Влияние структуры мРНК на уровень экспрессии генов в Е coli тема диссертации и автореферата по ВАК РФ 03.00.03, кандидат химических наук Есипов, Роман Станиславович
- Специальность ВАК РФ03.00.03
- Количество страниц 126
Заключение диссертации по теме «Молекулярная биология», Есипов, Роман Станиславович
Выводы
1. Показано, что максимальный уровень экспрессии гена достигается в плазмидах, участки TIR которых характеризуются не только последовательностями вблизи инициирующего кодона ( в позиции до -30 н.), но и более отдаленным участком (до -60 н.), который влияет на уровень экспрессии, и что контакты мРНК с 30S частицей рибосомы на стадии образования инициаторного комплекса охватывают существенно больший район, чем это предполагалось ранее.
Проведен компьютерный анализ структур возможных сайтов связывания дистальной и проксимальной части последовательности mTIR с петлями 16S рРНК и выявлен ряд участков в дистальной части mTIR мРНК, способных к комплементарному взаимодействию.
Получены рекомбинантные плазмиды с синтетическими участками mTIR, комплементарными рассчитанным сайтам в 16S рРНК, обеспечивающие высокий уровень экспрессии гена.
2. Показано, что комплементарные взаимодействия TIR с удаленными участками кодирующей части мРНК непосредственно влияют на процесс трансляции. При этом эффективность комплементарных взаимодействий уменьшается с увеличением расстояния между взаимодействующими областями и районом RBS. Вторичная структура, образованная TIR и близко расположенным участком мРНК, оказывается более стабильной, несмотря на наличие в мРНК участков, способных образовывать энергетически более выгодные структуры с этими элементами.
3. Сконструирована серия плазмидных векторов, обладающих универсальной конструкцией для достижения высокого уровня экспрессии в Е. coli клонированных генов.
4. Осуществлен химико-ферментативный синтез и клонирование в Е. coli искусственных ДНК, кодирующих гены цепей А и В токсина эктатомина, антигенной детерминанты малярийного плазмодия, тетрамера окситоциноил-лизина.
5. Получены штаммы-продуценты, обеспечивающие высокий уровень продукции следующих рекомбинантных белков:
1ЬЗЕТОХ-А и 1ЬЗТОХ-В, представляющих собой гибриды человеческого интерлейкина-3 и цепей А и В токсина эктатомина; потенциальной искусственной противомалярийной вакцины 1ЬЗРРА, представляющей собой гибрид человеческого интерлейкина-3 и антигенной детерминанты малярийного плазмодия;
1ЬЗОХ4, представляющего собой гибрид 1Ч-концевого фрагмента человеческого интерлейкина-3 и тетрамера окситоциноил-лизина.
Благодарности
Автор благодарен А. Л. Каюшину и М. Д. Коростелевой за синтез олигонуклеотидов, К. А. Плужникову и Л. В. Шевченко за иммуноблоттинг рекомбинантных белков 1ЬЗЕТОХ-А и ГЬЗТОХ-В, М. А. Беловой за помощь при проведении экспериментов, И. В. Бони и В. Г. Коробко за плодотворные обсуждения.
1П0
Список литературы диссертационного исследования кандидат химических наук Есипов, Роман Станиславович, 1999 год
1. Ochoa S., Mazumder R., Polypeptide chain initiation., in: Enzymes (ed. Boyer P), Acad. Press, N. Y . (1974) p 1-52.
2. Gouy M, Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucl.Acids Res. (1982) v.10, 7055-7074.
3. Sharp P.M., Li W.-H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J.Mol.Evol. (1986) v.24, 28-30.
4. Sharp P.M., Li W.-H. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol.Biol.Evol. (1987) v.4, 222-230.
5. Shields X.C., Sharp P.M. Synonimous codon usage in Bacillus subtilis reflects both translational selection and mutational constraints. Nucl Acids Res. (1987) v.15, 8023-8040.
6. BulmerM. Are codon usage patterns in unicellular organisms determined by selection-mutation balance. J.Evol.Biol. (1988) v. 1, 15-26.
7. Post L.E., Strycharz G.D., Nomura M., Lewis H., Dennis P.P. Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit P in Escherichia coli. Proc.Natl.Acad.Sci. USA (1979) v.76, 1697-1701.
8. Sharp P.M., Devine K.M. Codon usage and gene expression level in Dictyostelium discoideum : highly expressed genes do «prefer» optiman codons. Nucl. Acids Res. (1989) v. 17, 5029-5039.
