Skovoroda,T.P. (1995) R-free likelihood-based estimates of errors for phases calculated from atomic models. Acta Cryst., A51, 880887.

175. Lunin,V.Yu., Urzhumtsev.A.G. (1984) Improvement of protein phases by coarse model modification. Acta Cryst., A40,269-277.

176. Diamond,R. (1971) A real-space refinement procedure for proteins. Acta Cryst., All, 436-452.

177. G.Jack,A., Levitt,M. (1978) Refinement of large structures by simultaneous minimization of energy and R factor. Acta Cryst., A34, 931935.

178. Sussman,J.L., Holbrook.S.R., Church.G.M., Kim,S.-H. (1977) A structure-factor least-square refinement procedure for macromolecular structures using constrained and restrained parameters. Acta Cryst., A33, 800-804.

179. Agarwal,R.C. (1978) A new least-square refinement technique based on the fast Fourier transforn algorithm. Acta Cryst., A34, 791-809.

180. Isaacs,N.W., Agarwal.R.C. (1978) Experience with fast Fourier least-squares in the refinement of the crystal structure of rhombohedral 2-zinc insulin at 1.5A resolution. Acta Cryst., A34, 782-791.

181. Brunger A.T. (1992) X-PLOR, Version 3.1. A system for X-ray Crystallography andNMR. New Haven, CT: Yale University Press.

182. Sheldrick,G.M. (1976) SHELX86. Program for crystal structure determination. University of Gottingen, Federal Republic of Germany (Computer program).

183. Sheldrick,G.M. "SHELXS-86", Crystallographic computing 3, edited by G.M.Sheldrick, C.Kruger, R.Goddard, Oxford: Clarendon Press, p. 184189.

184. Sheldrick,G.M. (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst., A46,467-473.

185. Sheldrick,G.M, Schneider,T.R. (1997) SHELXL: high-resolution refinement. In Methods in Enzymology, 277, 319-343, Academic Press.

186. Morris, R.J., Zwart, P.H., Cohen, S., Fernandez, F.J., Kakaris, M., Kirillova, O., Vonrhein, C., Perrakis, A. & Lamzin, V.S. (2004) Breaking good resolutions with ARP/wARP. J. Synchr. Rad. 11, 56-59.

187. Dodson,E. (1995) Report of workshop on validation of macromolecular structures solved by X-ray analysis. Joint CCP4 and ESF-EACBM newsletter on protein crystallography. 31, 51-57.

188. Ramachandran,G.N., Ramakrishnan.C., Sasisekharan,V. (1963) J.Mol. Biol, 1,95-99.

189. Briinden,C.I., Jones.T.A. (1990) Between objectivity and subjectivity. Nature, 343, 687-689.

190. Kleywegt,G.J., Jones,T.A. (1995) "Braille for pugilists", Proceedings of the CCP4 Study Weekend, 6-7 January, p. 11-23.

191. Brunger A.T. (1992) X-PLOR, Version 3.1. A system for X-ray Crystallography and NMR. New Haven, CT: Yale University Press.

192. Brunger,A.T. (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature, 355,472-475.

193. Koroleva O.V., Pegasova T.V., Stepanova E.V. et al. Preliminary X-ray analysis of the laccase from Coriolus zonatus: HASYLAB Annual Report, Edited G. Falkenberg,U. Krell. J.R. Schneider, Jahresbericht. 2003. Part II.

194. Kabsch, W. International Tables for Crystallography. 2001. Vol. F, edited by M.G.Rossmann & E.Arnold, pp. 218-225. Dordrecht: Kluwer AcademicPublishers.

195. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26: 283-291.

196. Rodriguez R.,ChineaG., Lopez N. Et al.//CABIOS. 1984. № 14.P. 523.

197. Emsley, P. and Cowtan, KM Acta Ciyst. D. 2004. V.60. P.2126-2132.

198. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos.

199. Agostinelli E.A., Cervoni L., Morpurgo L. // J. Biochem.1995. V. 306. Pt.3.P. 697.

200. Solomon E.I., Sundaram U.M., Machonkin T.E. // Chem. Rev. 1996. V. 96. □ 7. P. 2563.1. БЛАГОДАРНОСТИ

201. Автор приносит глубокую благодарность:

202. Всему коллективу Лаборатории белковой кристаллографии Института кристаллографии имени A.B. Шубникова РАН за моральную поддержку.

203. Е.В. Степановой и A.B. Королевой из института биохимии имени А.Н. Баха РАН за предоставленную возможность и помощь при выделении и очистке белков;

204. W. Voelter, Ch. Betzel и B.C. Ламзину за предоставленную возможность работы на синхротронном источнике DEZY (Гамбург, Германия) и Качаловой Г.С. за помощь при получении наборов рентгенодифракционных интенсивностей;

205. Н.Е. Жухлистовой и А.Г. Габдулхакову за неоценимую помощь на всех этапах выполнения данной работы;

206. A.M. Михайлову за предложенную тему, руководство работой, неоценимую помощь и поддержку.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.