9. Grantham R., Gautier C., Gouy M. Codon frequences in 119 individual genes confirm consistent choices in degenerate bases according to genome type. Nucl.Acids Res. (1980) v. 8, 1893-1912.
10. Grantham R., Gautier C., Gouy M, Jacobzone M., Mercier R. Codoncatalog usage is a genome strategy modulated for gene expressivity.Nucl.Acids ^.(1981) v.9, 43-74.
11. Wang H., Omahony D.J., McConnel D.J., Qi S.Z. Optimization of thesynthesis of porcine somatotropin in Escherichia coli. Applied Microbiol Biotechnol. (1993) v. 39, 324-328.
12. Nassal M., Mogy Т., Kurnik S., Khorana H.G. Structure-finction studieson bacteriorhodopsin. J.Biol.Chem. (1987) v. 262, 9264-9270.
13. Ernst J. F., Kawashima E. Variation in codon usage are not correlated withheterologous gene expression in Saccharomyces cerevisiae and Eschericha coli. J.Bacteriol. (1988) v.7, 1-10.
14. Curland C.G. Codon bias and gene expression. Minirewiew. FEBS Lett.1991) v.285, 165-169.
15. Гурский Я.Г. Маримонт Н.Ю., Шевелев А.Я., Южаков А.А,
16. Бибилашвили Р.Ш. Редкие ко доны и экспрессия генов в Escherichia coll Мол.биол. (1992) т.26, 1063-1079.
17. Lang А., Fri.em.ert С., Gassen Н. G.On the role of the termination factor
18. RF2 and 16S RNA in protein synthesis. Eur. J. Biochem. (1989) v.180, 547-554
19. Brown C.M., Stockwell P. A., Trotman C.N.A., Tate W. P. The signal fortermination of protein synthesis in procariotes. Nucl. Acids ites\(1990) v.18, 2079-2086.
20. Freistroffer D.V., Pavlov M.Yu., MacDougall J., Buckingham R.H.,
21. Ehrenberg M. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO/.(1997) v.16, 4126-4133.
22. Bjornsson A., Mottagui-Tabar S., Jsaksson L.A. Structute of the Cterminal end of nascent peptide influences translation termination. EMBO J. (1996) v. 15, 1696-1704.
23. Lang F., Gualerzi C.,, McCarthy J.E.G. Ribosomal affinity and translationinitiation in Escherichia coll In vitro investigations using translation initiation regions of differing efficiences rfom the atp operon. J.Mol.Biol. (1989) v.210, 659-663.
24. Ellis S., Conway T.W. Initial velosity kinetic analysis of 30S initiationcomplex formation in an in vitro translational system derived from Escherichia coli. J.Biol.Chem. (1984) v.259, 7607-7614.
25. Sampson L.L., Hendrix R.W., Huang W.M., Casjens S.R. Translationinitiation controls the relative rates of expression of the bacteriophage X late genes. Proc.Natl.Acad.Sci.USA (1988) v.85, 5439-5443.
26. Ray P.H., Pearson ML. Functional inactivation of bacteriophage lambdamorphogenetic gene mRNA. Nature (1975) v.253, 647-650.
27. Witmann H.G. Structure, function and evolution of ribosome. Eur. J.
28. Biochem.(1916) v. 61, 1-9.
29. Dahlberg A.E. The functional role of ribosomal RNA in protein synthesis.
30. Cell (1989) v. 57, 525-529.
31. N oiler H.F. Ribosomal RNA and translation. Annu. Rev. Biochem. (1991)v. 60, 191-227.
32. Noller H.F., Woese C.R. Secondary structure of 16S ribosomal RNA.
33. Science (1992) v.212, 403-411.
34. Gutell R.R., Woese C.R. Higher order structural elements in ribosomal
35. RNAs pseudoknots and the use of noncanonical pairs. Proc.Natl.Acad.Sci.USA (1990) v.87, 663-667.
36. Brimacombe R. RNA-protein interactions in the Escherichia-coliribosome. Biochimie (1991) v.3, 927-936.
37. Malhotra A., Harvey S.C. A quantitative model of the Escherichia coli16S RNA in the 30S ribosomal subunit. J.Mol.Biol. (1994) v.240, 308340.
38. Lata K.R., Agrawal R.K., Penczek P., Grassucci R., Zhu J., Frank J. Three-dimentional reconstruction of the Escherichia coli 30S ribosomal subunit in ice. J.Mol.Biol. (1996) v.262, 43-52.
39. Eisenstein M., Sharon R., Berkovitch-Yellin Z., Gewitz H. S., Weinstein S.,
40. Pebay-Peyroula E., Roth M & Yonath A. The interplay between X-ray crystallography, neutron diffraction, image reconstraction, organo-metallic chemistry and biochemistry in structural studies of ribosomes. Biochimie (1991) v.73, 879-886.
41. Brimacombe R., Atmadja J., Stiege W. & Schuler D. A detailed model ofthe-dimentionalstructure of Escherichia coli 16S ribosomal RNA in situ in 30S subunit. J. Mol. Biol. (1988) v. 199, 115-136.
42. Moore, P. B. The ribosome returns. Nature (1988) 223-227
43. Tate W., Greuer B. & Brimacombe R. Codon recognition in polypeptidechain termination: site directed crosslinking of termination codon to Escherichia coli release factor 2. (1990) Nucl. Acids Res., v. 18, 65376544.
44. Dontsova O., Dokudovskaya S. Kopylov A., Bogdanov A., Rinke-Appel J.,
45. Junke N. & Brimacombe R. Three widely separated positions in the 16S RNA lie in or close to the ribosomal decoding region; a site-directed cross-linking study with mRNA analogues. EMBO J. (1992) v.l 1, 31053116.
46. Wollenzien P.L., Expert-Bezancon A. & Favre A. Sites of contact ofmessenger RNA with 16S rRNA ans 23S rRNA in the Escherichia coli. Biochemistry (1991) v. 30, 1788-1,795.
47. Olson H. M, Lasater L. S., Cann P. A. & Glitz D. G. Messeger RNAorientation on the ribosome. Placement by electron microscopy of antibody-complementary oligodeoxynucleotide complexes. J.Biol.Chem. (1988) v. 263, 15196-15204
48. Czworkowski J., Odom O. W. & Hadesty B. Fluorescence study of the topology of messenger RNA bound to the 30 S ribosomal subunit of Escherichia coli. Biochemistry (1991) v.30, 4821-4830.
49. Brimacombe R., Mitchell P., Obwald M, Stade K. & Bochkariov, D. Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEBJ. (1993) v. 7, 161-167.
50. Steitz J.A. Biological Regulation and Development. V.l: Gene Expression. Ed. R.F.Goldberger . N.Y. Plenum Press. 1979. P.349-399
51. Shine J., Dalgarno L. Determination of citron specificity in bacterial ribosone Nature (1975). v. 254, 34-38
52. Walz A., Pirotta V., Ineichen K. Lambda repressor regulates the switch between Pr and Prm promoters. Nature (1976) v.262, 665-669.
53. Galie D. R., Kado C. I. A translational enhancer derived from tobacco mosaic virus is functionally equvalent to Shine-Dalgarno sequence. Proc.Nat.Acad.Sci. USA. (1989) v. 86, 129-132.
54. Loechel S., Inamine J.M., Hu P.-C. A novel translational initiation region from Mycoplasma genitalium that functions in Escherichia coli. Nucl.Acids Res. (1991) v. 19, 6905-6911.
55. Falscher H.P., Geisen R.M., Fuchs E. Only one out of three strong ribosomal binding sites of the early region of bacteriophage T7 exhibits high translational efficiency in fragments of about 30 base pairs. Eur.J.Biochem. (1988) v. 175, 461-465
56. Olsen M.K., Rockenbach S.K., Curry К. A., Tomich C.-S. С. Enhancement of heterogous polypeptide expression by alternations in the ribosme-binding-site sequence. J. Biotechnol. (1989), v. 9, 179-190.
57. Cheynet V., Verrier В., Mallet F. Overexpression of HIV-1 proteins in Escherichia coli by a modified expression vectors and their one-step purification, Prot.Express.Purif. (1993) v.4, 367-372.
58. Schoner В. E., Belagaje R. M., Schoner R.G. Tranlation of synthetic two-cistron mRNA in Escherichia coli. Proc. Natl. Acad. Sei. USA. (1986) v.83, 8506-8510.
59. Еуревич A.M., Скапцова H.B., Луценко С.В., Смирнов В.А., Куркин А.Н., Ажаев A.B. Химико-ферментативный синтез усилителя трансляции гена 10 фага Т7 и функция элементов его структуры. Биоорган.химия (1991) т. 17, 647-652.
60. Царева Н.В., Музыченко М.Л., Бони И. В. Анализ вторичной струуктуры регуляторной области мРНК гена rpsA Escherichia coli Биоорган.химия (1993) т. 19, 968-976.
61. Mahajna J., Oppenheim A.B., Rattray A., Gottesman M. Translation initiation of bacteriophage lambda gene ell requires integration host factor.J.Bacteriol. (1986)v.l65, 167-174.
62. McCarthy J.E D. Shairer H.U., Sebald W. Translation initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation. EMBO ./.(1985) v.4, 519-526
63. McCarthy J.E. D., Sebald W., Gross G., Lammers R. Enhancement of translational efficiency by the Escherichia coli atpE translational initiation region: Its fusion with two human genes. Gene (1986) v.41, 201-206
64. Ol ins P. O., Devine C.S., Rangwala S.H., Kavka K.S. The T7 phage gene 10 leader RNA, a ribosomal-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene (1988) v.73, 227235
65. Suissa M., Altuvia S., Koby S., Giladi H., Oppenheim A. B. Translational signals of major head protein gene of bacteriophage lambda. Mol.Gen.Genet. (1988) v.214, 510-573.
66. Schauder B., McCarthy J. E. D., The role of bases upstream of the Shine-Dalgarno region and in the coding sequence in the control of gene expression in Escherichia coli: Translation and stability of mRNE invivo. Gene (1989) v.78, 59-72.
67. Olms P. O., Rangwala S. H. A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J.Biol Chem. (1989) v.264, 16973-16976.
68. Sprengart M. L., Fatscher H.P., Fuchs E. The initiation of translation in E.colv. apparent base pairing between the 16S rRNA and downsteam sequence of the mRNA. Nucl.Acids Res. (1990) v. 18, 1719-1723.
69. Gold L., Stormo G. Translation initiation. In: Escherichia coli and Salmonella typhimuruim. Edited by F.C.Neidhardt, J.L.Ingraham, K.B.Low, B.Magasanic, M.Schaechter, H.E.Umbarger. Cell.and Mol Biol., Vol.2. Washington (1987), 1302-1307.
70. Gold L., Stormo G., Saunders R. Escherichia coli translation initiation factor IF3: a unique case of translational regulation. Proc.Nat.Acad.Sci.USA (1984) v.81, 7061-7065.
71. Butler J.S., Springer M., Grunberg-Monago M. AUU-to-AUG mutation in the initiator codon of the translational initiation factor IF3 abolished translation autocontrol of its own gene (infC) in vivo. Proc Nat.Acad.Sci.USA (1987) v.84, 4022-4025.
72. Brombach M, Pon C.L. The unusal translational initiation codon AUU limits the exprassion of the infC (initiation factor IF3) gene of Escherichia coli. Mol.Gen.Genet.(\9S7) v.208, 94-100.
73. La Teana A., Falconi M., Pawlik R.T., Spurio R., Pon C.L., Gualerzi C.O. In: Post-Transcriptional Control of Gene Expression. Edited byus
74. J.E.G.McCarthy, M.F.Tuite. Springer-Verlag Berlin Heidelberg (1990), v. H49, 443-453.
75. Gualerzi C.O., Ron C.L. Initiation of mRNA translation in prokariotes. Biochemistry (1990) v.29, 5881-5889.
76. Reddy P., Peterkofsky A., McKenney K. Translational efficiency of Escherichia coll adenylate cyclase gene: mutating of the UUG initiation codon to GUG or AUG results in increased gene expression. Proc.Natl Acad.Sci.USA (1985) v.82, 5656-5660.
77. Kaplan R.,Apirion D. The involvement of ribonuclease 1, ribonuclease 2 and polynucleotide phosphorilase in the degradation of stable ribonucleic acid during carbon starvation in E.coli. J.Biol.Chem. (1974) v.249, 149151.
78. Kinscherf T.G., Apirion D. Polynucleotide phosphorilase can participate in decay of mRNA in E.coli in the absence of ribonuclease II. Mol.Gen.Genet. (1975) v.139, 357-362.
79. Gupta R.S., Schlessinger D. Differential models of chemical decay for early and late lambda messenger RNA. J.Mol.Biol. (1975) v.92, 311318.
80. Belasco J.G., Beatty J.T., Adams C., von Gabain A., Cohen S. Differential expression of photosynthesis genes in R.capsulata results from segmental différencies in stability within the polycistronic rxcA transcript. Cell (1985) v.40, 171-181.
81. Mott J.E.,Galloway J.L., Piatt T. Maturation of E.coli tryptophan operon mRNA: evidence for 3'-exonucleolytic processing after r/zo-dependent termination. EMBOJ. (1985) v.4, 1887-1891.
82. WongH.G., Chang S. Identification of a positive retroregulator that stabilizes mRNA m bacteria. Proc.Nat.Acad.Sci.USA (1986) v.83, 32333237.
83. Plamann M.D., Stauffer G. V. Escherichia coli. mRNA decay: The role of 3' secondary structure and the effects of pnp and rnb mutation?. Mol.Gen.Genet. (1990) v.220, 301-306.
84. Meyer B.J., Bartman A.E., Schottel J.L. Isolation of a mRNA instability sequence that is cis-dominant to the ompA stability determinant in Escherichia coll Gene (1996) v. 179, 263-270.
85. Cisneros B., Court D., Sanchez A., Montanez C. Point mutations in a transcription terminator, Xtl, that affect both transcription termination and RNA stability. Gene (1996) v. 181, 127-133.
86. Hirao /., Yoshizawa S., Miura K. Stabilization of mRNA in an Escherichia coli cell-free translation system. FEBS Lett. (1993) v.321, 169-172.
87. Khan I.M., Coulson J.M. A novel method to stabilize antisense oligonucleotides against exonuclease degradation. Nucl.Acids Res. (1993) v.21, 2957-2958.
88. Yamamoto T., Imamoto F. Differential stability of trp messenger RNA synthesized originating at the trp promoter and Pl-promoter of lambda trp phage. J.Mol.Biol (1975) v.92, 289-309.
89. Sandler P., Weisblum B. Erythromycin-induced stabilization of ermA messenger RNA in Staphylococcus aureus and Bacillus subtilis. J.Mol.Biol. (1988) v.203, 905-915.
90. Nilsson G., Belasco J., Cohen S., Gabain. Growth-rate dependent regulation of mRNA stability in Escherichia coli. Nature (1984) v.312, 75-77.
91. Emory S.A., Bouvet P., Belasco J.G. A 5'-terminal steam-loop structure can stabilize mRNA in E.coli. Genes and Development (1992) v.6, 135148.
92. Schlessinger D., Jacobs K., Gupta R., Kano Y., Imamoto F. Decay of individual E.coli messenger RNA molecules is sequentially ordered. J.Mol.Biol.(1911) v.l 10, 421-439.
93. Cannistraro V.J., Subbarao M.N., Kennel D. Specific endonucleolytic cleavage sites for decay of E.coli mRNA. J.Mol.Biol. (1986) v. 192, 257274.
94. Schmeissner U., McKenney K., Rosenberg M, Court D. Removal of a terminator structure by RNA processing regulates int gene expression. JMol.Biolf 1984) V.176-, 39-53.
95. Portier C.,Dondon L., Grunberg-Monago M., Regnier P. The first step in functional inactivation of the E.coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5'-end. EMBO J. (1987) v.6, 2165-2170.
96. Robertson H. E.coli ribonuclease III cleavage sites. Cell (1982) v.30, 669-672.
97. Mudd E.A., Krisch H.M., Higgins C.F. RNAse E, an endoribonuclease, has a general role in the chemical decay of Escherichia coli mRNA: evidence that me and ams are the same genetic locus. Molec.Microbiol. (1990) v.4, 2127-2135.
98. Lundberg U., von Gabain O. Cleavages in 5' region of ompA and bla mRNA control stability and a novel endoribonuclease. EMBO J. (1990) v.9, 2731-2741.
99. Hall M .N., Gabay J., Debarbouille M., Schwartz M.A. A role of the mRNA secondary structure in the control of translation initiation. Nature (1982) v.295, 616-618.
100. Coleman J., Inouye M., Nakamura K. Mutations upstream of the ribosome-binding site affect translational efficiency. J. Mol. Biol. (1985) v.181, 139-143.
101. Munson L. M., Stormo G.D., Niece R.L., Reznikoff W.A. LacZ translation initation mutations. J. Mol. Biol. (1984) v. 177, 663-683.
102. Wikstrom P.M., Bjork G.R. A regulatory element within of ribosomal protein operon of Escherichia coli negatively controls expression by decreasing thetranslational efficiency. Mol. Gen. Genet. (1989) v.219, 381-389.
103. Nivinskas R., Vaiskunaite R. and Raudonikiene A. Expression of Bacteriophage T4 gene 25 is regulated via RNA secondary structure in translational initiation region. J. Mol. Biol. (1993) v.230, 717-721.
104. De Smit M. H. and. Van Duin J. Control of translation by mRNA Secondary Structure in Escherichia coli. J. Mol. Biol. (1994). 244, 144150.
105. McCarthy, J. E. G., Gualezi C. O. Translational control of procariotic gene expression. Trends in Genetics (1990), v. 6, 78-85.
106. Ganoza M., Kofoid E. C., Morliere P., Louis B.G. Potential secondary structure at translation initiation sites. Nucl. Acids Res. (1987) v. 15, 345360
107. Scherer G. F. E., WalkinshawM. D., Morre D. J. The ribosomal binding sites recognized by E.coli ribosomes have regions with signal character in both the leader and protein coding segment. Nucl. Acids Res (1980), 8, 3895-3907
108. Stormo G., Schneider T. D., Gold L, Characterization of translation initiation sites in E.coli.Nucl. Acids Res. (1982) v.10, 2971-2996.
109. Schneider T. D., Stormo G. D., Gold L., Ehrenfeucht A. Information content of binding sites on nucleotide sequences. J. Mol. Biol (1986) v.188, 415-431.
110. Dreyfus M., What constitutes the signal for the initiation of protein synthesis on Esherichia coli mRNA. J. Mol. Biol. (1988), 204, 79-94.
111. Гуревич А. И., Есипов Р.С., Качалина Т. А., Каюшин А. Л., Коростелева М. Д. Зависимосить уровня экспрессии гена в E.coli от структуры участка инициации трнсляции (TIR) I. Первичная структура TIR. Биоорган, химия (1995) т. 21, 117-123.
112. Boni I. V., Isaeva D. M., Musychenko M. L, Tzareva N. V. Ribosome-messenger recognition: mRNA target sites for ribosomal protein SI. Nucleic Acids Res. (1991), 19, 155-162.
113. Oppenheim D.S., Yanofsky C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics (1980) v.95, 785795.
114. Das A., Urbanowski J., Weiss bach H., Nestor J., Yanofsky C. In vitro synthesis of the tryptophan operon leader peptides of Escherichia coli, Serratia marcescens, and Salmonella typhymurium. Proc.Natl.Acad.Sci.USA (1983) v. 80, 2879-2883.
115. Gerstel B, McCarthy J.E.G. Independent and coupled translation initiation of atp genes in Escherichia coli: experiments using chromosomal and plasmid-borne lacZ fusions. Molec.Microbiol. (1989) v.3, 851-859.
116. Lindahl L., Archer R.H., McCormick J.R., Freedman L.P., Zengel J.M. Translational coupling of the two proximal genes in the S10 ribosomal protein operon of Escerichia coli. J.Bacteriol. (1989) v.171, 2639-2645.
117. Little S., Hyde S., Campbell C.J., Lilley R.J., Robinson.M.K. Translational coupling in the threonine operon of Escherichia coli K-12. J.Bacteriol. (1989) v.171, 3518-3522.
118. Kastelein R.A., Berkhout В., van Duin J. Opening the closed ribosome binding site of the lysis cistron of bacteriophage MS2. Nature (1983) v.305, 741-743.
119. Adhin MR., van Duin J. Scanning model for translational reinitiation in eubacteria, J.Mol.Biol. (1990) v.213, 811-818.
120. Das A., Yanofsky C. A ribosome binding site sequence is necessary for efficient expression of the distal gene of a translationally coupled gene pair. Nucl.Acids.Res.(\9M) v. 12, 4757-4768.
121. Berkhout В., Kastelein R.A., van Duin J. Translational interference at overlapping reading frames in procanotic messenger RNA. Gene (1985) v.37, 171-179.
122. Schoner B.E., Belagale R.M., Schoner R.G. Translation of a synthetic two-cistron lnRNA in E.coh. Proc.Natl.Acad.Sci.USA (1986) v.83, 85068510.
123. Spanjaard R.A., van Dyk M.C.M., TurionA.J., van DuinJ. Expression of the rat interferon-al gene in Escherichia coli controlled by the secondary structure of the translation-initiation region. Gene (1989) v. 80, 345-351.
124. Makoff A.J., Smallwood A.E. The use of two-cistron constructions in improving the expression of a heterologous gene in E.coli. Nucl.Acids Res. (1990) v. 18, 1711-1718.
125. O. Бирих K.P., Лебеденко E.H. Берлин Ю.А. Плазмидный вектор, содержащий энхансер трансляции, для экспрессии генов в прокариотической двуцистронной системе. Биоорган, химия (1993) т.19, 1234-1238.
126. Brimacombe R. The strucrure of ribosomal RNA: A three-dimensional jigsaw puzzle. Eur. J. Biochem. (1995) v.230, 365-833.
127. Stern S., Weiser В., Noller H.F. Model for the three-dimentional folding of 16S ribosomal RNA. J. Mol. Biol. (1988) v.204, 447-481.
128. Hubbard J.M., Hearst J.E. Computer modeling 16S ribosomal RNA. J.Mol.Biol. (1991) v.221, 889-907.
129. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of ribosomal RNA operon from Escherichia coli. J.Mol.Biol. (1981) v.148, 107-127.
130. Noller H.F., Woese C.R. Secondary structure of 16S ribosomal RNA. Science (1981) v.212, 403-411.
131. Ramakrishnan V., White S. The strucrure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature (1992) v.358, 768-771.
132. Golden B.I., Hoffman D. W, Ramakrishnan V. White S. W. Ribosomal protein SI7: Characterization of three-dimensional structure by and 15N NMR. Biochemistry (1993) v. 32, 12812-12820.
133. Frank J., Znu J., Penczek P., Li Y., Srivastava S., Verschoor A., Radermacher M., Grassucci R., Lata R. K., Agrawal R. K. A model of protein syntesis based on cryo-electron microscopy of the E.coli ribosome. Nature (1995) v.376, 441-444.
134. Stark H., Mueller F., Orlova E.V., Schatz M., Dube P., Erdemir T., Zemlin F., Brimacombe R., van Heel M. The 70S Eschericia coli ribosome at 23A resolution: Fitting the ribosomal RNA. Structure (1995) v. 3, 815-821.
135. Fink D.I., Chen R.O, Noller H.F,. Altman R.B. Computatial methods for defining the allowed conformational space of 16S rRNA based on chemical footprinting data. RNA (1996) v. 2, 851-866.
136. Powers T, Noller H. Hydroxyl radical footprinting of ribosomal protein on 16S rRNA. RNA (1995) v. 1, 194-209.
137. Petersen C. Long-range translational coupling in the rpLJ-rpoBC operon of Escherichia coli. J.Mol.Biol. (1989) v. 206, 323-332.
138. Chiaruttini C., Mi let M., Springer M. A long-range RNA-RNA interaction forms a pseudoknot required for translational control of the IF3-L35-L20 ribosomal proteinoperon in Escherichia coli. EMBO J.1996) v. 15,4402-4413.
139. Mueller F., Brimacombe R. A New Model for Three-dimensional Folding of Escherichia coli 16S Ribosomal RNA. I. Fitting the RNA to 3D Electron Microscopic Map at 20 A. J. Mol. Biol. (1997) v. 271, 524544.
140. Mueller F., Brimacombe R. A New Model for Three-dimensional Folding of Escherichia coli 16S Ribosomal RNA. II. The RNA-Protein Interaction Data. J. Mol. Biol. (1997) v. 271, 545-565
141. Mueller F., Brimacombe R. A New Model for Three-dimensional Folding of Escherichia coli 16S Ribosomal RNA. III. The Topography of Functional Centre. J. Mol. Biol. (1997) v. 271, 566-587.
142. Montpetit A., Pay ant C., Nolan J., Brakier-Gigras L. Analysis of the conformation of 3' major dornen of Escherichia coli 16S ribosomal RNA using site-directed photoaffinity crosslinking. RNA (1998). v. 4, 1455-1466.
143. Lodmell J.S., Dahlberg A.E. A conformational Switch in Escherichia coli 16S Ribosomal RNA During Decoding of Messenger RNA. Science1997), v. 277, 1262-1267.
144. Stormo G. D. Translation initiation. Maximizing gene expression (eds. Reznikoff W., Gold L.) Butterworths, Boston (1986), p. 195-224
145. Dunn J. J., Studier F. W. Nucleotide seguence from the genetic left end of bacteriophade T7 DNA to the beginning of gene 4. J. Mol. Biol. (1983), v. 166, №4-5, 477-535.
146. Newbury S.,Smith N. H., Robinson E. C, Hiles I. D., Heggins C. F. Stabilisation of translationally active mRNA by prokaryotic REP-sequensies. Cell (1987), v.48, 297-310
147. Chem C.-Y.A., Beatty J. T., Cohen S. N. Belasco J.G., An intercistronic stem-loop structure functions as an mRNA dacayterminator necessary but insufficient for puf mRNA stability. Cell (1988), v. 52, 609-619.
148. Гуревич A.M., Есипов P.C., Качалина Т.А., Каюшин А.Л., Зависимость уровня экспрессии гена в E.coli от структуры участка инициации трансляции (TIR). II. Вторичная структура TIR. Биоорган, химия (1995), т. 21, 282-288.
149. Луценко С.В., Еуревич А.И., Птицын Я.Р., Рязанцева Л.А., Смирнов В.А. Системы экспрессии в E.coli рекомбинантных интерлейкина-3. Биоорган, химия (1992)), т. 18, 391-397.
150. Еуревич А.И.,Аваков А.Э.,Игошин А.В.,Колосов М.Н. Выделение промоторов rrnB Escherichia coli. Биоорган, химия (1982) т. 8, 557560
151. Есипов Р.С., Качалина, Т. А., Еуревич А. И. Новые плазмидные векторы для получения высокого уровня экспрессии рекомбинантных белков в Escherichia coli. Второй съезд биохимического общества РАН, тезисы стендовых сообщений, Москва (1997), 496-497.
152. Studier F.W., Rosenberg А. Н., Dunn J.J. DubendorffJ. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. (1990), v. 185, 60-84.
153. Schoerfer R. The pSET family of t7 promoter expression vector for Escherichia coli. Gene (1993), v. 123, 83-85.
154. Гуревич А. К, Качалина Т. А., Каюшин А. Л., Коростелева М. Д., Мальцев КВ., Миргородская О. А., Мирошников А. И. Рекомбинантные белки, содержащие олигомерные последовательности окситоцина. Биорган. химия (1996), т. 22, 14-16.
155. Klein В.К., Feng Г., McWherter СИЛ, Hood W.F., Paik К., McKearn J.P. The receptor binding site of human interleukin-3 defined by mutagenesis and molecular modeling. J.Biol.Chem. (1997), v.272, 22630-22641.
156. Машковский М.Д. Лекарственные средства. M., Медицина (1972) т.2, с.72.
157. Гуревич А. И., Качалина Т. А., Каюшин А. Л., Коростелева М. Д., Мирошников А.И. Клонирование повторяющейся последовательности гена окситоцина. Биорган. химия (1993/ т. 19, 629-632.
158. Остерман Л.А. Методы исследования белков и нуклеиновых кислот. М., Наука (1985).
159. Sambrook J., Fritsh E.F., Maniatis Т. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989).
160. Emory S.A., Belasco J.G. The ompA untranslated RNA segment functions in E.coli as a drowth-rate regulated mRNA stabilizer whose activity is unrelated to translation efficiency. J.Bacteriol.(1990), v.8, 4472-4481.
161. McCarthy J.E.G. Expression of the unc genes in Escherichia coli. J.Bioen.Biomemb. (1988), v. 20, 19-38.
162. Gallic D.R., Sleat D.E.,Watts J.W., Wilson T.M.A. The 5' leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcript in vitro and in vivo. Nucl. Acids Res. (1987), v. 15, 3257-3273.
163. Wilson T.M.A. Expression of the large 5'-proximal cistron of tobacco mosaic virus by 70S ribosomes during cotranslational disassembly in a procariotic cell-free system. Virology (1986), v. 152, 277-279.
164. Gallie D.R., Sleat D.E., Watts J.W., Turner P.C., Wilson T.M.A. A comparison of eucaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucl. Acids Res. (1987), v. 15, 8693-8711.
165. Towbin H., Stachelin T., Gordon J. Electrophoresis transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedures and some applications. Proc.Natl.Acad.Sci.USA. (1979), v. 76, 4350-4354.
166. Sleat D.E., Gallie D.R., Jefferson R. A., BevanM.W., Turner P.C., Wilson T.M.A. Characterization of the 5'-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene (1987), v. 217,217-225.